src/share/classes/com/sun/tools/javac/comp/Attr.java

Tue, 04 Mar 2008 15:45:20 +0000

author
mcimadamore
date
Tue, 04 Mar 2008 15:45:20 +0000
changeset 8
38bd6375f37d
parent 7
d472e2fbcc39
child 9
f09d6a3521b1
permissions
-rw-r--r--

6663588: Compiler goes into infinite loop for Cyclic Inheritance test case
Summary: interplay between cyclic inheritance and tvar bounds hangs javac
Reviewed-by: jjg

duke@1 1 /*
duke@1 2 * Copyright 1999-2006 Sun Microsystems, Inc. All Rights Reserved.
duke@1 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@1 4 *
duke@1 5 * This code is free software; you can redistribute it and/or modify it
duke@1 6 * under the terms of the GNU General Public License version 2 only, as
duke@1 7 * published by the Free Software Foundation. Sun designates this
duke@1 8 * particular file as subject to the "Classpath" exception as provided
duke@1 9 * by Sun in the LICENSE file that accompanied this code.
duke@1 10 *
duke@1 11 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@1 12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@1 13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@1 14 * version 2 for more details (a copy is included in the LICENSE file that
duke@1 15 * accompanied this code).
duke@1 16 *
duke@1 17 * You should have received a copy of the GNU General Public License version
duke@1 18 * 2 along with this work; if not, write to the Free Software Foundation,
duke@1 19 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@1 20 *
duke@1 21 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
duke@1 22 * CA 95054 USA or visit www.sun.com if you need additional information or
duke@1 23 * have any questions.
duke@1 24 */
duke@1 25
duke@1 26 package com.sun.tools.javac.comp;
duke@1 27
duke@1 28 import java.util.*;
duke@1 29 import java.util.Set;
duke@1 30 import javax.lang.model.element.ElementKind;
duke@1 31 import javax.tools.JavaFileObject;
duke@1 32
duke@1 33 import com.sun.tools.javac.code.*;
duke@1 34 import com.sun.tools.javac.jvm.*;
duke@1 35 import com.sun.tools.javac.tree.*;
duke@1 36 import com.sun.tools.javac.util.*;
duke@1 37 import com.sun.tools.javac.util.JCDiagnostic.DiagnosticPosition;
duke@1 38 import com.sun.tools.javac.util.List;
duke@1 39
duke@1 40 import com.sun.tools.javac.jvm.Target;
duke@1 41 import com.sun.tools.javac.code.Symbol.*;
duke@1 42 import com.sun.tools.javac.tree.JCTree.*;
duke@1 43 import com.sun.tools.javac.code.Type.*;
duke@1 44
duke@1 45 import com.sun.source.tree.IdentifierTree;
duke@1 46 import com.sun.source.tree.MemberSelectTree;
duke@1 47 import com.sun.source.tree.TreeVisitor;
duke@1 48 import com.sun.source.util.SimpleTreeVisitor;
duke@1 49
duke@1 50 import static com.sun.tools.javac.code.Flags.*;
duke@1 51 import static com.sun.tools.javac.code.Kinds.*;
duke@1 52 import static com.sun.tools.javac.code.TypeTags.*;
duke@1 53
duke@1 54 /** This is the main context-dependent analysis phase in GJC. It
duke@1 55 * encompasses name resolution, type checking and constant folding as
duke@1 56 * subtasks. Some subtasks involve auxiliary classes.
duke@1 57 * @see Check
duke@1 58 * @see Resolve
duke@1 59 * @see ConstFold
duke@1 60 * @see Infer
duke@1 61 *
duke@1 62 * <p><b>This is NOT part of any API supported by Sun Microsystems. If
duke@1 63 * you write code that depends on this, you do so at your own risk.
duke@1 64 * This code and its internal interfaces are subject to change or
duke@1 65 * deletion without notice.</b>
duke@1 66 */
duke@1 67 public class Attr extends JCTree.Visitor {
duke@1 68 protected static final Context.Key<Attr> attrKey =
duke@1 69 new Context.Key<Attr>();
duke@1 70
duke@1 71 final Name.Table names;
duke@1 72 final Log log;
duke@1 73 final Symtab syms;
duke@1 74 final Resolve rs;
duke@1 75 final Check chk;
duke@1 76 final MemberEnter memberEnter;
duke@1 77 final TreeMaker make;
duke@1 78 final ConstFold cfolder;
duke@1 79 final Enter enter;
duke@1 80 final Target target;
duke@1 81 final Types types;
duke@1 82 final Annotate annotate;
duke@1 83
duke@1 84 public static Attr instance(Context context) {
duke@1 85 Attr instance = context.get(attrKey);
duke@1 86 if (instance == null)
duke@1 87 instance = new Attr(context);
duke@1 88 return instance;
duke@1 89 }
duke@1 90
duke@1 91 protected Attr(Context context) {
duke@1 92 context.put(attrKey, this);
duke@1 93
duke@1 94 names = Name.Table.instance(context);
duke@1 95 log = Log.instance(context);
duke@1 96 syms = Symtab.instance(context);
duke@1 97 rs = Resolve.instance(context);
duke@1 98 chk = Check.instance(context);
duke@1 99 memberEnter = MemberEnter.instance(context);
duke@1 100 make = TreeMaker.instance(context);
duke@1 101 enter = Enter.instance(context);
duke@1 102 cfolder = ConstFold.instance(context);
duke@1 103 target = Target.instance(context);
duke@1 104 types = Types.instance(context);
duke@1 105 annotate = Annotate.instance(context);
duke@1 106
duke@1 107 Options options = Options.instance(context);
duke@1 108
duke@1 109 Source source = Source.instance(context);
duke@1 110 allowGenerics = source.allowGenerics();
duke@1 111 allowVarargs = source.allowVarargs();
duke@1 112 allowEnums = source.allowEnums();
duke@1 113 allowBoxing = source.allowBoxing();
duke@1 114 allowCovariantReturns = source.allowCovariantReturns();
duke@1 115 allowAnonOuterThis = source.allowAnonOuterThis();
duke@1 116 relax = (options.get("-retrofit") != null ||
duke@1 117 options.get("-relax") != null);
duke@1 118 useBeforeDeclarationWarning = options.get("useBeforeDeclarationWarning") != null;
duke@1 119 }
duke@1 120
duke@1 121 /** Switch: relax some constraints for retrofit mode.
duke@1 122 */
duke@1 123 boolean relax;
duke@1 124
duke@1 125 /** Switch: support generics?
duke@1 126 */
duke@1 127 boolean allowGenerics;
duke@1 128
duke@1 129 /** Switch: allow variable-arity methods.
duke@1 130 */
duke@1 131 boolean allowVarargs;
duke@1 132
duke@1 133 /** Switch: support enums?
duke@1 134 */
duke@1 135 boolean allowEnums;
duke@1 136
duke@1 137 /** Switch: support boxing and unboxing?
duke@1 138 */
duke@1 139 boolean allowBoxing;
duke@1 140
duke@1 141 /** Switch: support covariant result types?
duke@1 142 */
duke@1 143 boolean allowCovariantReturns;
duke@1 144
duke@1 145 /** Switch: allow references to surrounding object from anonymous
duke@1 146 * objects during constructor call?
duke@1 147 */
duke@1 148 boolean allowAnonOuterThis;
duke@1 149
duke@1 150 /**
duke@1 151 * Switch: warn about use of variable before declaration?
duke@1 152 * RFE: 6425594
duke@1 153 */
duke@1 154 boolean useBeforeDeclarationWarning;
duke@1 155
duke@1 156 /** Check kind and type of given tree against protokind and prototype.
duke@1 157 * If check succeeds, store type in tree and return it.
duke@1 158 * If check fails, store errType in tree and return it.
duke@1 159 * No checks are performed if the prototype is a method type.
duke@1 160 * Its not necessary in this case since we know that kind and type
duke@1 161 * are correct.
duke@1 162 *
duke@1 163 * @param tree The tree whose kind and type is checked
duke@1 164 * @param owntype The computed type of the tree
duke@1 165 * @param ownkind The computed kind of the tree
duke@1 166 * @param pkind The expected kind (or: protokind) of the tree
duke@1 167 * @param pt The expected type (or: prototype) of the tree
duke@1 168 */
duke@1 169 Type check(JCTree tree, Type owntype, int ownkind, int pkind, Type pt) {
duke@1 170 if (owntype.tag != ERROR && pt.tag != METHOD && pt.tag != FORALL) {
duke@1 171 if ((ownkind & ~pkind) == 0) {
duke@1 172 owntype = chk.checkType(tree.pos(), owntype, pt);
duke@1 173 } else {
duke@1 174 log.error(tree.pos(), "unexpected.type",
duke@1 175 Resolve.kindNames(pkind),
duke@1 176 Resolve.kindName(ownkind));
duke@1 177 owntype = syms.errType;
duke@1 178 }
duke@1 179 }
duke@1 180 tree.type = owntype;
duke@1 181 return owntype;
duke@1 182 }
duke@1 183
duke@1 184 /** Is given blank final variable assignable, i.e. in a scope where it
duke@1 185 * may be assigned to even though it is final?
duke@1 186 * @param v The blank final variable.
duke@1 187 * @param env The current environment.
duke@1 188 */
duke@1 189 boolean isAssignableAsBlankFinal(VarSymbol v, Env<AttrContext> env) {
duke@1 190 Symbol owner = env.info.scope.owner;
duke@1 191 // owner refers to the innermost variable, method or
duke@1 192 // initializer block declaration at this point.
duke@1 193 return
duke@1 194 v.owner == owner
duke@1 195 ||
duke@1 196 ((owner.name == names.init || // i.e. we are in a constructor
duke@1 197 owner.kind == VAR || // i.e. we are in a variable initializer
duke@1 198 (owner.flags() & BLOCK) != 0) // i.e. we are in an initializer block
duke@1 199 &&
duke@1 200 v.owner == owner.owner
duke@1 201 &&
duke@1 202 ((v.flags() & STATIC) != 0) == Resolve.isStatic(env));
duke@1 203 }
duke@1 204
duke@1 205 /** Check that variable can be assigned to.
duke@1 206 * @param pos The current source code position.
duke@1 207 * @param v The assigned varaible
duke@1 208 * @param base If the variable is referred to in a Select, the part
duke@1 209 * to the left of the `.', null otherwise.
duke@1 210 * @param env The current environment.
duke@1 211 */
duke@1 212 void checkAssignable(DiagnosticPosition pos, VarSymbol v, JCTree base, Env<AttrContext> env) {
duke@1 213 if ((v.flags() & FINAL) != 0 &&
duke@1 214 ((v.flags() & HASINIT) != 0
duke@1 215 ||
duke@1 216 !((base == null ||
duke@1 217 (base.getTag() == JCTree.IDENT && TreeInfo.name(base) == names._this)) &&
duke@1 218 isAssignableAsBlankFinal(v, env)))) {
duke@1 219 log.error(pos, "cant.assign.val.to.final.var", v);
duke@1 220 }
duke@1 221 }
duke@1 222
duke@1 223 /** Does tree represent a static reference to an identifier?
duke@1 224 * It is assumed that tree is either a SELECT or an IDENT.
duke@1 225 * We have to weed out selects from non-type names here.
duke@1 226 * @param tree The candidate tree.
duke@1 227 */
duke@1 228 boolean isStaticReference(JCTree tree) {
duke@1 229 if (tree.getTag() == JCTree.SELECT) {
duke@1 230 Symbol lsym = TreeInfo.symbol(((JCFieldAccess) tree).selected);
duke@1 231 if (lsym == null || lsym.kind != TYP) {
duke@1 232 return false;
duke@1 233 }
duke@1 234 }
duke@1 235 return true;
duke@1 236 }
duke@1 237
duke@1 238 /** Is this symbol a type?
duke@1 239 */
duke@1 240 static boolean isType(Symbol sym) {
duke@1 241 return sym != null && sym.kind == TYP;
duke@1 242 }
duke@1 243
duke@1 244 /** The current `this' symbol.
duke@1 245 * @param env The current environment.
duke@1 246 */
duke@1 247 Symbol thisSym(DiagnosticPosition pos, Env<AttrContext> env) {
duke@1 248 return rs.resolveSelf(pos, env, env.enclClass.sym, names._this);
duke@1 249 }
duke@1 250
duke@1 251 /** Attribute a parsed identifier.
duke@1 252 * @param tree Parsed identifier name
duke@1 253 * @param topLevel The toplevel to use
duke@1 254 */
duke@1 255 public Symbol attribIdent(JCTree tree, JCCompilationUnit topLevel) {
duke@1 256 Env<AttrContext> localEnv = enter.topLevelEnv(topLevel);
duke@1 257 localEnv.enclClass = make.ClassDef(make.Modifiers(0),
duke@1 258 syms.errSymbol.name,
duke@1 259 null, null, null, null);
duke@1 260 localEnv.enclClass.sym = syms.errSymbol;
duke@1 261 return tree.accept(identAttributer, localEnv);
duke@1 262 }
duke@1 263 // where
duke@1 264 private TreeVisitor<Symbol,Env<AttrContext>> identAttributer = new IdentAttributer();
duke@1 265 private class IdentAttributer extends SimpleTreeVisitor<Symbol,Env<AttrContext>> {
duke@1 266 @Override
duke@1 267 public Symbol visitMemberSelect(MemberSelectTree node, Env<AttrContext> env) {
duke@1 268 Symbol site = visit(node.getExpression(), env);
duke@1 269 if (site.kind == ERR)
duke@1 270 return site;
duke@1 271 Name name = (Name)node.getIdentifier();
duke@1 272 if (site.kind == PCK) {
duke@1 273 env.toplevel.packge = (PackageSymbol)site;
duke@1 274 return rs.findIdentInPackage(env, (TypeSymbol)site, name, TYP | PCK);
duke@1 275 } else {
duke@1 276 env.enclClass.sym = (ClassSymbol)site;
duke@1 277 return rs.findMemberType(env, site.asType(), name, (TypeSymbol)site);
duke@1 278 }
duke@1 279 }
duke@1 280
duke@1 281 @Override
duke@1 282 public Symbol visitIdentifier(IdentifierTree node, Env<AttrContext> env) {
duke@1 283 return rs.findIdent(env, (Name)node.getName(), TYP | PCK);
duke@1 284 }
duke@1 285 }
duke@1 286
duke@1 287 public Type coerce(Type etype, Type ttype) {
duke@1 288 return cfolder.coerce(etype, ttype);
duke@1 289 }
duke@1 290
duke@1 291 public Type attribType(JCTree node, TypeSymbol sym) {
duke@1 292 Env<AttrContext> env = enter.typeEnvs.get(sym);
duke@1 293 Env<AttrContext> localEnv = env.dup(node, env.info.dup());
duke@1 294 return attribTree(node, localEnv, Kinds.TYP, Type.noType);
duke@1 295 }
duke@1 296
duke@1 297 public Env<AttrContext> attribExprToTree(JCTree expr, Env<AttrContext> env, JCTree tree) {
duke@1 298 breakTree = tree;
duke@1 299 JavaFileObject prev = log.useSource(null);
duke@1 300 try {
duke@1 301 attribExpr(expr, env);
duke@1 302 } catch (BreakAttr b) {
duke@1 303 return b.env;
duke@1 304 } finally {
duke@1 305 breakTree = null;
duke@1 306 log.useSource(prev);
duke@1 307 }
duke@1 308 return env;
duke@1 309 }
duke@1 310
duke@1 311 public Env<AttrContext> attribStatToTree(JCTree stmt, Env<AttrContext> env, JCTree tree) {
duke@1 312 breakTree = tree;
duke@1 313 JavaFileObject prev = log.useSource(null);
duke@1 314 try {
duke@1 315 attribStat(stmt, env);
duke@1 316 } catch (BreakAttr b) {
duke@1 317 return b.env;
duke@1 318 } finally {
duke@1 319 breakTree = null;
duke@1 320 log.useSource(prev);
duke@1 321 }
duke@1 322 return env;
duke@1 323 }
duke@1 324
duke@1 325 private JCTree breakTree = null;
duke@1 326
duke@1 327 private static class BreakAttr extends RuntimeException {
duke@1 328 static final long serialVersionUID = -6924771130405446405L;
duke@1 329 private Env<AttrContext> env;
duke@1 330 private BreakAttr(Env<AttrContext> env) {
duke@1 331 this.env = env;
duke@1 332 }
duke@1 333 }
duke@1 334
duke@1 335
duke@1 336 /* ************************************************************************
duke@1 337 * Visitor methods
duke@1 338 *************************************************************************/
duke@1 339
duke@1 340 /** Visitor argument: the current environment.
duke@1 341 */
duke@1 342 Env<AttrContext> env;
duke@1 343
duke@1 344 /** Visitor argument: the currently expected proto-kind.
duke@1 345 */
duke@1 346 int pkind;
duke@1 347
duke@1 348 /** Visitor argument: the currently expected proto-type.
duke@1 349 */
duke@1 350 Type pt;
duke@1 351
duke@1 352 /** Visitor result: the computed type.
duke@1 353 */
duke@1 354 Type result;
duke@1 355
duke@1 356 /** Visitor method: attribute a tree, catching any completion failure
duke@1 357 * exceptions. Return the tree's type.
duke@1 358 *
duke@1 359 * @param tree The tree to be visited.
duke@1 360 * @param env The environment visitor argument.
duke@1 361 * @param pkind The protokind visitor argument.
duke@1 362 * @param pt The prototype visitor argument.
duke@1 363 */
duke@1 364 Type attribTree(JCTree tree, Env<AttrContext> env, int pkind, Type pt) {
duke@1 365 Env<AttrContext> prevEnv = this.env;
duke@1 366 int prevPkind = this.pkind;
duke@1 367 Type prevPt = this.pt;
duke@1 368 try {
duke@1 369 this.env = env;
duke@1 370 this.pkind = pkind;
duke@1 371 this.pt = pt;
duke@1 372 tree.accept(this);
duke@1 373 if (tree == breakTree)
duke@1 374 throw new BreakAttr(env);
duke@1 375 return result;
duke@1 376 } catch (CompletionFailure ex) {
duke@1 377 tree.type = syms.errType;
duke@1 378 return chk.completionError(tree.pos(), ex);
duke@1 379 } finally {
duke@1 380 this.env = prevEnv;
duke@1 381 this.pkind = prevPkind;
duke@1 382 this.pt = prevPt;
duke@1 383 }
duke@1 384 }
duke@1 385
duke@1 386 /** Derived visitor method: attribute an expression tree.
