src/share/classes/com/sun/tools/javac/code/Types.java

Wed, 12 Mar 2008 13:06:00 -0700

author
jjg
date
Wed, 12 Mar 2008 13:06:00 -0700
changeset 12
7366066839bb
parent 5
b45f8d4794b7
child 19
adaa3fc51b60
permissions
-rw-r--r--

6668794: javac puts localized text in raw diagnostics
6668796: bad diagnostic "bad class file" given for source files
Summary: Replace internal use of localized text with JCDiagnostic fragments; fix diagnostic for bad source file
Reviewed-by: mcimadamore

duke@1 1 /*
duke@1 2 * Copyright 2003-2006 Sun Microsystems, Inc. All Rights Reserved.
duke@1 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@1 4 *
duke@1 5 * This code is free software; you can redistribute it and/or modify it
duke@1 6 * under the terms of the GNU General Public License version 2 only, as
duke@1 7 * published by the Free Software Foundation. Sun designates this
duke@1 8 * particular file as subject to the "Classpath" exception as provided
duke@1 9 * by Sun in the LICENSE file that accompanied this code.
duke@1 10 *
duke@1 11 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@1 12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@1 13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@1 14 * version 2 for more details (a copy is included in the LICENSE file that
duke@1 15 * accompanied this code).
duke@1 16 *
duke@1 17 * You should have received a copy of the GNU General Public License version
duke@1 18 * 2 along with this work; if not, write to the Free Software Foundation,
duke@1 19 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@1 20 *
duke@1 21 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
duke@1 22 * CA 95054 USA or visit www.sun.com if you need additional information or
duke@1 23 * have any questions.
duke@1 24 */
duke@1 25
duke@1 26 package com.sun.tools.javac.code;
duke@1 27
duke@1 28 import java.util.*;
duke@1 29
duke@1 30 import com.sun.tools.javac.util.*;
duke@1 31 import com.sun.tools.javac.util.List;
duke@1 32
duke@1 33 import com.sun.tools.javac.jvm.ClassReader;
duke@1 34 import com.sun.tools.javac.comp.Infer;
duke@1 35 import com.sun.tools.javac.comp.Check;
duke@1 36
duke@1 37 import static com.sun.tools.javac.code.Type.*;
duke@1 38 import static com.sun.tools.javac.code.TypeTags.*;
duke@1 39 import static com.sun.tools.javac.code.Symbol.*;
duke@1 40 import static com.sun.tools.javac.code.Flags.*;
duke@1 41 import static com.sun.tools.javac.code.BoundKind.*;
duke@1 42 import static com.sun.tools.javac.util.ListBuffer.lb;
duke@1 43
duke@1 44 /**
duke@1 45 * Utility class containing various operations on types.
duke@1 46 *
duke@1 47 * <p>Unless other names are more illustrative, the following naming
duke@1 48 * conventions should be observed in this file:
duke@1 49 *
duke@1 50 * <dl>
duke@1 51 * <dt>t</dt>
duke@1 52 * <dd>If the first argument to an operation is a type, it should be named t.</dd>
duke@1 53 * <dt>s</dt>
duke@1 54 * <dd>Similarly, if the second argument to an operation is a type, it should be named s.</dd>
duke@1 55 * <dt>ts</dt>
duke@1 56 * <dd>If an operations takes a list of types, the first should be named ts.</dd>
duke@1 57 * <dt>ss</dt>
duke@1 58 * <dd>A second list of types should be named ss.</dd>
duke@1 59 * </dl>
duke@1 60 *
duke@1 61 * <p><b>This is NOT part of any API supported by Sun Microsystems.
duke@1 62 * If you write code that depends on this, you do so at your own risk.
duke@1 63 * This code and its internal interfaces are subject to change or
duke@1 64 * deletion without notice.</b>
duke@1 65 */
duke@1 66 public class Types {
duke@1 67 protected static final Context.Key<Types> typesKey =
duke@1 68 new Context.Key<Types>();
duke@1 69
duke@1 70 final Symtab syms;
duke@1 71 final Name.Table names;
duke@1 72 final boolean allowBoxing;
duke@1 73 final ClassReader reader;
duke@1 74 final Source source;
duke@1 75 final Check chk;
duke@1 76 List<Warner> warnStack = List.nil();
duke@1 77 final Name capturedName;
duke@1 78
duke@1 79 // <editor-fold defaultstate="collapsed" desc="Instantiating">
duke@1 80 public static Types instance(Context context) {
duke@1 81 Types instance = context.get(typesKey);
duke@1 82 if (instance == null)
duke@1 83 instance = new Types(context);
duke@1 84 return instance;
duke@1 85 }
duke@1 86
duke@1 87 protected Types(Context context) {
duke@1 88 context.put(typesKey, this);
duke@1 89 syms = Symtab.instance(context);
duke@1 90 names = Name.Table.instance(context);
duke@1 91 allowBoxing = Source.instance(context).allowBoxing();
duke@1 92 reader = ClassReader.instance(context);
duke@1 93 source = Source.instance(context);
duke@1 94 chk = Check.instance(context);
duke@1 95 capturedName = names.fromString("<captured wildcard>");
duke@1 96 }
duke@1 97 // </editor-fold>
duke@1 98
duke@1 99 // <editor-fold defaultstate="collapsed" desc="upperBound">
duke@1 100 /**
duke@1 101 * The "rvalue conversion".<br>
duke@1 102 * The upper bound of most types is the type
duke@1 103 * itself. Wildcards, on the other hand have upper
duke@1 104 * and lower bounds.
duke@1 105 * @param t a type
duke@1 106 * @return the upper bound of the given type
duke@1 107 */
duke@1 108 public Type upperBound(Type t) {
duke@1 109 return upperBound.visit(t);
duke@1 110 }
duke@1 111 // where
duke@1 112 private final MapVisitor<Void> upperBound = new MapVisitor<Void>() {
duke@1 113
duke@1 114 @Override
duke@1 115 public Type visitWildcardType(WildcardType t, Void ignored) {
duke@1 116 if (t.isSuperBound())
duke@1 117 return t.bound == null ? syms.objectType : t.bound.bound;
duke@1 118 else
duke@1 119 return visit(t.type);
duke@1 120 }
duke@1 121
duke@1 122 @Override
duke@1 123 public Type visitCapturedType(CapturedType t, Void ignored) {
duke@1 124 return visit(t.bound);
duke@1 125 }
duke@1 126 };
duke@1 127 // </editor-fold>
duke@1 128
duke@1 129 // <editor-fold defaultstate="collapsed" desc="lowerBound">
duke@1 130 /**
duke@1 131 * The "lvalue conversion".<br>
duke@1 132 * The lower bound of most types is the type
duke@1 133 * itself. Wildcards, on the other hand have upper
duke@1 134 * and lower bounds.
duke@1 135 * @param t a type
duke@1 136 * @return the lower bound of the given type
duke@1 137 */
duke@1 138 public Type lowerBound(Type t) {
duke@1 139 return lowerBound.visit(t);
duke@1 140 }
duke@1 141 // where
duke@1 142 private final MapVisitor<Void> lowerBound = new MapVisitor<Void>() {
duke@1 143
duke@1 144 @Override
duke@1 145 public Type visitWildcardType(WildcardType t, Void ignored) {
duke@1 146 return t.isExtendsBound() ? syms.botType : visit(t.type);
duke@1 147 }
duke@1 148
duke@1 149 @Override
duke@1 150 public Type visitCapturedType(CapturedType t, Void ignored) {
duke@1 151 return visit(t.getLowerBound());
duke@1 152 }
duke@1 153 };
duke@1 154 // </editor-fold>
duke@1 155
duke@1 156 // <editor-fold defaultstate="collapsed" desc="isUnbounded">
duke@1 157 /**
duke@1 158 * Checks that all the arguments to a class are unbounded
duke@1 159 * wildcards or something else that doesn't make any restrictions
duke@1 160 * on the arguments. If a class isUnbounded, a raw super- or
duke@1 161 * subclass can be cast to it without a warning.
duke@1 162 * @param t a type
duke@1 163 * @return true iff the given type is unbounded or raw
duke@1 164 */
duke@1 165 public boolean isUnbounded(Type t) {
duke@1 166 return isUnbounded.visit(t);
duke@1 167 }
duke@1 168 // where
duke@1 169 private final UnaryVisitor<Boolean> isUnbounded = new UnaryVisitor<Boolean>() {
duke@1 170
duke@1 171 public Boolean visitType(Type t, Void ignored) {
duke@1 172 return true;
duke@1 173 }
duke@1 174
duke@1 175 @Override
duke@1 176 public Boolean visitClassType(ClassType t, Void ignored) {
duke@1 177 List<Type> parms = t.tsym.type.allparams();
duke@1 178 List<Type> args = t.allparams();
duke@1 179 while (parms.nonEmpty()) {
duke@1 180 WildcardType unb = new WildcardType(syms.objectType,
duke@1 181 BoundKind.UNBOUND,
duke@1 182 syms.boundClass,
duke@1 183 (TypeVar)parms.head);
duke@1 184 if (!containsType(args.head, unb))
duke@1 185 return false;
duke@1 186 parms = parms.tail;
duke@1 187 args = args.tail;
duke@1 188 }
duke@1 189 return true;
duke@1 190 }
duke@1 191 };
duke@1 192 // </editor-fold>
duke@1 193
duke@1 194 // <editor-fold defaultstate="collapsed" desc="asSub">
duke@1 195 /**
duke@1 196 * Return the least specific subtype of t that starts with symbol
duke@1 197 * sym. If none exists, return null. The least specific subtype
duke@1 198 * is determined as follows:
duke@1 199 *
duke@1 200 * <p>If there is exactly one parameterized instance of sym that is a
duke@1 201 * subtype of t, that parameterized instance is returned.<br>
duke@1 202 * Otherwise, if the plain type or raw type `sym' is a subtype of
duke@1 203 * type t, the type `sym' itself is returned. Otherwise, null is
duke@1 204 * returned.
duke@1 205 */
duke@1 206 public Type asSub(Type t, Symbol sym) {
duke@1 207 return asSub.visit(t, sym);
duke@1 208 }
duke@1 209 // where
duke@1 210 private final SimpleVisitor<Type,Symbol> asSub = new SimpleVisitor<Type,Symbol>() {
duke@1 211
duke@1 212 public Type visitType(Type t, Symbol sym) {
duke@1 213 return null;
duke@1 214 }
duke@1 215
duke@1 216 @Override
duke@1 217 public Type visitClassType(ClassType t, Symbol sym) {
duke@1 218 if (t.tsym == sym)
duke@1 219 return t;
duke@1 220 Type base = asSuper(sym.type, t.tsym);
duke@1 221 if (base == null)
duke@1 222 return null;
duke@1 223 ListBuffer<Type> from = new ListBuffer<Type>();
duke@1 224 ListBuffer<Type> to = new ListBuffer<Type>();
duke@1 225 try {
duke@1 226 adapt(base, t, from, to);
duke@1 227 } catch (AdaptFailure ex) {
duke@1 228 return null;
duke@1 229 }
duke@1 230 Type res = subst(sym.type, from.toList(), to.toList());
duke@1 231 if (!isSubtype(res, t))
duke@1 232 return null;
duke@1 233 ListBuffer<Type> openVars = new ListBuffer<Type>();
duke@1 234 for (List<Type> l = sym.type.allparams();
duke@1 235 l.nonEmpty(); l = l.tail)
duke@1 236 if (res.contains(l.head) && !t.contains(l.head))
duke@1 237 openVars.append(l.head);
duke@1 238 if (openVars.nonEmpty()) {
duke@1 239 if (t.isRaw()) {
duke@1 240 // The subtype of a raw type is raw
duke@1 241 res = erasure(res);
duke@1 242 } else {
duke@1 243 // Unbound type arguments default to ?
duke@1 244 List<Type> opens = openVars.toList();
duke@1 245 ListBuffer<Type> qs = new ListBuffer<Type>();
duke@1 246 for (List<Type> iter = opens; iter.nonEmpty(); iter = iter.tail) {
duke@1 247 qs.append(new WildcardType(syms.objectType, BoundKind.UNBOUND, syms.boundClass, (TypeVar) iter.head));
duke@1 248 }
duke@1 249 res = subst(res, opens, qs.toList());
duke@1 250 }
duke@1 251 }
duke@1 252 return res;
duke@1 253 }
duke@1 254
duke@1 255 @Override
duke@1 256 public Type visitErrorType(ErrorType t, Symbol sym) {
duke@1 257 return t;
duke@1 258 }
duke@1 259 };
duke@1 260 // </editor-fold>
duke@1 261
duke@1 262 // <editor-fold defaultstate="collapsed" desc="isConvertible">
duke@1 263 /**
duke@1 264 * Is t a subtype of or convertiable via boxing/unboxing
duke@1 265 * convertions to s?
duke@1 266 */
duke@1 267 public boolean isConvertible(Type t, Type s, Warner warn) {
duke@1 268 boolean tPrimitive = t.isPrimitive();
duke@1 269 boolean sPrimitive = s.isPrimitive();
duke@1 270 if (tPrimitive == sPrimitive)
duke@1 271 return isSubtypeUnchecked(t, s, warn);
duke@1 272 if (!allowBoxing) return false;
duke@1 273 return tPrimitive
duke@1 274 ? isSubtype(boxedClass(t).type, s)
duke@1 275 : isSubtype(unboxedType(t), s);
duke@1 276 }
duke@1 277
duke@1 278 /**
duke@1 279 * Is t a subtype of or convertiable via boxing/unboxing
duke@1 280 * convertions to s?
duke@1 281 */
duke@1 282 public boolean isConvertible(Type t, Type s) {
duke@1 283 return isConvertible(t, s, Warner.noWarnings);
duke@1 284 }
duke@1 285 // </editor-fold>
duke@1 286
duke@1 287 // <editor-fold defaultstate="collapsed" desc="isSubtype">
duke@1 288 /**
duke@1 289 * Is t an unchecked subtype of s?
duke@1 290 */
duke@1 291 public boolean isSubtypeUnchecked(Type t, Type s) {
duke@1 292 return isSubtypeUnchecked(t, s, Warner.noWarnings);
duke@1 293 }
duke@1 294 /**
duke@1 295 * Is t an unchecked subtype of s?
duke@1 296 */
duke@1 297 public boolean isSubtypeUnchecked(Type t, Type s, Warner warn) {
duke@1 298 if (t.tag == ARRAY && s.tag == ARRAY) {
duke@1 299 return (((ArrayType)t).elemtype.tag <= lastBaseTag)
duke@1 300 ? isSameType(elemtype(t), elemtype(s))
duke@1 301 : isSubtypeUnchecked(elemtype(t), elemtype(s), warn);
duke@1 302 } else if (isSubtype(t, s)) {
duke@1 303 return true;
duke@1 304 } else if (!s.isRaw()) {
duke@1 305 Type t2 = asSuper(t, s.tsym);
duke@1 306 if (t2 != null && t2.isRaw()) {
duke@1 307 if (isReifiable(s))
duke@1 308 warn.silentUnchecked();
duke@1 309 else
duke@1 310 warn.warnUnchecked();
duke@1 311 return true;
duke@1 312 }
duke@1 313 }
duke@1 314 return false;
duke@1 315 }
duke@1 316
duke@1 317 /**
duke@1 318 * Is t a subtype of s?<br>
duke@1 319 * (not defined for Method and ForAll types)
duke@1 320 */
duke@1 321 final public boolean isSubtype(Type t, Type s) {
duke@1 322 return isSubtype(t, s, true);
duke@1 323 }
duke@1 324 final public boolean isSubtypeNoCapture(Type t, Type s) {
duke@1 325 return isSubtype(t, s, false);
duke@1 326 }
duke@1 327 public boolean isSubtype(Type t, Type s, boolean capture) {
duke@1 328 if (t == s)
duke@1 329 return true;
duke@1 330
duke@1 331 if (s.tag >= firstPartialTag)
duke@1 332 return isSuperType(s, t);
duke@1 333
duke@1 334 Type lower = lowerBound(s);
duke@1 335 if (s != lower)
duke@1 336 return isSubtype(capture ? capture(t) : t, lower, false);
duke@1 337
duke@1 338 return isSubtype.visit(capture ? capture(t) : t, s);
duke@1 339 }
duke@1 340 // where
duke@1 341 private TypeRelation isSubtype = new TypeRelation()
duke@1 342 {
duke@1 343 public Boolean visitType(Type t, Type s) {
duke@1 344 switch (t.tag) {
duke@1 345 case BYTE: case CHAR:
duke@1 346 return (t.tag == s.tag ||
duke@1 347 t.tag + 2 <= s.tag && s.tag <= DOUBLE);
duke@1 348 case SHORT: case INT: case LONG: case FLOAT: case DOUBLE:
duke@1 349 return t.tag <= s.tag && s.tag <= DOUBLE;
duke@1 350 case BOOLEAN: case VOID:
duke@1 351 return t.tag == s.tag;
duke@1 352 case TYPEVAR:
duke@1 353 return isSubtypeNoCapture(t.getUpperBound(), s);
duke@1 354 case BOT:
duke@1 355 return
duke@1 356 s.tag == BOT || s.tag == CLASS ||
duke@1 357 s.tag == ARRAY || s.tag == TYPEVAR;
duke@1 358 case NONE:
duke@1 359 return false;
duke@1 360 default:
duke@1 361 throw new AssertionError("isSubtype " + t.tag);
duke@1 362 }
duke@1 363 }
duke@1 364
duke@1 365 private Set<TypePair> cache = new HashSet<TypePair>();
duke@1 366
duke@1 367 private boolean containsTypeRecursive(Type t, Type s) {
duke@1 368 TypePair pair = new TypePair(t, s);
duke@1 369 if (cache.add(pair)) {
duke@1 370 try {
duke@1 371 return containsType(t.getTypeArguments(),
duke@1 372 s.getTypeArguments());
duke@1 373 } finally {
duke@1 374 cache.remove(pair);
duke@1 375 }
duke@1 376 } else {
duke@1 377 return containsType(t.getTypeArguments(),
duke@1 378 rewriteSupers(s).getTypeArguments());
duke@1 379 }
duke@1 380 }
duke@1 381
duke@1 382 private Type rewriteSupers(Type t) {
duke@1 383 if (!t.isParameterized())
duke@1 384 return t;
duke@1 385 ListBuffer<Type> from = lb();
duke@1 386 ListBuffer<Type> to = lb();
duke@1 387 adaptSelf(t, from, to);
duke@1 388 if (from.isEmpty())
duke@1 389 return t;
duke@1 390 ListBuffer<Type> rewrite = lb();
duke@1 391 boolean changed = false;
duke@1 392 for (Type orig : to.toList()) {
duke@1 393 Type s = rewriteSupers(orig);
duke@1 394 if (s.isSuperBound() && !s.isExtendsBound()) {
duke@1 395 s = new WildcardType(syms.objectType,
duke@1 396 BoundKind.UNBOUND,
duke@1 397 syms.boundClass);
duke@1 398 changed = true;
duke@1 399 } else if (s != orig) {
duke@1 400 s = new WildcardType(upperBound(s),
duke@1 401 BoundKind.EXTENDS,
duke@1 402 syms.boundClass);
duke@1 403 changed = true;
duke@1 404 }
duke@1 405 rewrite.append(s);
duke@1 406 }
duke@1 407 if (changed)
duke@1 408 return subst(t.tsym.type, from.toList(), rewrite.toList());
duke@1 409 else
duke@1 410 return t;
duke@1 411 }
duke@1 412
duke@1 413 @Override
duke@1 414 public Boolean visitClassType(ClassType t, Type s) {
duke@1 415 Type sup = asSuper(t, s.tsym);
duke@1 416 return sup != null
duke@1 417 && sup.tsym == s.tsym
duke@1 418 // You're not allowed to write
duke@1 419 // Vector<Object> vec = new Vector<String>();
duke@1 420 // But with wildcards you can write
duke@1 421 // Vector<? extends Object> vec = new Vector<String>();
duke@1 422 // which means that subtype checking must be done
duke@1 423 // here instead of same-type checking (via containsType).
