src/share/classes/com/sun/tools/javac/comp/Attr.java

Thu, 24 Jul 2008 11:12:41 +0100

author
mcimadamore
date
Thu, 24 Jul 2008 11:12:41 +0100
changeset 79
36df13bde238
parent 54
eaf608c64fec
child 80
5c9cdeb740f2
permissions
-rw-r--r--

6594284: NPE thrown when calling a method on an intersection type
Summary: javac should report an error when the capture of an actual type parameter does not exist
Reviewed-by: jjg

duke@1 1 /*
xdono@54 2 * Copyright 1999-2008 Sun Microsystems, Inc. All Rights Reserved.
duke@1 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@1 4 *
duke@1 5 * This code is free software; you can redistribute it and/or modify it
duke@1 6 * under the terms of the GNU General Public License version 2 only, as
duke@1 7 * published by the Free Software Foundation. Sun designates this
duke@1 8 * particular file as subject to the "Classpath" exception as provided
duke@1 9 * by Sun in the LICENSE file that accompanied this code.
duke@1 10 *
duke@1 11 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@1 12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@1 13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@1 14 * version 2 for more details (a copy is included in the LICENSE file that
duke@1 15 * accompanied this code).
duke@1 16 *
duke@1 17 * You should have received a copy of the GNU General Public License version
duke@1 18 * 2 along with this work; if not, write to the Free Software Foundation,
duke@1 19 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@1 20 *
duke@1 21 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
duke@1 22 * CA 95054 USA or visit www.sun.com if you need additional information or
duke@1 23 * have any questions.
duke@1 24 */
duke@1 25
duke@1 26 package com.sun.tools.javac.comp;
duke@1 27
duke@1 28 import java.util.*;
duke@1 29 import java.util.Set;
duke@1 30 import javax.lang.model.element.ElementKind;
duke@1 31 import javax.tools.JavaFileObject;
duke@1 32
duke@1 33 import com.sun.tools.javac.code.*;
duke@1 34 import com.sun.tools.javac.jvm.*;
duke@1 35 import com.sun.tools.javac.tree.*;
duke@1 36 import com.sun.tools.javac.util.*;
duke@1 37 import com.sun.tools.javac.util.JCDiagnostic.DiagnosticPosition;
duke@1 38 import com.sun.tools.javac.util.List;
duke@1 39
duke@1 40 import com.sun.tools.javac.jvm.Target;
duke@1 41 import com.sun.tools.javac.code.Symbol.*;
duke@1 42 import com.sun.tools.javac.tree.JCTree.*;
duke@1 43 import com.sun.tools.javac.code.Type.*;
duke@1 44
duke@1 45 import com.sun.source.tree.IdentifierTree;
duke@1 46 import com.sun.source.tree.MemberSelectTree;
duke@1 47 import com.sun.source.tree.TreeVisitor;
duke@1 48 import com.sun.source.util.SimpleTreeVisitor;
duke@1 49
duke@1 50 import static com.sun.tools.javac.code.Flags.*;
duke@1 51 import static com.sun.tools.javac.code.Kinds.*;
duke@1 52 import static com.sun.tools.javac.code.TypeTags.*;
duke@1 53
duke@1 54 /** This is the main context-dependent analysis phase in GJC. It
duke@1 55 * encompasses name resolution, type checking and constant folding as
duke@1 56 * subtasks. Some subtasks involve auxiliary classes.
duke@1 57 * @see Check
duke@1 58 * @see Resolve
duke@1 59 * @see ConstFold
duke@1 60 * @see Infer
duke@1 61 *
duke@1 62 * <p><b>This is NOT part of any API supported by Sun Microsystems. If
duke@1 63 * you write code that depends on this, you do so at your own risk.