duke@1 387 */
duke@1 388 public Type attribExpr(JCTree tree, Env<AttrContext> env, Type pt) {
duke@1 389 return attribTree(tree, env, VAL, pt.tag != ERROR ? pt : Type.noType);
duke@1 390 }
duke@1 391
duke@1 392 /** Derived visitor method: attribute an expression tree with
duke@1 393 * no constraints on the computed type.
duke@1 394 */
duke@1 395 Type attribExpr(JCTree tree, Env<AttrContext> env) {
duke@1 396 return attribTree(tree, env, VAL, Type.noType);
duke@1 397 }
duke@1 398
duke@1 399 /** Derived visitor method: attribute a type tree.
duke@1 400 */
duke@1 401 Type attribType(JCTree tree, Env<AttrContext> env) {
duke@1 402 Type result = attribTree(tree, env, TYP, Type.noType);
duke@1 403 return result;
duke@1 404 }
duke@1 405
duke@1 406 /** Derived visitor method: attribute a statement or definition tree.
duke@1 407 */
duke@1 408 public Type attribStat(JCTree tree, Env<AttrContext> env) {
duke@1 409 return attribTree(tree, env, NIL, Type.noType);
duke@1 410 }
duke@1 411
duke@1 412 /** Attribute a list of expressions, returning a list of types.
duke@1 413 */
duke@1 414 List<Type> attribExprs(List<JCExpression> trees, Env<AttrContext> env, Type pt) {
duke@1 415 ListBuffer<Type> ts = new ListBuffer<Type>();
duke@1 416 for (List<JCExpression> l = trees; l.nonEmpty(); l = l.tail)
duke@1 417 ts.append(attribExpr(l.head, env, pt));
duke@1 418 return ts.toList();
duke@1 419 }
duke@1 420
duke@1 421 /** Attribute a list of statements, returning nothing.
duke@1 422 */
duke@1 423 <T extends JCTree> void attribStats(List<T> trees, Env<AttrContext> env) {
duke@1 424 for (List<T> l = trees; l.nonEmpty(); l = l.tail)
duke@1 425 attribStat(l.head, env);
duke@1 426 }
duke@1 427
duke@1 428 /** Attribute the arguments in a method call, returning a list of types.
duke@1 429 */
duke@1 430 List<Type> attribArgs(List<JCExpression> trees, Env<AttrContext> env) {
duke@1 431 ListBuffer<Type> argtypes = new ListBuffer<Type>();
duke@1 432 for (List<JCExpression> l = trees; l.nonEmpty(); l = l.tail)
duke@1 433 argtypes.append(chk.checkNonVoid(
duke@1 434 l.head.pos(), types.upperBound(attribTree(l.head, env, VAL, Infer.anyPoly))));
duke@1 435 return argtypes.toList();
duke@1 436 }
duke@1 437
duke@1 438 /** Attribute a type argument list, returning a list of types.
duke@1 439 */
duke@1 440 List<Type> attribTypes(List<JCExpression> trees, Env<AttrContext> env) {
duke@1 441 ListBuffer<Type> argtypes = new ListBuffer<Type>();
duke@1 442 for (List<JCExpression> l = trees; l.nonEmpty(); l = l.tail)
duke@1 443 argtypes.append(chk.checkRefType(l.head.pos(), attribType(l.head, env)));
duke@1 444 return argtypes.toList();
duke@1 445 }
duke@1 446
duke@1 447
duke@1 448 /**
duke@1 449 * Attribute type variables (of generic classes or methods).
duke@1 450 * Compound types are attributed later in attribBounds.
duke@1 451 * @param typarams the type variables to enter
duke@1 452 * @param env the current environment
duke@1 453 */
duke@1 454 void attribTypeVariables(List<JCTypeParameter> typarams, Env<AttrContext> env) {
duke@1 455 for (JCTypeParameter tvar : typarams) {
duke@1 456 TypeVar a = (TypeVar)tvar.type;
duke@1 457 if (!tvar.bounds.isEmpty()) {
duke@1 458 List<Type> bounds = List.of(attribType(tvar.bounds.head, env));
duke@1 459 for (JCExpression bound : tvar.bounds.tail)
duke@1 460 bounds = bounds.prepend(attribType(bound, env));
duke@1 461 types.setBounds(a, bounds.reverse());
duke@1 462 } else {
duke@1 463 // if no bounds are given, assume a single bound of
duke@1 464 // java.lang.Object.
duke@1 465 types.setBounds(a, List.of(syms.objectType));
duke@1 466 }
duke@1 467 }
mcimadamore@6 468 }
mcimadamore@6 469
mcimadamore@6 470 void attribBounds(List<JCTypeParameter> typarams, Env<AttrContext> env) {
duke@1 471 for (JCTypeParameter tvar : typarams)
duke@1 472 chk.checkNonCyclic(tvar.pos(), (TypeVar)tvar.type);
duke@1 473 attribStats(typarams, env);
duke@1 474 for (JCTypeParameter typaram : typarams) {
duke@1 475 Type bound = typaram.type.getUpperBound();
duke@1 476 if (bound != null && bound.tsym instanceof ClassSymbol) {
duke@1 477 ClassSymbol c = (ClassSymbol)bound.tsym;
duke@1 478 if ((c.flags_field & COMPOUND) != 0) {
duke@1 479 assert (c.flags_field & UNATTRIBUTED) != 0 : c;
duke@1 480 attribClass(typaram.pos(), c);
duke@1 481 }
duke@1 482 }
duke@1 483 }
duke@1 484 }
duke@1 485
duke@1 486 /**
duke@1 487 * Attribute the type references in a list of annotations.
duke@1 488 */
duke@1 489 void attribAnnotationTypes(List<JCAnnotation> annotations,
duke@1 490 Env<AttrContext> env) {
duke@1 491 for (List<JCAnnotation> al = annotations; al.nonEmpty(); al = al.tail) {
duke@1 492 JCAnnotation a = al.head;
duke@1 493 attribType(a.annotationType, env);
duke@1 494 }
duke@1 495 }
duke@1 496
duke@1 497 /** Attribute type reference in an `extends' or `implements' clause.
duke@1 498 *
duke@1 499 * @param tree The tree making up the type reference.
duke@1 500 * @param env The environment current at the reference.
duke@1 501 * @param classExpected true if only a class is expected here.
duke@1 502 * @param interfaceExpected true if only an interface is expected here.
duke@1 503 */
duke@1 504 Type attribBase(JCTree tree,
duke@1 505 Env<AttrContext> env,
duke@1 506 boolean classExpected,
duke@1 507 boolean interfaceExpected,
duke@1 508 boolean checkExtensible) {
duke@1 509 Type t = attribType(tree, env);
duke@1 510 return checkBase(t, tree, env, classExpected, interfaceExpected, checkExtensible);
duke@1 511 }
duke@1 512 Type checkBase(Type t,
duke@1 513 JCTree tree,
duke@1 514 Env<AttrContext> env,
duke@1 515 boolean classExpected,
duke@1 516 boolean interfaceExpected,
duke@1 517 boolean checkExtensible) {
duke@1 518 if (t.tag == TYPEVAR && !classExpected && !interfaceExpected) {
duke@1 519 // check that type variable is already visible
duke@1 520 if (t.getUpperBound() == null) {
duke@1 521 log.error(tree.pos(), "illegal.forward.ref");
duke@1 522 return syms.errType;
duke@1 523 }
duke@1 524 } else {
duke@1 525 t = chk.checkClassType(tree.pos(), t, checkExtensible|!allowGenerics);
duke@1 526 }
duke@1 527 if (interfaceExpected && (t.tsym.flags() & INTERFACE) == 0) {
duke@1 528 log.error(tree.pos(), "intf.expected.here");
duke@1 529 // return errType is necessary since otherwise there might
duke@1 530 // be undetected cycles which cause attribution to loop
duke@1 531 return syms.errType;
duke@1 532 } else if (checkExtensible &&
duke@1 533 classExpected &&
duke@1 534 (t.tsym.flags() & INTERFACE) != 0) {
duke@1 535 log.error(tree.pos(), "no.intf.expected.here");
duke@1 536 return syms.errType;
duke@1 537 }
duke@1 538 if (checkExtensible &&
duke@1 539 ((t.tsym.flags() & FINAL) != 0)) {
duke@1 540 log.error(tree.pos(),
duke@1 541 "cant.inherit.from.final", t.tsym);
duke@1 542 }
duke@1 543 chk.checkNonCyclic(tree.pos(), t);
duke@1 544 return t;
duke@1 545 }
duke@1 546
duke@1 547 public void visitClassDef(JCClassDecl tree) {
duke@1 548 // Local classes have not been entered yet, so we need to do it now:
duke@1 549 if ((env.info.scope.owner.kind & (VAR | MTH)) != 0)
duke@1 550 enter.classEnter(tree, env);
duke@1 551
duke@1 552 ClassSymbol c = tree.sym;
duke@1 553 if (c == null) {
duke@1 554 // exit in case something drastic went wrong during enter.
duke@1 555 result = null;
duke@1 556 } else {
duke@1 557 // make sure class has been completed:
duke@1 558 c.complete();
duke@1 559
duke@1 560 // If this class appears as an anonymous class
duke@1 561 // in a superclass constructor call where
duke@1 562 // no explicit outer instance is given,
duke@1 563 // disable implicit outer instance from being passed.
duke@1 564 // (This would be an illegal access to "this before super").
duke@1 565 if (env.info.isSelfCall &&
duke@1 566 env.tree.getTag() == JCTree.NEWCLASS &&
duke@1 567 ((JCNewClass) env.tree).encl == null)
duke@1 568 {
duke@1 569 c.flags_field |= NOOUTERTHIS;
duke@1 570 }
duke@1 571 attribClass(tree.pos(), c);
duke@1 572 result = tree.type = c.type;
duke@1 573 }
duke@1 574 }
duke@1 575
duke@1 576 public void visitMethodDef(JCMethodDecl tree) {
duke@1 577 MethodSymbol m = tree.sym;
duke@1 578
duke@1 579 Lint lint = env.info.lint.augment(m.attributes_field, m.flags());
duke@1 580 Lint prevLint = chk.setLint(lint);
duke@1 581 try {
duke@1 582 chk.checkDeprecatedAnnotation(tree.pos(), m);
duke@1 583
mcimadamore@6 584 attribBounds(tree.typarams, env);
duke@1 585
duke@1 586 // If we override any other methods, check that we do so properly.
duke@1 587 // JLS ???
duke@1 588 chk.checkOverride(tree, m);
duke@1 589
duke@1 590 // Create a new environment with local scope
duke@1 591 // for attributing the method.
duke@1 592 Env<AttrContext> localEnv = memberEnter.methodEnv(tree, env);
duke@1 593
duke@1 594 localEnv.info.lint = lint;
duke@1 595
duke@1 596 // Enter all type parameters into the local method scope.
duke@1 597 for (List<JCTypeParameter> l = tree.typarams; l.nonEmpty(); l = l.tail)
duke@1 598 localEnv.info.scope.enterIfAbsent(l.head.type.tsym);
duke@1 599
duke@1 600 ClassSymbol owner = env.enclClass.sym;
duke@1 601 if ((owner.flags() & ANNOTATION) != 0 &&
duke@1 602 tree.params.nonEmpty())
duke@1 603 log.error(tree.params.head.pos(),
duke@1 604 "intf.annotation.members.cant.have.params");
duke@1 605
duke@1 606 // Attribute all value parameters.
duke@1 607 for (List<JCVariableDecl> l = tree.params; l.nonEmpty(); l = l.tail) {
duke@1 608 attribStat(l.head, localEnv);
duke@1 609 }
duke@1 610
duke@1 611 // Check that type parameters are well-formed.
duke@1 612 chk.validateTypeParams(tree.typarams);
duke@1 613 if ((owner.flags() & ANNOTATION) != 0 &&
duke@1 614 tree.typarams.nonEmpty())
duke@1 615 log.error(tree.typarams.head.pos(),
duke@1 616 "intf.annotation.members.cant.have.type.params");
duke@1 617
duke@1 618 // Check that result type is well-formed.
duke@1 619 chk.validate(tree.restype);
duke@1 620 if ((owner.flags() & ANNOTATION) != 0)
duke@1 621 chk.validateAnnotationType(tree.restype);
duke@1 622
duke@1 623 if ((owner.flags() & ANNOTATION) != 0)
duke@1 624 chk.validateAnnotationMethod(tree.pos(), m);
duke@1 625
duke@1 626 // Check that all exceptions mentioned in the throws clause extend
duke@1 627 // java.lang.Throwable.
duke@1 628 if ((owner.flags() & ANNOTATION) != 0 && tree.thrown.nonEmpty())
duke@1 629 log.error(tree.thrown.head.pos(),
duke@1 630 "throws.not.allowed.in.intf.annotation");
duke@1 631 for (List<JCExpression> l = tree.thrown; l.nonEmpty(); l = l.tail)
duke@1 632 chk.checkType(l.head.pos(), l.head.type, syms.throwableType);
duke@1 633
duke@1 634 if (tree.body == null) {
duke@1 635 // Empty bodies are only allowed for
duke@1 636 // abstract, native, or interface methods, or for methods
duke@1 637 // in a retrofit signature class.
duke@1 638 if ((owner.flags() & INTERFACE) == 0 &&
duke@1 639 (tree.mods.flags & (ABSTRACT | NATIVE)) == 0 &&
duke@1 640 !relax)
duke@1 641 log.error(tree.pos(), "missing.meth.body.or.decl.abstract");
duke@1 642 if (tree.defaultValue != null) {
duke@1 643 if ((owner.flags() & ANNOTATION) == 0)
duke@1 644 log.error(tree.pos(),
duke@1 645 "default.allowed.in.intf.annotation.member");
duke@1 646 }
duke@1 647 } else if ((owner.flags() & INTERFACE) != 0) {
duke@1 648 log.error(tree.body.pos(), "intf.meth.cant.have.body");
duke@1 649 } else if ((tree.mods.flags & ABSTRACT) != 0) {
duke@1 650 log.error(tree.pos(), "abstract.meth.cant.have.body");
duke@1 651 } else if ((tree.mods.flags & NATIVE) != 0) {
duke@1 652 log.error(tree.pos(), "native.meth.cant.have.body");
duke@1 653 } else {
duke@1 654 // Add an implicit super() call unless an explicit call to
duke@1 655 // super(...) or this(...) is given
duke@1 656 // or we are compiling class java.lang.Object.
duke@1 657 if (tree.name == names.init && owner.type != syms.objectType) {
duke@1 658 JCBlock body = tree.body;
duke@1 659 if (body.stats.isEmpty() ||
duke@1 660 !TreeInfo.isSelfCall(body.stats.head)) {
duke@1 661 body.stats = body.stats.
duke@1 662 prepend(memberEnter.SuperCall(make.at(body.pos),
duke@1 663 List.<Type>nil(),
duke@1 664 List.<JCVariableDecl>nil(),
duke@1 665 false));
duke@1 666 } else if ((env.enclClass.sym.flags() & ENUM) != 0 &&
duke@1 667 (tree.mods.flags & GENERATEDCONSTR) == 0 &&
duke@1 668 TreeInfo.isSuperCall(body.stats.head)) {
duke@1 669 // enum constructors are not allowed to call super
duke@1 670 // directly, so make sure there aren't any super calls
duke@1 671 // in enum constructors, except in the compiler
duke@1 672 // generated one.
duke@1 673 log.error(tree.body.stats.head.pos(),
duke@1 674 "call.to.super.not.allowed.in.enum.ctor",
duke@1 675 env.enclClass.sym);
duke@1 676 }
duke@1 677 }
duke@1 678
duke@1 679 // Attribute method body.
duke@1 680 attribStat(tree.body, localEnv);
duke@1 681 }
duke@1 682 localEnv.info.scope.leave();
duke@1 683 result = tree.type = m.type;
duke@1 684 chk.validateAnnotations(tree.mods.annotations, m);
duke@1 685
duke@1 686 }
duke@1 687 finally {
duke@1 688 chk.setLint(prevLint);
duke@1 689 }
duke@1 690 }
duke@1 691
duke@1 692 public void visitVarDef(JCVariableDecl tree) {
duke@1 693 // Local variables have not been entered yet, so we need to do it now:
duke@1 694 if (env.info.scope.owner.kind == MTH) {
duke@1 695 if (tree.sym != null) {
duke@1 696 // parameters have already been entered
duke@1 697 env.info.scope.enter(tree.sym);
duke@1 698 } else {
duke@1 699 memberEnter.memberEnter(tree, env);
duke@1 700 annotate.flush();
duke@1 701 }
duke@1 702 }
duke@1 703
duke@1 704 // Check that the variable's declared type is well-formed.
duke@1 705 chk.validate(tree.vartype);
duke@1 706
duke@1 707 VarSymbol v = tree.sym;
duke@1 708 Lint lint = env.info.lint.augment(v.attributes_field, v.flags());
duke@1 709 Lint prevLint = chk.setLint(lint);
duke@1 710
duke@1 711 try {
duke@1 712 chk.checkDeprecatedAnnotation(tree.pos(), v);
duke@1 713
duke@1 714 if (tree.init != null) {
duke@1 715 if ((v.flags_field & FINAL) != 0 && tree.init.getTag() != JCTree.NEWCLASS) {
duke@1 716 // In this case, `v' is final. Ensure that it's initializer is
duke@1 717 // evaluated.
duke@1 718 v.getConstValue(); // ensure initializer is evaluated
duke@1 719 } else {
duke@1 720 // Attribute initializer in a new environment
duke@1 721 // with the declared variable as owner.
duke@1 722 // Check that initializer conforms to variable's declared type.
duke@1 723 Env<AttrContext> initEnv = memberEnter.initEnv(tree, env);
duke@1 724 initEnv.info.lint = lint;
duke@1 725 // In order to catch self-references, we set the variable's
duke@1 726 // declaration position to maximal possible value, effectively
duke@1 727 // marking the variable as undefined.
duke@1 728 v.pos = Position.MAXPOS;
duke@1 729 attribExpr(tree.init, initEnv, v.type);
duke@1 730 v.pos = tree.pos;
duke@1 731 }
duke@1 732 }
duke@1 733 result = tree.type = v.type;
duke@1 734 chk.validateAnnotations(tree.mods.annotations, v);
duke@1 735 }
duke@1 736 finally {
duke@1 737 chk.setLint(prevLint);
duke@1 738 }
duke@1 739 }
duke@1 740
duke@1 741 public void visitSkip(JCSkip tree) {
duke@1 742 result = null;
duke@1 743 }
duke@1 744
duke@1 745 public void visitBlock(JCBlock tree) {
duke@1 746 if (env.info.scope.owner.kind == TYP) {
duke@1 747 // Block is a static or instance initializer;
duke@1 748 // let the owner of the environment be a freshly
duke@1 749 // created BLOCK-method.