duke@1 424 && (!s.isParameterized() || containsTypeRecursive(s, sup))
duke@1 425 && isSubtypeNoCapture(sup.getEnclosingType(),
duke@1 426 s.getEnclosingType());
duke@1 427 }
duke@1 428
duke@1 429 @Override
duke@1 430 public Boolean visitArrayType(ArrayType t, Type s) {
duke@1 431 if (s.tag == ARRAY) {
duke@1 432 if (t.elemtype.tag <= lastBaseTag)
duke@1 433 return isSameType(t.elemtype, elemtype(s));
duke@1 434 else
duke@1 435 return isSubtypeNoCapture(t.elemtype, elemtype(s));
duke@1 436 }
duke@1 437
duke@1 438 if (s.tag == CLASS) {
duke@1 439 Name sname = s.tsym.getQualifiedName();
duke@1 440 return sname == names.java_lang_Object
duke@1 441 || sname == names.java_lang_Cloneable
duke@1 442 || sname == names.java_io_Serializable;
duke@1 443 }
duke@1 444
duke@1 445 return false;
duke@1 446 }
duke@1 447
duke@1 448 @Override
duke@1 449 public Boolean visitUndetVar(UndetVar t, Type s) {
duke@1 450 //todo: test against origin needed? or replace with substitution?
duke@1 451 if (t == s || t.qtype == s || s.tag == ERROR || s.tag == UNKNOWN)
duke@1 452 return true;
duke@1 453
duke@1 454 if (t.inst != null)
duke@1 455 return isSubtypeNoCapture(t.inst, s); // TODO: ", warn"?
duke@1 456
duke@1 457 t.hibounds = t.hibounds.prepend(s);
duke@1 458 return true;
duke@1 459 }
duke@1 460
duke@1 461 @Override
duke@1 462 public Boolean visitErrorType(ErrorType t, Type s) {
duke@1 463 return true;
duke@1 464 }
duke@1 465 };
duke@1 466
duke@1 467 /**
duke@1 468 * Is t a subtype of every type in given list `ts'?<br>
duke@1 469 * (not defined for Method and ForAll types)<br>
duke@1 470 * Allows unchecked conversions.
duke@1 471 */
duke@1 472 public boolean isSubtypeUnchecked(Type t, List<Type> ts, Warner warn) {
duke@1 473 for (List<Type> l = ts; l.nonEmpty(); l = l.tail)
duke@1 474 if (!isSubtypeUnchecked(t, l.head, warn))
duke@1 475 return false;
duke@1 476 return true;
duke@1 477 }
duke@1 478
duke@1 479 /**
duke@1 480 * Are corresponding elements of ts subtypes of ss? If lists are
duke@1 481 * of different length, return false.
duke@1 482 */
duke@1 483 public boolean isSubtypes(List<Type> ts, List<Type> ss) {
duke@1 484 while (ts.tail != null && ss.tail != null
duke@1 485 /*inlined: ts.nonEmpty() && ss.nonEmpty()*/ &&
duke@1 486 isSubtype(ts.head, ss.head)) {
duke@1 487 ts = ts.tail;
duke@1 488 ss = ss.tail;
duke@1 489 }
duke@1 490 return ts.tail == null && ss.tail == null;
duke@1 491 /*inlined: ts.isEmpty() && ss.isEmpty();*/
duke@1 492 }
duke@1 493
duke@1 494 /**
duke@1 495 * Are corresponding elements of ts subtypes of ss, allowing
duke@1 496 * unchecked conversions? If lists are of different length,
duke@1 497 * return false.
duke@1 498 **/
duke@1 499 public boolean isSubtypesUnchecked(List<Type> ts, List<Type> ss, Warner warn) {
duke@1 500 while (ts.tail != null && ss.tail != null
duke@1 501 /*inlined: ts.nonEmpty() && ss.nonEmpty()*/ &&
duke@1 502 isSubtypeUnchecked(ts.head, ss.head, warn)) {
duke@1 503 ts = ts.tail;
duke@1 504 ss = ss.tail;
duke@1 505 }
duke@1 506 return ts.tail == null && ss.tail == null;
duke@1 507 /*inlined: ts.isEmpty() && ss.isEmpty();*/
duke@1 508 }
duke@1 509 // </editor-fold>
duke@1 510
duke@1 511 // <editor-fold defaultstate="collapsed" desc="isSuperType">
duke@1 512 /**
duke@1 513 * Is t a supertype of s?
duke@1 514 */
duke@1 515 public boolean isSuperType(Type t, Type s) {
duke@1 516 switch (t.tag) {
duke@1 517 case ERROR:
duke@1 518 return true;
duke@1 519 case UNDETVAR: {
duke@1 520 UndetVar undet = (UndetVar)t;
duke@1 521 if (t == s ||
duke@1 522 undet.qtype == s ||
duke@1 523 s.tag == ERROR ||
duke@1 524 s.tag == BOT) return true;
duke@1 525 if (undet.inst != null)
duke@1 526 return isSubtype(s, undet.inst);
duke@1 527 undet.lobounds = undet.lobounds.prepend(s);
duke@1 528 return true;
duke@1 529 }
duke@1 530 default:
duke@1 531 return isSubtype(s, t);
duke@1 532 }
duke@1 533 }
duke@1 534 // </editor-fold>
duke@1 535
duke@1 536 // <editor-fold defaultstate="collapsed" desc="isSameType">
duke@1 537 /**
duke@1 538 * Are corresponding elements of the lists the same type? If
duke@1 539 * lists are of different length, return false.
duke@1 540 */
duke@1 541 public boolean isSameTypes(List<Type> ts, List<Type> ss) {
duke@1 542 while (ts.tail != null && ss.tail != null
duke@1 543 /*inlined: ts.nonEmpty() && ss.nonEmpty()*/ &&
duke@1 544 isSameType(ts.head, ss.head)) {
duke@1 545 ts = ts.tail;
duke@1 546 ss = ss.tail;
duke@1 547 }
duke@1 548 return ts.tail == null && ss.tail == null;
duke@1 549 /*inlined: ts.isEmpty() && ss.isEmpty();*/
duke@1 550 }
duke@1 551
duke@1 552 /**
duke@1 553 * Is t the same type as s?
duke@1 554 */
duke@1 555 public boolean isSameType(Type t, Type s) {
duke@1 556 return isSameType.visit(t, s);
duke@1 557 }
duke@1 558 // where
duke@1 559 private TypeRelation isSameType = new TypeRelation() {
duke@1 560
duke@1 561 public Boolean visitType(Type t, Type s) {
duke@1 562 if (t == s)
duke@1 563 return true;
duke@1 564
duke@1 565 if (s.tag >= firstPartialTag)
duke@1 566 return visit(s, t);
duke@1 567
duke@1 568 switch (t.tag) {
duke@1 569 case BYTE: case CHAR: case SHORT: case INT: case LONG: case FLOAT:
duke@1 570 case DOUBLE: case BOOLEAN: case VOID: case BOT: case NONE:
duke@1 571 return t.tag == s.tag;
duke@1 572 case TYPEVAR:
duke@1 573 return s.isSuperBound()
duke@1 574 && !s.isExtendsBound()
duke@1 575 && visit(t, upperBound(s));
duke@1 576 default:
duke@1 577 throw new AssertionError("isSameType " + t.tag);
duke@1 578 }
duke@1 579 }
duke@1 580
duke@1 581 @Override
duke@1 582 public Boolean visitWildcardType(WildcardType t, Type s) {
duke@1 583 if (s.tag >= firstPartialTag)
duke@1 584 return visit(s, t);
duke@1 585 else
duke@1 586 return false;
duke@1 587 }
duke@1 588
duke@1 589 @Override
duke@1 590 public Boolean visitClassType(ClassType t, Type s) {
duke@1 591 if (t == s)
duke@1 592 return true;
duke@1 593
duke@1 594 if (s.tag >= firstPartialTag)
duke@1 595 return visit(s, t);
duke@1 596
duke@1 597 if (s.isSuperBound() && !s.isExtendsBound())
duke@1 598 return visit(t, upperBound(s)) && visit(t, lowerBound(s));
duke@1 599
duke@1 600 if (t.isCompound() && s.isCompound()) {
duke@1 601 if (!visit(supertype(t), supertype(s)))
duke@1 602 return false;
duke@1 603
duke@1 604 HashSet<SingletonType> set = new HashSet<SingletonType>();
duke@1 605 for (Type x : interfaces(t))
duke@1 606 set.add(new SingletonType(x));
duke@1 607 for (Type x : interfaces(s)) {
duke@1 608 if (!set.remove(new SingletonType(x)))
duke@1 609 return false;
duke@1 610 }
duke@1 611 return (set.size() == 0);
duke@1 612 }
duke@1 613 return t.tsym == s.tsym
duke@1 614 && visit(t.getEnclosingType(), s.getEnclosingType())
duke@1 615 && containsTypeEquivalent(t.getTypeArguments(), s.getTypeArguments());
duke@1 616 }
duke@1 617
duke@1 618 @Override
duke@1 619 public Boolean visitArrayType(ArrayType t, Type s) {
duke@1 620 if (t == s)
duke@1 621 return true;
duke@1 622
duke@1 623 if (s.tag >= firstPartialTag)
duke@1 624 return visit(s, t);
duke@1 625
duke@1 626 return s.tag == ARRAY
duke@1 627 && containsTypeEquivalent(t.elemtype, elemtype(s));
duke@1 628 }
duke@1 629
duke@1 630 @Override
duke@1 631 public Boolean visitMethodType(MethodType t, Type s) {
duke@1 632 // isSameType for methods does not take thrown
duke@1 633 // exceptions into account!
duke@1 634 return hasSameArgs(t, s) && visit(t.getReturnType(), s.getReturnType());
duke@1 635 }
duke@1 636
duke@1 637 @Override
duke@1 638 public Boolean visitPackageType(PackageType t, Type s) {
duke@1 639 return t == s;
duke@1 640 }
duke@1 641
duke@1 642 @Override
duke@1 643 public Boolean visitForAll(ForAll t, Type s) {
duke@1 644 if (s.tag != FORALL)
duke@1 645 return false;
duke@1 646
duke@1 647 ForAll forAll = (ForAll)s;
duke@1 648 return hasSameBounds(t, forAll)
duke@1 649 && visit(t.qtype, subst(forAll.qtype, forAll.tvars, t.tvars));
duke@1 650 }
duke@1 651
duke@1 652 @Override
duke@1 653 public Boolean visitUndetVar(UndetVar t, Type s) {
duke@1 654 if (s.tag == WILDCARD)
duke@1 655 // FIXME, this might be leftovers from before capture conversion
duke@1 656 return false;
duke@1 657
duke@1 658 if (t == s || t.qtype == s || s.tag == ERROR || s.tag == UNKNOWN)
duke@1 659 return true;
duke@1 660
duke@1 661 if (t.inst != null)
duke@1 662 return visit(t.inst, s);
duke@1 663
duke@1 664 t.inst = fromUnknownFun.apply(s);
duke@1 665 for (List<Type> l = t.lobounds; l.nonEmpty(); l = l.tail) {
duke@1 666 if (!isSubtype(l.head, t.inst))
duke@1 667 return false;
duke@1 668 }
duke@1 669 for (List<Type> l = t.hibounds; l.nonEmpty(); l = l.tail) {
duke@1 670 if (!isSubtype(t.inst, l.head))
duke@1 671 return false;
duke@1 672 }
duke@1 673 return true;
duke@1 674 }
duke@1 675
duke@1 676 @Override
duke@1 677 public Boolean visitErrorType(ErrorType t, Type s) {
duke@1 678 return true;
duke@1 679 }
duke@1 680 };
duke@1 681 // </editor-fold>
duke@1 682
duke@1 683 // <editor-fold defaultstate="collapsed" desc="fromUnknownFun">
duke@1 684 /**
duke@1 685 * A mapping that turns all unknown types in this type to fresh
duke@1 686 * unknown variables.
duke@1 687 */
duke@1 688 public Mapping fromUnknownFun = new Mapping("fromUnknownFun") {
duke@1 689 public Type apply(Type t) {
duke@1 690 if (t.tag == UNKNOWN) return new UndetVar(t);
duke@1 691 else return t.map(this);
duke@1 692 }
duke@1 693 };
duke@1 694 // </editor-fold>
duke@1 695
duke@1 696 // <editor-fold defaultstate="collapsed" desc="Contains Type">
duke@1 697 public boolean containedBy(Type t, Type s) {
duke@1 698 switch (t.tag) {
duke@1 699 case UNDETVAR:
duke@1 700 if (s.tag == WILDCARD) {
duke@1 701 UndetVar undetvar = (UndetVar)t;
duke@1 702
duke@1 703 // Because of wildcard capture, s must be on the left
duke@1 704 // hand side of an assignment. Furthermore, t is an
duke@1 705 // underconstrained type variable, for example, one
duke@1 706 // that is only used in the return type of a method.
duke@1 707 // If the type variable is truly underconstrained, it
duke@1 708 // cannot have any low bounds:
duke@1 709 assert undetvar.lobounds.isEmpty() : undetvar;
duke@1 710
duke@1 711 undetvar.inst = glb(upperBound(s), undetvar.inst);
duke@1 712 return true;
duke@1 713 } else {
duke@1 714 return isSameType(t, s);
duke@1 715 }
duke@1 716 case ERROR:
duke@1 717 return true;
duke@1 718 default:
duke@1 719 return containsType(s, t);
duke@1 720 }
duke@1 721 }
duke@1 722
duke@1 723 boolean containsType(List<Type> ts, List<Type> ss) {
duke@1 724 while (ts.nonEmpty() && ss.nonEmpty()
duke@1 725 && containsType(ts.head, ss.head)) {
duke@1 726 ts = ts.tail;
duke@1 727 ss = ss.tail;
duke@1 728 }
duke@1 729 return ts.isEmpty() && ss.isEmpty();
duke@1 730 }
duke@1 731
duke@1 732 /**
duke@1 733 * Check if t contains s.
duke@1 734 *
duke@1 735 * <p>T contains S if:
duke@1 736 *
duke@1 737 * <p>{@code L(T) <: L(S) && U(S) <: U(T)}
duke@1 738 *
duke@1 739 * <p>This relation is only used by ClassType.isSubtype(), that
duke@1 740 * is,
duke@1 741 *
duke@1 742 * <p>{@code C<S> <: C<T> if T contains S.}
duke@1 743 *
duke@1 744 * <p>Because of F-bounds, this relation can lead to infinite
duke@1 745 * recursion. Thus we must somehow break that recursion. Notice
duke@1 746 * that containsType() is only called from ClassType.isSubtype().
duke@1 747 * Since the arguments have already been checked against their
duke@1 748 * bounds, we know:
duke@1 749 *
duke@1 750 * <p>{@code U(S) <: U(T) if T is "super" bound (U(T) *is* the bound)}
duke@1 751 *
duke@1 752 * <p>{@code L(T) <: L(S) if T is "extends" bound (L(T) is bottom)}
duke@1 753 *
duke@1 754 * @param t a type
duke@1 755 * @param s a type
duke@1 756 */
duke@1 757 public boolean containsType(Type t, Type s) {
duke@1 758 return containsType.visit(t, s);
duke@1 759 }
duke@1 760 // where
duke@1 761 private TypeRelation containsType = new TypeRelation() {
duke@1 762
duke@1 763 private Type U(Type t) {
duke@1 764 while (t.tag == WILDCARD) {
duke@1 765 WildcardType w = (WildcardType)t;
duke@1 766 if (w.isSuperBound())
duke@1 767 return w.bound == null ? syms.objectType : w.bound.bound;
duke@1 768 else
duke@1 769 t = w.type;
duke@1 770 }
duke@1 771 return t;
duke@1 772 }
duke@1 773
duke@1 774 private Type L(Type t) {
duke@1 775 while (t.tag == WILDCARD) {
duke@1 776 WildcardType w = (WildcardType)t;
duke@1 777 if (w.isExtendsBound())
duke@1 778 return syms.botType;
duke@1 779 else
duke@1 780 t = w.type;
duke@1 781 }
duke@1 782 return t;
duke@1 783 }
duke@1 784
duke@1 785 public Boolean visitType(Type t, Type s) {
duke@1 786 if (s.tag >= firstPartialTag)
duke@1 787 return containedBy(s, t);
duke@1 788 else
duke@1 789 return isSameType(t, s);
duke@1 790 }
duke@1 791
duke@1 792 void debugContainsType(WildcardType t, Type s) {
duke@1 793 System.err.println();
duke@1 794 System.err.format(" does %s contain %s?%n", t, s);
duke@1 795 System.err.format(" %s U(%s) <: U(%s) %s = %s%n",
duke@1 796 upperBound(s), s, t, U(t),
duke@1 797 t.isSuperBound()
duke@1 798 || isSubtypeNoCapture(upperBound(s), U(t)));
duke@1 799 System.err.format(" %s L(%s) <: L(%s) %s = %s%n",
duke@1 800 L(t), t, s, lowerBound(s),
duke@1 801 t.isExtendsBound()
duke@1 802 || isSubtypeNoCapture(L(t), lowerBound(s)));
duke@1 803 System.err.println();
duke@1 804 }
duke@1 805
duke@1 806 @Override
duke@1 807 public Boolean visitWildcardType(WildcardType t, Type s) {
duke@1 808 if (s.tag >= firstPartialTag)
duke@1 809 return containedBy(s, t);
duke@1 810 else {
duke@1 811 // debugContainsType(t, s);
duke@1 812 return isSameWildcard(t, s)
duke@1 813 || isCaptureOf(s, t)
duke@1 814 || ((t.isExtendsBound() || isSubtypeNoCapture(L(t), lowerBound(s))) &&
duke@1 815 (t.isSuperBound() || isSubtypeNoCapture(upperBound(s), U(t))));
duke@1 816 }
duke@1 817 }
duke@1 818
duke@1 819 @Override
duke@1 820 public Boolean visitUndetVar(UndetVar t, Type s) {
duke@1 821 if (s.tag != WILDCARD)
duke@1 822 return isSameType(t, s);
duke@1 823 else
duke@1 824 return false;
duke@1 825 }
duke@1 826
duke@1 827 @Override
duke@1 828 public Boolean visitErrorType(ErrorType t, Type s) {
duke@1 829 return true;
duke@1 830 }
duke@1 831 };
duke@1 832
duke@1 833 public boolean isCaptureOf(Type s, WildcardType t) {
duke@1 834 if (s.tag != TYPEVAR || !(s instanceof CapturedType))
duke@1 835 return false;
duke@1 836 return isSameWildcard(t, ((CapturedType)s).wildcard);
duke@1 837 }
duke@1 838
duke@1 839 public boolean isSameWildcard(WildcardType t, Type s) {
duke@1 840 if (s.tag != WILDCARD)
duke@1 841 return false;
duke@1 842 WildcardType w = (WildcardType)s;
duke@1 843 return w.kind == t.kind && w.type == t.type;
duke@1 844 }
duke@1 845
duke@1 846 public boolean containsTypeEquivalent(List<Type> ts, List<Type> ss) {
duke@1 847 while (ts.nonEmpty() && ss.nonEmpty()
duke@1 848 && containsTypeEquivalent(ts.head, ss.head)) {
duke@1 849 ts = ts.tail;
duke@1 850 ss = ss.tail;
duke@1 851 }
duke@1 852 return ts.isEmpty() && ss.isEmpty();
duke@1 853 }
duke@1 854 // </editor-fold>
duke@1 855
duke@1 856 // <editor-fold defaultstate="collapsed" desc="isCastable">
duke@1 857 public boolean isCastable(Type t, Type s) {
duke@1 858 return isCastable(t, s, Warner.noWarnings);
duke@1 859 }
duke@1 860
duke@1 861 /**
duke@1 862 * Is t is castable to s?<br>
duke@1 863 * s is assumed to be an erased type.<br>
duke@1 864 * (not defined for Method and ForAll types).