duke@1 64 * This code and its internal interfaces are subject to change or
duke@1 65 * deletion without notice.</b>
duke@1 66 */
duke@1 67 public class Attr extends JCTree.Visitor {
duke@1 68 protected static final Context.Key<Attr> attrKey =
duke@1 69 new Context.Key<Attr>();
duke@1 70
duke@1 71 final Name.Table names;
duke@1 72 final Log log;
duke@1 73 final Symtab syms;
duke@1 74 final Resolve rs;
duke@1 75 final Check chk;
duke@1 76 final MemberEnter memberEnter;
duke@1 77 final TreeMaker make;
duke@1 78 final ConstFold cfolder;
duke@1 79 final Enter enter;
duke@1 80 final Target target;
duke@1 81 final Types types;
duke@1 82 final Annotate annotate;
duke@1 83
duke@1 84 public static Attr instance(Context context) {
duke@1 85 Attr instance = context.get(attrKey);
duke@1 86 if (instance == null)
duke@1 87 instance = new Attr(context);
duke@1 88 return instance;
duke@1 89 }
duke@1 90
duke@1 91 protected Attr(Context context) {
duke@1 92 context.put(attrKey, this);
duke@1 93
duke@1 94 names = Name.Table.instance(context);
duke@1 95 log = Log.instance(context);
duke@1 96 syms = Symtab.instance(context);
duke@1 97 rs = Resolve.instance(context);
duke@1 98 chk = Check.instance(context);
duke@1 99 memberEnter = MemberEnter.instance(context);
duke@1 100 make = TreeMaker.instance(context);
duke@1 101 enter = Enter.instance(context);
duke@1 102 cfolder = ConstFold.instance(context);
duke@1 103 target = Target.instance(context);
duke@1 104 types = Types.instance(context);
duke@1 105 annotate = Annotate.instance(context);
duke@1 106
duke@1 107 Options options = Options.instance(context);
duke@1 108
duke@1 109 Source source = Source.instance(context);
duke@1 110 allowGenerics = source.allowGenerics();
duke@1 111 allowVarargs = source.allowVarargs();
duke@1 112 allowEnums = source.allowEnums();
duke@1 113 allowBoxing = source.allowBoxing();
duke@1 114 allowCovariantReturns = source.allowCovariantReturns();
duke@1 115 allowAnonOuterThis = source.allowAnonOuterThis();
duke@1 116 relax = (options.get("-retrofit") != null ||
duke@1 117 options.get("-relax") != null);
duke@1 118 useBeforeDeclarationWarning = options.get("useBeforeDeclarationWarning") != null;
duke@1 119 }
duke@1 120
duke@1 121 /** Switch: relax some constraints for retrofit mode.
duke@1 122 */
duke@1 123 boolean relax;
duke@1 124
duke@1 125 /** Switch: support generics?
duke@1 126 */
duke@1 127 boolean allowGenerics;
duke@1 128
duke@1 129 /** Switch: allow variable-arity methods.
duke@1 130 */
duke@1 131 boolean allowVarargs;
duke@1 132
duke@1 133 /** Switch: support enums?
duke@1 134 */
duke@1 135 boolean allowEnums;
duke@1 136
duke@1 137 /** Switch: support boxing and unboxing?
duke@1 138 */
duke@1 139 boolean allowBoxing;
duke@1 140
duke@1 141 /** Switch: support covariant result types?
duke@1 142 */
duke@1 143 boolean allowCovariantReturns;
duke@1 144
duke@1 145 /** Switch: allow references to surrounding object from anonymous
duke@1 146 * objects during constructor call?
duke@1 147 */
duke@1 148 boolean allowAnonOuterThis;
duke@1 149
duke@1 150 /**
duke@1 151 * Switch: warn about use of variable before declaration?
duke@1 152 * RFE: 6425594
duke@1 153 */
duke@1 154 boolean useBeforeDeclarationWarning;
duke@1 155
duke@1 156 /** Check kind and type of given tree against protokind and prototype.
duke@1 157 * If check succeeds, store type in tree and return it.
duke@1 158 * If check fails, store errType in tree and return it.
duke@1 159 * No checks are performed if the prototype is a method type.
duke@1 160 * Its not necessary in this case since we know that kind and type
duke@1 161 * are correct.
duke@1 162 *
duke@1 163 * @param tree The tree whose kind and type is checked
duke@1 164 * @param owntype The computed type of the tree
duke@1 165 * @param ownkind The computed kind of the tree
duke@1 166 * @param pkind The expected kind (or: protokind) of the tree
duke@1 167 * @param pt The expected type (or: prototype) of the tree
duke@1 168 */
duke@1 169 Type check(JCTree tree, Type owntype, int ownkind, int pkind, Type pt) {
duke@1 170 if (owntype.tag != ERROR && pt.tag != METHOD && pt.tag != FORALL) {
duke@1 171 if ((ownkind & ~pkind) == 0) {
duke@1 172 owntype = chk.checkType(tree.pos(), owntype, pt);
duke@1 173 } else {
duke@1 174 log.error(tree.pos(), "unexpected.type",
duke@1 175 Resolve.kindNames(pkind),
duke@1 176 Resolve.kindName(ownkind));
duke@1 177 owntype = syms.errType;
duke@1 178 }
duke@1 179 }
duke@1 180 tree.type = owntype;
duke@1 181 return owntype;
duke@1 182 }
duke@1 183
duke@1 184 /** Is given blank final variable assignable, i.e. in a scope where it
duke@1 185 * may be assigned to even though it is final?
duke@1 186 * @param v The blank final variable.
duke@1 187 * @param env The current environment.
duke@1 188 */
duke@1 189 boolean isAssignableAsBlankFinal(VarSymbol v, Env<AttrContext> env) {
duke@1 190 Symbol owner = env.info.scope.owner;
duke@1 191 // owner refers to the innermost variable, method or
duke@1 192 // initializer block declaration at this point.