duke@1 750 Env<AttrContext> localEnv =
duke@1 751 env.dup(tree, env.info.dup(env.info.scope.dupUnshared()));
duke@1 752 localEnv.info.scope.owner =
duke@1 753 new MethodSymbol(tree.flags | BLOCK, names.empty, null,
duke@1 754 env.info.scope.owner);
duke@1 755 if ((tree.flags & STATIC) != 0) localEnv.info.staticLevel++;
duke@1 756 attribStats(tree.stats, localEnv);
duke@1 757 } else {
duke@1 758 // Create a new local environment with a local scope.
duke@1 759 Env<AttrContext> localEnv =
duke@1 760 env.dup(tree, env.info.dup(env.info.scope.dup()));
duke@1 761 attribStats(tree.stats, localEnv);
duke@1 762 localEnv.info.scope.leave();
duke@1 763 }
duke@1 764 result = null;
duke@1 765 }
duke@1 766
duke@1 767 public void visitDoLoop(JCDoWhileLoop tree) {
duke@1 768 attribStat(tree.body, env.dup(tree));
duke@1 769 attribExpr(tree.cond, env, syms.booleanType);
duke@1 770 result = null;
duke@1 771 }
duke@1 772
duke@1 773 public void visitWhileLoop(JCWhileLoop tree) {
duke@1 774 attribExpr(tree.cond, env, syms.booleanType);
duke@1 775 attribStat(tree.body, env.dup(tree));
duke@1 776 result = null;
duke@1 777 }
duke@1 778
duke@1 779 public void visitForLoop(JCForLoop tree) {
duke@1 780 Env<AttrContext> loopEnv =
duke@1 781 env.dup(env.tree, env.info.dup(env.info.scope.dup()));
duke@1 782 attribStats(tree.init, loopEnv);
duke@1 783 if (tree.cond != null) attribExpr(tree.cond, loopEnv, syms.booleanType);
duke@1 784 loopEnv.tree = tree; // before, we were not in loop!
duke@1 785 attribStats(tree.step, loopEnv);
duke@1 786 attribStat(tree.body, loopEnv);
duke@1 787 loopEnv.info.scope.leave();
duke@1 788 result = null;
duke@1 789 }
duke@1 790
duke@1 791 public void visitForeachLoop(JCEnhancedForLoop tree) {
duke@1 792 Env<AttrContext> loopEnv =
duke@1 793 env.dup(env.tree, env.info.dup(env.info.scope.dup()));
duke@1 794 attribStat(tree.var, loopEnv);
duke@1 795 Type exprType = types.upperBound(attribExpr(tree.expr, loopEnv));
duke@1 796 chk.checkNonVoid(tree.pos(), exprType);
duke@1 797 Type elemtype = types.elemtype(exprType); // perhaps expr is an array?
duke@1 798 if (elemtype == null) {
duke@1 799 // or perhaps expr implements Iterable<T>?
duke@1 800 Type base = types.asSuper(exprType, syms.iterableType.tsym);
duke@1 801 if (base == null) {
duke@1 802 log.error(tree.expr.pos(), "foreach.not.applicable.to.type");
duke@1 803 elemtype = syms.errType;
duke@1 804 } else {
duke@1 805 List<Type> iterableParams = base.allparams();
duke@1 806 elemtype = iterableParams.isEmpty()
duke@1 807 ? syms.objectType
duke@1 808 : types.upperBound(iterableParams.head);
duke@1 809 }
duke@1 810 }
duke@1 811 chk.checkType(tree.expr.pos(), elemtype, tree.var.sym.type);
duke@1 812 loopEnv.tree = tree; // before, we were not in loop!
duke@1 813 attribStat(tree.body, loopEnv);
duke@1 814 loopEnv.info.scope.leave();
duke@1 815 result = null;
duke@1 816 }
duke@1 817
duke@1 818 public void visitLabelled(JCLabeledStatement tree) {
duke@1 819 // Check that label is not used in an enclosing statement
duke@1 820 Env<AttrContext> env1 = env;
duke@1 821 while (env1 != null && env1.tree.getTag() != JCTree.CLASSDEF) {
duke@1 822 if (env1.tree.getTag() == JCTree.LABELLED &&
duke@1 823 ((JCLabeledStatement) env1.tree).label == tree.label) {
duke@1 824 log.error(tree.pos(), "label.already.in.use",
duke@1 825 tree.label);
duke@1 826 break;
duke@1 827 }
duke@1 828 env1 = env1.next;
duke@1 829 }
duke@1 830
duke@1 831 attribStat(tree.body, env.dup(tree));
duke@1 832 result = null;
duke@1 833 }
duke@1 834
duke@1 835 public void visitSwitch(JCSwitch tree) {
duke@1 836 Type seltype = attribExpr(tree.selector, env);
duke@1 837
duke@1 838 Env<AttrContext> switchEnv =
duke@1 839 env.dup(tree, env.info.dup(env.info.scope.dup()));
duke@1 840
duke@1 841 boolean enumSwitch =
duke@1 842 allowEnums &&
duke@1 843 (seltype.tsym.flags() & Flags.ENUM) != 0;
duke@1 844 if (!enumSwitch)
duke@1 845 seltype = chk.checkType(tree.selector.pos(), seltype, syms.intType);
duke@1 846
duke@1 847 // Attribute all cases and
duke@1 848 // check that there are no duplicate case labels or default clauses.
duke@1 849 Set<Object> labels = new HashSet<Object>(); // The set of case labels.
duke@1 850 boolean hasDefault = false; // Is there a default label?
duke@1 851 for (List<JCCase> l = tree.cases; l.nonEmpty(); l = l.tail) {
duke@1 852 JCCase c = l.head;
duke@1 853 Env<AttrContext> caseEnv =
duke@1 854 switchEnv.dup(c, env.info.dup(switchEnv.info.scope.dup()));
duke@1 855 if (c.pat != null) {
duke@1 856 if (enumSwitch) {
duke@1 857 Symbol sym = enumConstant(c.pat, seltype);
duke@1 858 if (sym == null) {
duke@1 859 log.error(c.pat.pos(), "enum.const.req");
duke@1 860 } else if (!labels.add(sym)) {
duke@1 861 log.error(c.pos(), "duplicate.case.label");
duke@1 862 }
duke@1 863 } else {
duke@1 864 Type pattype = attribExpr(c.pat, switchEnv, seltype);
duke@1 865 if (pattype.tag != ERROR) {
duke@1 866 if (pattype.constValue() == null) {
duke@1 867 log.error(c.pat.pos(), "const.expr.req");
duke@1 868 } else if (labels.contains(pattype.constValue())) {
duke@1 869 log.error(c.pos(), "duplicate.case.label");
duke@1 870 } else {
duke@1 871 labels.add(pattype.constValue());
duke@1 872 }
duke@1 873 }
duke@1 874 }
duke@1 875 } else if (hasDefault) {
duke@1 876 log.error(c.pos(), "duplicate.default.label");
duke@1 877 } else {
duke@1 878 hasDefault = true;
duke@1 879 }
duke@1 880 attribStats(c.stats, caseEnv);
duke@1 881 caseEnv.info.scope.leave();
duke@1 882 addVars(c.stats, switchEnv.info.scope);
duke@1 883 }
duke@1 884
duke@1 885 switchEnv.info.scope.leave();
duke@1 886 result = null;
duke@1 887 }
duke@1 888 // where
duke@1 889 /** Add any variables defined in stats to the switch scope. */
duke@1 890 private static void addVars(List<JCStatement> stats, Scope switchScope) {
duke@1 891 for (;stats.nonEmpty(); stats = stats.tail) {
duke@1 892 JCTree stat = stats.head;
duke@1 893 if (stat.getTag() == JCTree.VARDEF)
duke@1 894 switchScope.enter(((JCVariableDecl) stat).sym);
duke@1 895 }
duke@1 896 }
duke@1 897 // where
duke@1 898 /** Return the selected enumeration constant symbol, or null. */
duke@1 899 private Symbol enumConstant(JCTree tree, Type enumType) {
duke@1 900 if (tree.getTag() != JCTree.IDENT) {
duke@1 901 log.error(tree.pos(), "enum.label.must.be.unqualified.enum");
duke@1 902 return syms.errSymbol;
duke@1 903 }
duke@1 904 JCIdent ident = (JCIdent)tree;
duke@1 905 Name name = ident.name;
duke@1 906 for (Scope.Entry e = enumType.tsym.members().lookup(name);
duke@1 907 e.scope != null; e = e.next()) {
duke@1 908 if (e.sym.kind == VAR) {
duke@1 909 Symbol s = ident.sym = e.sym;
duke@1 910 ((VarSymbol)s).getConstValue(); // ensure initializer is evaluated
duke@1 911 ident.type = s.type;
duke@1 912 return ((s.flags_field & Flags.ENUM) == 0)
duke@1 913 ? null : s;
duke@1 914 }
duke@1 915 }
duke@1 916 return null;
duke@1 917 }
duke@1 918
duke@1 919 public void visitSynchronized(JCSynchronized tree) {
duke@1 920 chk.checkRefType(tree.pos(), attribExpr(tree.lock, env));
duke@1 921 attribStat(tree.body, env);
duke@1 922 result = null;
duke@1 923 }
duke@1 924
duke@1 925 public void visitTry(JCTry tree) {
duke@1 926 // Attribute body
duke@1 927 attribStat(tree.body, env.dup(tree, env.info.dup()));
duke@1 928
duke@1 929 // Attribute catch clauses
duke@1 930 for (List<JCCatch> l = tree.catchers; l.nonEmpty(); l = l.tail) {
duke@1 931 JCCatch c = l.head;
duke@1 932 Env<AttrContext> catchEnv =
duke@1 933 env.dup(c, env.info.dup(env.info.scope.dup()));
duke@1 934 Type ctype = attribStat(c.param, catchEnv);
duke@1 935 if (c.param.type.tsym.kind == Kinds.VAR) {
duke@1 936 c.param.sym.setData(ElementKind.EXCEPTION_PARAMETER);
duke@1 937 }
duke@1 938 chk.checkType(c.param.vartype.pos(),
duke@1 939 chk.checkClassType(c.param.vartype.pos(), ctype),
duke@1 940 syms.throwableType);
duke@1 941 attribStat(c.body, catchEnv);
duke@1 942 catchEnv.info.scope.leave();
duke@1 943 }
duke@1 944
duke@1 945 // Attribute finalizer
duke@1 946 if (tree.finalizer != null) attribStat(tree.finalizer, env);
duke@1 947 result = null;
duke@1 948 }
duke@1 949
duke@1 950 public void visitConditional(JCConditional tree) {
duke@1 951 attribExpr(tree.cond, env, syms.booleanType);
duke@1 952 attribExpr(tree.truepart, env);
duke@1 953 attribExpr(tree.falsepart, env);
duke@1 954 result = check(tree,
duke@1 955 capture(condType(tree.pos(), tree.cond.type,
duke@1 956 tree.truepart.type, tree.falsepart.type)),
duke@1 957 VAL, pkind, pt);
duke@1 958 }
duke@1 959 //where
duke@1 960 /** Compute the type of a conditional expression, after
duke@1 961 * checking that it exists. See Spec 15.25.
duke@1 962 *
duke@1 963 * @param pos The source position to be used for
duke@1 964 * error diagnostics.
duke@1 965 * @param condtype The type of the expression's condition.
duke@1 966 * @param thentype The type of the expression's then-part.
duke@1 967 * @param elsetype The type of the expression's else-part.
duke@1 968 */
duke@1 969 private Type condType(DiagnosticPosition pos,
duke@1 970 Type condtype,
duke@1 971 Type thentype,
duke@1 972 Type elsetype) {
duke@1 973 Type ctype = condType1(pos, condtype, thentype, elsetype);
duke@1 974
duke@1 975 // If condition and both arms are numeric constants,
duke@1 976 // evaluate at compile-time.
duke@1 977 return ((condtype.constValue() != null) &&
duke@1 978 (thentype.constValue() != null) &&
duke@1 979 (elsetype.constValue() != null))
duke@1 980 ? cfolder.coerce(condtype.isTrue()?thentype:elsetype, ctype)
duke@1 981 : ctype;
duke@1 982 }
duke@1 983 /** Compute the type of a conditional expression, after
duke@1 984 * checking that it exists. Does not take into
duke@1 985 * account the special case where condition and both arms
duke@1 986 * are constants.
duke@1 987 *
duke@1 988 * @param pos The source position to be used for error
duke@1 989 * diagnostics.
duke@1 990 * @param condtype The type of the expression's condition.
duke@1 991 * @param thentype The type of the expression's then-part.
duke@1 992 * @param elsetype The type of the expression's else-part.
duke@1 993 */
duke@1 994 private Type condType1(DiagnosticPosition pos, Type condtype,
duke@1 995 Type thentype, Type elsetype) {
duke@1 996 // If same type, that is the result
duke@1 997 if (types.isSameType(thentype, elsetype))
duke@1 998 return thentype.baseType();
duke@1 999
duke@1 1000 Type thenUnboxed = (!allowBoxing || thentype.isPrimitive())
duke@1 1001 ? thentype : types.unboxedType(thentype);
duke@1 1002 Type elseUnboxed = (!allowBoxing || elsetype.isPrimitive())
duke@1 1003 ? elsetype : types.unboxedType(elsetype);
duke@1 1004
duke@1 1005 // Otherwise, if both arms can be converted to a numeric
duke@1 1006 // type, return the least numeric type that fits both arms
duke@1 1007 // (i.e. return larger of the two, or return int if one
duke@1 1008 // arm is short, the other is char).
duke@1 1009 if (thenUnboxed.isPrimitive() && elseUnboxed.isPrimitive()) {
duke@1 1010 // If one arm has an integer subrange type (i.e., byte,
duke@1 1011 // short, or char), and the other is an integer constant
duke@1 1012 // that fits into the subrange, return the subrange type.
duke@1 1013 if (thenUnboxed.tag < INT && elseUnboxed.tag == INT &&
duke@1 1014 types.isAssignable(elseUnboxed, thenUnboxed))
duke@1 1015 return thenUnboxed.baseType();
duke@1 1016 if (elseUnboxed.tag < INT && thenUnboxed.tag == INT &&
duke@1 1017 types.isAssignable(thenUnboxed, elseUnboxed))
duke@1 1018 return elseUnboxed.baseType();
duke@1 1019
duke@1 1020 for (int i = BYTE; i < VOID; i++) {
duke@1 1021 Type candidate = syms.typeOfTag[i];
duke@1 1022 if (types.isSubtype(thenUnboxed, candidate) &&
duke@1 1023 types.isSubtype(elseUnboxed, candidate))
duke@1 1024 return candidate;
duke@1 1025 }
duke@1 1026 }
duke@1 1027
duke@1 1028 // Those were all the cases that could result in a primitive
duke@1 1029 if (allowBoxing) {
duke@1 1030 if (thentype.isPrimitive())
duke@1 1031 thentype = types.boxedClass(thentype).type;
duke@1 1032 if (elsetype.isPrimitive())
duke@1 1033 elsetype = types.boxedClass(elsetype).type;
duke@1 1034 }
duke@1 1035
duke@1 1036 if (types.isSubtype(thentype, elsetype))
duke@1 1037 return elsetype.baseType();
duke@1 1038 if (types.isSubtype(elsetype, thentype))
duke@1 1039 return thentype.baseType();
duke@1 1040
duke@1 1041 if (!allowBoxing || thentype.tag == VOID || elsetype.tag == VOID) {
duke@1 1042 log.error(pos, "neither.conditional.subtype",
duke@1 1043 thentype, elsetype);
duke@1 1044 return thentype.baseType();
duke@1 1045 }
duke@1 1046
duke@1 1047 // both are known to be reference types. The result is
duke@1 1048 // lub(thentype,elsetype). This cannot fail, as it will
duke@1 1049 // always be possible to infer "Object" if nothing better.
duke@1 1050 return types.lub(thentype.baseType(), elsetype.baseType());
duke@1 1051 }
duke@1 1052
duke@1 1053 public void visitIf(JCIf tree) {
duke@1 1054 attribExpr(tree.cond, env, syms.booleanType);
duke@1 1055 attribStat(tree.thenpart, env);
duke@1 1056 if (tree.elsepart != null)
duke@1 1057 attribStat(tree.elsepart, env);
duke@1 1058 chk.checkEmptyIf(tree);
duke@1 1059 result = null;
duke@1 1060 }
duke@1 1061
duke@1 1062 public void visitExec(JCExpressionStatement tree) {
duke@1 1063 attribExpr(tree.expr, env);
duke@1 1064 result = null;
duke@1 1065 }
duke@1 1066
duke@1 1067 public void visitBreak(JCBreak tree) {
duke@1 1068 tree.target = findJumpTarget(tree.pos(), tree.getTag(), tree.label, env);
duke@1 1069 result = null;
duke@1 1070 }
duke@1 1071
duke@1 1072 public void visitContinue(JCContinue tree) {
duke@1 1073 tree.target = findJumpTarget(tree.pos(), tree.getTag(), tree.label, env);
duke@1 1074 result = null;
duke@1 1075 }
duke@1 1076 //where
duke@1 1077 /** Return the target of a break or continue statement, if it exists,
duke@1 1078 * report an error if not.
duke@1 1079 * Note: The target of a labelled break or continue is the
duke@1 1080 * (non-labelled) statement tree referred to by the label,
duke@1 1081 * not the tree representing the labelled statement itself.
duke@1 1082 *
duke@1 1083 * @param pos The position to be used for error diagnostics
duke@1 1084 * @param tag The tag of the jump statement. This is either
duke@1 1085 * Tree.BREAK or Tree.CONTINUE.
duke@1 1086 * @param label The label of the jump statement, or null if no
duke@1 1087 * label is given.
duke@1 1088 * @param env The environment current at the jump statement.
duke@1 1089 */
duke@1 1090 private JCTree findJumpTarget(DiagnosticPosition pos,
duke@1 1091 int tag,
duke@1 1092 Name label,
duke@1 1093 Env<AttrContext> env) {
duke@1 1094 // Search environments outwards from the point of jump.