duke@1 865 */
duke@1 866 public boolean isCastable(Type t, Type s, Warner warn) {
duke@1 867 if (t == s)
duke@1 868 return true;
duke@1 869
duke@1 870 if (t.isPrimitive() != s.isPrimitive())
duke@1 871 return allowBoxing && isConvertible(t, s, warn);
duke@1 872
duke@1 873 if (warn != warnStack.head) {
duke@1 874 try {
duke@1 875 warnStack = warnStack.prepend(warn);
duke@1 876 return isCastable.visit(t, s);
duke@1 877 } finally {
duke@1 878 warnStack = warnStack.tail;
duke@1 879 }
duke@1 880 } else {
duke@1 881 return isCastable.visit(t, s);
duke@1 882 }
duke@1 883 }
duke@1 884 // where
duke@1 885 private TypeRelation isCastable = new TypeRelation() {
duke@1 886
duke@1 887 public Boolean visitType(Type t, Type s) {
duke@1 888 if (s.tag == ERROR)
duke@1 889 return true;
duke@1 890
duke@1 891 switch (t.tag) {
duke@1 892 case BYTE: case CHAR: case SHORT: case INT: case LONG: case FLOAT:
duke@1 893 case DOUBLE:
duke@1 894 return s.tag <= DOUBLE;
duke@1 895 case BOOLEAN:
duke@1 896 return s.tag == BOOLEAN;
duke@1 897 case VOID:
duke@1 898 return false;
duke@1 899 case BOT:
duke@1 900 return isSubtype(t, s);
duke@1 901 default:
duke@1 902 throw new AssertionError();
duke@1 903 }
duke@1 904 }
duke@1 905
duke@1 906 @Override
duke@1 907 public Boolean visitWildcardType(WildcardType t, Type s) {
duke@1 908 return isCastable(upperBound(t), s, warnStack.head);
duke@1 909 }
duke@1 910
duke@1 911 @Override
duke@1 912 public Boolean visitClassType(ClassType t, Type s) {
duke@1 913 if (s.tag == ERROR || s.tag == BOT)
duke@1 914 return true;
duke@1 915
duke@1 916 if (s.tag == TYPEVAR) {
duke@1 917 if (isCastable(s.getUpperBound(), t, Warner.noWarnings)) {
duke@1 918 warnStack.head.warnUnchecked();
duke@1 919 return true;
duke@1 920 } else {
duke@1 921 return false;
duke@1 922 }
duke@1 923 }
duke@1 924
duke@1 925 if (t.isCompound()) {
duke@1 926 if (!visit(supertype(t), s))
duke@1 927 return false;
duke@1 928 for (Type intf : interfaces(t)) {
duke@1 929 if (!visit(intf, s))
duke@1 930 return false;
duke@1 931 }
duke@1 932 return true;
duke@1 933 }
duke@1 934
duke@1 935 if (s.isCompound()) {
duke@1 936 // call recursively to reuse the above code
duke@1 937 return visitClassType((ClassType)s, t);
duke@1 938 }
duke@1 939
duke@1 940 if (s.tag == CLASS || s.tag == ARRAY) {
duke@1 941 boolean upcast;
duke@1 942 if ((upcast = isSubtype(erasure(t), erasure(s)))
duke@1 943 || isSubtype(erasure(s), erasure(t))) {
duke@1 944 if (!upcast && s.tag == ARRAY) {
duke@1 945 if (!isReifiable(s))
duke@1 946 warnStack.head.warnUnchecked();
duke@1 947 return true;
duke@1 948 } else if (s.isRaw()) {
duke@1 949 return true;
duke@1 950 } else if (t.isRaw()) {
duke@1 951 if (!isUnbounded(s))
duke@1 952 warnStack.head.warnUnchecked();
duke@1 953 return true;
duke@1 954 }
duke@1 955 // Assume |a| <: |b|
duke@1 956 final Type a = upcast ? t : s;
duke@1 957 final Type b = upcast ? s : t;
duke@1 958 final boolean HIGH = true;
duke@1 959 final boolean LOW = false;
duke@1 960 final boolean DONT_REWRITE_TYPEVARS = false;
duke@1 961 Type aHigh = rewriteQuantifiers(a, HIGH, DONT_REWRITE_TYPEVARS);
duke@1 962 Type aLow = rewriteQuantifiers(a, LOW, DONT_REWRITE_TYPEVARS);
duke@1 963 Type bHigh = rewriteQuantifiers(b, HIGH, DONT_REWRITE_TYPEVARS);
duke@1 964 Type bLow = rewriteQuantifiers(b, LOW, DONT_REWRITE_TYPEVARS);
duke@1 965 Type lowSub = asSub(bLow, aLow.tsym);
duke@1 966 Type highSub = (lowSub == null) ? null : asSub(bHigh, aHigh.tsym);
duke@1 967 if (highSub == null) {
duke@1 968 final boolean REWRITE_TYPEVARS = true;
duke@1 969 aHigh = rewriteQuantifiers(a, HIGH, REWRITE_TYPEVARS);
duke@1 970 aLow = rewriteQuantifiers(a, LOW, REWRITE_TYPEVARS);
duke@1 971 bHigh = rewriteQuantifiers(b, HIGH, REWRITE_TYPEVARS);
duke@1 972 bLow = rewriteQuantifiers(b, LOW, REWRITE_TYPEVARS);
duke@1 973 lowSub = asSub(bLow, aLow.tsym);
duke@1 974 highSub = (lowSub == null) ? null : asSub(bHigh, aHigh.tsym);
duke@1 975 }
duke@1 976 if (highSub != null) {
duke@1 977 assert a.tsym == highSub.tsym && a.tsym == lowSub.tsym
duke@1 978 : a.tsym + " != " + highSub.tsym + " != " + lowSub.tsym;
duke@1 979 if (!disjointTypes(aHigh.getTypeArguments(), highSub.getTypeArguments())
duke@1 980 && !disjointTypes(aHigh.getTypeArguments(), lowSub.getTypeArguments())
duke@1 981 && !disjointTypes(aLow.getTypeArguments(), highSub.getTypeArguments())
duke@1 982 && !disjointTypes(aLow.getTypeArguments(), lowSub.getTypeArguments())) {
duke@1 983 if (upcast ? giveWarning(a, highSub) || giveWarning(a, lowSub)
duke@1 984 : giveWarning(highSub, a) || giveWarning(lowSub, a))
duke@1 985 warnStack.head.warnUnchecked();
duke@1 986 return true;
duke@1 987 }
duke@1 988 }
duke@1 989 if (isReifiable(s))
duke@1 990 return isSubtypeUnchecked(a, b);
duke@1 991 else
duke@1 992 return isSubtypeUnchecked(a, b, warnStack.head);
duke@1 993 }
duke@1 994
duke@1 995 // Sidecast
duke@1 996 if (s.tag == CLASS) {
duke@1 997 if ((s.tsym.flags() & INTERFACE) != 0) {
duke@1 998 return ((t.tsym.flags() & FINAL) == 0)
duke@1 999 ? sideCast(t, s, warnStack.head)
duke@1 1000 : sideCastFinal(t, s, warnStack.head);
duke@1 1001 } else if ((t.tsym.flags() & INTERFACE) != 0) {
duke@1 1002 return ((s.tsym.flags() & FINAL) == 0)
duke@1 1003 ? sideCast(t, s, warnStack.head)
duke@1 1004 : sideCastFinal(t, s, warnStack.head);
duke@1 1005 } else {
duke@1 1006 // unrelated class types
duke@1 1007 return false;
duke@1 1008 }
duke@1 1009 }
duke@1 1010 }
duke@1 1011 return false;
duke@1 1012 }
duke@1 1013
duke@1 1014 @Override
duke@1 1015 public Boolean visitArrayType(ArrayType t, Type s) {
duke@1 1016 switch (s.tag) {
duke@1 1017 case ERROR:
duke@1 1018 case BOT:
duke@1 1019 return true;
duke@1 1020 case TYPEVAR:
duke@1 1021 if (isCastable(s, t, Warner.noWarnings)) {
duke@1 1022 warnStack.head.warnUnchecked();
duke@1 1023 return true;
duke@1 1024 } else {
duke@1 1025 return false;
duke@1 1026 }
duke@1 1027 case CLASS:
duke@1 1028 return isSubtype(t, s);
duke@1 1029 case ARRAY:
duke@1 1030 if (elemtype(t).tag <= lastBaseTag) {
duke@1 1031 return elemtype(t).tag == elemtype(s).tag;
duke@1 1032 } else {
duke@1 1033 return visit(elemtype(t), elemtype(s));
duke@1 1034 }
duke@1 1035 default:
duke@1 1036 return false;
duke@1 1037 }
duke@1 1038 }
duke@1 1039
duke@1 1040 @Override
duke@1 1041 public Boolean visitTypeVar(TypeVar t, Type s) {
duke@1 1042 switch (s.tag) {
duke@1 1043 case ERROR:
duke@1 1044 case BOT:
duke@1 1045 return true;
duke@1 1046 case TYPEVAR:
duke@1 1047 if (isSubtype(t, s)) {
duke@1 1048 return true;
duke@1 1049 } else if (isCastable(t.bound, s, Warner.noWarnings)) {
duke@1 1050 warnStack.head.warnUnchecked();
duke@1 1051 return true;
duke@1 1052 } else {
duke@1 1053 return false;
duke@1 1054 }
duke@1 1055 default:
duke@1 1056 return isCastable(t.bound, s, warnStack.head);
duke@1 1057 }
duke@1 1058 }
duke@1 1059
duke@1 1060 @Override
duke@1 1061 public Boolean visitErrorType(ErrorType t, Type s) {
duke@1 1062 return true;
duke@1 1063 }
duke@1 1064 };
duke@1 1065 // </editor-fold>
duke@1 1066
duke@1 1067 // <editor-fold defaultstate="collapsed" desc="disjointTypes">
duke@1 1068 public boolean disjointTypes(List<Type> ts, List<Type> ss) {
duke@1 1069 while (ts.tail != null && ss.tail != null) {
duke@1 1070 if (disjointType(ts.head, ss.head)) return true;
duke@1 1071 ts = ts.tail;
duke@1 1072 ss = ss.tail;
duke@1 1073 }
duke@1 1074 return false;
duke@1 1075 }
duke@1 1076
duke@1 1077 /**
duke@1 1078 * Two types or wildcards are considered disjoint if it can be
duke@1 1079 * proven that no type can be contained in both. It is
duke@1 1080 * conservative in that it is allowed to say that two types are
duke@1 1081 * not disjoint, even though they actually are.
duke@1 1082 *
duke@1 1083 * The type C<X> is castable to C<Y> exactly if X and Y are not
duke@1 1084 * disjoint.
duke@1 1085 */
duke@1 1086 public boolean disjointType(Type t, Type s) {
duke@1 1087 return disjointType.visit(t, s);
duke@1 1088 }
duke@1 1089 // where
duke@1 1090 private TypeRelation disjointType = new TypeRelation() {
duke@1 1091
duke@1 1092 private Set<TypePair> cache = new HashSet<TypePair>();
duke@1 1093
duke@1 1094 public Boolean visitType(Type t, Type s) {
duke@1 1095 if (s.tag == WILDCARD)
duke@1 1096 return visit(s, t);
duke@1 1097 else
duke@1 1098 return notSoftSubtypeRecursive(t, s) || notSoftSubtypeRecursive(s, t);
duke@1 1099 }
duke@1 1100
duke@1 1101 private boolean isCastableRecursive(Type t, Type s) {
duke@1 1102 TypePair pair = new TypePair(t, s);
duke@1 1103 if (cache.add(pair)) {
duke@1 1104 try {
duke@1 1105 return Types.this.isCastable(t, s);
duke@1 1106 } finally {
duke@1 1107 cache.remove(pair);
duke@1 1108 }
duke@1 1109 } else {
duke@1 1110 return true;
duke@1 1111 }
duke@1 1112 }
duke@1 1113
duke@1 1114 private boolean notSoftSubtypeRecursive(Type t, Type s) {
duke@1 1115 TypePair pair = new TypePair(t, s);
duke@1 1116 if (cache.add(pair)) {
duke@1 1117 try {
duke@1 1118 return Types.this.notSoftSubtype(t, s);
duke@1 1119 } finally {
duke@1 1120 cache.remove(pair);
duke@1 1121 }
duke@1 1122 } else {
duke@1 1123 return false;
duke@1 1124 }
duke@1 1125 }
duke@1 1126
duke@1 1127 @Override
duke@1 1128 public Boolean visitWildcardType(WildcardType t, Type s) {
duke@1 1129 if (t.isUnbound())
duke@1 1130 return false;
duke@1 1131
duke@1 1132 if (s.tag != WILDCARD) {
duke@1 1133 if (t.isExtendsBound())
duke@1 1134 return notSoftSubtypeRecursive(s, t.type);
duke@1 1135 else // isSuperBound()
duke@1 1136 return notSoftSubtypeRecursive(t.type, s);
duke@1 1137 }
duke@1 1138
duke@1 1139 if (s.isUnbound())
duke@1 1140 return false;
duke@1 1141
duke@1 1142 if (t.isExtendsBound()) {
duke@1 1143 if (s.isExtendsBound())
duke@1 1144 return !isCastableRecursive(t.type, upperBound(s));
duke@1 1145 else if (s.isSuperBound())
duke@1 1146 return notSoftSubtypeRecursive(lowerBound(s), t.type);
duke@1 1147 } else if (t.isSuperBound()) {
duke@1 1148 if (s.isExtendsBound())
duke@1 1149 return notSoftSubtypeRecursive(t.type, upperBound(s));
duke@1 1150 }
duke@1 1151 return false;
duke@1 1152 }
duke@1 1153 };
duke@1 1154 // </editor-fold>
duke@1 1155
duke@1 1156 // <editor-fold defaultstate="collapsed" desc="lowerBoundArgtypes">
duke@1 1157 /**
duke@1 1158 * Returns the lower bounds of the formals of a method.
duke@1 1159 */
duke@1 1160 public List<Type> lowerBoundArgtypes(Type t) {
duke@1 1161 return map(t.getParameterTypes(), lowerBoundMapping);
duke@1 1162 }
duke@1 1163 private final Mapping lowerBoundMapping = new Mapping("lowerBound") {
duke@1 1164 public Type apply(Type t) {
duke@1 1165 return lowerBound(t);
duke@1 1166 }
duke@1 1167 };
duke@1 1168 // </editor-fold>
duke@1 1169
duke@1 1170 // <editor-fold defaultstate="collapsed" desc="notSoftSubtype">
duke@1 1171 /**
duke@1 1172 * This relation answers the question: is impossible that
duke@1 1173 * something of type `t' can be a subtype of `s'? This is
duke@1 1174 * different from the question "is `t' not a subtype of `s'?"
duke@1 1175 * when type variables are involved: Integer is not a subtype of T
duke@1 1176 * where <T extends Number> but it is not true that Integer cannot
duke@1 1177 * possibly be a subtype of T.
duke@1 1178 */
duke@1 1179 public boolean notSoftSubtype(Type t, Type s) {
duke@1 1180 if (t == s) return false;
duke@1 1181 if (t.tag == TYPEVAR) {
duke@1 1182 TypeVar tv = (TypeVar) t;
duke@1 1183 if (s.tag == TYPEVAR)
duke@1 1184 s = s.getUpperBound();
duke@1 1185 return !isCastable(tv.bound,
duke@1 1186 s,
duke@1 1187 Warner.noWarnings);
duke@1 1188 }
duke@1 1189 if (s.tag != WILDCARD)
duke@1 1190 s = upperBound(s);
duke@1 1191 if (s.tag == TYPEVAR)
duke@1 1192 s = s.getUpperBound();
duke@1 1193 return !isSubtype(t, s);
duke@1 1194 }
duke@1 1195 // </editor-fold>
duke@1 1196
duke@1 1197 // <editor-fold defaultstate="collapsed" desc="isReifiable">
duke@1 1198 public boolean isReifiable(Type t) {
duke@1 1199 return isReifiable.visit(t);
duke@1 1200 }
duke@1 1201 // where
duke@1 1202 private UnaryVisitor<Boolean> isReifiable = new UnaryVisitor<Boolean>() {
duke@1 1203
duke@1 1204 public Boolean visitType(Type t, Void ignored) {
duke@1 1205 return true;
duke@1 1206 }
duke@1 1207
duke@1 1208 @Override
duke@1 1209 public Boolean visitClassType(ClassType t, Void ignored) {
duke@1 1210 if (!t.isParameterized())
duke@1 1211 return true;
duke@1 1212
duke@1 1213 for (Type param : t.allparams()) {
duke@1 1214 if (!param.isUnbound())
duke@1 1215 return false;
duke@1 1216 }
duke@1 1217 return true;
duke@1 1218 }
duke@1 1219
duke@1 1220 @Override
duke@1 1221 public Boolean visitArrayType(ArrayType t, Void ignored) {
duke@1 1222 return visit(t.elemtype);
duke@1 1223 }
duke@1 1224
duke@1 1225 @Override
duke@1 1226 public Boolean visitTypeVar(TypeVar t, Void ignored) {
duke@1 1227 return false;
duke@1 1228 }
duke@1 1229 };
duke@1 1230 // </editor-fold>
duke@1 1231
duke@1 1232 // <editor-fold defaultstate="collapsed" desc="Array Utils">
duke@1 1233 public boolean isArray(Type t) {
duke@1 1234 while (t.tag == WILDCARD)
duke@1 1235 t = upperBound(t);
duke@1 1236 return t.tag == ARRAY;
duke@1 1237 }
duke@1 1238
duke@1 1239 /**
duke@1 1240 * The element type of an array.
duke@1 1241 */
duke@1 1242 public Type elemtype(Type t) {
duke@1 1243 switch (t.tag) {
duke@1 1244 case WILDCARD:
duke@1 1245 return elemtype(upperBound(t));
duke@1 1246 case ARRAY:
duke@1 1247 return ((ArrayType)t).elemtype;
duke@1 1248 case FORALL:
duke@1 1249 return elemtype(((ForAll)t).qtype);
duke@1 1250 case ERROR:
duke@1 1251 return t;
duke@1 1252 default:
duke@1 1253 return null;
duke@1 1254 }
duke@1 1255 }
duke@1 1256
duke@1 1257 /**
duke@1 1258 * Mapping to take element type of an arraytype
duke@1 1259 */
duke@1 1260 private Mapping elemTypeFun = new Mapping ("elemTypeFun") {
duke@1 1261 public Type apply(Type t) { return elemtype(t); }
duke@1 1262 };
duke@1 1263
duke@1 1264 /**
duke@1 1265 * The number of dimensions of an array type.