duke@1 193 return
duke@1 194 v.owner == owner
duke@1 195 ||
duke@1 196 ((owner.name == names.init || // i.e. we are in a constructor
duke@1 197 owner.kind == VAR || // i.e. we are in a variable initializer
duke@1 198 (owner.flags() & BLOCK) != 0) // i.e. we are in an initializer block
duke@1 199 &&
duke@1 200 v.owner == owner.owner
duke@1 201 &&
duke@1 202 ((v.flags() & STATIC) != 0) == Resolve.isStatic(env));
duke@1 203 }
duke@1 204
duke@1 205 /** Check that variable can be assigned to.
duke@1 206 * @param pos The current source code position.
duke@1 207 * @param v The assigned varaible
duke@1 208 * @param base If the variable is referred to in a Select, the part
duke@1 209 * to the left of the `.', null otherwise.
duke@1 210 * @param env The current environment.
duke@1 211 */
duke@1 212 void checkAssignable(DiagnosticPosition pos, VarSymbol v, JCTree base, Env<AttrContext> env) {
duke@1 213 if ((v.flags() & FINAL) != 0 &&
duke@1 214 ((v.flags() & HASINIT) != 0
duke@1 215 ||
duke@1 216 !((base == null ||
duke@1 217 (base.getTag() == JCTree.IDENT && TreeInfo.name(base) == names._this)) &&
duke@1 218 isAssignableAsBlankFinal(v, env)))) {
duke@1 219 log.error(pos, "cant.assign.val.to.final.var", v);
duke@1 220 }
duke@1 221 }
duke@1 222
duke@1 223 /** Does tree represent a static reference to an identifier?
duke@1 224 * It is assumed that tree is either a SELECT or an IDENT.
duke@1 225 * We have to weed out selects from non-type names here.
duke@1 226 * @param tree The candidate tree.
duke@1 227 */
duke@1 228 boolean isStaticReference(JCTree tree) {
duke@1 229 if (tree.getTag() == JCTree.SELECT) {
duke@1 230 Symbol lsym = TreeInfo.symbol(((JCFieldAccess) tree).selected);
duke@1 231 if (lsym == null || lsym.kind != TYP) {
duke@1 232 return false;
duke@1 233 }
duke@1 234 }
duke@1 235 return true;
duke@1 236 }
duke@1 237
duke@1 238 /** Is this symbol a type?
duke@1 239 */
duke@1 240 static boolean isType(Symbol sym) {
duke@1 241 return sym != null && sym.kind == TYP;
duke@1 242 }
duke@1 243
duke@1 244 /** The current `this' symbol.
duke@1 245 * @param env The current environment.
duke@1 246 */
duke@1 247 Symbol thisSym(DiagnosticPosition pos, Env<AttrContext> env) {
duke@1 248 return rs.resolveSelf(pos, env, env.enclClass.sym, names._this);
duke@1 249 }
duke@1 250
duke@1 251 /** Attribute a parsed identifier.
duke@1 252 * @param tree Parsed identifier name
duke@1 253 * @param topLevel The toplevel to use
duke@1 254 */
duke@1 255 public Symbol attribIdent(JCTree tree, JCCompilationUnit topLevel) {
duke@1 256 Env<AttrContext> localEnv = enter.topLevelEnv(topLevel);
duke@1 257 localEnv.enclClass = make.ClassDef(make.Modifiers(0),
duke@1 258 syms.errSymbol.name,
duke@1 259 null, null, null, null);
duke@1 260 localEnv.enclClass.sym = syms.errSymbol;
duke@1 261 return tree.accept(identAttributer, localEnv);
duke@1 262 }
duke@1 263 // where
duke@1 264 private TreeVisitor<Symbol,Env<AttrContext>> identAttributer = new IdentAttributer();
duke@1 265 private class IdentAttributer extends SimpleTreeVisitor<Symbol,Env<AttrContext>> {
duke@1 266 @Override
duke@1 267 public Symbol visitMemberSelect(MemberSelectTree node, Env<AttrContext> env) {
duke@1 268 Symbol site = visit(node.getExpression(), env);
duke@1 269 if (site.kind == ERR)
duke@1 270 return site;
duke@1 271 Name name = (Name)node.getIdentifier();
duke@1 272 if (site.kind == PCK) {
duke@1 273 env.toplevel.packge = (PackageSymbol)site;
duke@1 274 return rs.findIdentInPackage(env, (TypeSymbol)site, name, TYP | PCK);
duke@1 275 } else {
duke@1 276 env.enclClass.sym = (ClassSymbol)site;
duke@1 277 return rs.findMemberType(env, site.asType(), name, (TypeSymbol)site);
duke@1 278 }
duke@1 279 }
duke@1 280