duke@1 1095 Env<AttrContext> env1 = env;
duke@1 1096 LOOP:
duke@1 1097 while (env1 != null) {
duke@1 1098 switch (env1.tree.getTag()) {
duke@1 1099 case JCTree.LABELLED:
duke@1 1100 JCLabeledStatement labelled = (JCLabeledStatement)env1.tree;
duke@1 1101 if (label == labelled.label) {
duke@1 1102 // If jump is a continue, check that target is a loop.
duke@1 1103 if (tag == JCTree.CONTINUE) {
duke@1 1104 if (labelled.body.getTag() != JCTree.DOLOOP &&
duke@1 1105 labelled.body.getTag() != JCTree.WHILELOOP &&
duke@1 1106 labelled.body.getTag() != JCTree.FORLOOP &&
duke@1 1107 labelled.body.getTag() != JCTree.FOREACHLOOP)
duke@1 1108 log.error(pos, "not.loop.label", label);
duke@1 1109 // Found labelled statement target, now go inwards
duke@1 1110 // to next non-labelled tree.
duke@1 1111 return TreeInfo.referencedStatement(labelled);
duke@1 1112 } else {
duke@1 1113 return labelled;
duke@1 1114 }
duke@1 1115 }
duke@1 1116 break;
duke@1 1117 case JCTree.DOLOOP:
duke@1 1118 case JCTree.WHILELOOP:
duke@1 1119 case JCTree.FORLOOP:
duke@1 1120 case JCTree.FOREACHLOOP:
duke@1 1121 if (label == null) return env1.tree;
duke@1 1122 break;
duke@1 1123 case JCTree.SWITCH:
duke@1 1124 if (label == null && tag == JCTree.BREAK) return env1.tree;
duke@1 1125 break;
duke@1 1126 case JCTree.METHODDEF:
duke@1 1127 case JCTree.CLASSDEF:
duke@1 1128 break LOOP;
duke@1 1129 default:
duke@1 1130 }
duke@1 1131 env1 = env1.next;
duke@1 1132 }
duke@1 1133 if (label != null)
duke@1 1134 log.error(pos, "undef.label", label);
duke@1 1135 else if (tag == JCTree.CONTINUE)
duke@1 1136 log.error(pos, "cont.outside.loop");
duke@1 1137 else
duke@1 1138 log.error(pos, "break.outside.switch.loop");
duke@1 1139 return null;
duke@1 1140 }
duke@1 1141
duke@1 1142 public void visitReturn(JCReturn tree) {
duke@1 1143 // Check that there is an enclosing method which is
duke@1 1144 // nested within than the enclosing class.
duke@1 1145 if (env.enclMethod == null ||
duke@1 1146 env.enclMethod.sym.owner != env.enclClass.sym) {
duke@1 1147 log.error(tree.pos(), "ret.outside.meth");
duke@1 1148
duke@1 1149 } else {
duke@1 1150 // Attribute return expression, if it exists, and check that
duke@1 1151 // it conforms to result type of enclosing method.
duke@1 1152 Symbol m = env.enclMethod.sym;
duke@1 1153 if (m.type.getReturnType().tag == VOID) {
duke@1 1154 if (tree.expr != null)
duke@1 1155 log.error(tree.expr.pos(),
duke@1 1156 "cant.ret.val.from.meth.decl.void");
duke@1 1157 } else if (tree.expr == null) {
duke@1 1158 log.error(tree.pos(), "missing.ret.val");
duke@1 1159 } else {
duke@1 1160 attribExpr(tree.expr, env, m.type.getReturnType());
duke@1 1161 }
duke@1 1162 }
duke@1 1163 result = null;
duke@1 1164 }
duke@1 1165
duke@1 1166 public void visitThrow(JCThrow tree) {
duke@1 1167 attribExpr(tree.expr, env, syms.throwableType);
duke@1 1168 result = null;
duke@1 1169 }
duke@1 1170
duke@1 1171 public void visitAssert(JCAssert tree) {
duke@1 1172 attribExpr(tree.cond, env, syms.booleanType);
duke@1 1173 if (tree.detail != null) {
duke@1 1174 chk.checkNonVoid(tree.detail.pos(), attribExpr(tree.detail, env));
duke@1 1175 }
duke@1 1176 result = null;
duke@1 1177 }
duke@1 1178
duke@1 1179 /** Visitor method for method invocations.
duke@1 1180 * NOTE: The method part of an application will have in its type field
duke@1 1181 * the return type of the method, not the method's type itself!
duke@1 1182 */
duke@1 1183 public void visitApply(JCMethodInvocation tree) {
duke@1 1184 // The local environment of a method application is
duke@1 1185 // a new environment nested in the current one.
duke@1 1186 Env<AttrContext> localEnv = env.dup(tree, env.info.dup());
duke@1 1187
duke@1 1188 // The types of the actual method arguments.
duke@1 1189 List<Type> argtypes;
duke@1 1190
duke@1 1191 // The types of the actual method type arguments.
duke@1 1192 List<Type> typeargtypes = null;
duke@1 1193
duke@1 1194 Name methName = TreeInfo.name(tree.meth);
duke@1 1195
duke@1 1196 boolean isConstructorCall =
duke@1 1197 methName == names._this || methName == names._super;
duke@1 1198
duke@1 1199 if (isConstructorCall) {
duke@1 1200 // We are seeing a ...this(...) or ...super(...) call.
duke@1 1201 // Check that this is the first statement in a constructor.
duke@1 1202 if (checkFirstConstructorStat(tree, env)) {
duke@1 1203
duke@1 1204 // Record the fact
duke@1 1205 // that this is a constructor call (using isSelfCall).
duke@1 1206 localEnv.info.isSelfCall = true;
duke@1 1207
duke@1 1208 // Attribute arguments, yielding list of argument types.
duke@1 1209 argtypes = attribArgs(tree.args, localEnv);
duke@1 1210 typeargtypes = attribTypes(tree.typeargs, localEnv);
duke@1 1211
duke@1 1212 // Variable `site' points to the class in which the called
duke@1 1213 // constructor is defined.
duke@1 1214 Type site = env.enclClass.sym.type;
duke@1 1215 if (methName == names._super) {
duke@1 1216 if (site == syms.objectType) {
duke@1 1217 log.error(tree.meth.pos(), "no.superclass", site);
duke@1 1218 site = syms.errType;
duke@1 1219 } else {
duke@1 1220 site = types.supertype(site);
duke@1 1221 }
duke@1 1222 }
duke@1 1223
duke@1 1224 if (site.tag == CLASS) {
duke@1 1225 if (site.getEnclosingType().tag == CLASS) {
duke@1 1226 // we are calling a nested class
duke@1 1227
duke@1 1228 if (tree.meth.getTag() == JCTree.SELECT) {
duke@1 1229 JCTree qualifier = ((JCFieldAccess) tree.meth).selected;
duke@1 1230
duke@1 1231 // We are seeing a prefixed call, of the form
duke@1 1232 // <expr>.super(...).
duke@1 1233 // Check that the prefix expression conforms
duke@1 1234 // to the outer instance type of the class.
duke@1 1235 chk.checkRefType(qualifier.pos(),
duke@1 1236 attribExpr(qualifier, localEnv,
duke@1 1237 site.getEnclosingType()));
duke@1 1238 } else if (methName == names._super) {
duke@1 1239 // qualifier omitted; check for existence
duke@1 1240 // of an appropriate implicit qualifier.
duke@1 1241 rs.resolveImplicitThis(tree.meth.pos(),
duke@1 1242 localEnv, site);
duke@1 1243 }
duke@1 1244 } else if (tree.meth.getTag() == JCTree.SELECT) {
duke@1 1245 log.error(tree.meth.pos(), "illegal.qual.not.icls",
duke@1 1246 site.tsym);
duke@1 1247 }
duke@1 1248
duke@1 1249 // if we're calling a java.lang.Enum constructor,
duke@1 1250 // prefix the implicit String and int parameters
duke@1 1251 if (site.tsym == syms.enumSym && allowEnums)
duke@1 1252 argtypes = argtypes.prepend(syms.intType).prepend(syms.stringType);
duke@1 1253
duke@1 1254 // Resolve the called constructor under the assumption
duke@1 1255 // that we are referring to a superclass instance of the
duke@1 1256 // current instance (JLS ???).
duke@1 1257 boolean selectSuperPrev = localEnv.info.selectSuper;
duke@1 1258 localEnv.info.selectSuper = true;
duke@1 1259 localEnv.info.varArgs = false;
duke@1 1260 Symbol sym = rs.resolveConstructor(
duke@1 1261 tree.meth.pos(), localEnv, site, argtypes, typeargtypes);
duke@1 1262 localEnv.info.selectSuper = selectSuperPrev;
duke@1 1263
duke@1 1264 // Set method symbol to resolved constructor...
duke@1 1265 TreeInfo.setSymbol(tree.meth, sym);
duke@1 1266
duke@1 1267 // ...and check that it is legal in the current context.
duke@1 1268 // (this will also set the tree's type)
duke@1 1269 Type mpt = newMethTemplate(argtypes, typeargtypes);
duke@1 1270 checkId(tree.meth, site, sym, localEnv, MTH,
duke@1 1271 mpt, tree.varargsElement != null);
duke@1 1272 }
duke@1 1273 // Otherwise, `site' is an error type and we do nothing
duke@1 1274 }
duke@1 1275 result = tree.type = syms.voidType;
duke@1 1276 } else {
duke@1 1277 // Otherwise, we are seeing a regular method call.
duke@1 1278 // Attribute the arguments, yielding list of argument types, ...
duke@1 1279 argtypes = attribArgs(tree.args, localEnv);
duke@1 1280 typeargtypes = attribTypes(tree.typeargs, localEnv);
duke@1 1281
duke@1 1282 // ... and attribute the method using as a prototype a methodtype
duke@1 1283 // whose formal argument types is exactly the list of actual
duke@1 1284 // arguments (this will also set the method symbol).
duke@1 1285 Type mpt = newMethTemplate(argtypes, typeargtypes);
duke@1 1286 localEnv.info.varArgs = false;
duke@1 1287 Type mtype = attribExpr(tree.meth, localEnv, mpt);
duke@1 1288 if (localEnv.info.varArgs)
duke@1 1289 assert mtype.isErroneous() || tree.varargsElement != null;
duke@1 1290
duke@1 1291 // Compute the result type.
duke@1 1292 Type restype = mtype.getReturnType();
duke@1 1293 assert restype.tag != WILDCARD : mtype;
duke@1 1294
duke@1 1295 // as a special case, array.clone() has a result that is
duke@1 1296 // the same as static type of the array being cloned
duke@1 1297 if (tree.meth.getTag() == JCTree.SELECT &&
duke@1 1298 allowCovariantReturns &&
duke@1 1299 methName == names.clone &&
duke@1 1300 types.isArray(((JCFieldAccess) tree.meth).selected.type))
duke@1 1301 restype = ((JCFieldAccess) tree.meth).selected.type;
duke@1 1302
duke@1 1303 // as a special case, x.getClass() has type Class<? extends |X|>
duke@1 1304 if (allowGenerics &&
duke@1 1305 methName == names.getClass && tree.args.isEmpty()) {
duke@1 1306 Type qualifier = (tree.meth.getTag() == JCTree.SELECT)
duke@1 1307 ? ((JCFieldAccess) tree.meth).selected.type
duke@1 1308 : env.enclClass.sym.type;
duke@1 1309 restype = new
duke@1 1310 ClassType(restype.getEnclosingType(),
duke@1 1311 List.<Type>of(new WildcardType(types.erasure(qualifier),
duke@1 1312 BoundKind.EXTENDS,
duke@1 1313 syms.boundClass)),
duke@1 1314 restype.tsym);
duke@1 1315 }
duke@1 1316
duke@1 1317 // Check that value of resulting type is admissible in the
duke@1 1318 // current context. Also, capture the return type
duke@1 1319 result = check(tree, capture(restype), VAL, pkind, pt);
duke@1 1320 }
duke@1 1321 chk.validate(tree.typeargs);
duke@1 1322 }
duke@1 1323 //where
duke@1 1324 /** Check that given application node appears as first statement
duke@1 1325 * in a constructor call.
duke@1 1326 * @param tree The application node
duke@1 1327 * @param env The environment current at the application.
duke@1 1328 */
duke@1 1329 boolean checkFirstConstructorStat(JCMethodInvocation tree, Env<AttrContext> env) {
duke@1 1330 JCMethodDecl enclMethod = env.enclMethod;
duke@1 1331 if (enclMethod != null && enclMethod.name == names.init) {
duke@1 1332 JCBlock body = enclMethod.body;
duke@1 1333 if (body.stats.head.getTag() == JCTree.EXEC &&
duke@1 1334 ((JCExpressionStatement) body.stats.head).expr == tree)
duke@1 1335 return true;
duke@1 1336 }
duke@1 1337 log.error(tree.pos(),"call.must.be.first.stmt.in.ctor",
duke@1 1338 TreeInfo.name(tree.meth));
duke@1 1339 return false;
duke@1 1340 }
duke@1 1341
duke@1 1342 /** Obtain a method type with given argument types.
duke@1 1343 */
duke@1 1344 Type newMethTemplate(List<Type> argtypes, List<Type> typeargtypes) {
duke@1 1345 MethodType mt = new MethodType(argtypes, null, null, syms.methodClass);
duke@1 1346 return (typeargtypes == null) ? mt : (Type)new ForAll(typeargtypes, mt);
duke@1 1347 }
duke@1 1348
duke@1 1349 public void visitNewClass(JCNewClass tree) {
duke@1 1350 Type owntype = syms.errType;
duke@1 1351
duke@1 1352 // The local environment of a class creation is
duke@1 1353 // a new environment nested in the current one.
duke@1 1354 Env<AttrContext> localEnv = env.dup(tree, env.info.dup());
duke@1 1355
duke@1 1356 // The anonymous inner class definition of the new expression,
duke@1 1357 // if one is defined by it.
duke@1 1358 JCClassDecl cdef = tree.def;
duke@1 1359
duke@1 1360 // If enclosing class is given, attribute it, and
duke@1 1361 // complete class name to be fully qualified
duke@1 1362 JCExpression clazz = tree.clazz; // Class field following new
duke@1 1363 JCExpression clazzid = // Identifier in class field
duke@1 1364 (clazz.getTag() == JCTree.TYPEAPPLY)
duke@1 1365 ? ((JCTypeApply) clazz).clazz
duke@1 1366 : clazz;
duke@1 1367
duke@1 1368 JCExpression clazzid1 = clazzid; // The same in fully qualified form
duke@1 1369
duke@1 1370 if (tree.encl != null) {
duke@1 1371 // We are seeing a qualified new, of the form
duke@1 1372 // <expr>.new C <...> (...) ...
duke@1 1373 // In this case, we let clazz stand for the name of the
duke@1 1374 // allocated class C prefixed with the type of the qualifier
duke@1 1375 // expression, so that we can
duke@1 1376 // resolve it with standard techniques later. I.e., if
duke@1 1377 // <expr> has type T, then <expr>.new C <...> (...)
duke@1 1378 // yields a clazz T.C.
duke@1 1379 Type encltype = chk.checkRefType(tree.encl.pos(),
duke@1 1380 attribExpr(tree.encl, env));
duke@1 1381 clazzid1 = make.at(clazz.pos).Select(make.Type(encltype),
duke@1 1382 ((JCIdent) clazzid).name);
duke@1 1383 if (clazz.getTag() == JCTree.TYPEAPPLY)
duke@1 1384 clazz = make.at(tree.pos).
duke@1 1385 TypeApply(clazzid1,
duke@1 1386 ((JCTypeApply) clazz).arguments);
duke@1 1387 else
duke@1 1388 clazz = clazzid1;
duke@1 1389 // System.out.println(clazz + " generated.");//DEBUG
duke@1 1390 }
duke@1 1391
duke@1 1392 // Attribute clazz expression and store
duke@1 1393 // symbol + type back into the attributed tree.
duke@1 1394 Type clazztype = chk.checkClassType(
duke@1 1395 tree.clazz.pos(), attribType(clazz, env), true);
duke@1 1396 chk.validate(clazz);
duke@1 1397 if (tree.encl != null) {
duke@1 1398 // We have to work in this case to store
duke@1 1399 // symbol + type back into the attributed tree.
duke@1 1400 tree.clazz.type = clazztype;
duke@1 1401 TreeInfo.setSymbol(clazzid, TreeInfo.symbol(clazzid1));
duke@1 1402 clazzid.type = ((JCIdent) clazzid).sym.type;
duke@1 1403 if (!clazztype.isErroneous()) {
duke@1 1404 if (cdef != null && clazztype.tsym.isInterface()) {
duke@1 1405 log.error(tree.encl.pos(), "anon.class.impl.intf.no.qual.for.new");
duke@1 1406 } else if (clazztype.tsym.isStatic()) {
duke@1 1407 log.error(tree.encl.pos(), "qualified.new.of.static.class", clazztype.tsym);
duke@1 1408 }
duke@1 1409 }
duke@1 1410 } else if (!clazztype.tsym.isInterface() &&
duke@1 1411 clazztype.getEnclosingType().tag == CLASS) {
duke@1 1412 // Check for the existence of an apropos outer instance
duke@1 1413 rs.resolveImplicitThis(tree.pos(), env, clazztype);
duke@1 1414 }
duke@1 1415
duke@1 1416 // Attribute constructor arguments.
duke@1 1417 List<Type> argtypes = attribArgs(tree.args, localEnv);
duke@1 1418 List<Type> typeargtypes = attribTypes(tree.typeargs, localEnv);
duke@1 1419
duke@1 1420 // If we have made no mistakes in the class type...
duke@1 1421 if (clazztype.tag == CLASS) {
duke@1 1422 // Enums may not be instantiated except implicitly
duke@1 1423 if (allowEnums &&
duke@1 1424 (clazztype.tsym.flags_field&Flags.ENUM) != 0 &&
duke@1 1425 (env.tree.getTag() != JCTree.VARDEF ||
duke@1 1426 (((JCVariableDecl) env.tree).mods.flags&Flags.ENUM) == 0 ||
duke@1 1427 ((JCVariableDecl) env.tree).init != tree))
duke@1 1428 log.error(tree.pos(), "enum.cant.be.instantiated");
duke@1 1429 // Check that class is not abstract
duke@1 1430 if (cdef == null &&
duke@1 1431 (clazztype.tsym.flags() & (ABSTRACT | INTERFACE)) != 0) {
duke@1 1432 log.error(tree.pos(), "abstract.cant.be.instantiated",
duke@1 1433 clazztype.tsym);
duke@1 1434 } else if (cdef != null && clazztype.tsym.isInterface()) {
duke@1 1435 // Check that no constructor arguments are given to
duke@1 1436 // anonymous classes implementing an interface
duke@1 1437 if (!argtypes.isEmpty())
duke@1 1438 log.error(tree.args.head.pos(), "anon.class.impl.intf.no.args");
duke@1 1439
duke@1 1440 if (!typeargtypes.isEmpty())
duke@1 1441 log.error(tree.typeargs.head.pos(), "anon.class.impl.intf.no.typeargs");
duke@1 1442
duke@1 1443 // Error recovery: pretend no arguments were supplied.