duke@1 1266 */
duke@1 1267 public int dimensions(Type t) {
duke@1 1268 int result = 0;
duke@1 1269 while (t.tag == ARRAY) {
duke@1 1270 result++;
duke@1 1271 t = elemtype(t);
duke@1 1272 }
duke@1 1273 return result;
duke@1 1274 }
duke@1 1275 // </editor-fold>
duke@1 1276
duke@1 1277 // <editor-fold defaultstate="collapsed" desc="asSuper">
duke@1 1278 /**
duke@1 1279 * Return the (most specific) base type of t that starts with the
duke@1 1280 * given symbol. If none exists, return null.
duke@1 1281 *
duke@1 1282 * @param t a type
duke@1 1283 * @param sym a symbol
duke@1 1284 */
duke@1 1285 public Type asSuper(Type t, Symbol sym) {
duke@1 1286 return asSuper.visit(t, sym);
duke@1 1287 }
duke@1 1288 // where
duke@1 1289 private SimpleVisitor<Type,Symbol> asSuper = new SimpleVisitor<Type,Symbol>() {
duke@1 1290
duke@1 1291 public Type visitType(Type t, Symbol sym) {
duke@1 1292 return null;
duke@1 1293 }
duke@1 1294
duke@1 1295 @Override
duke@1 1296 public Type visitClassType(ClassType t, Symbol sym) {
duke@1 1297 if (t.tsym == sym)
duke@1 1298 return t;
duke@1 1299
duke@1 1300 Type st = supertype(t);
duke@1 1301 if (st.tag == CLASS || st.tag == ERROR) {
duke@1 1302 Type x = asSuper(st, sym);
duke@1 1303 if (x != null)
duke@1 1304 return x;
duke@1 1305 }
duke@1 1306 if ((sym.flags() & INTERFACE) != 0) {
duke@1 1307 for (List<Type> l = interfaces(t); l.nonEmpty(); l = l.tail) {
duke@1 1308 Type x = asSuper(l.head, sym);
duke@1 1309 if (x != null)
duke@1 1310 return x;
duke@1 1311 }
duke@1 1312 }
duke@1 1313 return null;
duke@1 1314 }
duke@1 1315
duke@1 1316 @Override
duke@1 1317 public Type visitArrayType(ArrayType t, Symbol sym) {
duke@1 1318 return isSubtype(t, sym.type) ? sym.type : null;
duke@1 1319 }
duke@1 1320
duke@1 1321 @Override
duke@1 1322 public Type visitTypeVar(TypeVar t, Symbol sym) {
duke@1 1323 return asSuper(t.bound, sym);
duke@1 1324 }
duke@1 1325
duke@1 1326 @Override
duke@1 1327 public Type visitErrorType(ErrorType t, Symbol sym) {
duke@1 1328 return t;
duke@1 1329 }
duke@1 1330 };
duke@1 1331
duke@1 1332 /**
duke@1 1333 * Return the base type of t or any of its outer types that starts
duke@1 1334 * with the given symbol. If none exists, return null.
duke@1 1335 *
duke@1 1336 * @param t a type
duke@1 1337 * @param sym a symbol
duke@1 1338 */
duke@1 1339 public Type asOuterSuper(Type t, Symbol sym) {
duke@1 1340 switch (t.tag) {
duke@1 1341 case CLASS:
duke@1 1342 do {
duke@1 1343 Type s = asSuper(t, sym);
duke@1 1344 if (s != null) return s;
duke@1 1345 t = t.getEnclosingType();
duke@1 1346 } while (t.tag == CLASS);
duke@1 1347 return null;
duke@1 1348 case ARRAY:
duke@1 1349 return isSubtype(t, sym.type) ? sym.type : null;
duke@1 1350 case TYPEVAR:
duke@1 1351 return asSuper(t, sym);
duke@1 1352 case ERROR:
duke@1 1353 return t;
duke@1 1354 default:
duke@1 1355 return null;
duke@1 1356 }
duke@1 1357 }
duke@1 1358
duke@1 1359 /**
duke@1 1360 * Return the base type of t or any of its enclosing types that
duke@1 1361 * starts with the given symbol. If none exists, return null.
duke@1 1362 *
duke@1 1363 * @param t a type
duke@1 1364 * @param sym a symbol
duke@1 1365 */
duke@1 1366 public Type asEnclosingSuper(Type t, Symbol sym) {
duke@1 1367 switch (t.tag) {
duke@1 1368 case CLASS:
duke@1 1369 do {
duke@1 1370 Type s = asSuper(t, sym);
duke@1 1371 if (s != null) return s;
duke@1 1372 Type outer = t.getEnclosingType();
duke@1 1373 t = (outer.tag == CLASS) ? outer :
duke@1 1374 (t.tsym.owner.enclClass() != null) ? t.tsym.owner.enclClass().type :
duke@1 1375 Type.noType;
duke@1 1376 } while (t.tag == CLASS);
duke@1 1377 return null;
duke@1 1378 case ARRAY:
duke@1 1379 return isSubtype(t, sym.type) ? sym.type : null;
duke@1 1380 case TYPEVAR:
duke@1 1381 return asSuper(t, sym);
duke@1 1382 case ERROR:
duke@1 1383 return t;
duke@1 1384 default:
duke@1 1385 return null;
duke@1 1386 }
duke@1 1387 }
duke@1 1388 // </editor-fold>
duke@1 1389
duke@1 1390 // <editor-fold defaultstate="collapsed" desc="memberType">
duke@1 1391 /**
duke@1 1392 * The type of given symbol, seen as a member of t.
duke@1 1393 *
duke@1 1394 * @param t a type
duke@1 1395 * @param sym a symbol
duke@1 1396 */
duke@1 1397 public Type memberType(Type t, Symbol sym) {
duke@1 1398 return (sym.flags() & STATIC) != 0
duke@1 1399 ? sym.type
duke@1 1400 : memberType.visit(t, sym);
duke@1 1401 }
duke@1 1402 // where
duke@1 1403 private SimpleVisitor<Type,Symbol> memberType = new SimpleVisitor<Type,Symbol>() {
duke@1 1404
duke@1 1405 public Type visitType(Type t, Symbol sym) {
duke@1 1406 return sym.type;
duke@1 1407 }
duke@1 1408
duke@1 1409 @Override
duke@1 1410 public Type visitWildcardType(WildcardType t, Symbol sym) {
duke@1 1411 return memberType(upperBound(t), sym);
duke@1 1412 }
duke@1 1413
duke@1 1414 @Override
duke@1 1415 public Type visitClassType(ClassType t, Symbol sym) {
duke@1 1416 Symbol owner = sym.owner;
duke@1 1417 long flags = sym.flags();
duke@1 1418 if (((flags & STATIC) == 0) && owner.type.isParameterized()) {
duke@1 1419 Type base = asOuterSuper(t, owner);
duke@1 1420 if (base != null) {
duke@1 1421 List<Type> ownerParams = owner.type.allparams();
duke@1 1422 List<Type> baseParams = base.allparams();
duke@1 1423 if (ownerParams.nonEmpty()) {
duke@1 1424 if (baseParams.isEmpty()) {
duke@1 1425 // then base is a raw type
duke@1 1426 return erasure(sym.type);
duke@1 1427 } else {
duke@1 1428 return subst(sym.type, ownerParams, baseParams);
duke@1 1429 }
duke@1 1430 }
duke@1 1431 }
duke@1 1432 }
duke@1 1433 return sym.type;
duke@1 1434 }
duke@1 1435
duke@1 1436 @Override
duke@1 1437 public Type visitTypeVar(TypeVar t, Symbol sym) {
duke@1 1438 return memberType(t.bound, sym);
duke@1 1439 }
duke@1 1440
duke@1 1441 @Override
duke@1 1442 public Type visitErrorType(ErrorType t, Symbol sym) {
duke@1 1443 return t;
duke@1 1444 }
duke@1 1445 };
duke@1 1446 // </editor-fold>
duke@1 1447
duke@1 1448 // <editor-fold defaultstate="collapsed" desc="isAssignable">
duke@1 1449 public boolean isAssignable(Type t, Type s) {
duke@1 1450 return isAssignable(t, s, Warner.noWarnings);
duke@1 1451 }
duke@1 1452
duke@1 1453 /**
duke@1 1454 * Is t assignable to s?<br>
duke@1 1455 * Equivalent to subtype except for constant values and raw
duke@1 1456 * types.<br>
duke@1 1457 * (not defined for Method and ForAll types)
duke@1 1458 */
duke@1 1459 public boolean isAssignable(Type t, Type s, Warner warn) {
duke@1 1460 if (t.tag == ERROR)
duke@1 1461 return true;
duke@1 1462 if (t.tag <= INT && t.constValue() != null) {
duke@1 1463 int value = ((Number)t.constValue()).intValue();
duke@1 1464 switch (s.tag) {
duke@1 1465 case BYTE:
duke@1 1466 if (Byte.MIN_VALUE <= value && value <= Byte.MAX_VALUE)
duke@1 1467 return true;
duke@1 1468 break;
duke@1 1469 case CHAR:
duke@1 1470 if (Character.MIN_VALUE <= value && value <= Character.MAX_VALUE)
duke@1 1471 return true;
duke@1 1472 break;
duke@1 1473 case SHORT:
duke@1 1474 if (Short.MIN_VALUE <= value && value <= Short.MAX_VALUE)
duke@1 1475 return true;
duke@1 1476 break;
duke@1 1477 case INT:
duke@1 1478 return true;
duke@1 1479 case CLASS:
duke@1 1480 switch (unboxedType(s).tag) {
duke@1 1481 case BYTE:
duke@1 1482 case CHAR:
duke@1 1483 case SHORT:
duke@1 1484 return isAssignable(t, unboxedType(s), warn);
duke@1 1485 }
duke@1 1486 break;
duke@1 1487 }
duke@1 1488 }
duke@1 1489 return isConvertible(t, s, warn);
duke@1 1490 }
duke@1 1491 // </editor-fold>
duke@1 1492
duke@1 1493 // <editor-fold defaultstate="collapsed" desc="erasure">
duke@1 1494 /**
duke@1 1495 * The erasure of t {@code |t|} -- the type that results when all
duke@1 1496 * type parameters in t are deleted.
duke@1 1497 */
duke@1 1498 public Type erasure(Type t) {
duke@1 1499 if (t.tag <= lastBaseTag)
duke@1 1500 return t; /* fast special case */
duke@1 1501 else
duke@1 1502 return erasure.visit(t);
duke@1 1503 }
duke@1 1504 // where
duke@1 1505 private UnaryVisitor<Type> erasure = new UnaryVisitor<Type>() {
duke@1 1506 public Type visitType(Type t, Void ignored) {
duke@1 1507 if (t.tag <= lastBaseTag)
duke@1 1508 return t; /*fast special case*/
duke@1 1509 else
duke@1 1510 return t.map(erasureFun);
duke@1 1511 }
duke@1 1512
duke@1 1513 @Override
duke@1 1514 public Type visitWildcardType(WildcardType t, Void ignored) {
duke@1 1515 return erasure(upperBound(t));
duke@1 1516 }
duke@1 1517
duke@1 1518 @Override
duke@1 1519 public Type visitClassType(ClassType t, Void ignored) {
duke@1 1520 return t.tsym.erasure(Types.this);
duke@1 1521 }
duke@1 1522
duke@1 1523 @Override
duke@1 1524 public Type visitTypeVar(TypeVar t, Void ignored) {
duke@1 1525 return erasure(t.bound);
duke@1 1526 }
duke@1 1527
duke@1 1528 @Override
duke@1 1529 public Type visitErrorType(ErrorType t, Void ignored) {
duke@1 1530 return t;
duke@1 1531 }
duke@1 1532 };
duke@1 1533 private Mapping erasureFun = new Mapping ("erasure") {
duke@1 1534 public Type apply(Type t) { return erasure(t); }
duke@1 1535 };
duke@1 1536
duke@1 1537 public List<Type> erasure(List<Type> ts) {
duke@1 1538 return Type.map(ts, erasureFun);
duke@1 1539 }
duke@1 1540 // </editor-fold>
duke@1 1541
duke@1 1542 // <editor-fold defaultstate="collapsed" desc="makeCompoundType">
duke@1 1543 /**
duke@1 1544 * Make a compound type from non-empty list of types
duke@1 1545 *
duke@1 1546 * @param bounds the types from which the compound type is formed
duke@1 1547 * @param supertype is objectType if all bounds are interfaces,
duke@1 1548 * null otherwise.
duke@1 1549 */
duke@1 1550 public Type makeCompoundType(List<Type> bounds,
duke@1 1551 Type supertype) {
duke@1 1552 ClassSymbol bc =
duke@1 1553 new ClassSymbol(ABSTRACT|PUBLIC|SYNTHETIC|COMPOUND|ACYCLIC,
duke@1 1554 Type.moreInfo
duke@1 1555 ? names.fromString(bounds.toString())
duke@1 1556 : names.empty,
duke@1 1557 syms.noSymbol);
duke@1 1558 if (bounds.head.tag == TYPEVAR)
duke@1 1559 // error condition, recover
duke@1 1560 bc.erasure_field = syms.objectType;
duke@1 1561 else
duke@1 1562 bc.erasure_field = erasure(bounds.head);
duke@1 1563 bc.members_field = new Scope(bc);
duke@1 1564 ClassType bt = (ClassType)bc.type;
duke@1 1565 bt.allparams_field = List.nil();
duke@1 1566 if (supertype != null) {
duke@1 1567 bt.supertype_field = supertype;
duke@1 1568 bt.interfaces_field = bounds;
duke@1 1569 } else {
duke@1 1570 bt.supertype_field = bounds.head;
duke@1 1571 bt.interfaces_field = bounds.tail;
duke@1 1572 }
duke@1 1573 assert bt.supertype_field.tsym.completer != null
duke@1 1574 || !bt.supertype_field.isInterface()
duke@1 1575 : bt.supertype_field;
duke@1 1576 return bt;
duke@1 1577 }
duke@1 1578
duke@1 1579 /**
duke@1 1580 * Same as {@link #makeCompoundType(List,Type)}, except that the
duke@1 1581 * second parameter is computed directly. Note that this might
duke@1 1582 * cause a symbol completion. Hence, this version of
duke@1 1583 * makeCompoundType may not be called during a classfile read.
duke@1 1584 */
duke@1 1585 public Type makeCompoundType(List<Type> bounds) {
duke@1 1586 Type supertype = (bounds.head.tsym.flags() & INTERFACE) != 0 ?
duke@1 1587 supertype(bounds.head) : null;
duke@1 1588 return makeCompoundType(bounds, supertype);
duke@1 1589 }
duke@1 1590
duke@1 1591 /**
duke@1 1592 * A convenience wrapper for {@link #makeCompoundType(List)}; the
duke@1 1593 * arguments are converted to a list and passed to the other
duke@1 1594 * method. Note that this might cause a symbol completion.
duke@1 1595 * Hence, this version of makeCompoundType may not be called
duke@1 1596 * during a classfile read.
duke@1 1597 */
duke@1 1598 public Type makeCompoundType(Type bound1, Type bound2) {
duke@1 1599 return makeCompoundType(List.of(bound1, bound2));
duke@1 1600 }
duke@1 1601 // </editor-fold>
duke@1 1602
duke@1 1603 // <editor-fold defaultstate="collapsed" desc="supertype">
duke@1 1604 public Type supertype(Type t) {
duke@1 1605 return supertype.visit(t);
duke@1 1606 }
duke@1 1607 // where
duke@1 1608 private UnaryVisitor<Type> supertype = new UnaryVisitor<Type>() {
duke@1 1609
duke@1 1610 public Type visitType(Type t, Void ignored) {
duke@1 1611 // A note on wildcards: there is no good way to
duke@1 1612 // determine a supertype for a super bounded wildcard.
duke@1 1613 return null;
duke@1 1614 }
duke@1 1615
duke@1 1616 @Override
duke@1 1617 public Type visitClassType(ClassType t, Void ignored) {
duke@1 1618 if (t.supertype_field == null) {
duke@1 1619 Type supertype = ((ClassSymbol)t.tsym).getSuperclass();
duke@1 1620 // An interface has no superclass; its supertype is Object.
duke@1 1621 if (t.isInterface())
duke@1 1622 supertype = ((ClassType)t.tsym.type).supertype_field;
duke@1 1623 if (t.supertype_field == null) {
duke@1 1624 List<Type> actuals = classBound(t).allparams();
duke@1 1625 List<Type> formals = t.tsym.type.allparams();
duke@1 1626 if (actuals.isEmpty()) {
duke@1 1627 if (formals.isEmpty())
duke@1 1628 // Should not happen. See comments below in interfaces
duke@1 1629 t.supertype_field = supertype;
duke@1 1630 else
duke@1 1631 t.supertype_field = erasure(supertype);
duke@1 1632 } else {
duke@1 1633 t.supertype_field = subst(supertype, formals, actuals);
duke@1 1634 }
duke@1 1635 }
duke@1 1636 }
duke@1 1637 return t.supertype_field;
duke@1 1638 }
duke@1 1639
duke@1 1640 /**
duke@1 1641 * The supertype is always a class type. If the type
duke@1 1642 * variable's bounds start with a class type, this is also
duke@1 1643 * the supertype. Otherwise, the supertype is
duke@1 1644 * java.lang.Object.
duke@1 1645 */
duke@1 1646 @Override
duke@1 1647 public Type visitTypeVar(TypeVar t, Void ignored) {
duke@1 1648 if (t.bound.tag == TYPEVAR ||
duke@1 1649 (!t.bound.isCompound() && !t.bound.isInterface())) {
duke@1 1650 return t.bound;
duke@1 1651 } else {
duke@1 1652 return supertype(t.bound);
duke@1 1653 }
duke@1 1654 }
duke@1 1655
duke@1 1656 @Override
duke@1 1657 public Type visitArrayType(ArrayType t, Void ignored) {
duke@1 1658 if (t.elemtype.isPrimitive() || isSameType(t.elemtype, syms.objectType))
duke@1 1659 return arraySuperType();
duke@1 1660 else
duke@1 1661 return new ArrayType(supertype(t.elemtype), t.tsym);
duke@1 1662 }
duke@1 1663
duke@1 1664 @Override
duke@1 1665 public Type visitErrorType(ErrorType t, Void ignored) {
duke@1 1666 return t;
duke@1 1667 }
duke@1 1668 };
duke@1 1669 // </editor-fold>
duke@1 1670
duke@1 1671 // <editor-fold defaultstate="collapsed" desc="interfaces">
duke@1 1672 /**
duke@1 1673 * Return the interfaces implemented by this class.