duke@1 281 @Override
duke@1 282 public Symbol visitIdentifier(IdentifierTree node, Env<AttrContext> env) {
duke@1 283 return rs.findIdent(env, (Name)node.getName(), TYP | PCK);
duke@1 284 }
duke@1 285 }
duke@1 286
duke@1 287 public Type coerce(Type etype, Type ttype) {
duke@1 288 return cfolder.coerce(etype, ttype);
duke@1 289 }
duke@1 290
duke@1 291 public Type attribType(JCTree node, TypeSymbol sym) {
duke@1 292 Env<AttrContext> env = enter.typeEnvs.get(sym);
duke@1 293 Env<AttrContext> localEnv = env.dup(node, env.info.dup());
duke@1 294 return attribTree(node, localEnv, Kinds.TYP, Type.noType);
duke@1 295 }
duke@1 296
duke@1 297 public Env<AttrContext> attribExprToTree(JCTree expr, Env<AttrContext> env, JCTree tree) {
duke@1 298 breakTree = tree;
duke@1 299 JavaFileObject prev = log.useSource(null);
duke@1 300 try {
duke@1 301 attribExpr(expr, env);
duke@1 302 } catch (BreakAttr b) {
duke@1 303 return b.env;
duke@1 304 } finally {
duke@1 305 breakTree = null;
duke@1 306 log.useSource(prev);
duke@1 307 }
duke@1 308 return env;
duke@1 309 }
duke@1 310
duke@1 311 public Env<AttrContext> attribStatToTree(JCTree stmt, Env<AttrContext> env, JCTree tree) {
duke@1 312 breakTree = tree;
duke@1 313 JavaFileObject prev = log.useSource(null);
duke@1 314 try {
duke@1 315 attribStat(stmt, env);
duke@1 316 } catch (BreakAttr b) {
duke@1 317 return b.env;
duke@1 318 } finally {
duke@1 319 breakTree = null;
duke@1 320 log.useSource(prev);
duke@1 321 }
duke@1 322 return env;
duke@1 323 }
duke@1 324
duke@1 325 private JCTree breakTree = null;
duke@1 326
duke@1 327 private static class BreakAttr extends RuntimeException {
duke@1 328 static final long serialVersionUID = -6924771130405446405L;
duke@1 329 private Env<AttrContext> env;
duke@1 330 private BreakAttr(Env<AttrContext> env) {
duke@1 331 this.env = env;
duke@1 332 }
duke@1 333 }
duke@1 334
duke@1 335
duke@1 336 /* ************************************************************************
duke@1 337 * Visitor methods
duke@1 338 *************************************************************************/
duke@1 339
duke@1 340 /** Visitor argument: the current environment.
duke@1 341 */
duke@1 342 Env<AttrContext> env;
duke@1 343
duke@1 344 /** Visitor argument: the currently expected proto-kind.
duke@1 345 */
duke@1 346 int pkind;
duke@1 347
duke@1 348 /** Visitor argument: the currently expected proto-type.
duke@1 349 */
duke@1 350 Type pt;
duke@1 351
duke@1 352 /** Visitor result: the computed type.
duke@1 353 */
duke@1 354 Type result;
duke@1 355
duke@1 356 /** Visitor method: attribute a tree, catching any completion failure
duke@1 357 * exceptions. Return the tree's type.
duke@1 358 *
duke@1 359 * @param tree The tree to be visited.
duke@1 360 * @param env The environment visitor argument.
duke@1 361 * @param pkind The protokind visitor argument.
duke@1 362 * @param pt The prototype visitor argument.
duke@1 363 */
duke@1 364 Type attribTree(JCTree tree, Env<AttrContext> env, int pkind, Type pt) {
duke@1 365 Env<AttrContext> prevEnv = this.env;
duke@1 366 int prevPkind = this.pkind;
duke@1 367 Type prevPt = this.pt;
duke@1 368 try {
duke@1 369 this.env = env;
duke@1 370 this.pkind = pkind;
duke@1 371 this.pt = pt;
duke@1 372 tree.accept(this);
duke@1 373 if (tree == breakTree)
duke@1 374 throw new BreakAttr(env);
duke@1 375 return result;
duke@1 376 } catch (CompletionFailure ex) {
duke@1 377 tree.type = syms.errType;
duke@1 378 return chk.completionError(tree.pos(), ex);
duke@1 379 } finally {
duke@1 380 this.env = prevEnv;
duke@1 381 this.pkind = prevPkind;
duke@1 382 this.pt = prevPt;
duke@1 383 }
duke@1 384 }
duke@1 385
duke@1 386 /** Derived visitor method: attribute an expression tree.