duke@1 1444 argtypes = List.nil();
duke@1 1445 typeargtypes = List.nil();
duke@1 1446 }
duke@1 1447
duke@1 1448 // Resolve the called constructor under the assumption
duke@1 1449 // that we are referring to a superclass instance of the
duke@1 1450 // current instance (JLS ???).
duke@1 1451 else {
duke@1 1452 localEnv.info.selectSuper = cdef != null;
duke@1 1453 localEnv.info.varArgs = false;
duke@1 1454 tree.constructor = rs.resolveConstructor(
duke@1 1455 tree.pos(), localEnv, clazztype, argtypes, typeargtypes);
duke@1 1456 Type ctorType = checkMethod(clazztype,
duke@1 1457 tree.constructor,
duke@1 1458 localEnv,
duke@1 1459 tree.args,
duke@1 1460 argtypes,
duke@1 1461 typeargtypes,
duke@1 1462 localEnv.info.varArgs);
duke@1 1463 if (localEnv.info.varArgs)
duke@1 1464 assert ctorType.isErroneous() || tree.varargsElement != null;
duke@1 1465 }
duke@1 1466
duke@1 1467 if (cdef != null) {
duke@1 1468 // We are seeing an anonymous class instance creation.
duke@1 1469 // In this case, the class instance creation
duke@1 1470 // expression
duke@1 1471 //
duke@1 1472 // E.new <typeargs1>C<typargs2>(args) { ... }
duke@1 1473 //
duke@1 1474 // is represented internally as
duke@1 1475 //
duke@1 1476 // E . new <typeargs1>C<typargs2>(args) ( class <empty-name> { ... } ) .
duke@1 1477 //
duke@1 1478 // This expression is then *transformed* as follows:
duke@1 1479 //
duke@1 1480 // (1) add a STATIC flag to the class definition
duke@1 1481 // if the current environment is static
duke@1 1482 // (2) add an extends or implements clause
duke@1 1483 // (3) add a constructor.
duke@1 1484 //
duke@1 1485 // For instance, if C is a class, and ET is the type of E,
duke@1 1486 // the expression
duke@1 1487 //
duke@1 1488 // E.new <typeargs1>C<typargs2>(args) { ... }
duke@1 1489 //
duke@1 1490 // is translated to (where X is a fresh name and typarams is the
duke@1 1491 // parameter list of the super constructor):
duke@1 1492 //
duke@1 1493 // new <typeargs1>X(<*nullchk*>E, args) where
duke@1 1494 // X extends C<typargs2> {
duke@1 1495 // <typarams> X(ET e, args) {
duke@1 1496 // e.<typeargs1>super(args)
duke@1 1497 // }
duke@1 1498 // ...
duke@1 1499 // }
duke@1 1500 if (Resolve.isStatic(env)) cdef.mods.flags |= STATIC;
duke@1 1501
duke@1 1502 if (clazztype.tsym.isInterface()) {
duke@1 1503 cdef.implementing = List.of(clazz);
duke@1 1504 } else {
duke@1 1505 cdef.extending = clazz;
duke@1 1506 }
duke@1 1507
duke@1 1508 attribStat(cdef, localEnv);
duke@1 1509
duke@1 1510 // If an outer instance is given,
duke@1 1511 // prefix it to the constructor arguments
duke@1 1512 // and delete it from the new expression
duke@1 1513 if (tree.encl != null && !clazztype.tsym.isInterface()) {
duke@1 1514 tree.args = tree.args.prepend(makeNullCheck(tree.encl));
duke@1 1515 argtypes = argtypes.prepend(tree.encl.type);
duke@1 1516 tree.encl = null;
duke@1 1517 }
duke@1 1518
duke@1 1519 // Reassign clazztype and recompute constructor.
duke@1 1520 clazztype = cdef.sym.type;
duke@1 1521 Symbol sym = rs.resolveConstructor(
duke@1 1522 tree.pos(), localEnv, clazztype, argtypes,
duke@1 1523 typeargtypes, true, tree.varargsElement != null);
duke@1 1524 assert sym.kind < AMBIGUOUS || tree.constructor.type.isErroneous();
duke@1 1525 tree.constructor = sym;
duke@1 1526 }
duke@1 1527
duke@1 1528 if (tree.constructor != null && tree.constructor.kind == MTH)
duke@1 1529 owntype = clazztype;
duke@1 1530 }
duke@1 1531 result = check(tree, owntype, VAL, pkind, pt);
duke@1 1532 chk.validate(tree.typeargs);
duke@1 1533 }
duke@1 1534
duke@1 1535 /** Make an attributed null check tree.
duke@1 1536 */
duke@1 1537 public JCExpression makeNullCheck(JCExpression arg) {
duke@1 1538 // optimization: X.this is never null; skip null check
duke@1 1539 Name name = TreeInfo.name(arg);
duke@1 1540 if (name == names._this || name == names._super) return arg;
duke@1 1541
duke@1 1542 int optag = JCTree.NULLCHK;
duke@1 1543 JCUnary tree = make.at(arg.pos).Unary(optag, arg);
duke@1 1544 tree.operator = syms.nullcheck;
duke@1 1545 tree.type = arg.type;
duke@1 1546 return tree;
duke@1 1547 }
duke@1 1548
duke@1 1549 public void visitNewArray(JCNewArray tree) {
duke@1 1550 Type owntype = syms.errType;
duke@1 1551 Type elemtype;
duke@1 1552 if (tree.elemtype != null) {
duke@1 1553 elemtype = attribType(tree.elemtype, env);
duke@1 1554 chk.validate(tree.elemtype);
duke@1 1555 owntype = elemtype;
duke@1 1556 for (List<JCExpression> l = tree.dims; l.nonEmpty(); l = l.tail) {
duke@1 1557 attribExpr(l.head, env, syms.intType);
duke@1 1558 owntype = new ArrayType(owntype, syms.arrayClass);
duke@1 1559 }
duke@1 1560 } else {
duke@1 1561 // we are seeing an untyped aggregate { ... }
duke@1 1562 // this is allowed only if the prototype is an array
duke@1 1563 if (pt.tag == ARRAY) {
duke@1 1564 elemtype = types.elemtype(pt);
duke@1 1565 } else {
duke@1 1566 if (pt.tag != ERROR) {
duke@1 1567 log.error(tree.pos(), "illegal.initializer.for.type",
duke@1 1568 pt);
duke@1 1569 }
duke@1 1570 elemtype = syms.errType;
duke@1 1571 }
duke@1 1572 }
duke@1 1573 if (tree.elems != null) {
duke@1 1574 attribExprs(tree.elems, env, elemtype);
duke@1 1575 owntype = new ArrayType(elemtype, syms.arrayClass);
duke@1 1576 }
duke@1 1577 if (!types.isReifiable(elemtype))
duke@1 1578 log.error(tree.pos(), "generic.array.creation");
duke@1 1579 result = check(tree, owntype, VAL, pkind, pt);
duke@1 1580 }
duke@1 1581
duke@1 1582 public void visitParens(JCParens tree) {
duke@1 1583 Type owntype = attribTree(tree.expr, env, pkind, pt);
duke@1 1584 result = check(tree, owntype, pkind, pkind, pt);
duke@1 1585 Symbol sym = TreeInfo.symbol(tree);
duke@1 1586 if (sym != null && (sym.kind&(TYP|PCK)) != 0)
duke@1 1587 log.error(tree.pos(), "illegal.start.of.type");
duke@1 1588 }
duke@1 1589
duke@1 1590 public void visitAssign(JCAssign tree) {
duke@1 1591 Type owntype = attribTree(tree.lhs, env.dup(tree), VAR, Type.noType);
duke@1 1592 Type capturedType = capture(owntype);
duke@1 1593 attribExpr(tree.rhs, env, owntype);
duke@1 1594 result = check(tree, capturedType, VAL, pkind, pt);
duke@1 1595 }
duke@1 1596
duke@1 1597 public void visitAssignop(JCAssignOp tree) {
duke@1 1598 // Attribute arguments.
duke@1 1599 Type owntype = attribTree(tree.lhs, env, VAR, Type.noType);
duke@1 1600 Type operand = attribExpr(tree.rhs, env);
duke@1 1601 // Find operator.
duke@1 1602 Symbol operator = tree.operator = rs.resolveBinaryOperator(
duke@1 1603 tree.pos(), tree.getTag() - JCTree.ASGOffset, env,
duke@1 1604 owntype, operand);
duke@1 1605
duke@1 1606 if (operator.kind == MTH) {
duke@1 1607 chk.checkOperator(tree.pos(),
duke@1 1608 (OperatorSymbol)operator,
duke@1 1609 tree.getTag() - JCTree.ASGOffset,
duke@1 1610 owntype,
duke@1 1611 operand);
duke@1 1612 if (types.isSameType(operator.type.getReturnType(), syms.stringType)) {
duke@1 1613 // String assignment; make sure the lhs is a string
duke@1 1614 chk.checkType(tree.lhs.pos(),
duke@1 1615 owntype,
duke@1 1616 syms.stringType);
duke@1 1617 } else {
duke@1 1618 chk.checkDivZero(tree.rhs.pos(), operator, operand);
duke@1 1619 chk.checkCastable(tree.rhs.pos(),
duke@1 1620 operator.type.getReturnType(),
duke@1 1621 owntype);
duke@1 1622 }
duke@1 1623 }
duke@1 1624 result = check(tree, owntype, VAL, pkind, pt);
duke@1 1625 }
duke@1 1626
duke@1 1627 public void visitUnary(JCUnary tree) {
duke@1 1628 // Attribute arguments.
duke@1 1629 Type argtype = (JCTree.PREINC <= tree.getTag() && tree.getTag() <= JCTree.POSTDEC)
duke@1 1630 ? attribTree(tree.arg, env, VAR, Type.noType)
duke@1 1631 : chk.checkNonVoid(tree.arg.pos(), attribExpr(tree.arg, env));
duke@1 1632
duke@1 1633 // Find operator.
duke@1 1634 Symbol operator = tree.operator =
duke@1 1635 rs.resolveUnaryOperator(tree.pos(), tree.getTag(), env, argtype);
duke@1 1636
duke@1 1637 Type owntype = syms.errType;
duke@1 1638 if (operator.kind == MTH) {
duke@1 1639 owntype = (JCTree.PREINC <= tree.getTag() && tree.getTag() <= JCTree.POSTDEC)
duke@1 1640 ? tree.arg.type
duke@1 1641 : operator.type.getReturnType();
duke@1 1642 int opc = ((OperatorSymbol)operator).opcode;
duke@1 1643
duke@1 1644 // If the argument is constant, fold it.
duke@1 1645 if (argtype.constValue() != null) {
duke@1 1646 Type ctype = cfolder.fold1(opc, argtype);
duke@1 1647 if (ctype != null) {
duke@1 1648 owntype = cfolder.coerce(ctype, owntype);
duke@1 1649
duke@1 1650 // Remove constant types from arguments to
duke@1 1651 // conserve space. The parser will fold concatenations
duke@1 1652 // of string literals; the code here also
duke@1 1653 // gets rid of intermediate results when some of the
duke@1 1654 // operands are constant identifiers.
duke@1 1655 if (tree.arg.type.tsym == syms.stringType.tsym) {
duke@1 1656 tree.arg.type = syms.stringType;
duke@1 1657 }
duke@1 1658 }
duke@1 1659 }
duke@1 1660 }
duke@1 1661 result = check(tree, owntype, VAL, pkind, pt);
duke@1 1662 }
duke@1 1663
duke@1 1664 public void visitBinary(JCBinary tree) {
duke@1 1665 // Attribute arguments.
duke@1 1666 Type left = chk.checkNonVoid(tree.lhs.pos(), attribExpr(tree.lhs, env));
duke@1 1667 Type right = chk.checkNonVoid(tree.lhs.pos(), attribExpr(tree.rhs, env));
duke@1 1668
duke@1 1669 // Find operator.
duke@1 1670 Symbol operator = tree.operator =
duke@1 1671 rs.resolveBinaryOperator(tree.pos(), tree.getTag(), env, left, right);
duke@1 1672
duke@1 1673 Type owntype = syms.errType;
duke@1 1674 if (operator.kind == MTH) {
duke@1 1675 owntype = operator.type.getReturnType();
duke@1 1676 int opc = chk.checkOperator(tree.lhs.pos(),
duke@1 1677 (OperatorSymbol)operator,
duke@1 1678 tree.getTag(),
duke@1 1679 left,
duke@1 1680 right);
duke@1 1681
duke@1 1682 // If both arguments are constants, fold them.
duke@1 1683 if (left.constValue() != null && right.constValue() != null) {
duke@1 1684 Type ctype = cfolder.fold2(opc, left, right);
duke@1 1685 if (ctype != null) {
duke@1 1686 owntype = cfolder.coerce(ctype, owntype);
duke@1 1687
duke@1 1688 // Remove constant types from arguments to
duke@1 1689 // conserve space. The parser will fold concatenations
duke@1 1690 // of string literals; the code here also
duke@1 1691 // gets rid of intermediate results when some of the
duke@1 1692 // operands are constant identifiers.
duke@1 1693 if (tree.lhs.type.tsym == syms.stringType.tsym) {
duke@1 1694 tree.lhs.type = syms.stringType;
duke@1 1695 }
duke@1 1696 if (tree.rhs.type.tsym == syms.stringType.tsym) {
duke@1 1697 tree.rhs.type = syms.stringType;
duke@1 1698 }
duke@1 1699 }
duke@1 1700 }
duke@1 1701
duke@1 1702 // Check that argument types of a reference ==, != are
duke@1 1703 // castable to each other, (JLS???).
duke@1 1704 if ((opc == ByteCodes.if_acmpeq || opc == ByteCodes.if_acmpne)) {
duke@1 1705 if (!types.isCastable(left, right, new Warner(tree.pos()))) {
duke@1 1706 log.error(tree.pos(), "incomparable.types", left, right);
duke@1 1707 }
duke@1 1708 }
duke@1 1709
duke@1 1710 chk.checkDivZero(tree.rhs.pos(), operator, right);
duke@1 1711 }
duke@1 1712 result = check(tree, owntype, VAL, pkind, pt);
duke@1 1713 }
duke@1 1714
duke@1 1715 public void visitTypeCast(JCTypeCast tree) {
duke@1 1716 Type clazztype = attribType(tree.clazz, env);
duke@1 1717 Type exprtype = attribExpr(tree.expr, env, Infer.anyPoly);
duke@1 1718 Type owntype = chk.checkCastable(tree.expr.pos(), exprtype, clazztype);
duke@1 1719 if (exprtype.constValue() != null)
duke@1 1720 owntype = cfolder.coerce(exprtype, owntype);
duke@1 1721 result = check(tree, capture(owntype), VAL, pkind, pt);
duke@1 1722 }
duke@1 1723
duke@1 1724 public void visitTypeTest(JCInstanceOf tree) {
duke@1 1725 Type exprtype = chk.checkNullOrRefType(
duke@1 1726 tree.expr.pos(), attribExpr(tree.expr, env));
duke@1 1727 Type clazztype = chk.checkReifiableReferenceType(
duke@1 1728 tree.clazz.pos(), attribType(tree.clazz, env));
duke@1 1729 chk.checkCastable(tree.expr.pos(), exprtype, clazztype);
duke@1 1730 result = check(tree, syms.booleanType, VAL, pkind, pt);
duke@1 1731 }
duke@1 1732
duke@1 1733 public void visitIndexed(JCArrayAccess tree) {
duke@1 1734 Type owntype = syms.errType;
duke@1 1735 Type atype = attribExpr(tree.indexed, env);
duke@1 1736 attribExpr(tree.index, env, syms.intType);
duke@1 1737 if (types.isArray(atype))
duke@1 1738 owntype = types.elemtype(atype);
duke@1 1739 else if (atype.tag != ERROR)
duke@1 1740 log.error(tree.pos(), "array.req.but.found", atype);
duke@1 1741 if ((pkind & VAR) == 0) owntype = capture(owntype);
duke@1 1742 result = check(tree, owntype, VAR, pkind, pt);
duke@1 1743 }
duke@1 1744
duke@1 1745 public void visitIdent(JCIdent tree) {
duke@1 1746 Symbol sym;
duke@1 1747 boolean varArgs = false;
duke@1 1748
duke@1 1749 // Find symbol
duke@1 1750 if (pt.tag == METHOD || pt.tag == FORALL) {
duke@1 1751 // If we are looking for a method, the prototype `pt' will be a
duke@1 1752 // method type with the type of the call's arguments as parameters.
duke@1 1753 env.info.varArgs = false;
duke@1 1754 sym = rs.resolveMethod(tree.pos(), env, tree.name, pt.getParameterTypes(), pt.getTypeArguments());
duke@1 1755 varArgs = env.info.varArgs;
duke@1 1756 } else if (tree.sym != null && tree.sym.kind != VAR) {
duke@1 1757 sym = tree.sym;
duke@1 1758 } else {
duke@1 1759 sym = rs.resolveIdent(tree.pos(), env, tree.name, pkind);
duke@1 1760 }
duke@1 1761 tree.sym = sym;
duke@1 1762
duke@1 1763 // (1) Also find the environment current for the class where
duke@1 1764 // sym is defined (`symEnv').
duke@1 1765 // Only for pre-tiger versions (1.4 and earlier):
duke@1 1766 // (2) Also determine whether we access symbol out of an anonymous
duke@1 1767 // class in a this or super call. This is illegal for instance
duke@1 1768 // members since such classes don't carry a this$n link.
duke@1 1769 // (`noOuterThisPath').