duke@1 1674 */
duke@1 1675 public List<Type> interfaces(Type t) {
duke@1 1676 return interfaces.visit(t);
duke@1 1677 }
duke@1 1678 // where
duke@1 1679 private UnaryVisitor<List<Type>> interfaces = new UnaryVisitor<List<Type>>() {
duke@1 1680
duke@1 1681 public List<Type> visitType(Type t, Void ignored) {
duke@1 1682 return List.nil();
duke@1 1683 }
duke@1 1684
duke@1 1685 @Override
duke@1 1686 public List<Type> visitClassType(ClassType t, Void ignored) {
duke@1 1687 if (t.interfaces_field == null) {
duke@1 1688 List<Type> interfaces = ((ClassSymbol)t.tsym).getInterfaces();
duke@1 1689 if (t.interfaces_field == null) {
duke@1 1690 // If t.interfaces_field is null, then t must
duke@1 1691 // be a parameterized type (not to be confused
duke@1 1692 // with a generic type declaration).
duke@1 1693 // Terminology:
duke@1 1694 // Parameterized type: List<String>
duke@1 1695 // Generic type declaration: class List<E> { ... }
duke@1 1696 // So t corresponds to List<String> and
duke@1 1697 // t.tsym.type corresponds to List<E>.
duke@1 1698 // The reason t must be parameterized type is
duke@1 1699 // that completion will happen as a side
duke@1 1700 // effect of calling
duke@1 1701 // ClassSymbol.getInterfaces. Since
duke@1 1702 // t.interfaces_field is null after
duke@1 1703 // completion, we can assume that t is not the
duke@1 1704 // type of a class/interface declaration.
duke@1 1705 assert t != t.tsym.type : t.toString();
duke@1 1706 List<Type> actuals = t.allparams();
duke@1 1707 List<Type> formals = t.tsym.type.allparams();
duke@1 1708 if (actuals.isEmpty()) {
duke@1 1709 if (formals.isEmpty()) {
duke@1 1710 // In this case t is not generic (nor raw).
duke@1 1711 // So this should not happen.
duke@1 1712 t.interfaces_field = interfaces;
duke@1 1713 } else {
duke@1 1714 t.interfaces_field = erasure(interfaces);
duke@1 1715 }
duke@1 1716 } else {
duke@1 1717 t.interfaces_field =
duke@1 1718 upperBounds(subst(interfaces, formals, actuals));
duke@1 1719 }
duke@1 1720 }
duke@1 1721 }
duke@1 1722 return t.interfaces_field;
duke@1 1723 }
duke@1 1724
duke@1 1725 @Override
duke@1 1726 public List<Type> visitTypeVar(TypeVar t, Void ignored) {
duke@1 1727 if (t.bound.isCompound())
duke@1 1728 return interfaces(t.bound);
duke@1 1729
duke@1 1730 if (t.bound.isInterface())
duke@1 1731 return List.of(t.bound);
duke@1 1732
duke@1 1733 return List.nil();
duke@1 1734 }
duke@1 1735 };
duke@1 1736 // </editor-fold>
duke@1 1737
duke@1 1738 // <editor-fold defaultstate="collapsed" desc="isDerivedRaw">
duke@1 1739 Map<Type,Boolean> isDerivedRawCache = new HashMap<Type,Boolean>();
duke@1 1740
duke@1 1741 public boolean isDerivedRaw(Type t) {
duke@1 1742 Boolean result = isDerivedRawCache.get(t);
duke@1 1743 if (result == null) {
duke@1 1744 result = isDerivedRawInternal(t);
duke@1 1745 isDerivedRawCache.put(t, result);
duke@1 1746 }
duke@1 1747 return result;
duke@1 1748 }
duke@1 1749
duke@1 1750 public boolean isDerivedRawInternal(Type t) {
duke@1 1751 if (t.isErroneous())
duke@1 1752 return false;
duke@1 1753 return
duke@1 1754 t.isRaw() ||
duke@1 1755 supertype(t) != null && isDerivedRaw(supertype(t)) ||
duke@1 1756 isDerivedRaw(interfaces(t));
duke@1 1757 }
duke@1 1758
duke@1 1759 public boolean isDerivedRaw(List<Type> ts) {
duke@1 1760 List<Type> l = ts;
duke@1 1761 while (l.nonEmpty() && !isDerivedRaw(l.head)) l = l.tail;
duke@1 1762 return l.nonEmpty();
duke@1 1763 }
duke@1 1764 // </editor-fold>
duke@1 1765
duke@1 1766 // <editor-fold defaultstate="collapsed" desc="setBounds">
duke@1 1767 /**
duke@1 1768 * Set the bounds field of the given type variable to reflect a
duke@1 1769 * (possibly multiple) list of bounds.
duke@1 1770 * @param t a type variable
duke@1 1771 * @param bounds the bounds, must be nonempty
duke@1 1772 * @param supertype is objectType if all bounds are interfaces,
duke@1 1773 * null otherwise.
duke@1 1774 */
duke@1 1775 public void setBounds(TypeVar t, List<Type> bounds, Type supertype) {
duke@1 1776 if (bounds.tail.isEmpty())
duke@1 1777 t.bound = bounds.head;
duke@1 1778 else
duke@1 1779 t.bound = makeCompoundType(bounds, supertype);
duke@1 1780 t.rank_field = -1;
duke@1 1781 }
duke@1 1782
duke@1 1783 /**
duke@1 1784 * Same as {@link #setBounds(Type.TypeVar,List,Type)}, except that
duke@1 1785 * third parameter is computed directly. Note that this test
duke@1 1786 * might cause a symbol completion. Hence, this version of
duke@1 1787 * setBounds may not be called during a classfile read.
duke@1 1788 */
duke@1 1789 public void setBounds(TypeVar t, List<Type> bounds) {
duke@1 1790 Type supertype = (bounds.head.tsym.flags() & INTERFACE) != 0 ?
duke@1 1791 supertype(bounds.head) : null;
duke@1 1792 setBounds(t, bounds, supertype);
duke@1 1793 t.rank_field = -1;
duke@1 1794 }
duke@1 1795 // </editor-fold>
duke@1 1796
duke@1 1797 // <editor-fold defaultstate="collapsed" desc="getBounds">
duke@1 1798 /**
duke@1 1799 * Return list of bounds of the given type variable.
duke@1 1800 */
duke@1 1801 public List<Type> getBounds(TypeVar t) {
duke@1 1802 if (t.bound.isErroneous() || !t.bound.isCompound())
duke@1 1803 return List.of(t.bound);
duke@1 1804 else if ((erasure(t).tsym.flags() & INTERFACE) == 0)
duke@1 1805 return interfaces(t).prepend(supertype(t));
duke@1 1806 else
duke@1 1807 // No superclass was given in bounds.
duke@1 1808 // In this case, supertype is Object, erasure is first interface.
duke@1 1809 return interfaces(t);
duke@1 1810 }
duke@1 1811 // </editor-fold>
duke@1 1812
duke@1 1813 // <editor-fold defaultstate="collapsed" desc="classBound">
duke@1 1814 /**
duke@1 1815 * If the given type is a (possibly selected) type variable,
duke@1 1816 * return the bounding class of this type, otherwise return the
duke@1 1817 * type itself.
duke@1 1818 */
duke@1 1819 public Type classBound(Type t) {
duke@1 1820 return classBound.visit(t);
duke@1 1821 }
duke@1 1822 // where
duke@1 1823 private UnaryVisitor<Type> classBound = new UnaryVisitor<Type>() {
duke@1 1824
duke@1 1825 public Type visitType(Type t, Void ignored) {
duke@1 1826 return t;
duke@1 1827 }
duke@1 1828
duke@1 1829 @Override
duke@1 1830 public Type visitClassType(ClassType t, Void ignored) {
duke@1 1831 Type outer1 = classBound(t.getEnclosingType());
duke@1 1832 if (outer1 != t.getEnclosingType())
duke@1 1833 return new ClassType(outer1, t.getTypeArguments(), t.tsym);
duke@1 1834 else
duke@1 1835 return t;
duke@1 1836 }
duke@1 1837
duke@1 1838 @Override
duke@1 1839 public Type visitTypeVar(TypeVar t, Void ignored) {
duke@1 1840 return classBound(supertype(t));
duke@1 1841 }
duke@1 1842
duke@1 1843 @Override
duke@1 1844 public Type visitErrorType(ErrorType t, Void ignored) {
duke@1 1845 return t;
duke@1 1846 }
duke@1 1847 };
duke@1 1848 // </editor-fold>
duke@1 1849
duke@1 1850 // <editor-fold defaultstate="collapsed" desc="sub signature / override equivalence">
duke@1 1851 /**
duke@1 1852 * Returns true iff the first signature is a <em>sub
duke@1 1853 * signature</em> of the other. This is <b>not</b> an equivalence
duke@1 1854 * relation.
duke@1 1855 *
duke@1 1856 * @see "The Java Language Specification, Third Ed. (8.4.2)."
duke@1 1857 * @see #overrideEquivalent(Type t, Type s)
duke@1 1858 * @param t first signature (possibly raw).
duke@1 1859 * @param s second signature (could be subjected to erasure).
duke@1 1860 * @return true if t is a sub signature of s.
duke@1 1861 */
duke@1 1862 public boolean isSubSignature(Type t, Type s) {
duke@1 1863 return hasSameArgs(t, s) || hasSameArgs(t, erasure(s));
duke@1 1864 }
duke@1 1865
duke@1 1866 /**
duke@1 1867 * Returns true iff these signatures are related by <em>override
duke@1 1868 * equivalence</em>. This is the natural extension of
duke@1 1869 * isSubSignature to an equivalence relation.
duke@1 1870 *
duke@1 1871 * @see "The Java Language Specification, Third Ed. (8.4.2)."
duke@1 1872 * @see #isSubSignature(Type t, Type s)
duke@1 1873 * @param t a signature (possible raw, could be subjected to
duke@1 1874 * erasure).
duke@1 1875 * @param s a signature (possible raw, could be subjected to
duke@1 1876 * erasure).
duke@1 1877 * @return true if either argument is a sub signature of the other.
duke@1 1878 */
duke@1 1879 public boolean overrideEquivalent(Type t, Type s) {
duke@1 1880 return hasSameArgs(t, s) ||
duke@1 1881 hasSameArgs(t, erasure(s)) || hasSameArgs(erasure(t), s);
duke@1 1882 }
duke@1 1883
duke@1 1884 /**
duke@1 1885 * Does t have the same arguments as s? It is assumed that both
duke@1 1886 * types are (possibly polymorphic) method types. Monomorphic
duke@1 1887 * method types "have the same arguments", if their argument lists
duke@1 1888 * are equal. Polymorphic method types "have the same arguments",
duke@1 1889 * if they have the same arguments after renaming all type
duke@1 1890 * variables of one to corresponding type variables in the other,
duke@1 1891 * where correspondence is by position in the type parameter list.
duke@1 1892 */
duke@1 1893 public boolean hasSameArgs(Type t, Type s) {
duke@1 1894 return hasSameArgs.visit(t, s);
duke@1 1895 }
duke@1 1896 // where
duke@1 1897 private TypeRelation hasSameArgs = new TypeRelation() {
duke@1 1898
duke@1 1899 public Boolean visitType(Type t, Type s) {
duke@1 1900 throw new AssertionError();
duke@1 1901 }
duke@1 1902
duke@1 1903 @Override
duke@1 1904 public Boolean visitMethodType(MethodType t, Type s) {
duke@1 1905 return s.tag == METHOD
duke@1 1906 && containsTypeEquivalent(t.argtypes, s.getParameterTypes());
duke@1 1907 }
duke@1 1908
duke@1 1909 @Override
duke@1 1910 public Boolean visitForAll(ForAll t, Type s) {
duke@1 1911 if (s.tag != FORALL)
duke@1 1912 return false;
duke@1 1913
duke@1 1914 ForAll forAll = (ForAll)s;
duke@1 1915 return hasSameBounds(t, forAll)
duke@1 1916 && visit(t.qtype, subst(forAll.qtype, forAll.tvars, t.tvars));
duke@1 1917 }
duke@1 1918
duke@1 1919 @Override
duke@1 1920 public Boolean visitErrorType(ErrorType t, Type s) {
duke@1 1921 return false;
duke@1 1922 }
duke@1 1923 };
duke@1 1924 // </editor-fold>
duke@1 1925
duke@1 1926 // <editor-fold defaultstate="collapsed" desc="subst">
duke@1 1927 public List<Type> subst(List<Type> ts,
duke@1 1928 List<Type> from,
duke@1 1929 List<Type> to) {
duke@1 1930 return new Subst(from, to).subst(ts);
duke@1 1931 }
duke@1 1932
duke@1 1933 /**
duke@1 1934 * Substitute all occurrences of a type in `from' with the
duke@1 1935 * corresponding type in `to' in 't'. Match lists `from' and `to'
duke@1 1936 * from the right: If lists have different length, discard leading
duke@1 1937 * elements of the longer list.
duke@1 1938 */
duke@1 1939 public Type subst(Type t, List<Type> from, List<Type> to) {
duke@1 1940 return new Subst(from, to).subst(t);
duke@1 1941 }
duke@1 1942
duke@1 1943 private class Subst extends UnaryVisitor<Type> {
duke@1 1944 List<Type> from;
duke@1 1945 List<Type> to;
duke@1 1946
duke@1 1947 public Subst(List<Type> from, List<Type> to) {
duke@1 1948 int fromLength = from.length();
duke@1 1949 int toLength = to.length();
duke@1 1950 while (fromLength > toLength) {
duke@1 1951 fromLength--;
duke@1 1952 from = from.tail;
duke@1 1953 }
duke@1 1954 while (fromLength < toLength) {
duke@1 1955 toLength--;
duke@1 1956 to = to.tail;
duke@1 1957 }
duke@1 1958 this.from = from;
duke@1 1959 this.to = to;
duke@1 1960 }
duke@1 1961
duke@1 1962 Type subst(Type t) {
duke@1 1963 if (from.tail == null)
duke@1 1964 return t;
duke@1 1965 else
duke@1 1966 return visit(t);
duke@1 1967 }
duke@1 1968
duke@1 1969 List<Type> subst(List<Type> ts) {
duke@1 1970 if (from.tail == null)
duke@1 1971 return ts;
duke@1 1972 boolean wild = false;
duke@1 1973 if (ts.nonEmpty() && from.nonEmpty()) {
duke@1 1974 Type head1 = subst(ts.head);
duke@1 1975 List<Type> tail1 = subst(ts.tail);
duke@1 1976 if (head1 != ts.head || tail1 != ts.tail)
duke@1 1977 return tail1.prepend(head1);
duke@1 1978 }
duke@1 1979 return ts;
duke@1 1980 }
duke@1 1981
duke@1 1982 public Type visitType(Type t, Void ignored) {
duke@1 1983 return t;
duke@1 1984 }
duke@1 1985
duke@1 1986 @Override
duke@1 1987 public Type visitMethodType(MethodType t, Void ignored) {
duke@1 1988 List<Type> argtypes = subst(t.argtypes);
duke@1 1989 Type restype = subst(t.restype);
duke@1 1990 List<Type> thrown = subst(t.thrown);
duke@1 1991 if (argtypes == t.argtypes &&
duke@1 1992 restype == t.restype &&
duke@1 1993 thrown == t.thrown)
duke@1 1994 return t;
duke@1 1995 else
duke@1 1996 return new MethodType(argtypes, restype, thrown, t.tsym);
duke@1 1997 }
duke@1 1998
duke@1 1999 @Override
duke@1 2000 public Type visitTypeVar(TypeVar t, Void ignored) {
duke@1 2001 for (List<Type> from = this.from, to = this.to;
duke@1 2002 from.nonEmpty();
duke@1 2003 from = from.tail, to = to.tail) {
duke@1 2004 if (t == from.head) {
duke@1 2005 return to.head.withTypeVar(t);
duke@1 2006 }
duke@1 2007 }
duke@1 2008 return t;
duke@1 2009 }
duke@1 2010
duke@1 2011 @Override
duke@1 2012 public Type visitClassType(ClassType t, Void ignored) {
duke@1 2013 if (!t.isCompound()) {
duke@1 2014 List<Type> typarams = t.getTypeArguments();
duke@1 2015 List<Type> typarams1 = subst(typarams);
duke@1 2016 Type outer = t.getEnclosingType();
duke@1 2017 Type outer1 = subst(outer);
duke@1 2018 if (typarams1 == typarams && outer1 == outer)
duke@1 2019 return t;
duke@1 2020 else
duke@1 2021 return new ClassType(outer1, typarams1, t.tsym);
duke@1 2022 } else {
duke@1 2023 Type st = subst(supertype(t));
duke@1 2024 List<Type> is = upperBounds(subst(interfaces(t)));
duke@1 2025 if (st == supertype(t) && is == interfaces(t))
duke@1 2026 return t;
duke@1 2027 else
duke@1 2028 return makeCompoundType(is.prepend(st));
duke@1 2029 }
duke@1 2030 }
duke@1 2031
duke@1 2032 @Override
duke@1 2033 public Type visitWildcardType(WildcardType t, Void ignored) {
duke@1 2034 Type bound = t.type;
duke@1 2035 if (t.kind != BoundKind.UNBOUND)
duke@1 2036 bound = subst(bound);
duke@1 2037 if (bound == t.type) {
duke@1 2038 return t;
duke@1 2039 } else {
duke@1 2040 if (t.isExtendsBound() && bound.isExtendsBound())
duke@1 2041 bound = upperBound(bound);
duke@1 2042 return new WildcardType(bound, t.kind, syms.boundClass, t.bound);
duke@1 2043 }
duke@1 2044 }
duke@1 2045
duke@1 2046 @Override
duke@1 2047 public Type visitArrayType(ArrayType t, Void ignored) {
duke@1 2048 Type elemtype = subst(t.elemtype);
duke@1 2049 if (elemtype == t.elemtype)
duke@1 2050 return t;
duke@1 2051 else
duke@1 2052 return new ArrayType(upperBound(elemtype), t.tsym);
duke@1 2053 }
duke@1 2054
duke@1 2055 @Override
duke@1 2056 public Type visitForAll(ForAll t, Void ignored) {
duke@1 2057 List<Type> tvars1 = substBounds(t.tvars, from, to);
duke@1 2058 Type qtype1 = subst(t.qtype);
duke@1 2059 if (tvars1 == t.tvars && qtype1 == t.qtype) {
duke@1 2060 return t;
duke@1 2061 } else if (tvars1 == t.tvars) {
duke@1 2062 return new ForAll(tvars1, qtype1);
duke@1 2063 } else {
duke@1 2064 return new ForAll(tvars1, Types.this.subst(qtype1, t.tvars, tvars1));
duke@1 2065 }
duke@1 2066 }
duke@1 2067
duke@1 2068 @Override
duke@1 2069 public Type visitErrorType(ErrorType t, Void ignored) {
duke@1 2070 return t;
duke@1 2071 }
duke@1 2072 }
duke@1 2073
duke@1 2074 public List<Type> substBounds(List<Type> tvars,
duke@1 2075 List<Type> from,
duke@1 2076 List<Type> to) {
duke@1 2077 if (tvars.isEmpty())
duke@1 2078 return tvars;
duke@1 2079 if (tvars.tail.isEmpty())
duke@1 2080 // fast common case
duke@1 2081 return List.<Type>of(substBound((TypeVar)tvars.head, from, to));
duke@1 2082 ListBuffer<Type> newBoundsBuf = lb();
duke@1 2083 boolean changed = false;
duke@1 2084 // calculate new bounds
duke@1 2085 for (Type t : tvars) {
duke@1 2086 TypeVar tv = (TypeVar) t;
duke@1 2087 Type bound = subst(tv.bound, from, to);
duke@1 2088 if (bound != tv.bound)
duke@1 2089 changed = true;
duke@1 2090 newBoundsBuf.append(bound);
duke@1 2091 }
duke@1 2092 if (!changed)
duke@1 2093 return tvars;
duke@1 2094 ListBuffer<Type> newTvars = lb();
duke@1 2095 // create new type variables without bounds
duke@1 2096 for (Type t : tvars) {
duke@1 2097 newTvars.append(new TypeVar(t.tsym, null, syms.botType));
duke@1 2098 }
duke@1 2099 // the new bounds should use the new type variables in place
duke@1 2100 // of the old
duke@1 2101 List<Type> newBounds = newBoundsBuf.toList();
duke@1 2102 from = tvars;
duke@1 2103 to = newTvars.toList();
duke@1 2104 for (; !newBounds.isEmpty(); newBounds = newBounds.tail) {
duke@1 2105 newBounds.head = subst(newBounds.head, from, to);
duke@1 2106 }
duke@1 2107 newBounds = newBoundsBuf.toList();
duke@1 2108 // set the bounds of new type variables to the new bounds
duke@1 2109 for (Type t : newTvars.toList()) {
duke@1 2110 TypeVar tv = (TypeVar) t;
duke@1 2111 tv.bound = newBounds.head;
duke@1 2112 newBounds = newBounds.tail;
duke@1 2113 }
duke@1 2114 return newTvars.toList();
duke@1 2115 }
duke@1 2116
duke@1 2117 public TypeVar substBound(TypeVar t, List<Type> from, List<Type> to) {
duke@1 2118 Type bound1 = subst(t.bound, from, to);
duke@1 2119 if (bound1 == t.bound)
duke@1 2120 return t;
duke@1 2121 else
duke@1 2122 return new TypeVar(t.tsym, bound1, syms.botType);
duke@1 2123 }
duke@1 2124 // </editor-fold>
duke@1 2125
duke@1 2126 // <editor-fold defaultstate="collapsed" desc="hasSameBounds">
duke@1 2127 /**
duke@1 2128 * Does t have the same bounds for quantified variables as s?