duke@1 387 */
duke@1 388 public Type attribExpr(JCTree tree, Env<AttrContext> env, Type pt) {
duke@1 389 return attribTree(tree, env, VAL, pt.tag != ERROR ? pt : Type.noType);
duke@1 390 }
duke@1 391
duke@1 392 /** Derived visitor method: attribute an expression tree with
duke@1 393 * no constraints on the computed type.
duke@1 394 */
duke@1 395 Type attribExpr(JCTree tree, Env<AttrContext> env) {
duke@1 396 return attribTree(tree, env, VAL, Type.noType);
duke@1 397 }
duke@1 398
duke@1 399 /** Derived visitor method: attribute a type tree.
duke@1 400 */
duke@1 401 Type attribType(JCTree tree, Env<AttrContext> env) {
duke@1 402 Type result = attribTree(tree, env, TYP, Type.noType);
duke@1 403 return result;
duke@1 404 }
duke@1 405
duke@1 406 /** Derived visitor method: attribute a statement or definition tree.
duke@1 407 */
duke@1 408 public Type attribStat(JCTree tree, Env<AttrContext> env) {
duke@1 409 return attribTree(tree, env, NIL, Type.noType);
duke@1 410 }
duke@1 411
duke@1 412 /** Attribute a list of expressions, returning a list of types.
duke@1 413 */
duke@1 414 List<Type> attribExprs(List<JCExpression> trees, Env<AttrContext> env, Type pt) {
duke@1 415 ListBuffer<Type> ts = new ListBuffer<Type>();
duke@1 416 for (List<JCExpression> l = trees; l.nonEmpty(); l = l.tail)
duke@1 417 ts.append(attribExpr(l.head, env, pt));
duke@1 418 return ts.toList();
duke@1 419 }
duke@1 420
duke@1 421 /** Attribute a list of statements, returning nothing.
duke@1 422 */
duke@1 423 <T extends JCTree> void attribStats(List<T> trees, Env<AttrContext> env) {
duke@1 424 for (List<T> l = trees; l.nonEmpty(); l = l.tail)
duke@1 425 attribStat(l.head, env);
duke@1 426 }
duke@1 427
duke@1 428 /** Attribute the arguments in a method call, returning a list of types.
duke@1 429 */
duke@1 430 List<Type> attribArgs(List<JCExpression> trees, Env<AttrContext> env) {
duke@1 431 ListBuffer<Type> argtypes = new ListBuffer<Type>();
duke@1 432 for (List<JCExpression> l = trees; l.nonEmpty(); l = l.tail)
duke@1 433 argtypes.append(chk.checkNonVoid(
duke@1 434 l.head.pos(), types.upperBound(attribTree(l.head, env, VAL, Infer.anyPoly))));
duke@1 435 return argtypes.toList();
duke@1 436 }
duke@1 437
duke@1 438 /** Attribute a type argument list, returning a list of types.
duke@1 439 */
duke@1 440 List<Type> attribTypes(List<JCExpression> trees, Env<AttrContext> env) {
duke@1 441 ListBuffer<Type> argtypes = new ListBuffer<Type>();
duke@1 442 for (List<JCExpression> l = trees; l.nonEmpty(); l = l.tail)
duke@1 443 argtypes.append(chk.checkRefType(l.head.pos(), attribType(l.head, env)));
duke@1 444 return argtypes.toList();
duke@1 445 }
duke@1 446
duke@1 447
duke@1 448 /**
duke@1 449 * Attribute type variables (of generic classes or methods).
duke@1 450 * Compound types are attributed later in attribBounds.
duke@1 451 * @param typarams the type variables to enter
duke@1 452 * @param env the current environment
duke@1 453 */
duke@1 454 void attribTypeVariables(List<JCTypeParameter> typarams, Env<AttrContext> env) {
duke@1 455 for (JCTypeParameter tvar : typarams) {
duke@1 456 TypeVar a = (TypeVar)tvar.type;
mcimadamore@42 457 a.tsym.flags_field |= UNATTRIBUTED;
mcimadamore@42 458 a.bound = Type.noType;
duke@1 459 if (!tvar.bounds.isEmpty()) {
duke@1 460 List<Type> bounds = List.of(attribType(tvar.bounds.head, env));
duke@1 461 for (JCExpression bound : tvar.bounds.tail)
duke@1 462 bounds = bounds.prepend(attribType(bound, env));
duke@1 463 types.setBounds(a, bounds.reverse());
duke@1 464 } else {
duke@1 465 // if no bounds are given, assume a single bound of
duke@1 466 // java.lang.Object.