duke@1 1770 Env<AttrContext> symEnv = env;
duke@1 1771 boolean noOuterThisPath = false;
duke@1 1772 if (env.enclClass.sym.owner.kind != PCK && // we are in an inner class
duke@1 1773 (sym.kind & (VAR | MTH | TYP)) != 0 &&
duke@1 1774 sym.owner.kind == TYP &&
duke@1 1775 tree.name != names._this && tree.name != names._super) {
duke@1 1776
duke@1 1777 // Find environment in which identifier is defined.
duke@1 1778 while (symEnv.outer != null &&
duke@1 1779 !sym.isMemberOf(symEnv.enclClass.sym, types)) {
duke@1 1780 if ((symEnv.enclClass.sym.flags() & NOOUTERTHIS) != 0)
duke@1 1781 noOuterThisPath = !allowAnonOuterThis;
duke@1 1782 symEnv = symEnv.outer;
duke@1 1783 }
duke@1 1784 }
duke@1 1785
duke@1 1786 // If symbol is a variable, ...
duke@1 1787 if (sym.kind == VAR) {
duke@1 1788 VarSymbol v = (VarSymbol)sym;
duke@1 1789
duke@1 1790 // ..., evaluate its initializer, if it has one, and check for
duke@1 1791 // illegal forward reference.
duke@1 1792 checkInit(tree, env, v, false);
duke@1 1793
duke@1 1794 // If symbol is a local variable accessed from an embedded
duke@1 1795 // inner class check that it is final.
duke@1 1796 if (v.owner.kind == MTH &&
duke@1 1797 v.owner != env.info.scope.owner &&
duke@1 1798 (v.flags_field & FINAL) == 0) {
duke@1 1799 log.error(tree.pos(),
duke@1 1800 "local.var.accessed.from.icls.needs.final",
duke@1 1801 v);
duke@1 1802 }
duke@1 1803
duke@1 1804 // If we are expecting a variable (as opposed to a value), check
duke@1 1805 // that the variable is assignable in the current environment.
duke@1 1806 if (pkind == VAR)
duke@1 1807 checkAssignable(tree.pos(), v, null, env);
duke@1 1808 }
duke@1 1809
duke@1 1810 // In a constructor body,
duke@1 1811 // if symbol is a field or instance method, check that it is
duke@1 1812 // not accessed before the supertype constructor is called.
duke@1 1813 if ((symEnv.info.isSelfCall || noOuterThisPath) &&
duke@1 1814 (sym.kind & (VAR | MTH)) != 0 &&
duke@1 1815 sym.owner.kind == TYP &&
duke@1 1816 (sym.flags() & STATIC) == 0) {
duke@1 1817 chk.earlyRefError(tree.pos(), sym.kind == VAR ? sym : thisSym(tree.pos(), env));
duke@1 1818 }
duke@1 1819 Env<AttrContext> env1 = env;
duke@1 1820 if (sym.kind != ERR && sym.owner != null && sym.owner != env1.enclClass.sym) {
duke@1 1821 // If the found symbol is inaccessible, then it is
duke@1 1822 // accessed through an enclosing instance. Locate this
duke@1 1823 // enclosing instance:
duke@1 1824 while (env1.outer != null && !rs.isAccessible(env, env1.enclClass.sym.type, sym))
duke@1 1825 env1 = env1.outer;
duke@1 1826 }
duke@1 1827 result = checkId(tree, env1.enclClass.sym.type, sym, env, pkind, pt, varArgs);
duke@1 1828 }
duke@1 1829
duke@1 1830 public void visitSelect(JCFieldAccess tree) {
duke@1 1831 // Determine the expected kind of the qualifier expression.
duke@1 1832 int skind = 0;
duke@1 1833 if (tree.name == names._this || tree.name == names._super ||
duke@1 1834 tree.name == names._class)
duke@1 1835 {
duke@1 1836 skind = TYP;
duke@1 1837 } else {
duke@1 1838 if ((pkind & PCK) != 0) skind = skind | PCK;
duke@1 1839 if ((pkind & TYP) != 0) skind = skind | TYP | PCK;
duke@1 1840 if ((pkind & (VAL | MTH)) != 0) skind = skind | VAL | TYP;
duke@1 1841 }
duke@1 1842
duke@1 1843 // Attribute the qualifier expression, and determine its symbol (if any).
duke@1 1844 Type site = attribTree(tree.selected, env, skind, Infer.anyPoly);
duke@1 1845 if ((pkind & (PCK | TYP)) == 0)
duke@1 1846 site = capture(site); // Capture field access
duke@1 1847
duke@1 1848 // don't allow T.class T[].class, etc
duke@1 1849 if (skind == TYP) {
duke@1 1850 Type elt = site;
duke@1 1851 while (elt.tag == ARRAY)
duke@1 1852 elt = ((ArrayType)elt).elemtype;
duke@1 1853 if (elt.tag == TYPEVAR) {
duke@1 1854 log.error(tree.pos(), "type.var.cant.be.deref");
duke@1 1855 result = syms.errType;
duke@1 1856 return;
duke@1 1857 }
duke@1 1858 }
duke@1 1859
duke@1 1860 // If qualifier symbol is a type or `super', assert `selectSuper'
duke@1 1861 // for the selection. This is relevant for determining whether
duke@1 1862 // protected symbols are accessible.
duke@1 1863 Symbol sitesym = TreeInfo.symbol(tree.selected);
duke@1 1864 boolean selectSuperPrev = env.info.selectSuper;
duke@1 1865 env.info.selectSuper =
duke@1 1866 sitesym != null &&
duke@1 1867 sitesym.name == names._super;
duke@1 1868
duke@1 1869 // If selected expression is polymorphic, strip
duke@1 1870 // type parameters and remember in env.info.tvars, so that
duke@1 1871 // they can be added later (in Attr.checkId and Infer.instantiateMethod).
duke@1 1872 if (tree.selected.type.tag == FORALL) {
duke@1 1873 ForAll pstype = (ForAll)tree.selected.type;
duke@1 1874 env.info.tvars = pstype.tvars;
duke@1 1875 site = tree.selected.type = pstype.qtype;
duke@1 1876 }
duke@1 1877
duke@1 1878 // Determine the symbol represented by the selection.
duke@1 1879 env.info.varArgs = false;
duke@1 1880 Symbol sym = selectSym(tree, site, env, pt, pkind);
duke@1 1881 if (sym.exists() && !isType(sym) && (pkind & (PCK | TYP)) != 0) {
duke@1 1882 site = capture(site);
duke@1 1883 sym = selectSym(tree, site, env, pt, pkind);
duke@1 1884 }
duke@1 1885 boolean varArgs = env.info.varArgs;
duke@1 1886 tree.sym = sym;
duke@1 1887
duke@1 1888 if (site.tag == TYPEVAR && !isType(sym) && sym.kind != ERR)
duke@1 1889 site = capture(site.getUpperBound());
duke@1 1890
duke@1 1891 // If that symbol is a variable, ...
duke@1 1892 if (sym.kind == VAR) {
duke@1 1893 VarSymbol v = (VarSymbol)sym;
duke@1 1894
duke@1 1895 // ..., evaluate its initializer, if it has one, and check for
duke@1 1896 // illegal forward reference.
duke@1 1897 checkInit(tree, env, v, true);
duke@1 1898
duke@1 1899 // If we are expecting a variable (as opposed to a value), check
duke@1 1900 // that the variable is assignable in the current environment.
duke@1 1901 if (pkind == VAR)
duke@1 1902 checkAssignable(tree.pos(), v, tree.selected, env);
duke@1 1903 }
duke@1 1904
duke@1 1905 // Disallow selecting a type from an expression
duke@1 1906 if (isType(sym) && (sitesym==null || (sitesym.kind&(TYP|PCK)) == 0)) {
duke@1 1907 tree.type = check(tree.selected, pt,
duke@1 1908 sitesym == null ? VAL : sitesym.kind, TYP|PCK, pt);
duke@1 1909 }
duke@1 1910
duke@1 1911 if (isType(sitesym)) {
duke@1 1912 if (sym.name == names._this) {
duke@1 1913 // If `C' is the currently compiled class, check that
duke@1 1914 // C.this' does not appear in a call to a super(...)
duke@1 1915 if (env.info.isSelfCall &&
duke@1 1916 site.tsym == env.enclClass.sym) {
duke@1 1917 chk.earlyRefError(tree.pos(), sym);
duke@1 1918 }
duke@1 1919 } else {
duke@1 1920 // Check if type-qualified fields or methods are static (JLS)
duke@1 1921 if ((sym.flags() & STATIC) == 0 &&
duke@1 1922 sym.name != names._super &&
duke@1 1923 (sym.kind == VAR || sym.kind == MTH)) {
duke@1 1924 rs.access(rs.new StaticError(sym),
duke@1 1925 tree.pos(), site, sym.name, true);
duke@1 1926 }
duke@1 1927 }
duke@1 1928 }
duke@1 1929
duke@1 1930 // If we are selecting an instance member via a `super', ...
duke@1 1931 if (env.info.selectSuper && (sym.flags() & STATIC) == 0) {
duke@1 1932
duke@1 1933 // Check that super-qualified symbols are not abstract (JLS)
duke@1 1934 rs.checkNonAbstract(tree.pos(), sym);
duke@1 1935
duke@1 1936 if (site.isRaw()) {
duke@1 1937 // Determine argument types for site.
duke@1 1938 Type site1 = types.asSuper(env.enclClass.sym.type, site.tsym);
duke@1 1939 if (site1 != null) site = site1;
duke@1 1940 }
duke@1 1941 }
duke@1 1942
duke@1 1943 env.info.selectSuper = selectSuperPrev;
duke@1 1944 result = checkId(tree, site, sym, env, pkind, pt, varArgs);
duke@1 1945 env.info.tvars = List.nil();
duke@1 1946 }
duke@1 1947 //where
duke@1 1948 /** Determine symbol referenced by a Select expression,
duke@1 1949 *
duke@1 1950 * @param tree The select tree.
duke@1 1951 * @param site The type of the selected expression,
duke@1 1952 * @param env The current environment.
duke@1 1953 * @param pt The current prototype.
duke@1 1954 * @param pkind The expected kind(s) of the Select expression.
duke@1 1955 */
duke@1 1956 private Symbol selectSym(JCFieldAccess tree,
duke@1 1957 Type site,
duke@1 1958 Env<AttrContext> env,
duke@1 1959 Type pt,
duke@1 1960 int pkind) {
duke@1 1961 DiagnosticPosition pos = tree.pos();
duke@1 1962 Name name = tree.name;
duke@1 1963
duke@1 1964 switch (site.tag) {
duke@1 1965 case PACKAGE:
duke@1 1966 return rs.access(
duke@1 1967 rs.findIdentInPackage(env, site.tsym, name, pkind),
duke@1 1968 pos, site, name, true);
duke@1 1969 case ARRAY:
duke@1 1970 case CLASS:
duke@1 1971 if (pt.tag == METHOD || pt.tag == FORALL) {
duke@1 1972 return rs.resolveQualifiedMethod(
duke@1 1973 pos, env, site, name, pt.getParameterTypes(), pt.getTypeArguments());
duke@1 1974 } else if (name == names._this || name == names._super) {
duke@1 1975 return rs.resolveSelf(pos, env, site.tsym, name);
duke@1 1976 } else if (name == names._class) {
duke@1 1977 // In this case, we have already made sure in
duke@1 1978 // visitSelect that qualifier expression is a type.
duke@1 1979 Type t = syms.classType;
duke@1 1980 List<Type> typeargs = allowGenerics
duke@1 1981 ? List.of(types.erasure(site))
duke@1 1982 : List.<Type>nil();
duke@1 1983 t = new ClassType(t.getEnclosingType(), typeargs, t.tsym);
duke@1 1984 return new VarSymbol(
duke@1 1985 STATIC | PUBLIC | FINAL, names._class, t, site.tsym);
duke@1 1986 } else {
duke@1 1987 // We are seeing a plain identifier as selector.
duke@1 1988 Symbol sym = rs.findIdentInType(env, site, name, pkind);
duke@1 1989 if ((pkind & ERRONEOUS) == 0)
duke@1 1990 sym = rs.access(sym, pos, site, name, true);
duke@1 1991 return sym;
duke@1 1992 }
duke@1 1993 case WILDCARD:
duke@1 1994 throw new AssertionError(tree);
duke@1 1995 case TYPEVAR:
duke@1 1996 // Normally, site.getUpperBound() shouldn't be null.
duke@1 1997 // It should only happen during memberEnter/attribBase
duke@1 1998 // when determining the super type which *must* be
duke@1 1999 // done before attributing the type variables. In
duke@1 2000 // other words, we are seeing this illegal program:
duke@1 2001 // class B<T> extends A<T.foo> {}
duke@1 2002 Symbol sym = (site.getUpperBound() != null)
duke@1 2003 ? selectSym(tree, capture(site.getUpperBound()), env, pt, pkind)
duke@1 2004 : null;
duke@1 2005 if (sym == null || isType(sym)) {
duke@1 2006 log.error(pos, "type.var.cant.be.deref");
duke@1 2007 return syms.errSymbol;
duke@1 2008 } else {
duke@1 2009 return sym;
duke@1 2010 }
duke@1 2011 case ERROR:
duke@1 2012 // preserve identifier names through errors
duke@1 2013 return new ErrorType(name, site.tsym).tsym;
duke@1 2014 default:
duke@1 2015 // The qualifier expression is of a primitive type -- only
duke@1 2016 // .class is allowed for these.
duke@1 2017 if (name == names._class) {
duke@1 2018 // In this case, we have already made sure in Select that
duke@1 2019 // qualifier expression is a type.
duke@1 2020 Type t = syms.classType;
duke@1 2021 Type arg = types.boxedClass(site).type;
duke@1 2022 t = new ClassType(t.getEnclosingType(), List.of(arg), t.tsym);
duke@1 2023 return new VarSymbol(
duke@1 2024 STATIC | PUBLIC | FINAL, names._class, t, site.tsym);
duke@1 2025 } else {
duke@1 2026 log.error(pos, "cant.deref", site);
duke@1 2027 return syms.errSymbol;
duke@1 2028 }
duke@1 2029 }
duke@1 2030 }
duke@1 2031
duke@1 2032 /** Determine type of identifier or select expression and check that
duke@1 2033 * (1) the referenced symbol is not deprecated
duke@1 2034 * (2) the symbol's type is safe (@see checkSafe)
duke@1 2035 * (3) if symbol is a variable, check that its type and kind are
duke@1 2036 * compatible with the prototype and protokind.
duke@1 2037 * (4) if symbol is an instance field of a raw type,
duke@1 2038 * which is being assigned to, issue an unchecked warning if its
duke@1 2039 * type changes under erasure.
duke@1 2040 * (5) if symbol is an instance method of a raw type, issue an
duke@1 2041 * unchecked warning if its argument types change under erasure.
duke@1 2042 * If checks succeed:
duke@1 2043 * If symbol is a constant, return its constant type
duke@1 2044 * else if symbol is a method, return its result type
duke@1 2045 * otherwise return its type.
duke@1 2046 * Otherwise return errType.
duke@1 2047 *
duke@1 2048 * @param tree The syntax tree representing the identifier
duke@1 2049 * @param site If this is a select, the type of the selected
duke@1 2050 * expression, otherwise the type of the current class.
duke@1 2051 * @param sym The symbol representing the identifier.
duke@1 2052 * @param env The current environment.
duke@1 2053 * @param pkind The set of expected kinds.
duke@1 2054 * @param pt The expected type.
duke@1 2055 */
duke@1 2056 Type checkId(JCTree tree,
duke@1 2057 Type site,
duke@1 2058 Symbol sym,
duke@1 2059 Env<AttrContext> env,
duke@1 2060 int pkind,
duke@1 2061 Type pt,
duke@1 2062 boolean useVarargs) {
duke@1 2063 if (pt.isErroneous()) return syms.errType;
duke@1 2064 Type owntype; // The computed type of this identifier occurrence.
duke@1 2065 switch (sym.kind) {
duke@1 2066 case TYP:
duke@1 2067 // For types, the computed type equals the symbol's type,
duke@1 2068 // except for two situations:
duke@1 2069 owntype = sym.type;
duke@1 2070 if (owntype.tag == CLASS) {
duke@1 2071 Type ownOuter = owntype.getEnclosingType();
duke@1 2072
duke@1 2073 // (a) If the symbol's type is parameterized, erase it
duke@1 2074 // because no type parameters were given.
duke@1 2075 // We recover generic outer type later in visitTypeApply.
duke@1 2076 if (owntype.tsym.type.getTypeArguments().nonEmpty()) {
duke@1 2077 owntype = types.erasure(owntype);
duke@1 2078 }
duke@1 2079
duke@1 2080 // (b) If the symbol's type is an inner class, then
duke@1 2081 // we have to interpret its outer type as a superclass
duke@1 2082 // of the site type. Example:
duke@1 2083 //
duke@1 2084 // class Tree<A> { class Visitor { ... } }
duke@1 2085 // class PointTree extends Tree<Point> { ... }
duke@1 2086 // ...PointTree.Visitor...
duke@1 2087 //
duke@1 2088 // Then the type of the last expression above is
duke@1 2089 // Tree<Point>.Visitor.
duke@1 2090 else if (ownOuter.tag == CLASS && site != ownOuter) {
duke@1 2091 Type normOuter = site;
duke@1 2092 if (normOuter.tag == CLASS)
duke@1 2093 normOuter = types.asEnclosingSuper(site, ownOuter.tsym);
duke@1 2094 if (normOuter == null) // perhaps from an import
duke@1 2095 normOuter = types.erasure(ownOuter);
duke@1 2096 if (normOuter != ownOuter)
duke@1 2097 owntype = new ClassType(
duke@1 2098 normOuter, List.<Type>nil(), owntype.tsym);
duke@1 2099 }
duke@1 2100 }
duke@1 2101 break;
duke@1 2102 case VAR:
duke@1 2103 VarSymbol v = (VarSymbol)sym;
duke@1 2104 // Test (4): if symbol is an instance field of a raw type,
duke@1 2105 // which is being assigned to, issue an unchecked warning if
duke@1 2106 // its type changes under erasure.
duke@1 2107 if (allowGenerics &&
duke@1 2108 pkind == VAR &&
duke@1 2109 v.owner.kind == TYP &&
duke@1 2110 (v.flags() & STATIC) == 0 &&
duke@1 2111 (site.tag == CLASS || site.tag == TYPEVAR)) {
duke@1 2112 Type s = types.asOuterSuper(site, v.owner);
duke@1 2113 if (s != null &&
duke@1 2114 s.isRaw() &&
duke@1 2115 !types.isSameType(v.type, v.erasure(types))) {
duke@1 2116 chk.warnUnchecked(tree.pos(),
duke@1 2117 "unchecked.assign.to.var",
duke@1 2118 v, s);
duke@1 2119 }
duke@1 2120 }
duke@1 2121 // The computed type of a variable is the type of the
duke@1 2122 // variable symbol, taken as a member of the site type.