duke@1 2129 */
duke@1 2130 boolean hasSameBounds(ForAll t, ForAll s) {
duke@1 2131 List<Type> l1 = t.tvars;
duke@1 2132 List<Type> l2 = s.tvars;
duke@1 2133 while (l1.nonEmpty() && l2.nonEmpty() &&
duke@1 2134 isSameType(l1.head.getUpperBound(),
duke@1 2135 subst(l2.head.getUpperBound(),
duke@1 2136 s.tvars,
duke@1 2137 t.tvars))) {
duke@1 2138 l1 = l1.tail;
duke@1 2139 l2 = l2.tail;
duke@1 2140 }
duke@1 2141 return l1.isEmpty() && l2.isEmpty();
duke@1 2142 }
duke@1 2143 // </editor-fold>
duke@1 2144
duke@1 2145 // <editor-fold defaultstate="collapsed" desc="newInstances">
duke@1 2146 /** Create new vector of type variables from list of variables
duke@1 2147 * changing all recursive bounds from old to new list.
duke@1 2148 */
duke@1 2149 public List<Type> newInstances(List<Type> tvars) {
duke@1 2150 List<Type> tvars1 = Type.map(tvars, newInstanceFun);
duke@1 2151 for (List<Type> l = tvars1; l.nonEmpty(); l = l.tail) {
duke@1 2152 TypeVar tv = (TypeVar) l.head;
duke@1 2153 tv.bound = subst(tv.bound, tvars, tvars1);
duke@1 2154 }
duke@1 2155 return tvars1;
duke@1 2156 }
duke@1 2157 static private Mapping newInstanceFun = new Mapping("newInstanceFun") {
duke@1 2158 public Type apply(Type t) { return new TypeVar(t.tsym, t.getUpperBound(), t.getLowerBound()); }
duke@1 2159 };
duke@1 2160 // </editor-fold>
duke@1 2161
duke@1 2162 // <editor-fold defaultstate="collapsed" desc="rank">
duke@1 2163 /**
duke@1 2164 * The rank of a class is the length of the longest path between
duke@1 2165 * the class and java.lang.Object in the class inheritance
duke@1 2166 * graph. Undefined for all but reference types.
duke@1 2167 */
duke@1 2168 public int rank(Type t) {
duke@1 2169 switch(t.tag) {
duke@1 2170 case CLASS: {
duke@1 2171 ClassType cls = (ClassType)t;
duke@1 2172 if (cls.rank_field < 0) {
duke@1 2173 Name fullname = cls.tsym.getQualifiedName();
duke@1 2174 if (fullname == fullname.table.java_lang_Object)
duke@1 2175 cls.rank_field = 0;
duke@1 2176 else {
duke@1 2177 int r = rank(supertype(cls));
duke@1 2178 for (List<Type> l = interfaces(cls);
duke@1 2179 l.nonEmpty();
duke@1 2180 l = l.tail) {
duke@1 2181 if (rank(l.head) > r)
duke@1 2182 r = rank(l.head);
duke@1 2183 }
duke@1 2184 cls.rank_field = r + 1;
duke@1 2185 }
duke@1 2186 }
duke@1 2187 return cls.rank_field;
duke@1 2188 }
duke@1 2189 case TYPEVAR: {
duke@1 2190 TypeVar tvar = (TypeVar)t;
duke@1 2191 if (tvar.rank_field < 0) {
duke@1 2192 int r = rank(supertype(tvar));
duke@1 2193 for (List<Type> l = interfaces(tvar);
duke@1 2194 l.nonEmpty();
duke@1 2195 l = l.tail) {
duke@1 2196 if (rank(l.head) > r) r = rank(l.head);
duke@1 2197 }
duke@1 2198 tvar.rank_field = r + 1;
duke@1 2199 }
duke@1 2200 return tvar.rank_field;
duke@1 2201 }
duke@1 2202 case ERROR:
duke@1 2203 return 0;
duke@1 2204 default:
duke@1 2205 throw new AssertionError();
duke@1 2206 }
duke@1 2207 }
duke@1 2208 // </editor-fold>
duke@1 2209
duke@1 2210 // <editor-fold defaultstate="collapsed" desc="toString">
duke@1 2211 /**
duke@1 2212 * This toString is slightly more descriptive than the one on Type.
duke@1 2213 */
duke@1 2214 public String toString(Type t) {
duke@1 2215 if (t.tag == FORALL) {
duke@1 2216 ForAll forAll = (ForAll)t;
duke@1 2217 return typaramsString(forAll.tvars) + forAll.qtype;
duke@1 2218 }
duke@1 2219 return "" + t;
duke@1 2220 }
duke@1 2221 // where
duke@1 2222 private String typaramsString(List<Type> tvars) {
duke@1 2223 StringBuffer s = new StringBuffer();
duke@1 2224 s.append('<');
duke@1 2225 boolean first = true;
duke@1 2226 for (Type t : tvars) {
duke@1 2227 if (!first) s.append(", ");
duke@1 2228 first = false;
duke@1 2229 appendTyparamString(((TypeVar)t), s);
duke@1 2230 }
duke@1 2231 s.append('>');
duke@1 2232 return s.toString();
duke@1 2233 }
duke@1 2234 private void appendTyparamString(TypeVar t, StringBuffer buf) {
duke@1 2235 buf.append(t);
duke@1 2236 if (t.bound == null ||
duke@1 2237 t.bound.tsym.getQualifiedName() == names.java_lang_Object)
duke@1 2238 return;
duke@1 2239 buf.append(" extends "); // Java syntax; no need for i18n
duke@1 2240 Type bound = t.bound;
duke@1 2241 if (!bound.isCompound()) {
duke@1 2242 buf.append(bound);
duke@1 2243 } else if ((erasure(t).tsym.flags() & INTERFACE) == 0) {
duke@1 2244 buf.append(supertype(t));
duke@1 2245 for (Type intf : interfaces(t)) {
duke@1 2246 buf.append('&');
duke@1 2247 buf.append(intf);
duke@1 2248 }
duke@1 2249 } else {
duke@1 2250 // No superclass was given in bounds.
duke@1 2251 // In this case, supertype is Object, erasure is first interface.
duke@1 2252 boolean first = true;
duke@1 2253 for (Type intf : interfaces(t)) {
duke@1 2254 if (!first) buf.append('&');
duke@1 2255 first = false;
duke@1 2256 buf.append(intf);
duke@1 2257 }
duke@1 2258 }
duke@1 2259 }
duke@1 2260 // </editor-fold>
duke@1 2261
duke@1 2262 // <editor-fold defaultstate="collapsed" desc="Determining least upper bounds of types">
duke@1 2263 /**
duke@1 2264 * A cache for closures.
duke@1 2265 *
duke@1 2266 * <p>A closure is a list of all the supertypes and interfaces of
duke@1 2267 * a class or interface type, ordered by ClassSymbol.precedes
duke@1 2268 * (that is, subclasses come first, arbitrary but fixed
duke@1 2269 * otherwise).
duke@1 2270 */
duke@1 2271 private Map<Type,List<Type>> closureCache = new HashMap<Type,List<Type>>();
duke@1 2272
duke@1 2273 /**
duke@1 2274 * Returns the closure of a class or interface type.
duke@1 2275 */
duke@1 2276 public List<Type> closure(Type t) {
duke@1 2277 List<Type> cl = closureCache.get(t);
duke@1 2278 if (cl == null) {
duke@1 2279 Type st = supertype(t);
duke@1 2280 if (!t.isCompound()) {
duke@1 2281 if (st.tag == CLASS) {
duke@1 2282 cl = insert(closure(st), t);
duke@1 2283 } else if (st.tag == TYPEVAR) {
duke@1 2284 cl = closure(st).prepend(t);
duke@1 2285 } else {
duke@1 2286 cl = List.of(t);
duke@1 2287 }
duke@1 2288 } else {
duke@1 2289 cl = closure(supertype(t));
duke@1 2290 }
duke@1 2291 for (List<Type> l = interfaces(t); l.nonEmpty(); l = l.tail)
duke@1 2292 cl = union(cl, closure(l.head));
duke@1 2293 closureCache.put(t, cl);
duke@1 2294 }
duke@1 2295 return cl;
duke@1 2296 }
duke@1 2297
duke@1 2298 /**
duke@1 2299 * Insert a type in a closure
duke@1 2300 */
duke@1 2301 public List<Type> insert(List<Type> cl, Type t) {
duke@1 2302 if (cl.isEmpty() || t.tsym.precedes(cl.head.tsym, this)) {
duke@1 2303 return cl.prepend(t);
duke@1 2304 } else if (cl.head.tsym.precedes(t.tsym, this)) {
duke@1 2305 return insert(cl.tail, t).prepend(cl.head);
duke@1 2306 } else {
duke@1 2307 return cl;
duke@1 2308 }
duke@1 2309 }
duke@1 2310
duke@1 2311 /**
duke@1 2312 * Form the union of two closures
duke@1 2313 */
duke@1 2314 public List<Type> union(List<Type> cl1, List<Type> cl2) {
duke@1 2315 if (cl1.isEmpty()) {
duke@1 2316 return cl2;
duke@1 2317 } else if (cl2.isEmpty()) {
duke@1 2318 return cl1;
duke@1 2319 } else if (cl1.head.tsym.precedes(cl2.head.tsym, this)) {
duke@1 2320 return union(cl1.tail, cl2).prepend(cl1.head);
duke@1 2321 } else if (cl2.head.tsym.precedes(cl1.head.tsym, this)) {
duke@1 2322 return union(cl1, cl2.tail).prepend(cl2.head);
duke@1 2323 } else {
duke@1 2324 return union(cl1.tail, cl2.tail).prepend(cl1.head);
duke@1 2325 }
duke@1 2326 }
duke@1 2327
duke@1 2328 /**
duke@1 2329 * Intersect two closures
duke@1 2330 */
duke@1 2331 public List<Type> intersect(List<Type> cl1, List<Type> cl2) {
duke@1 2332 if (cl1 == cl2)
duke@1 2333 return cl1;
duke@1 2334 if (cl1.isEmpty() || cl2.isEmpty())
duke@1 2335 return List.nil();
duke@1 2336 if (cl1.head.tsym.precedes(cl2.head.tsym, this))
duke@1 2337 return intersect(cl1.tail, cl2);
duke@1 2338 if (cl2.head.tsym.precedes(cl1.head.tsym, this))
duke@1 2339 return intersect(cl1, cl2.tail);
duke@1 2340 if (isSameType(cl1.head, cl2.head))
duke@1 2341 return intersect(cl1.tail, cl2.tail).prepend(cl1.head);
duke@1 2342 if (cl1.head.tsym == cl2.head.tsym &&
duke@1 2343 cl1.head.tag == CLASS && cl2.head.tag == CLASS) {
duke@1 2344 if (cl1.head.isParameterized() && cl2.head.isParameterized()) {
duke@1 2345 Type merge = merge(cl1.head,cl2.head);
duke@1 2346 return intersect(cl1.tail, cl2.tail).prepend(merge);
duke@1 2347 }
duke@1 2348 if (cl1.head.isRaw() || cl2.head.isRaw())
duke@1 2349 return intersect(cl1.tail, cl2.tail).prepend(erasure(cl1.head));
duke@1 2350 }
duke@1 2351 return intersect(cl1.tail, cl2.tail);
duke@1 2352 }
duke@1 2353 // where
duke@1 2354 class TypePair {
duke@1 2355 final Type t1;
duke@1 2356 final Type t2;
duke@1 2357 TypePair(Type t1, Type t2) {
duke@1 2358 this.t1 = t1;
duke@1 2359 this.t2 = t2;
duke@1 2360 }
duke@1 2361 @Override
duke@1 2362 public int hashCode() {
duke@1 2363 return 127 * Types.this.hashCode(t1) + Types.this.hashCode(t2);
duke@1 2364 }
duke@1 2365 @Override
duke@1 2366 public boolean equals(Object obj) {
duke@1 2367 if (!(obj instanceof TypePair))
duke@1 2368 return false;
duke@1 2369 TypePair typePair = (TypePair)obj;
duke@1 2370 return isSameType(t1, typePair.t1)
duke@1 2371 && isSameType(t2, typePair.t2);
duke@1 2372 }
duke@1 2373 }
duke@1 2374 Set<TypePair> mergeCache = new HashSet<TypePair>();
duke@1 2375 private Type merge(Type c1, Type c2) {
duke@1 2376 ClassType class1 = (ClassType) c1;
duke@1 2377 List<Type> act1 = class1.getTypeArguments();
duke@1 2378 ClassType class2 = (ClassType) c2;
duke@1 2379 List<Type> act2 = class2.getTypeArguments();
duke@1 2380 ListBuffer<Type> merged = new ListBuffer<Type>();
duke@1 2381 List<Type> typarams = class1.tsym.type.getTypeArguments();
duke@1 2382
duke@1 2383 while (act1.nonEmpty() && act2.nonEmpty() && typarams.nonEmpty()) {
duke@1 2384 if (containsType(act1.head, act2.head)) {
duke@1 2385 merged.append(act1.head);
duke@1 2386 } else if (containsType(act2.head, act1.head)) {
duke@1 2387 merged.append(act2.head);
duke@1 2388 } else {
duke@1 2389 TypePair pair = new TypePair(c1, c2);
duke@1 2390 Type m;
duke@1 2391 if (mergeCache.add(pair)) {
duke@1 2392 m = new WildcardType(lub(upperBound(act1.head),
duke@1 2393 upperBound(act2.head)),
duke@1 2394 BoundKind.EXTENDS,
duke@1 2395 syms.boundClass);
duke@1 2396 mergeCache.remove(pair);
duke@1 2397 } else {
duke@1 2398 m = new WildcardType(syms.objectType,
duke@1 2399 BoundKind.UNBOUND,
duke@1 2400 syms.boundClass);
duke@1 2401 }
duke@1 2402 merged.append(m.withTypeVar(typarams.head));
duke@1 2403 }
duke@1 2404 act1 = act1.tail;
duke@1 2405 act2 = act2.tail;
duke@1 2406 typarams = typarams.tail;
duke@1 2407 }
duke@1 2408 assert(act1.isEmpty() && act2.isEmpty() && typarams.isEmpty());
duke@1 2409 return new ClassType(class1.getEnclosingType(), merged.toList(), class1.tsym);
duke@1 2410 }
duke@1 2411
duke@1 2412 /**
duke@1 2413 * Return the minimum type of a closure, a compound type if no
duke@1 2414 * unique minimum exists.
duke@1 2415 */
duke@1 2416 private Type compoundMin(List<Type> cl) {
duke@1 2417 if (cl.isEmpty()) return syms.objectType;
duke@1 2418 List<Type> compound = closureMin(cl);
duke@1 2419 if (compound.isEmpty())
duke@1 2420 return null;
duke@1 2421 else if (compound.tail.isEmpty())
duke@1 2422 return compound.head;
duke@1 2423 else
duke@1 2424 return makeCompoundType(compound);
duke@1 2425 }
duke@1 2426
duke@1 2427 /**
duke@1 2428 * Return the minimum types of a closure, suitable for computing
duke@1 2429 * compoundMin or glb.
duke@1 2430 */
duke@1 2431 private List<Type> closureMin(List<Type> cl) {
duke@1 2432 ListBuffer<Type> classes = lb();
duke@1 2433 ListBuffer<Type> interfaces = lb();
duke@1 2434 while (!cl.isEmpty()) {
duke@1 2435 Type current = cl.head;
duke@1 2436 if (current.isInterface())
duke@1 2437 interfaces.append(current);
duke@1 2438 else
duke@1 2439 classes.append(current);
duke@1 2440 ListBuffer<Type> candidates = lb();
duke@1 2441 for (Type t : cl.tail) {
duke@1 2442 if (!isSubtypeNoCapture(current, t))
duke@1 2443 candidates.append(t);
duke@1 2444 }
duke@1 2445 cl = candidates.toList();
duke@1 2446 }
duke@1 2447 return classes.appendList(interfaces).toList();
duke@1 2448 }
duke@1 2449
duke@1 2450 /**
duke@1 2451 * Return the least upper bound of pair of types. if the lub does
duke@1 2452 * not exist return null.
duke@1 2453 */
duke@1 2454 public Type lub(Type t1, Type t2) {
duke@1 2455 return lub(List.of(t1, t2));
duke@1 2456 }
duke@1 2457
duke@1 2458 /**
duke@1 2459 * Return the least upper bound (lub) of set of types. If the lub
duke@1 2460 * does not exist return the type of null (bottom).