duke@1 467 types.setBounds(a, List.of(syms.objectType));
duke@1 468 }
mcimadamore@42 469 a.tsym.flags_field &= ~UNATTRIBUTED;
duke@1 470 }
duke@1 471 for (JCTypeParameter tvar : typarams)
duke@1 472 chk.checkNonCyclic(tvar.pos(), (TypeVar)tvar.type);
duke@1 473 attribStats(typarams, env);
mcimadamore@42 474 }
mcimadamore@42 475
mcimadamore@42 476 void attribBounds(List<JCTypeParameter> typarams) {
duke@1 477 for (JCTypeParameter typaram : typarams) {
duke@1 478 Type bound = typaram.type.getUpperBound();
duke@1 479 if (bound != null && bound.tsym instanceof ClassSymbol) {
duke@1 480 ClassSymbol c = (ClassSymbol)bound.tsym;
duke@1 481 if ((c.flags_field & COMPOUND) != 0) {
duke@1 482 assert (c.flags_field & UNATTRIBUTED) != 0 : c;
duke@1 483 attribClass(typaram.pos(), c);
duke@1 484 }
duke@1 485 }
duke@1 486 }
duke@1 487 }
duke@1 488
duke@1 489 /**
duke@1 490 * Attribute the type references in a list of annotations.
duke@1 491 */
duke@1 492 void attribAnnotationTypes(List<JCAnnotation> annotations,
duke@1 493 Env<AttrContext> env) {
duke@1 494 for (List<JCAnnotation> al = annotations; al.nonEmpty(); al = al.tail) {
duke@1 495 JCAnnotation a = al.head;
duke@1 496 attribType(a.annotationType, env);
duke@1 497 }
duke@1 498 }
duke@1 499
duke@1 500 /** Attribute type reference in an `extends' or `implements' clause.
duke@1 501 *
duke@1 502 * @param tree The tree making up the type reference.
duke@1 503 * @param env The environment current at the reference.
duke@1 504 * @param classExpected true if only a class is expected here.
duke@1 505 * @param interfaceExpected true if only an interface is expected here.
duke@1 506 */
duke@1 507 Type attribBase(JCTree tree,
duke@1 508 Env<AttrContext> env,
duke@1 509 boolean classExpected,
duke@1 510 boolean interfaceExpected,
duke@1 511 boolean checkExtensible) {
duke@1 512 Type t = attribType(tree, env);
duke@1 513 return checkBase(t, tree, env, classExpected, interfaceExpected, checkExtensible);
duke@1 514 }
duke@1 515 Type checkBase(Type t,
duke@1 516 JCTree tree,
duke@1 517 Env<AttrContext> env,
duke@1 518 boolean classExpected,
duke@1 519 boolean interfaceExpected,
duke@1 520 boolean checkExtensible) {
duke@1 521 if (t.tag == TYPEVAR && !classExpected && !interfaceExpected) {
duke@1 522 // check that type variable is already visible
duke@1 523 if (t.getUpperBound() == null) {
duke@1 524 log.error(tree.pos(), "illegal.forward.ref");
duke@1 525 return syms.errType;
duke@1 526 }
duke@1 527 } else {
duke@1 528 t = chk.checkClassType(tree.pos(), t, checkExtensible|!allowGenerics);
duke@1 529 }
duke@1 530 if (interfaceExpected && (t.tsym.flags() & INTERFACE) == 0) {
duke@1 531 log.error(tree.pos(), "intf.expected.here");
duke@1 532 // return errType is necessary since otherwise there might
duke@1 533 // be undetected cycles which cause attribution to loop
duke@1 534 return syms.errType;
duke@1 535 } else if (checkExtensible &&
duke@1 536 classExpected &&
duke@1 537 (t.tsym.flags() & INTERFACE) != 0) {
duke@1 538 log.error(tree.pos(), "no.intf.expected.here");
duke@1 539 return syms.errType;
duke@1 540 }
duke@1 541 if (checkExtensible &&
duke@1 542 ((t.tsym.flags() & FINAL) != 0)) {
duke@1 543 log.error(tree.pos(),
duke@1 544 "cant.inherit.from.final", t.tsym);
duke@1 545 }
duke@1 546 chk.checkNonCyclic(tree.pos(), t);
duke@1 547 return t;
duke@1 548 }
duke@1 549
duke@1 550 public void visitClassDef(JCClassDecl tree) {
duke@1 551 // Local classes have not been entered yet, so we need to do it now:
duke@1 552 if ((env.info.scope.owner.kind & (VAR | MTH)) != 0)
duke@1 553 enter.classEnter(tree, env);
duke@1 554
duke@1 555 ClassSymbol c = tree.sym;
duke@1 556 if (c == null) {
duke@1 557 // exit in case something drastic went wrong during enter.
duke@1 558 result = null;
duke@1 559 } else {
duke@1 560 // make sure class has been completed:
duke@1 561 c.complete();
duke@1 562
duke@1 563 // If this class appears as an anonymous class
duke@1 564 // in a superclass constructor call where
duke@1 565 // no explicit outer instance is given,
duke@1 566 // disable implicit outer instance from being passed.