duke@1 2123 owntype = (sym.owner.kind == TYP &&
duke@1 2124 sym.name != names._this && sym.name != names._super)
duke@1 2125 ? types.memberType(site, sym)
duke@1 2126 : sym.type;
duke@1 2127
duke@1 2128 if (env.info.tvars.nonEmpty()) {
duke@1 2129 Type owntype1 = new ForAll(env.info.tvars, owntype);
duke@1 2130 for (List<Type> l = env.info.tvars; l.nonEmpty(); l = l.tail)
duke@1 2131 if (!owntype.contains(l.head)) {
duke@1 2132 log.error(tree.pos(), "undetermined.type", owntype1);
duke@1 2133 owntype1 = syms.errType;
duke@1 2134 }
duke@1 2135 owntype = owntype1;
duke@1 2136 }
duke@1 2137
duke@1 2138 // If the variable is a constant, record constant value in
duke@1 2139 // computed type.
duke@1 2140 if (v.getConstValue() != null && isStaticReference(tree))
duke@1 2141 owntype = owntype.constType(v.getConstValue());
duke@1 2142
duke@1 2143 if (pkind == VAL) {
duke@1 2144 owntype = capture(owntype); // capture "names as expressions"
duke@1 2145 }
duke@1 2146 break;
duke@1 2147 case MTH: {
duke@1 2148 JCMethodInvocation app = (JCMethodInvocation)env.tree;
duke@1 2149 owntype = checkMethod(site, sym, env, app.args,
duke@1 2150 pt.getParameterTypes(), pt.getTypeArguments(),
duke@1 2151 env.info.varArgs);
duke@1 2152 break;
duke@1 2153 }
duke@1 2154 case PCK: case ERR:
duke@1 2155 owntype = sym.type;
duke@1 2156 break;
duke@1 2157 default:
duke@1 2158 throw new AssertionError("unexpected kind: " + sym.kind +
duke@1 2159 " in tree " + tree);
duke@1 2160 }
duke@1 2161
duke@1 2162 // Test (1): emit a `deprecation' warning if symbol is deprecated.
duke@1 2163 // (for constructors, the error was given when the constructor was
duke@1 2164 // resolved)
duke@1 2165 if (sym.name != names.init &&
duke@1 2166 (sym.flags() & DEPRECATED) != 0 &&
duke@1 2167 (env.info.scope.owner.flags() & DEPRECATED) == 0 &&
duke@1 2168 sym.outermostClass() != env.info.scope.owner.outermostClass())
duke@1 2169 chk.warnDeprecated(tree.pos(), sym);
duke@1 2170
duke@1 2171 if ((sym.flags() & PROPRIETARY) != 0)
duke@1 2172 log.strictWarning(tree.pos(), "sun.proprietary", sym);
duke@1 2173
duke@1 2174 // Test (3): if symbol is a variable, check that its type and
duke@1 2175 // kind are compatible with the prototype and protokind.
duke@1 2176 return check(tree, owntype, sym.kind, pkind, pt);
duke@1 2177 }
duke@1 2178
duke@1 2179 /** Check that variable is initialized and evaluate the variable's
duke@1 2180 * initializer, if not yet done. Also check that variable is not
duke@1 2181 * referenced before it is defined.
duke@1 2182 * @param tree The tree making up the variable reference.
duke@1 2183 * @param env The current environment.
duke@1 2184 * @param v The variable's symbol.
duke@1 2185 */
duke@1 2186 private void checkInit(JCTree tree,
duke@1 2187 Env<AttrContext> env,
duke@1 2188 VarSymbol v,
duke@1 2189 boolean onlyWarning) {
duke@1 2190 // System.err.println(v + " " + ((v.flags() & STATIC) != 0) + " " +
duke@1 2191 // tree.pos + " " + v.pos + " " +
duke@1 2192 // Resolve.isStatic(env));//DEBUG
duke@1 2193
duke@1 2194 // A forward reference is diagnosed if the declaration position
duke@1 2195 // of the variable is greater than the current tree position
duke@1 2196 // and the tree and variable definition occur in the same class
duke@1 2197 // definition. Note that writes don't count as references.
duke@1 2198 // This check applies only to class and instance
duke@1 2199 // variables. Local variables follow different scope rules,
duke@1 2200 // and are subject to definite assignment checking.
duke@1 2201 if (v.pos > tree.pos &&
duke@1 2202 v.owner.kind == TYP &&
duke@1 2203 canOwnInitializer(env.info.scope.owner) &&
duke@1 2204 v.owner == env.info.scope.owner.enclClass() &&
duke@1 2205 ((v.flags() & STATIC) != 0) == Resolve.isStatic(env) &&
duke@1 2206 (env.tree.getTag() != JCTree.ASSIGN ||
duke@1 2207 TreeInfo.skipParens(((JCAssign) env.tree).lhs) != tree)) {
duke@1 2208
duke@1 2209 if (!onlyWarning || isNonStaticEnumField(v)) {
duke@1 2210 log.error(tree.pos(), "illegal.forward.ref");
duke@1 2211 } else if (useBeforeDeclarationWarning) {
duke@1 2212 log.warning(tree.pos(), "forward.ref", v);
duke@1 2213 }
duke@1 2214 }
duke@1 2215
duke@1 2216 v.getConstValue(); // ensure initializer is evaluated
duke@1 2217
duke@1 2218 checkEnumInitializer(tree, env, v);
duke@1 2219 }
duke@1 2220
duke@1 2221 /**
duke@1 2222 * Check for illegal references to static members of enum. In
duke@1 2223 * an enum type, constructors and initializers may not
duke@1 2224 * reference its static members unless they are constant.
duke@1 2225 *
duke@1 2226 * @param tree The tree making up the variable reference.
duke@1 2227 * @param env The current environment.
duke@1 2228 * @param v The variable's symbol.
duke@1 2229 * @see JLS 3rd Ed. (8.9 Enums)
duke@1 2230 */
duke@1 2231 private void checkEnumInitializer(JCTree tree, Env<AttrContext> env, VarSymbol v) {
duke@1 2232 // JLS 3rd Ed.:
duke@1 2233 //
duke@1 2234 // "It is a compile-time error to reference a static field
duke@1 2235 // of an enum type that is not a compile-time constant
duke@1 2236 // (15.28) from constructors, instance initializer blocks,
duke@1 2237 // or instance variable initializer expressions of that
duke@1 2238 // type. It is a compile-time error for the constructors,
duke@1 2239 // instance initializer blocks, or instance variable
duke@1 2240 // initializer expressions of an enum constant e to refer
duke@1 2241 // to itself or to an enum constant of the same type that
duke@1 2242 // is declared to the right of e."
duke@1 2243 if (isNonStaticEnumField(v)) {
duke@1 2244 ClassSymbol enclClass = env.info.scope.owner.enclClass();
duke@1 2245
duke@1 2246 if (enclClass == null || enclClass.owner == null)
duke@1 2247 return;
duke@1 2248
duke@1 2249 // See if the enclosing class is the enum (or a
duke@1 2250 // subclass thereof) declaring v. If not, this
duke@1 2251 // reference is OK.
duke@1 2252 if (v.owner != enclClass && !types.isSubtype(enclClass.type, v.owner.type))
duke@1 2253 return;
duke@1 2254
duke@1 2255 // If the reference isn't from an initializer, then
duke@1 2256 // the reference is OK.
duke@1 2257 if (!Resolve.isInitializer(env))
duke@1 2258 return;
duke@1 2259
duke@1 2260 log.error(tree.pos(), "illegal.enum.static.ref");
duke@1 2261 }
duke@1 2262 }
duke@1 2263
duke@1 2264 private boolean isNonStaticEnumField(VarSymbol v) {
duke@1 2265 return Flags.isEnum(v.owner) && Flags.isStatic(v) && !Flags.isConstant(v);
duke@1 2266 }
duke@1 2267
duke@1 2268 /** Can the given symbol be the owner of code which forms part
duke@1 2269 * if class initialization? This is the case if the symbol is
duke@1 2270 * a type or field, or if the symbol is the synthetic method.
duke@1 2271 * owning a block.
duke@1 2272 */
duke@1 2273 private boolean canOwnInitializer(Symbol sym) {
duke@1 2274 return
duke@1 2275 (sym.kind & (VAR | TYP)) != 0 ||
duke@1 2276 (sym.kind == MTH && (sym.flags() & BLOCK) != 0);
duke@1 2277 }
duke@1 2278
duke@1 2279 Warner noteWarner = new Warner();
duke@1 2280
duke@1 2281 /**
duke@1 2282 * Check that method arguments conform to its instantation.
duke@1 2283 **/
duke@1 2284 public Type checkMethod(Type site,
duke@1 2285 Symbol sym,
duke@1 2286 Env<AttrContext> env,
duke@1 2287 final List<JCExpression> argtrees,
duke@1 2288 List<Type> argtypes,
duke@1 2289 List<Type> typeargtypes,
duke@1 2290 boolean useVarargs) {
duke@1 2291 // Test (5): if symbol is an instance method of a raw type, issue
duke@1 2292 // an unchecked warning if its argument types change under erasure.
duke@1 2293 if (allowGenerics &&
duke@1 2294 (sym.flags() & STATIC) == 0 &&
duke@1 2295 (site.tag == CLASS || site.tag == TYPEVAR)) {
duke@1 2296 Type s = types.asOuterSuper(site, sym.owner);
duke@1 2297 if (s != null && s.isRaw() &&
duke@1 2298 !types.isSameTypes(sym.type.getParameterTypes(),
duke@1 2299 sym.erasure(types).getParameterTypes())) {
duke@1 2300 chk.warnUnchecked(env.tree.pos(),
duke@1 2301 "unchecked.call.mbr.of.raw.type",
duke@1 2302 sym, s);
duke@1 2303 }
duke@1 2304 }
duke@1 2305
duke@1 2306 // Compute the identifier's instantiated type.
duke@1 2307 // For methods, we need to compute the instance type by
duke@1 2308 // Resolve.instantiate from the symbol's type as well as
duke@1 2309 // any type arguments and value arguments.
duke@1 2310 noteWarner.warned = false;
duke@1 2311 Type owntype = rs.instantiate(env,
duke@1 2312 site,
duke@1 2313 sym,
duke@1 2314 argtypes,
duke@1 2315 typeargtypes,
duke@1 2316 true,
duke@1 2317 useVarargs,
duke@1 2318 noteWarner);
duke@1 2319 boolean warned = noteWarner.warned;
duke@1 2320
duke@1 2321 // If this fails, something went wrong; we should not have
duke@1 2322 // found the identifier in the first place.
duke@1 2323 if (owntype == null) {
duke@1 2324 if (!pt.isErroneous())
duke@1 2325 log.error(env.tree.pos(),
duke@1 2326 "internal.error.cant.instantiate",
duke@1 2327 sym, site,
duke@1 2328 Type.toString(pt.getParameterTypes()));
duke@1 2329 owntype = syms.errType;
duke@1 2330 } else {
duke@1 2331 // System.out.println("call : " + env.tree);
duke@1 2332 // System.out.println("method : " + owntype);
duke@1 2333 // System.out.println("actuals: " + argtypes);
duke@1 2334 List<Type> formals = owntype.getParameterTypes();
duke@1 2335 Type last = useVarargs ? formals.last() : null;
duke@1 2336 if (sym.name==names.init &&
duke@1 2337 sym.owner == syms.enumSym)
duke@1 2338 formals = formals.tail.tail;
duke@1 2339 List<JCExpression> args = argtrees;
duke@1 2340 while (formals.head != last) {
duke@1 2341 JCTree arg = args.head;
duke@1 2342 Warner warn = chk.convertWarner(arg.pos(), arg.type, formals.head);
duke@1 2343 assertConvertible(arg, arg.type, formals.head, warn);
duke@1 2344 warned |= warn.warned;
duke@1 2345 args = args.tail;
duke@1 2346 formals = formals.tail;
duke@1 2347 }
duke@1 2348 if (useVarargs) {
duke@1 2349 Type varArg = types.elemtype(last);
duke@1 2350 while (args.tail != null) {
duke@1 2351 JCTree arg = args.head;
duke@1 2352 Warner warn = chk.convertWarner(arg.pos(), arg.type, varArg);
duke@1 2353 assertConvertible(arg, arg.type, varArg, warn);
duke@1 2354 warned |= warn.warned;
duke@1 2355 args = args.tail;
duke@1 2356 }
duke@1 2357 } else if ((sym.flags() & VARARGS) != 0 && allowVarargs) {
duke@1 2358 // non-varargs call to varargs method
duke@1 2359 Type varParam = owntype.getParameterTypes().last();
duke@1 2360 Type lastArg = argtypes.last();
duke@1 2361 if (types.isSubtypeUnchecked(lastArg, types.elemtype(varParam)) &&
duke@1 2362 !types.isSameType(types.erasure(varParam), types.erasure(lastArg)))
duke@1 2363 log.warning(argtrees.last().pos(), "inexact.non-varargs.call",
duke@1 2364 types.elemtype(varParam),
duke@1 2365 varParam);
duke@1 2366 }
duke@1 2367
duke@1 2368 if (warned && sym.type.tag == FORALL) {
duke@1 2369 String typeargs = "";
duke@1 2370 if (typeargtypes != null && typeargtypes.nonEmpty()) {
duke@1 2371 typeargs = "<" + Type.toString(typeargtypes) + ">";
duke@1 2372 }
duke@1 2373 chk.warnUnchecked(env.tree.pos(),
duke@1 2374 "unchecked.meth.invocation.applied",
duke@1 2375 sym,
duke@1 2376 sym.location(),
duke@1 2377 typeargs,
duke@1 2378 Type.toString(argtypes));
duke@1 2379 owntype = new MethodType(owntype.getParameterTypes(),
duke@1 2380 types.erasure(owntype.getReturnType()),
duke@1 2381 owntype.getThrownTypes(),
duke@1 2382 syms.methodClass);
duke@1 2383 }
duke@1 2384 if (useVarargs) {
duke@1 2385 JCTree tree = env.tree;
duke@1 2386 Type argtype = owntype.getParameterTypes().last();
duke@1 2387 if (!types.isReifiable(argtype))
duke@1 2388 chk.warnUnchecked(env.tree.pos(),
duke@1 2389 "unchecked.generic.array.creation",
duke@1 2390 argtype);
duke@1 2391 Type elemtype = types.elemtype(argtype);
duke@1 2392 switch (tree.getTag()) {
duke@1 2393 case JCTree.APPLY:
duke@1 2394 ((JCMethodInvocation) tree).varargsElement = elemtype;
duke@1 2395 break;
duke@1 2396 case JCTree.NEWCLASS:
duke@1 2397 ((JCNewClass) tree).varargsElement = elemtype;
duke@1 2398 break;
duke@1 2399 default:
duke@1 2400 throw new AssertionError(""+tree);
duke@1 2401 }
duke@1 2402 }
duke@1 2403 }
duke@1 2404 return owntype;
duke@1 2405 }
duke@1 2406
duke@1 2407 private void assertConvertible(JCTree tree, Type actual, Type formal, Warner warn) {
duke@1 2408 if (types.isConvertible(actual, formal, warn))
duke@1 2409 return;
duke@1 2410
duke@1 2411 if (formal.isCompound()
duke@1 2412 && types.isSubtype(actual, types.supertype(formal))
duke@1 2413 && types.isSubtypeUnchecked(actual, types.interfaces(formal), warn))
duke@1 2414 return;
duke@1 2415
duke@1 2416 if (false) {
duke@1 2417 // TODO: make assertConvertible work
duke@1 2418 chk.typeError(tree.pos(), JCDiagnostic.fragment("incompatible.types"), actual, formal);
duke@1 2419 throw new AssertionError("Tree: " + tree
duke@1 2420 + " actual:" + actual
duke@1 2421 + " formal: " + formal);
duke@1 2422 }
duke@1 2423 }
duke@1 2424
duke@1 2425 public void visitLiteral(JCLiteral tree) {
duke@1 2426 result = check(
duke@1 2427 tree, litType(tree.typetag).constType(tree.value), VAL, pkind, pt);
duke@1 2428 }
duke@1 2429 //where
duke@1 2430 /** Return the type of a literal with given type tag.
duke@1 2431 */
duke@1 2432 Type litType(int tag) {
duke@1 2433 return (tag == TypeTags.CLASS) ? syms.stringType : syms.typeOfTag[tag];
duke@1 2434 }
duke@1 2435
duke@1 2436 public void visitTypeIdent(JCPrimitiveTypeTree tree) {
duke@1 2437 result = check(tree, syms.typeOfTag[tree.typetag], TYP, pkind, pt);
duke@1 2438 }
duke@1 2439
duke@1 2440 public void visitTypeArray(JCArrayTypeTree tree) {
duke@1 2441 Type etype = attribType(tree.elemtype, env);
duke@1 2442 Type type = new ArrayType(etype, syms.arrayClass);
duke@1 2443 result = check(tree, type, TYP, pkind, pt);
duke@1 2444 }
duke@1 2445
duke@1 2446 /** Visitor method for parameterized types.
duke@1 2447 * Bound checking is left until later, since types are attributed
duke@1 2448 * before supertype structure is completely known
duke@1 2449 */
duke@1 2450 public void visitTypeApply(JCTypeApply tree) {
duke@1 2451 Type owntype = syms.errType;
duke@1 2452
duke@1 2453 // Attribute functor part of application and make sure it's a class.