duke@1 2461 */
duke@1 2462 public Type lub(List<Type> ts) {
duke@1 2463 final int ARRAY_BOUND = 1;
duke@1 2464 final int CLASS_BOUND = 2;
duke@1 2465 int boundkind = 0;
duke@1 2466 for (Type t : ts) {
duke@1 2467 switch (t.tag) {
duke@1 2468 case CLASS:
duke@1 2469 boundkind |= CLASS_BOUND;
duke@1 2470 break;
duke@1 2471 case ARRAY:
duke@1 2472 boundkind |= ARRAY_BOUND;
duke@1 2473 break;
duke@1 2474 case TYPEVAR:
duke@1 2475 do {
duke@1 2476 t = t.getUpperBound();
duke@1 2477 } while (t.tag == TYPEVAR);
duke@1 2478 if (t.tag == ARRAY) {
duke@1 2479 boundkind |= ARRAY_BOUND;
duke@1 2480 } else {
duke@1 2481 boundkind |= CLASS_BOUND;
duke@1 2482 }
duke@1 2483 break;
duke@1 2484 default:
duke@1 2485 if (t.isPrimitive())
mcimadamore@5 2486 return syms.errType;
duke@1 2487 }
duke@1 2488 }
duke@1 2489 switch (boundkind) {
duke@1 2490 case 0:
duke@1 2491 return syms.botType;
duke@1 2492
duke@1 2493 case ARRAY_BOUND:
duke@1 2494 // calculate lub(A[], B[])
duke@1 2495 List<Type> elements = Type.map(ts, elemTypeFun);
duke@1 2496 for (Type t : elements) {
duke@1 2497 if (t.isPrimitive()) {
duke@1 2498 // if a primitive type is found, then return
duke@1 2499 // arraySuperType unless all the types are the
duke@1 2500 // same
duke@1 2501 Type first = ts.head;
duke@1 2502 for (Type s : ts.tail) {
duke@1 2503 if (!isSameType(first, s)) {
duke@1 2504 // lub(int[], B[]) is Cloneable & Serializable
duke@1 2505 return arraySuperType();
duke@1 2506 }
duke@1 2507 }
duke@1 2508 // all the array types are the same, return one
duke@1 2509 // lub(int[], int[]) is int[]
duke@1 2510 return first;
duke@1 2511 }
duke@1 2512 }
duke@1 2513 // lub(A[], B[]) is lub(A, B)[]
duke@1 2514 return new ArrayType(lub(elements), syms.arrayClass);
duke@1 2515
duke@1 2516 case CLASS_BOUND:
duke@1 2517 // calculate lub(A, B)
duke@1 2518 while (ts.head.tag != CLASS && ts.head.tag != TYPEVAR)
duke@1 2519 ts = ts.tail;
duke@1 2520 assert !ts.isEmpty();
duke@1 2521 List<Type> cl = closure(ts.head);
duke@1 2522 for (Type t : ts.tail) {
duke@1 2523 if (t.tag == CLASS || t.tag == TYPEVAR)
duke@1 2524 cl = intersect(cl, closure(t));
duke@1 2525 }
duke@1 2526 return compoundMin(cl);
duke@1 2527
duke@1 2528 default:
duke@1 2529 // calculate lub(A, B[])
duke@1 2530 List<Type> classes = List.of(arraySuperType());
duke@1 2531 for (Type t : ts) {
duke@1 2532 if (t.tag != ARRAY) // Filter out any arrays
duke@1 2533 classes = classes.prepend(t);
duke@1 2534 }
duke@1 2535 // lub(A, B[]) is lub(A, arraySuperType)
duke@1 2536 return lub(classes);
duke@1 2537 }
duke@1 2538 }
duke@1 2539 // where
duke@1 2540 private Type arraySuperType = null;
duke@1 2541 private Type arraySuperType() {
duke@1 2542 // initialized lazily to avoid problems during compiler startup
duke@1 2543 if (arraySuperType == null) {
duke@1 2544 synchronized (this) {
duke@1 2545 if (arraySuperType == null) {
duke@1 2546 // JLS 10.8: all arrays implement Cloneable and Serializable.
duke@1 2547 arraySuperType = makeCompoundType(List.of(syms.serializableType,
duke@1 2548 syms.cloneableType),
duke@1 2549 syms.objectType);
duke@1 2550 }
duke@1 2551 }
duke@1 2552 }
duke@1 2553 return arraySuperType;
duke@1 2554 }
duke@1 2555 // </editor-fold>
duke@1 2556
duke@1 2557 // <editor-fold defaultstate="collapsed" desc="Greatest lower bound">
duke@1 2558 public Type glb(Type t, Type s) {
duke@1 2559 if (s == null)
duke@1 2560 return t;
duke@1 2561 else if (isSubtypeNoCapture(t, s))
duke@1 2562 return t;
duke@1 2563 else if (isSubtypeNoCapture(s, t))
duke@1 2564 return s;
duke@1 2565
duke@1 2566 List<Type> closure = union(closure(t), closure(s));
duke@1 2567 List<Type> bounds = closureMin(closure);
duke@1 2568
duke@1 2569 if (bounds.isEmpty()) { // length == 0
duke@1 2570 return syms.objectType;
duke@1 2571 } else if (bounds.tail.isEmpty()) { // length == 1
duke@1 2572 return bounds.head;
duke@1 2573 } else { // length > 1
duke@1 2574 int classCount = 0;
duke@1 2575 for (Type bound : bounds)
duke@1 2576 if (!bound.isInterface())
duke@1 2577 classCount++;
duke@1 2578 if (classCount > 1)
duke@1 2579 return syms.errType;
duke@1 2580 }
duke@1 2581 return makeCompoundType(bounds);
duke@1 2582 }
duke@1 2583 // </editor-fold>
duke@1 2584
duke@1 2585 // <editor-fold defaultstate="collapsed" desc="hashCode">
duke@1 2586 /**
duke@1 2587 * Compute a hash code on a type.
duke@1 2588 */
duke@1 2589 public static int hashCode(Type t) {
duke@1 2590 return hashCode.visit(t);
duke@1 2591 }
duke@1 2592 // where
duke@1 2593 private static final UnaryVisitor<Integer> hashCode = new UnaryVisitor<Integer>() {
duke@1 2594
duke@1 2595 public Integer visitType(Type t, Void ignored) {
duke@1 2596 return t.tag;
duke@1 2597 }
duke@1 2598
duke@1 2599 @Override
duke@1 2600 public Integer visitClassType(ClassType t, Void ignored) {
duke@1 2601 int result = visit(t.getEnclosingType());
duke@1 2602 result *= 127;
duke@1 2603 result += t.tsym.flatName().hashCode();
duke@1 2604 for (Type s : t.getTypeArguments()) {
duke@1 2605 result *= 127;
duke@1 2606 result += visit(s);
duke@1 2607 }
duke@1 2608 return result;
duke@1 2609 }
duke@1 2610
duke@1 2611 @Override
duke@1 2612 public Integer visitWildcardType(WildcardType t, Void ignored) {
duke@1 2613 int result = t.kind.hashCode();
duke@1 2614 if (t.type != null) {
duke@1 2615 result *= 127;
duke@1 2616 result += visit(t.type);
duke@1 2617 }
duke@1 2618 return result;
duke@1 2619 }
duke@1 2620
duke@1 2621 @Override
duke@1 2622 public Integer visitArrayType(ArrayType t, Void ignored) {
duke@1 2623 return visit(t.elemtype) + 12;
duke@1 2624 }
duke@1 2625
duke@1 2626 @Override
duke@1 2627 public Integer visitTypeVar(TypeVar t, Void ignored) {
duke@1 2628 return System.identityHashCode(t.tsym);
duke@1 2629 }
duke@1 2630
duke@1 2631 @Override
duke@1 2632 public Integer visitUndetVar(UndetVar t, Void ignored) {
duke@1 2633 return System.identityHashCode(t);
duke@1 2634 }
duke@1 2635
duke@1 2636 @Override
duke@1 2637 public Integer visitErrorType(ErrorType t, Void ignored) {
duke@1 2638 return 0;
duke@1 2639 }
duke@1 2640 };
duke@1 2641 // </editor-fold>
duke@1 2642
duke@1 2643 // <editor-fold defaultstate="collapsed" desc="Return-Type-Substitutable">
duke@1 2644 /**
duke@1 2645 * Does t have a result that is a subtype of the result type of s,
duke@1 2646 * suitable for covariant returns? It is assumed that both types
duke@1 2647 * are (possibly polymorphic) method types. Monomorphic method
duke@1 2648 * types are handled in the obvious way. Polymorphic method types
duke@1 2649 * require renaming all type variables of one to corresponding
duke@1 2650 * type variables in the other, where correspondence is by
duke@1 2651 * position in the type parameter list. */
duke@1 2652 public boolean resultSubtype(Type t, Type s, Warner warner) {
duke@1 2653 List<Type> tvars = t.getTypeArguments();
duke@1 2654 List<Type> svars = s.getTypeArguments();
duke@1 2655 Type tres = t.getReturnType();
duke@1 2656 Type sres = subst(s.getReturnType(), svars, tvars);
duke@1 2657 return covariantReturnType(tres, sres, warner);
duke@1 2658 }
duke@1 2659
duke@1 2660 /**
duke@1 2661 * Return-Type-Substitutable.
duke@1 2662 * @see <a href="http://java.sun.com/docs/books/jls/">The Java
duke@1 2663 * Language Specification, Third Ed. (8.4.5)</a>
duke@1 2664 */
duke@1 2665 public boolean returnTypeSubstitutable(Type r1, Type r2) {
duke@1 2666 if (hasSameArgs(r1, r2))
duke@1 2667 return resultSubtype(r1, r2, Warner.noWarnings);
duke@1 2668 else
duke@1 2669 return covariantReturnType(r1.getReturnType(),
duke@1 2670 erasure(r2.getReturnType()),
duke@1 2671 Warner.noWarnings);
duke@1 2672 }
duke@1 2673
duke@1 2674 public boolean returnTypeSubstitutable(Type r1,
duke@1 2675 Type r2, Type r2res,
duke@1 2676 Warner warner) {
duke@1 2677 if (isSameType(r1.getReturnType(), r2res))
duke@1 2678 return true;
duke@1 2679 if (r1.getReturnType().isPrimitive() || r2res.isPrimitive())
duke@1 2680 return false;
duke@1 2681
duke@1 2682 if (hasSameArgs(r1, r2))
duke@1 2683 return covariantReturnType(r1.getReturnType(), r2res, warner);
duke@1 2684 if (!source.allowCovariantReturns())
duke@1 2685 return false;
duke@1 2686 if (isSubtypeUnchecked(r1.getReturnType(), r2res, warner))
duke@1 2687 return true;
duke@1 2688 if (!isSubtype(r1.getReturnType(), erasure(r2res)))
duke@1 2689 return false;
duke@1 2690 warner.warnUnchecked();
duke@1 2691 return true;
duke@1 2692 }
duke@1 2693
duke@1 2694 /**
duke@1 2695 * Is t an appropriate return type in an overrider for a
duke@1 2696 * method that returns s?
duke@1 2697 */
duke@1 2698 public boolean covariantReturnType(Type t, Type s, Warner warner) {
duke@1 2699 return
duke@1 2700 isSameType(t, s) ||
duke@1 2701 source.allowCovariantReturns() &&
duke@1 2702 !t.isPrimitive() &&
duke@1 2703 !s.isPrimitive() &&
duke@1 2704 isAssignable(t, s, warner);
duke@1 2705 }
duke@1 2706 // </editor-fold>
duke@1 2707
duke@1 2708 // <editor-fold defaultstate="collapsed" desc="Box/unbox support">
duke@1 2709 /**
duke@1 2710 * Return the class that boxes the given primitive.
duke@1 2711 */
duke@1 2712 public ClassSymbol boxedClass(Type t) {
duke@1 2713 return reader.enterClass(syms.boxedName[t.tag]);
duke@1 2714 }
duke@1 2715
duke@1 2716 /**
duke@1 2717 * Return the primitive type corresponding to a boxed type.
duke@1 2718 */
duke@1 2719 public Type unboxedType(Type t) {
duke@1 2720 if (allowBoxing) {
duke@1 2721 for (int i=0; i<syms.boxedName.length; i++) {
duke@1 2722 Name box = syms.boxedName[i];
duke@1 2723 if (box != null &&
duke@1 2724 asSuper(t, reader.enterClass(box)) != null)
duke@1 2725 return syms.typeOfTag[i];
duke@1 2726 }
duke@1 2727 }
duke@1 2728 return Type.noType;
duke@1 2729 }
duke@1 2730 // </editor-fold>
duke@1 2731
duke@1 2732 // <editor-fold defaultstate="collapsed" desc="Capture conversion">
duke@1 2733 /*
duke@1 2734 * JLS 3rd Ed. 5.1.10 Capture Conversion:
duke@1 2735 *
duke@1 2736 * Let G name a generic type declaration with n formal type
duke@1 2737 * parameters A1 ... An with corresponding bounds U1 ... Un. There
duke@1 2738 * exists a capture conversion from G<T1 ... Tn> to G<S1 ... Sn>,
duke@1 2739 * where, for 1 <= i <= n:
duke@1 2740 *
duke@1 2741 * + If Ti is a wildcard type argument (4.5.1) of the form ? then
duke@1 2742 * Si is a fresh type variable whose upper bound is
duke@1 2743 * Ui[A1 := S1, ..., An := Sn] and whose lower bound is the null
duke@1 2744 * type.
duke@1 2745 *
duke@1 2746 * + If Ti is a wildcard type argument of the form ? extends Bi,
duke@1 2747 * then Si is a fresh type variable whose upper bound is
duke@1 2748 * glb(Bi, Ui[A1 := S1, ..., An := Sn]) and whose lower bound is
duke@1 2749 * the null type, where glb(V1,... ,Vm) is V1 & ... & Vm. It is
duke@1 2750 * a compile-time error if for any two classes (not interfaces)
duke@1 2751 * Vi and Vj,Vi is not a subclass of Vj or vice versa.
duke@1 2752 *
duke@1 2753 * + If Ti is a wildcard type argument of the form ? super Bi,
duke@1 2754 * then Si is a fresh type variable whose upper bound is
duke@1 2755 * Ui[A1 := S1, ..., An := Sn] and whose lower bound is Bi.
duke@1 2756 *
duke@1 2757 * + Otherwise, Si = Ti.
duke@1 2758 *
duke@1 2759 * Capture conversion on any type other than a parameterized type
duke@1 2760 * (4.5) acts as an identity conversion (5.1.1). Capture
duke@1 2761 * conversions never require a special action at run time and
duke@1 2762 * therefore never throw an exception at run time.
duke@1 2763 *
duke@1 2764 * Capture conversion is not applied recursively.
duke@1 2765 */
duke@1 2766 /**
duke@1 2767 * Capture conversion as specified by JLS 3rd Ed.
duke@1 2768 */
duke@1 2769 public Type capture(Type t) {
duke@1 2770 if (t.tag != CLASS)
duke@1 2771 return t;
duke@1 2772 ClassType cls = (ClassType)t;
duke@1 2773 if (cls.isRaw() || !cls.isParameterized())
duke@1 2774 return cls;
duke@1 2775
duke@1 2776 ClassType G = (ClassType)cls.asElement().asType();
duke@1 2777 List<Type> A = G.getTypeArguments();
duke@1 2778 List<Type> T = cls.getTypeArguments();
duke@1 2779 List<Type> S = freshTypeVariables(T);
duke@1 2780
duke@1 2781 List<Type> currentA = A;
duke@1 2782 List<Type> currentT = T;
duke@1 2783 List<Type> currentS = S;
duke@1 2784 boolean captured = false;
duke@1 2785 while (!currentA.isEmpty() &&
duke@1 2786 !currentT.isEmpty() &&
duke@1 2787 !currentS.isEmpty()) {
duke@1 2788 if (currentS.head != currentT.head) {
duke@1 2789 captured = true;
duke@1 2790 WildcardType Ti = (WildcardType)currentT.head;
duke@1 2791 Type Ui = currentA.head.getUpperBound();
duke@1 2792 CapturedType Si = (CapturedType)currentS.head;
duke@1 2793 if (Ui == null)
duke@1 2794 Ui = syms.objectType;
duke@1 2795 switch (Ti.kind) {
duke@1 2796 case UNBOUND:
duke@1 2797 Si.bound = subst(Ui, A, S);
duke@1 2798 Si.lower = syms.botType;
duke@1 2799 break;
duke@1 2800 case EXTENDS:
duke@1 2801 Si.bound = glb(Ti.getExtendsBound(), subst(Ui, A, S));
duke@1 2802 Si.lower = syms.botType;
duke@1 2803 break;
duke@1 2804 case SUPER:
duke@1 2805 Si.bound = subst(Ui, A, S);
duke@1 2806 Si.lower = Ti.getSuperBound();
duke@1 2807 break;
duke@1 2808 }
duke@1 2809 if (Si.bound == Si.lower)
duke@1 2810 currentS.head = Si.bound;
duke@1 2811 }
duke@1 2812 currentA = currentA.tail;
duke@1 2813 currentT = currentT.tail;
duke@1 2814 currentS = currentS.tail;
duke@1 2815 }
duke@1 2816 if (!currentA.isEmpty() || !currentT.isEmpty() || !currentS.isEmpty())
duke@1 2817 return erasure(t); // some "rare" type involved
duke@1 2818
duke@1 2819 if (captured)
duke@1 2820 return new ClassType(cls.getEnclosingType(), S, cls.tsym);
duke@1 2821 else
duke@1 2822 return t;
duke@1 2823 }
duke@1 2824 // where
duke@1 2825 private List<Type> freshTypeVariables(List<Type> types) {
duke@1 2826 ListBuffer<Type> result = lb();
duke@1 2827 for (Type t : types) {
duke@1 2828 if (t.tag == WILDCARD) {
duke@1 2829 Type bound = ((WildcardType)t).getExtendsBound();
duke@1 2830 if (bound == null)
duke@1 2831 bound = syms.objectType;
duke@1 2832 result.append(new CapturedType(capturedName,
duke@1 2833 syms.noSymbol,
duke@1 2834 bound,
duke@1 2835 syms.botType,
duke@1 2836 (WildcardType)t));
duke@1 2837 } else {
duke@1 2838 result.append(t);
duke@1 2839 }
duke@1 2840 }
duke@1 2841 return result.toList();
duke@1 2842 }
duke@1 2843 // </editor-fold>
duke@1 2844
duke@1 2845 // <editor-fold defaultstate="collapsed" desc="Internal utility methods">
duke@1 2846 private List<Type> upperBounds(List<Type> ss) {
duke@1 2847 if (ss.isEmpty()) return ss;
duke@1 2848 Type head = upperBound(ss.head);
duke@1 2849 List<Type> tail = upperBounds(ss.tail);
duke@1 2850 if (head != ss.head || tail != ss.tail)
duke@1 2851 return tail.prepend(head);
duke@1 2852 else
duke@1 2853 return ss;
duke@1 2854 }
duke@1 2855
duke@1 2856 private boolean sideCast(Type from, Type to, Warner warn) {
duke@1 2857 // We are casting from type $from$ to type $to$, which are
duke@1 2858 // non-final unrelated types. This method
duke@1 2859 // tries to reject a cast by transferring type parameters
duke@1 2860 // from $to$ to $from$ by common superinterfaces.
duke@1 2861 boolean reverse = false;
duke@1 2862 Type target = to;
duke@1 2863 if ((to.tsym.flags() & INTERFACE) == 0) {
duke@1 2864 assert (from.tsym.flags() & INTERFACE) != 0;
duke@1 2865 reverse = true;
duke@1 2866 to = from;
duke@1 2867 from = target;
duke@1 2868 }
duke@1 2869 List<Type> commonSupers = superClosure(to, erasure(from));
duke@1 2870 boolean giveWarning = commonSupers.isEmpty();
duke@1 2871 // The arguments to the supers could be unified here to
duke@1 2872 // get a more accurate analysis
duke@1 2873 while (commonSupers.nonEmpty()) {
duke@1 2874 Type t1 = asSuper(from, commonSupers.head.tsym);
duke@1 2875 Type t2 = commonSupers.head; // same as asSuper(to, commonSupers.head.tsym);
duke@1 2876 if (disjointTypes(t1.getTypeArguments(), t2.getTypeArguments()))
duke@1 2877 return false;
duke@1 2878 giveWarning = giveWarning || (reverse ? giveWarning(t2, t1) : giveWarning(t1, t2));
duke@1 2879 commonSupers = commonSupers.tail;
duke@1 2880 }
duke@1 2881 if (giveWarning && !isReifiable(to))
duke@1 2882 warn.warnUnchecked();
duke@1 2883 if (!source.allowCovariantReturns())
duke@1 2884 // reject if there is a common method signature with
duke@1 2885 // incompatible return types.