duke@1 567 // (This would be an illegal access to "this before super").
duke@1 568 if (env.info.isSelfCall &&
duke@1 569 env.tree.getTag() == JCTree.NEWCLASS &&
duke@1 570 ((JCNewClass) env.tree).encl == null)
duke@1 571 {
duke@1 572 c.flags_field |= NOOUTERTHIS;
duke@1 573 }
duke@1 574 attribClass(tree.pos(), c);
duke@1 575 result = tree.type = c.type;
duke@1 576 }
duke@1 577 }
duke@1 578
duke@1 579 public void visitMethodDef(JCMethodDecl tree) {
duke@1 580 MethodSymbol m = tree.sym;
duke@1 581
duke@1 582 Lint lint = env.info.lint.augment(m.attributes_field, m.flags());
duke@1 583 Lint prevLint = chk.setLint(lint);
duke@1 584 try {
duke@1 585 chk.checkDeprecatedAnnotation(tree.pos(), m);
duke@1 586
mcimadamore@42 587 attribBounds(tree.typarams);
duke@1 588
duke@1 589 // If we override any other methods, check that we do so properly.
duke@1 590 // JLS ???
duke@1 591 chk.checkOverride(tree, m);
duke@1 592
duke@1 593 // Create a new environment with local scope
duke@1 594 // for attributing the method.
duke@1 595 Env<AttrContext> localEnv = memberEnter.methodEnv(tree, env);
duke@1 596
duke@1 597 localEnv.info.lint = lint;
duke@1 598
duke@1 599 // Enter all type parameters into the local method scope.
duke@1 600 for (List<JCTypeParameter> l = tree.typarams; l.nonEmpty(); l = l.tail)
duke@1 601 localEnv.info.scope.enterIfAbsent(l.head.type.tsym);
duke@1 602
duke@1 603 ClassSymbol owner = env.enclClass.sym;
duke@1 604 if ((owner.flags() & ANNOTATION) != 0 &&
duke@1 605 tree.params.nonEmpty())
duke@1 606 log.error(tree.params.head.pos(),
duke@1 607 "intf.annotation.members.cant.have.params");
duke@1 608
duke@1 609 // Attribute all value parameters.
duke@1 610 for (List<JCVariableDecl> l = tree.params; l.nonEmpty(); l = l.tail) {
duke@1 611 attribStat(l.head, localEnv);
duke@1 612 }
duke@1 613
duke@1 614 // Check that type parameters are well-formed.
duke@1 615 chk.validateTypeParams(tree.typarams);
duke@1 616 if ((owner.flags() & ANNOTATION) != 0 &&
duke@1 617 tree.typarams.nonEmpty())
duke@1 618 log.error(tree.typarams.head.pos(),
duke@1 619 "intf.annotation.members.cant.have.type.params");
duke@1 620
duke@1 621 // Check that result type is well-formed.
duke@1 622 chk.validate(tree.restype);
duke@1 623 if ((owner.flags() & ANNOTATION) != 0)
duke@1 624 chk.validateAnnotationType(tree.restype);
duke@1 625
duke@1 626 if ((owner.flags() & ANNOTATION) != 0)
duke@1 627 chk.validateAnnotationMethod(tree.pos(), m);
duke@1 628
duke@1 629 // Check that all exceptions mentioned in the throws clause extend
duke@1 630 // java.lang.Throwable.
duke@1 631 if ((owner.flags() & ANNOTATION) != 0 && tree.thrown.nonEmpty())
duke@1 632 log.error(tree.thrown.head.pos(),
duke@1 633 "throws.not.allowed.in.intf.annotation");
duke@1 634 for (List<JCExpression> l = tree.thrown; l.nonEmpty(); l = l.tail)
duke@1 635 chk.checkType(l.head.pos(), l.head.type, syms.throwableType);
duke@1 636
duke@1 637 if (tree.body == null) {
duke@1 638 // Empty bodies are only allowed for
duke@1 639 // abstract, native, or interface methods, or for methods
duke@1 640 // in a retrofit signature class.
duke@1 641 if ((owner.flags() & INTERFACE) == 0 &&
duke@1 642 (tree.mods.flags & (ABSTRACT | NATIVE)) == 0 &&
duke@1 643 !relax)
duke@1 644 log.error(tree.pos(), "missing.meth.body.or.decl.abstract");
duke@1 645 if (tree.defaultValue != null) {
duke@1 646 if ((owner.flags() & ANNOTATION) == 0)
duke@1 647 log.error(tree.pos(),
duke@1 648 "default.allowed.in.intf.annotation.member");
duke@1 649 }
duke@1 650 } else if ((owner.flags() & INTERFACE) != 0) {
duke@1 651 log.error(tree.body.pos(), "intf.meth.cant.have.body");
duke@1 652 } else if ((tree.mods.flags & ABSTRACT) != 0) {
duke@1 653 log.error(tree.pos(), "abstract.meth.cant.have.body");
duke@1 654 } else if ((tree.mods.flags & NATIVE) != 0) {
duke@1 655 log.error(tree.pos(), "native.meth.cant.have.body");
duke@1 656 } else {
duke@1 657 // Add an implicit super() call unless an explicit call to
duke@1 658 // super(...) or this(...) is given
duke@1 659 // or we are compiling class java.lang.Object.