duke@1 2454 Type clazztype = chk.checkClassType(tree.clazz.pos(), attribType(tree.clazz, env));
duke@1 2455
duke@1 2456 // Attribute type parameters
duke@1 2457 List<Type> actuals = attribTypes(tree.arguments, env);
duke@1 2458
duke@1 2459 if (clazztype.tag == CLASS) {
duke@1 2460 List<Type> formals = clazztype.tsym.type.getTypeArguments();
duke@1 2461
duke@1 2462 if (actuals.length() == formals.length()) {
duke@1 2463 List<Type> a = actuals;
duke@1 2464 List<Type> f = formals;
duke@1 2465 while (a.nonEmpty()) {
duke@1 2466 a.head = a.head.withTypeVar(f.head);
duke@1 2467 a = a.tail;
duke@1 2468 f = f.tail;
duke@1 2469 }
duke@1 2470 // Compute the proper generic outer
duke@1 2471 Type clazzOuter = clazztype.getEnclosingType();
duke@1 2472 if (clazzOuter.tag == CLASS) {
duke@1 2473 Type site;
duke@1 2474 if (tree.clazz.getTag() == JCTree.IDENT) {
duke@1 2475 site = env.enclClass.sym.type;
duke@1 2476 } else if (tree.clazz.getTag() == JCTree.SELECT) {
duke@1 2477 site = ((JCFieldAccess) tree.clazz).selected.type;
duke@1 2478 } else throw new AssertionError(""+tree);
duke@1 2479 if (clazzOuter.tag == CLASS && site != clazzOuter) {
duke@1 2480 if (site.tag == CLASS)
duke@1 2481 site = types.asOuterSuper(site, clazzOuter.tsym);
duke@1 2482 if (site == null)
duke@1 2483 site = types.erasure(clazzOuter);
duke@1 2484 clazzOuter = site;
duke@1 2485 }
duke@1 2486 }
duke@1 2487 owntype = new ClassType(clazzOuter, actuals, clazztype.tsym);
duke@1 2488 } else {
duke@1 2489 if (formals.length() != 0) {
duke@1 2490 log.error(tree.pos(), "wrong.number.type.args",
duke@1 2491 Integer.toString(formals.length()));
duke@1 2492 } else {
duke@1 2493 log.error(tree.pos(), "type.doesnt.take.params", clazztype.tsym);
duke@1 2494 }
duke@1 2495 owntype = syms.errType;
duke@1 2496 }
duke@1 2497 }
duke@1 2498 result = check(tree, owntype, TYP, pkind, pt);
duke@1 2499 }
duke@1 2500
duke@1 2501 public void visitTypeParameter(JCTypeParameter tree) {
duke@1 2502 TypeVar a = (TypeVar)tree.type;
duke@1 2503 Set<Type> boundSet = new HashSet<Type>();
duke@1 2504 if (a.bound.isErroneous())
duke@1 2505 return;
duke@1 2506 List<Type> bs = types.getBounds(a);
duke@1 2507 if (tree.bounds.nonEmpty()) {
duke@1 2508 // accept class or interface or typevar as first bound.
duke@1 2509 Type b = checkBase(bs.head, tree.bounds.head, env, false, false, false);
duke@1 2510 boundSet.add(types.erasure(b));
duke@1 2511 if (b.tag == TYPEVAR) {
duke@1 2512 // if first bound was a typevar, do not accept further bounds.
duke@1 2513 if (tree.bounds.tail.nonEmpty()) {
duke@1 2514 log.error(tree.bounds.tail.head.pos(),
duke@1 2515 "type.var.may.not.be.followed.by.other.bounds");
duke@1 2516 tree.bounds = List.of(tree.bounds.head);
mcimadamore@7 2517 a.bound = bs.head;
duke@1 2518 }
duke@1 2519 } else {
duke@1 2520 // if first bound was a class or interface, accept only interfaces
duke@1 2521 // as further bounds.
duke@1 2522 for (JCExpression bound : tree.bounds.tail) {
duke@1 2523 bs = bs.tail;
duke@1 2524 Type i = checkBase(bs.head, bound, env, false, true, false);
duke@1 2525 if (i.tag == CLASS)
duke@1 2526 chk.checkNotRepeated(bound.pos(), types.erasure(i), boundSet);
duke@1 2527 }
duke@1 2528 }
duke@1 2529 }
duke@1 2530 bs = types.getBounds(a);
duke@1 2531
duke@1 2532 // in case of multiple bounds ...
duke@1 2533 if (bs.length() > 1) {
duke@1 2534 // ... the variable's bound is a class type flagged COMPOUND
duke@1 2535 // (see comment for TypeVar.bound).
duke@1 2536 // In this case, generate a class tree that represents the
duke@1 2537 // bound class, ...
duke@1 2538 JCTree extending;
duke@1 2539 List<JCExpression> implementing;
duke@1 2540 if ((bs.head.tsym.flags() & INTERFACE) == 0) {
duke@1 2541 extending = tree.bounds.head;
duke@1 2542 implementing = tree.bounds.tail;
duke@1 2543 } else {
duke@1 2544 extending = null;
duke@1 2545 implementing = tree.bounds;
duke@1 2546 }
duke@1 2547 JCClassDecl cd = make.at(tree.pos).ClassDef(
duke@1 2548 make.Modifiers(PUBLIC | ABSTRACT),
duke@1 2549 tree.name, List.<JCTypeParameter>nil(),
duke@1 2550 extending, implementing, List.<JCTree>nil());
duke@1 2551
duke@1 2552 ClassSymbol c = (ClassSymbol)a.getUpperBound().tsym;
duke@1 2553 assert (c.flags() & COMPOUND) != 0;
duke@1 2554 cd.sym = c;
duke@1 2555 c.sourcefile = env.toplevel.sourcefile;
duke@1 2556
duke@1 2557 // ... and attribute the bound class
duke@1 2558 c.flags_field |= UNATTRIBUTED;
duke@1 2559 Env<AttrContext> cenv = enter.classEnv(cd, env);
duke@1 2560 enter.typeEnvs.put(c, cenv);
duke@1 2561 }
duke@1 2562 }
duke@1 2563
duke@1 2564
duke@1 2565 public void visitWildcard(JCWildcard tree) {
duke@1 2566 //- System.err.println("visitWildcard("+tree+");");//DEBUG
duke@1 2567 Type type = (tree.kind.kind == BoundKind.UNBOUND)
duke@1 2568 ? syms.objectType
duke@1 2569 : attribType(tree.inner, env);
duke@1 2570 result = check(tree, new WildcardType(chk.checkRefType(tree.pos(), type),
duke@1 2571 tree.kind.kind,
duke@1 2572 syms.boundClass),
duke@1 2573 TYP, pkind, pt);
duke@1 2574 }
duke@1 2575
duke@1 2576 public void visitAnnotation(JCAnnotation tree) {
duke@1 2577 log.error(tree.pos(), "annotation.not.valid.for.type", pt);
duke@1 2578 result = tree.type = syms.errType;
duke@1 2579 }
duke@1 2580
duke@1 2581 public void visitErroneous(JCErroneous tree) {
duke@1 2582 if (tree.errs != null)
duke@1 2583 for (JCTree err : tree.errs)
duke@1 2584 attribTree(err, env, ERR, pt);
duke@1 2585 result = tree.type = syms.errType;
duke@1 2586 }
duke@1 2587
duke@1 2588 /** Default visitor method for all other trees.
duke@1 2589 */
duke@1 2590 public void visitTree(JCTree tree) {
duke@1 2591 throw new AssertionError();
duke@1 2592 }
duke@1 2593
duke@1 2594 /** Main method: attribute class definition associated with given class symbol.
duke@1 2595 * reporting completion failures at the given position.
duke@1 2596 * @param pos The source position at which completion errors are to be
duke@1 2597 * reported.
duke@1 2598 * @param c The class symbol whose definition will be attributed.
duke@1 2599 */
duke@1 2600 public void attribClass(DiagnosticPosition pos, ClassSymbol c) {
duke@1 2601 try {
duke@1 2602 annotate.flush();
duke@1 2603 attribClass(c);
duke@1 2604 } catch (CompletionFailure ex) {
duke@1 2605 chk.completionError(pos, ex);
duke@1 2606 }
duke@1 2607 }
duke@1 2608
duke@1 2609 /** Attribute class definition associated with given class symbol.
duke@1 2610 * @param c The class symbol whose definition will be attributed.
duke@1 2611 */
duke@1 2612 void attribClass(ClassSymbol c) throws CompletionFailure {
duke@1 2613 if (c.type.tag == ERROR) return;
duke@1 2614
duke@1 2615 // Check for cycles in the inheritance graph, which can arise from
duke@1 2616 // ill-formed class files.
duke@1 2617 chk.checkNonCyclic(null, c.type);
duke@1 2618
duke@1 2619 Type st = types.supertype(c.type);
duke@1 2620 if ((c.flags_field & Flags.COMPOUND) == 0) {
duke@1 2621 // First, attribute superclass.
duke@1 2622 if (st.tag == CLASS)
duke@1 2623 attribClass((ClassSymbol)st.tsym);
duke@1 2624
duke@1 2625 // Next attribute owner, if it is a class.
duke@1 2626 if (c.owner.kind == TYP && c.owner.type.tag == CLASS)
duke@1 2627 attribClass((ClassSymbol)c.owner);
duke@1 2628 }
duke@1 2629
duke@1 2630 // The previous operations might have attributed the current class
duke@1 2631 // if there was a cycle. So we test first whether the class is still
duke@1 2632 // UNATTRIBUTED.
duke@1 2633 if ((c.flags_field & UNATTRIBUTED) != 0) {
duke@1 2634 c.flags_field &= ~UNATTRIBUTED;
duke@1 2635
duke@1 2636 // Get environment current at the point of class definition.
duke@1 2637 Env<AttrContext> env = enter.typeEnvs.get(c);
duke@1 2638
duke@1 2639 // The info.lint field in the envs stored in enter.typeEnvs is deliberately uninitialized,
duke@1 2640 // because the annotations were not available at the time the env was created. Therefore,
duke@1 2641 // we look up the environment chain for the first enclosing environment for which the
duke@1 2642 // lint value is set. Typically, this is the parent env, but might be further if there
duke@1 2643 // are any envs created as a result of TypeParameter nodes.
duke@1 2644 Env<AttrContext> lintEnv = env;
duke@1 2645 while (lintEnv.info.lint == null)
duke@1 2646 lintEnv = lintEnv.next;
duke@1 2647
duke@1 2648 // Having found the enclosing lint value, we can initialize the lint value for this class
duke@1 2649 env.info.lint = lintEnv.info.lint.augment(c.attributes_field, c.flags());
duke@1 2650
duke@1 2651 Lint prevLint = chk.setLint(env.info.lint);
duke@1 2652 JavaFileObject prev = log.useSource(c.sourcefile);
duke@1 2653
duke@1 2654 try {
duke@1 2655 // java.lang.Enum may not be subclassed by a non-enum
duke@1 2656 if (st.tsym == syms.enumSym &&
duke@1 2657 ((c.flags_field & (Flags.ENUM|Flags.COMPOUND)) == 0))
duke@1 2658 log.error(env.tree.pos(), "enum.no.subclassing");
duke@1 2659
duke@1 2660 // Enums may not be extended by source-level classes
duke@1 2661 if (st.tsym != null &&
duke@1 2662 ((st.tsym.flags_field & Flags.ENUM) != 0) &&
duke@1 2663 ((c.flags_field & Flags.ENUM) == 0) &&
duke@1 2664 !target.compilerBootstrap(c)) {
duke@1 2665 log.error(env.tree.pos(), "enum.types.not.extensible");
duke@1 2666 }
duke@1 2667 attribClassBody(env, c);
duke@1 2668
duke@1 2669 chk.checkDeprecatedAnnotation(env.tree.pos(), c);
duke@1 2670 } finally {
duke@1 2671 log.useSource(prev);
duke@1 2672 chk.setLint(prevLint);
duke@1 2673 }
duke@1 2674
duke@1 2675 }
duke@1 2676 }
duke@1 2677
duke@1 2678 public void visitImport(JCImport tree) {
duke@1 2679 // nothing to do
duke@1 2680 }
duke@1 2681
duke@1 2682 /** Finish the attribution of a class. */
duke@1 2683 private void attribClassBody(Env<AttrContext> env, ClassSymbol c) {
duke@1 2684 JCClassDecl tree = (JCClassDecl)env.tree;
duke@1 2685 assert c == tree.sym;
duke@1 2686
duke@1 2687 // Validate annotations
duke@1 2688 chk.validateAnnotations(tree.mods.annotations, c);
duke@1 2689
duke@1 2690 // Validate type parameters, supertype and interfaces.
mcimadamore@6 2691 attribBounds(tree.typarams, env);
duke@1 2692 chk.validateTypeParams(tree.typarams);
duke@1 2693 chk.validate(tree.extending);
duke@1 2694 chk.validate(tree.implementing);
duke@1 2695
duke@1 2696 // If this is a non-abstract class, check that it has no abstract
duke@1 2697 // methods or unimplemented methods of an implemented interface.
duke@1 2698 if ((c.flags() & (ABSTRACT | INTERFACE)) == 0) {
duke@1 2699 if (!relax)
duke@1 2700 chk.checkAllDefined(tree.pos(), c);
duke@1 2701 }
duke@1 2702
duke@1 2703 if ((c.flags() & ANNOTATION) != 0) {
duke@1 2704 if (tree.implementing.nonEmpty())
duke@1 2705 log.error(tree.implementing.head.pos(),
duke@1 2706 "cant.extend.intf.annotation");
duke@1 2707 if (tree.typarams.nonEmpty())
duke@1 2708 log.error(tree.typarams.head.pos(),
duke@1 2709 "intf.annotation.cant.have.type.params");
duke@1 2710 } else {
duke@1 2711 // Check that all extended classes and interfaces
duke@1 2712 // are compatible (i.e. no two define methods with same arguments
duke@1 2713 // yet different return types). (JLS 8.4.6.3)
duke@1 2714 chk.checkCompatibleSupertypes(tree.pos(), c.type);
duke@1 2715 }
duke@1 2716
duke@1 2717 // Check that class does not import the same parameterized interface
duke@1 2718 // with two different argument lists.
duke@1 2719 chk.checkClassBounds(tree.pos(), c.type);
duke@1 2720
duke@1 2721 tree.type = c.type;
duke@1 2722
duke@1 2723 boolean assertsEnabled = false;
duke@1 2724 assert assertsEnabled = true;
duke@1 2725 if (assertsEnabled) {
duke@1 2726 for (List<JCTypeParameter> l = tree.typarams;
duke@1 2727 l.nonEmpty(); l = l.tail)
duke@1 2728 assert env.info.scope.lookup(l.head.name).scope != null;
duke@1 2729 }
duke@1 2730
duke@1 2731 // Check that a generic class doesn't extend Throwable
duke@1 2732 if (!c.type.allparams().isEmpty() && types.isSubtype(c.type, syms.throwableType))
duke@1 2733 log.error(tree.extending.pos(), "generic.throwable");
duke@1 2734
duke@1 2735 // Check that all methods which implement some
duke@1 2736 // method conform to the method they implement.
duke@1 2737 chk.checkImplementations(tree);
duke@1 2738
duke@1 2739 for (List<JCTree> l = tree.defs; l.nonEmpty(); l = l.tail) {
duke@1 2740 // Attribute declaration
duke@1 2741 attribStat(l.head, env);
duke@1 2742 // Check that declarations in inner classes are not static (JLS 8.1.2)
duke@1 2743 // Make an exception for static constants.
duke@1 2744 if (c.owner.kind != PCK &&
duke@1 2745 ((c.flags() & STATIC) == 0 || c.name == names.empty) &&
duke@1 2746 (TreeInfo.flags(l.head) & (STATIC | INTERFACE)) != 0) {
duke@1 2747 Symbol sym = null;
duke@1 2748 if (l.head.getTag() == JCTree.VARDEF) sym = ((JCVariableDecl) l.head).sym;
duke@1 2749 if (sym == null ||
duke@1 2750 sym.kind != VAR ||
duke@1 2751 ((VarSymbol) sym).getConstValue() == null)
duke@1 2752 log.error(l.head.pos(), "icls.cant.have.static.decl");
duke@1 2753 }
duke@1 2754 }
duke@1 2755
duke@1 2756 // Check for cycles among non-initial constructors.
duke@1 2757 chk.checkCyclicConstructors(tree);
duke@1 2758
duke@1 2759 // Check for cycles among annotation elements.
duke@1 2760 chk.checkNonCyclicElements(tree);
duke@1 2761
duke@1 2762 // Check for proper use of serialVersionUID
duke@1 2763 if (env.info.lint.isEnabled(Lint.LintCategory.SERIAL) &&
duke@1 2764 isSerializable(c) &&
duke@1 2765 (c.flags() & Flags.ENUM) == 0 &&
duke@1 2766 (c.flags() & ABSTRACT) == 0) {
duke@1 2767 checkSerialVersionUID(tree, c);
duke@1 2768 }
duke@1 2769 }
duke@1 2770 // where
duke@1 2771 /** check if a class is a subtype of Serializable, if that is available. */
duke@1 2772 private boolean isSerializable(ClassSymbol c) {
duke@1 2773 try {
duke@1 2774 syms.serializableType.complete();
duke@1 2775 }
duke@1 2776 catch (CompletionFailure e) {
duke@1 2777 return false;
duke@1 2778 }
duke@1 2779 return types.isSubtype(c.type, syms.serializableType);
duke@1 2780 }
duke@1 2781
duke@1 2782 /** Check that an appropriate serialVersionUID member is defined. */
duke@1 2783 private void checkSerialVersionUID(JCClassDecl tree, ClassSymbol c) {
duke@1 2784
duke@1 2785 // check for presence of serialVersionUID
duke@1 2786 Scope.Entry e = c.members().lookup(names.serialVersionUID);
duke@1 2787 while (e.scope != null && e.sym.kind != VAR) e = e.next();
duke@1 2788 if (e.scope == null) {
duke@1 2789 log.warning(tree.pos(), "missing.SVUID", c);
duke@1 2790 return;
duke@1 2791 }
duke@1 2792
duke@1 2793 // check that it is static final
duke@1 2794 VarSymbol svuid = (VarSymbol)e.sym;
duke@1 2795 if ((svuid.flags() & (STATIC | FINAL)) !=
duke@1 2796 (STATIC | FINAL))
duke@1 2797 log.warning(TreeInfo.diagnosticPositionFor(svuid, tree), "improper.SVUID", c);
duke@1 2798
duke@1 2799 // check that it is long
duke@1 2800 else if (svuid.type.tag != TypeTags.LONG)
duke@1 2801 log.warning(TreeInfo.diagnosticPositionFor(svuid, tree), "long.SVUID", c);
duke@1 2802
duke@1 2803 // check constant
duke@1 2804 else if (svuid.getConstValue() == null)
duke@1 2805 log.warning(TreeInfo.diagnosticPositionFor(svuid, tree), "constant.SVUID", c);
duke@1 2806 }
duke@1 2807
duke@1 2808 private Type capture(Type type) {
duke@1 2809 return types.capture(type);
duke@1 2810 }
duke@1 2811 }

mercurial