duke@1 2886 chk.checkCompatibleAbstracts(warn.pos(), from, to);
duke@1 2887 return true;
duke@1 2888 }
duke@1 2889
duke@1 2890 private boolean sideCastFinal(Type from, Type to, Warner warn) {
duke@1 2891 // We are casting from type $from$ to type $to$, which are
duke@1 2892 // unrelated types one of which is final and the other of
duke@1 2893 // which is an interface. This method
duke@1 2894 // tries to reject a cast by transferring type parameters
duke@1 2895 // from the final class to the interface.
duke@1 2896 boolean reverse = false;
duke@1 2897 Type target = to;
duke@1 2898 if ((to.tsym.flags() & INTERFACE) == 0) {
duke@1 2899 assert (from.tsym.flags() & INTERFACE) != 0;
duke@1 2900 reverse = true;
duke@1 2901 to = from;
duke@1 2902 from = target;
duke@1 2903 }
duke@1 2904 assert (from.tsym.flags() & FINAL) != 0;
duke@1 2905 Type t1 = asSuper(from, to.tsym);
duke@1 2906 if (t1 == null) return false;
duke@1 2907 Type t2 = to;
duke@1 2908 if (disjointTypes(t1.getTypeArguments(), t2.getTypeArguments()))
duke@1 2909 return false;
duke@1 2910 if (!source.allowCovariantReturns())
duke@1 2911 // reject if there is a common method signature with
duke@1 2912 // incompatible return types.
duke@1 2913 chk.checkCompatibleAbstracts(warn.pos(), from, to);
duke@1 2914 if (!isReifiable(target) &&
duke@1 2915 (reverse ? giveWarning(t2, t1) : giveWarning(t1, t2)))
duke@1 2916 warn.warnUnchecked();
duke@1 2917 return true;
duke@1 2918 }
duke@1 2919
duke@1 2920 private boolean giveWarning(Type from, Type to) {
duke@1 2921 // To and from are (possibly different) parameterizations
duke@1 2922 // of the same class or interface
duke@1 2923 return to.isParameterized() && !containsType(to.getTypeArguments(), from.getTypeArguments());
duke@1 2924 }
duke@1 2925
duke@1 2926 private List<Type> superClosure(Type t, Type s) {
duke@1 2927 List<Type> cl = List.nil();
duke@1 2928 for (List<Type> l = interfaces(t); l.nonEmpty(); l = l.tail) {
duke@1 2929 if (isSubtype(s, erasure(l.head))) {
duke@1 2930 cl = insert(cl, l.head);
duke@1 2931 } else {
duke@1 2932 cl = union(cl, superClosure(l.head, s));
duke@1 2933 }
duke@1 2934 }
duke@1 2935 return cl;
duke@1 2936 }
duke@1 2937
duke@1 2938 private boolean containsTypeEquivalent(Type t, Type s) {
duke@1 2939 return
duke@1 2940 isSameType(t, s) || // shortcut
duke@1 2941 containsType(t, s) && containsType(s, t);
duke@1 2942 }
duke@1 2943
duke@1 2944 /**
duke@1 2945 * Adapt a type by computing a substitution which maps a source
duke@1 2946 * type to a target type.
duke@1 2947 *
duke@1 2948 * @param source the source type
duke@1 2949 * @param target the target type
duke@1 2950 * @param from the type variables of the computed substitution
duke@1 2951 * @param to the types of the computed substitution.
duke@1 2952 */
duke@1 2953 public void adapt(Type source,
duke@1 2954 Type target,
duke@1 2955 ListBuffer<Type> from,
duke@1 2956 ListBuffer<Type> to) throws AdaptFailure {
duke@1 2957 Map<Symbol,Type> mapping = new HashMap<Symbol,Type>();
duke@1 2958 adaptRecursive(source, target, from, to, mapping);
duke@1 2959 List<Type> fromList = from.toList();
duke@1 2960 List<Type> toList = to.toList();
duke@1 2961 while (!fromList.isEmpty()) {
duke@1 2962 Type val = mapping.get(fromList.head.tsym);
duke@1 2963 if (toList.head != val)
duke@1 2964 toList.head = val;
duke@1 2965 fromList = fromList.tail;
duke@1 2966 toList = toList.tail;
duke@1 2967 }
duke@1 2968 }
duke@1 2969 // where
duke@1 2970 private void adaptRecursive(Type source,
duke@1 2971 Type target,
duke@1 2972 ListBuffer<Type> from,
duke@1 2973 ListBuffer<Type> to,
duke@1 2974 Map<Symbol,Type> mapping) throws AdaptFailure {
duke@1 2975 if (source.tag == TYPEVAR) {
duke@1 2976 // Check to see if there is
duke@1 2977 // already a mapping for $source$, in which case
duke@1 2978 // the old mapping will be merged with the new
duke@1 2979 Type val = mapping.get(source.tsym);
duke@1 2980 if (val != null) {
duke@1 2981 if (val.isSuperBound() && target.isSuperBound()) {
duke@1 2982 val = isSubtype(lowerBound(val), lowerBound(target))
duke@1 2983 ? target : val;
duke@1 2984 } else if (val.isExtendsBound() && target.isExtendsBound()) {
duke@1 2985 val = isSubtype(upperBound(val), upperBound(target))
duke@1 2986 ? val : target;
duke@1 2987 } else if (!isSameType(val, target)) {
duke@1 2988 throw new AdaptFailure();
duke@1 2989 }
duke@1 2990 } else {
duke@1 2991 val = target;
duke@1 2992 from.append(source);
duke@1 2993 to.append(target);
duke@1 2994 }
duke@1 2995 mapping.put(source.tsym, val);
duke@1 2996 } else if (source.tag == target.tag) {
duke@1 2997 switch (source.tag) {
duke@1 2998 case CLASS:
duke@1 2999 adapt(source.allparams(), target.allparams(),
duke@1 3000 from, to, mapping);
duke@1 3001 break;
duke@1 3002 case ARRAY:
duke@1 3003 adaptRecursive(elemtype(source), elemtype(target),
duke@1 3004 from, to, mapping);
duke@1 3005 break;
duke@1 3006 case WILDCARD:
duke@1 3007 if (source.isExtendsBound()) {
duke@1 3008 adaptRecursive(upperBound(source), upperBound(target),
duke@1 3009 from, to, mapping);
duke@1 3010 } else if (source.isSuperBound()) {
duke@1 3011 adaptRecursive(lowerBound(source), lowerBound(target),
duke@1 3012 from, to, mapping);
duke@1 3013 }
duke@1 3014 break;
duke@1 3015 }
duke@1 3016 }
duke@1 3017 }
duke@1 3018 public static class AdaptFailure extends Exception {
duke@1 3019 static final long serialVersionUID = -7490231548272701566L;
duke@1 3020 }
duke@1 3021
duke@1 3022 /**
duke@1 3023 * Adapt a type by computing a substitution which maps a list of
duke@1 3024 * source types to a list of target types.
duke@1 3025 *
duke@1 3026 * @param source the source type
duke@1 3027 * @param target the target type
duke@1 3028 * @param from the type variables of the computed substitution
duke@1 3029 * @param to the types of the computed substitution.
duke@1 3030 */
duke@1 3031 private void adapt(List<Type> source,
duke@1 3032 List<Type> target,
duke@1 3033 ListBuffer<Type> from,
duke@1 3034 ListBuffer<Type> to,
duke@1 3035 Map<Symbol,Type> mapping) throws AdaptFailure {
duke@1 3036 if (source.length() == target.length()) {
duke@1 3037 while (source.nonEmpty()) {
duke@1 3038 adaptRecursive(source.head, target.head, from, to, mapping);
duke@1 3039 source = source.tail;
duke@1 3040 target = target.tail;
duke@1 3041 }
duke@1 3042 }
duke@1 3043 }
duke@1 3044
duke@1 3045 private void adaptSelf(Type t,
duke@1 3046 ListBuffer<Type> from,
duke@1 3047 ListBuffer<Type> to) {
duke@1 3048 try {
duke@1 3049 //if (t.tsym.type != t)
duke@1 3050 adapt(t.tsym.type, t, from, to);
duke@1 3051 } catch (AdaptFailure ex) {
duke@1 3052 // Adapt should never fail calculating a mapping from
duke@1 3053 // t.tsym.type to t as there can be no merge problem.
duke@1 3054 throw new AssertionError(ex);
duke@1 3055 }
duke@1 3056 }
duke@1 3057
duke@1 3058 /**
duke@1 3059 * Rewrite all type variables (universal quantifiers) in the given
duke@1 3060 * type to wildcards (existential quantifiers). This is used to
duke@1 3061 * determine if a cast is allowed. For example, if high is true
duke@1 3062 * and {@code T <: Number}, then {@code List<T>} is rewritten to
duke@1 3063 * {@code List<? extends Number>}. Since {@code List<Integer> <:
duke@1 3064 * List<? extends Number>} a {@code List<T>} can be cast to {@code
duke@1 3065 * List<Integer>} with a warning.
duke@1 3066 * @param t a type
duke@1 3067 * @param high if true return an upper bound; otherwise a lower
duke@1 3068 * bound
duke@1 3069 * @param rewriteTypeVars only rewrite captured wildcards if false;
duke@1 3070 * otherwise rewrite all type variables
duke@1 3071 * @return the type rewritten with wildcards (existential
duke@1 3072 * quantifiers) only
duke@1 3073 */
duke@1 3074 private Type rewriteQuantifiers(Type t, boolean high, boolean rewriteTypeVars) {
duke@1 3075 ListBuffer<Type> from = new ListBuffer<Type>();
duke@1 3076 ListBuffer<Type> to = new ListBuffer<Type>();
duke@1 3077 adaptSelf(t, from, to);
duke@1 3078 ListBuffer<Type> rewritten = new ListBuffer<Type>();
duke@1 3079 List<Type> formals = from.toList();
duke@1 3080 boolean changed = false;
duke@1 3081 for (Type arg : to.toList()) {
duke@1 3082 Type bound;
duke@1 3083 if (rewriteTypeVars && arg.tag == TYPEVAR) {
duke@1 3084 TypeVar tv = (TypeVar)arg;
duke@1 3085 bound = high ? tv.bound : syms.botType;
duke@1 3086 } else {
duke@1 3087 bound = high ? upperBound(arg) : lowerBound(arg);
duke@1 3088 }
duke@1 3089 Type newarg = bound;
duke@1 3090 if (arg != bound) {
duke@1 3091 changed = true;
duke@1 3092 newarg = high ? makeExtendsWildcard(bound, (TypeVar)formals.head)
duke@1 3093 : makeSuperWildcard(bound, (TypeVar)formals.head);
duke@1 3094 }
duke@1 3095 rewritten.append(newarg);
duke@1 3096 formals = formals.tail;
duke@1 3097 }
duke@1 3098 if (changed)
duke@1 3099 return subst(t.tsym.type, from.toList(), rewritten.toList());
duke@1 3100 else
duke@1 3101 return t;
duke@1 3102 }
duke@1 3103
duke@1 3104 /**
duke@1 3105 * Create a wildcard with the given upper (extends) bound; create
duke@1 3106 * an unbounded wildcard if bound is Object.
duke@1 3107 *
duke@1 3108 * @param bound the upper bound
duke@1 3109 * @param formal the formal type parameter that will be
duke@1 3110 * substituted by the wildcard
duke@1 3111 */
duke@1 3112 private WildcardType makeExtendsWildcard(Type bound, TypeVar formal) {
duke@1 3113 if (bound == syms.objectType) {
duke@1 3114 return new WildcardType(syms.objectType,
duke@1 3115 BoundKind.UNBOUND,
duke@1 3116 syms.boundClass,
duke@1 3117 formal);
duke@1 3118 } else {
duke@1 3119 return new WildcardType(bound,
duke@1 3120 BoundKind.EXTENDS,
duke@1 3121 syms.boundClass,
duke@1 3122 formal);
duke@1 3123 }
duke@1 3124 }
duke@1 3125
duke@1 3126 /**
duke@1 3127 * Create a wildcard with the given lower (super) bound; create an
duke@1 3128 * unbounded wildcard if bound is bottom (type of {@code null}).
duke@1 3129 *
duke@1 3130 * @param bound the lower bound
duke@1 3131 * @param formal the formal type parameter that will be
duke@1 3132 * substituted by the wildcard
duke@1 3133 */
duke@1 3134 private WildcardType makeSuperWildcard(Type bound, TypeVar formal) {
duke@1 3135 if (bound.tag == BOT) {
duke@1 3136 return new WildcardType(syms.objectType,
duke@1 3137 BoundKind.UNBOUND,
duke@1 3138 syms.boundClass,
duke@1 3139 formal);
duke@1 3140 } else {
duke@1 3141 return new WildcardType(bound,
duke@1 3142 BoundKind.SUPER,
duke@1 3143 syms.boundClass,
duke@1 3144 formal);
duke@1 3145 }
duke@1 3146 }
duke@1 3147
duke@1 3148 /**
duke@1 3149 * A wrapper for a type that allows use in sets.
duke@1 3150 */
duke@1 3151 class SingletonType {
duke@1 3152 final Type t;
duke@1 3153 SingletonType(Type t) {
duke@1 3154 this.t = t;
duke@1 3155 }
duke@1 3156 public int hashCode() {
duke@1 3157 return Types.this.hashCode(t);
duke@1 3158 }
duke@1 3159 public boolean equals(Object obj) {
duke@1 3160 return (obj instanceof SingletonType) &&
duke@1 3161 isSameType(t, ((SingletonType)obj).t);
duke@1 3162 }
duke@1 3163 public String toString() {
duke@1 3164 return t.toString();
duke@1 3165 }
duke@1 3166 }
duke@1 3167 // </editor-fold>
duke@1 3168
duke@1 3169 // <editor-fold defaultstate="collapsed" desc="Visitors">
duke@1 3170 /**
duke@1 3171 * A default visitor for types. All visitor methods except
duke@1 3172 * visitType are implemented by delegating to visitType. Concrete
duke@1 3173 * subclasses must provide an implementation of visitType and can
duke@1 3174 * override other methods as needed.
duke@1 3175 *
duke@1 3176 * @param <R> the return type of the operation implemented by this
duke@1 3177 * visitor; use Void if no return type is needed.
duke@1 3178 * @param <S> the type of the second argument (the first being the
duke@1 3179 * type itself) of the operation implemented by this visitor; use
duke@1 3180 * Void if a second argument is not needed.
duke@1 3181 */
duke@1 3182 public static abstract class DefaultTypeVisitor<R,S> implements Type.Visitor<R,S> {
duke@1 3183 final public R visit(Type t, S s) { return t.accept(this, s); }
duke@1 3184 public R visitClassType(ClassType t, S s) { return visitType(t, s); }
duke@1 3185 public R visitWildcardType(WildcardType t, S s) { return visitType(t, s); }
duke@1 3186 public R visitArrayType(ArrayType t, S s) { return visitType(t, s); }
duke@1 3187 public R visitMethodType(MethodType t, S s) { return visitType(t, s); }
duke@1 3188 public R visitPackageType(PackageType t, S s) { return visitType(t, s); }
duke@1 3189 public R visitTypeVar(TypeVar t, S s) { return visitType(t, s); }
duke@1 3190 public R visitCapturedType(CapturedType t, S s) { return visitType(t, s); }
duke@1 3191 public R visitForAll(ForAll t, S s) { return visitType(t, s); }
duke@1 3192 public R visitUndetVar(UndetVar t, S s) { return visitType(t, s); }
duke@1 3193 public R visitErrorType(ErrorType t, S s) { return visitType(t, s); }
duke@1 3194 }
duke@1 3195
duke@1 3196 /**
duke@1 3197 * A <em>simple</em> visitor for types. This visitor is simple as
duke@1 3198 * captured wildcards, for-all types (generic methods), and
duke@1 3199 * undetermined type variables (part of inference) are hidden.
duke@1 3200 * Captured wildcards are hidden by treating them as type
duke@1 3201 * variables and the rest are hidden by visiting their qtypes.
duke@1 3202 *
duke@1 3203 * @param <R> the return type of the operation implemented by this
duke@1 3204 * visitor; use Void if no return type is needed.
duke@1 3205 * @param <S> the type of the second argument (the first being the
duke@1 3206 * type itself) of the operation implemented by this visitor; use
duke@1 3207 * Void if a second argument is not needed.
duke@1 3208 */
duke@1 3209 public static abstract class SimpleVisitor<R,S> extends DefaultTypeVisitor<R,S> {
duke@1 3210 @Override
duke@1 3211 public R visitCapturedType(CapturedType t, S s) {
duke@1 3212 return visitTypeVar(t, s);
duke@1 3213 }
duke@1 3214 @Override
duke@1 3215 public R visitForAll(ForAll t, S s) {
duke@1 3216 return visit(t.qtype, s);
duke@1 3217 }
duke@1 3218 @Override
duke@1 3219 public R visitUndetVar(UndetVar t, S s) {
duke@1 3220 return visit(t.qtype, s);
duke@1 3221 }
duke@1 3222 }
duke@1 3223
duke@1 3224 /**
duke@1 3225 * A plain relation on types. That is a 2-ary function on the
duke@1 3226 * form Type&nbsp;&times;&nbsp;Type&nbsp;&rarr;&nbsp;Boolean.
duke@1 3227 * <!-- In plain text: Type x Type -> Boolean -->
duke@1 3228 */
duke@1 3229 public static abstract class TypeRelation extends SimpleVisitor<Boolean,Type> {}
duke@1 3230
duke@1 3231 /**
duke@1 3232 * A convenience visitor for implementing operations that only
duke@1 3233 * require one argument (the type itself), that is, unary
duke@1 3234 * operations.
duke@1 3235 *
duke@1 3236 * @param <R> the return type of the operation implemented by this
duke@1 3237 * visitor; use Void if no return type is needed.
duke@1 3238 */
duke@1 3239 public static abstract class UnaryVisitor<R> extends SimpleVisitor<R,Void> {
duke@1 3240 final public R visit(Type t) { return t.accept(this, null); }
duke@1 3241 }
duke@1 3242
duke@1 3243 /**
duke@1 3244 * A visitor for implementing a mapping from types to types. The
duke@1 3245 * default behavior of this class is to implement the identity
duke@1 3246 * mapping (mapping a type to itself). This can be overridden in
duke@1 3247 * subclasses.
duke@1 3248 *
duke@1 3249 * @param <S> the type of the second argument (the first being the
duke@1 3250 * type itself) of this mapping; use Void if a second argument is
duke@1 3251 * not needed.
duke@1 3252 */
duke@1 3253 public static class MapVisitor<S> extends DefaultTypeVisitor<Type,S> {
duke@1 3254 final public Type visit(Type t) { return t.accept(this, null); }
duke@1 3255 public Type visitType(Type t, S s) { return t; }
duke@1 3256 }
duke@1 3257 // </editor-fold>
duke@1 3258 }

mercurial