duke@1 660 if (tree.name == names.init && owner.type != syms.objectType) {
duke@1 661 JCBlock body = tree.body;
duke@1 662 if (body.stats.isEmpty() ||
duke@1 663 !TreeInfo.isSelfCall(body.stats.head)) {
duke@1 664 body.stats = body.stats.
duke@1 665 prepend(memberEnter.SuperCall(make.at(body.pos),
duke@1 666 List.<Type>nil(),
duke@1 667 List.<JCVariableDecl>nil(),
duke@1 668 false));
duke@1 669 } else if ((env.enclClass.sym.flags() & ENUM) != 0 &&
duke@1 670 (tree.mods.flags & GENERATEDCONSTR) == 0 &&
duke@1 671 TreeInfo.isSuperCall(body.stats.head)) {
duke@1 672 // enum constructors are not allowed to call super
duke@1 673 // directly, so make sure there aren't any super calls
duke@1 674 // in enum constructors, except in the compiler
duke@1 675 // generated one.
duke@1 676 log.error(tree.body.stats.head.pos(),
duke@1 677 "call.to.super.not.allowed.in.enum.ctor",
duke@1 678 env.enclClass.sym);
duke@1 679 }
duke@1 680 }
duke@1 681
duke@1 682 // Attribute method body.
duke@1 683 attribStat(tree.body, localEnv);
duke@1 684 }
duke@1 685 localEnv.info.scope.leave();
duke@1 686 result = tree.type = m.type;
duke@1 687 chk.validateAnnotations(tree.mods.annotations, m);
duke@1 688
duke@1 689 }
duke@1 690 finally {
duke@1 691 chk.setLint(prevLint);
duke@1 692 }
duke@1 693 }
duke@1 694
duke@1 695 public void visitVarDef(JCVariableDecl tree) {
duke@1 696 // Local variables have not been entered yet, so we need to do it now:
duke@1 697 if (env.info.scope.owner.kind == MTH) {
duke@1 698 if (tree.sym != null) {
duke@1 699 // parameters have already been entered
duke@1 700 env.info.scope.enter(tree.sym);
duke@1 701 } else {
duke@1 702 memberEnter.memberEnter(tree, env);
duke@1 703 annotate.flush();
duke@1 704 }
duke@1 705 }
duke@1 706
duke@1 707 // Check that the variable's declared type is well-formed.
duke@1 708 chk.validate(tree.vartype);
duke@1 709
duke@1 710 VarSymbol v = tree.sym;
duke@1 711 Lint lint = env.info.lint.augment(v.attributes_field, v.flags());
duke@1 712 Lint prevLint = chk.setLint(lint);
duke@1 713
duke@1 714 try {
duke@1 715 chk.checkDeprecatedAnnotation(tree.pos(), v);
duke@1 716
duke@1 717 if (tree.init != null) {
duke@1 718 if ((v.flags_field & FINAL) != 0 && tree.init.getTag() != JCTree.NEWCLASS) {
duke@1 719 // In this case, `v' is final. Ensure that it's initializer is
duke@1 720 // evaluated.
duke@1 721 v.getConstValue(); // ensure initializer is evaluated
duke@1 722 } else {
duke@1 723 // Attribute initializer in a new environment
duke@1 724 // with the declared variable as owner.
duke@1 725 // Check that initializer conforms to variable's declared type.
duke@1 726 Env<AttrContext> initEnv = memberEnter.initEnv(tree, env);
duke@1 727 initEnv.info.lint = lint;
duke@1 728 // In order to catch self-references, we set the variable's
duke@1 729 // declaration position to maximal possible value, effectively
duke@1 730 // marking the variable as undefined.
duke@1 731 v.pos = Position.MAXPOS;
duke@1 732 attribExpr(tree.init, initEnv, v.type);
duke@1 733 v.pos = tree.pos;
duke@1 734 }
duke@1 735 }
duke@1 736 result = tree.type = v.type;
duke@1 737 chk.validateAnnotations(tree.mods.annotations, v);
duke@1 738 }
duke@1 739 finally {
duke@1 740 chk.setLint(prevLint);
duke@1 741 }
duke@1 742 }
duke@1 743
duke@1 744 public void visitSkip(JCSkip tree) {
duke@1 745 result = null;
duke@1 746 }
duke@1 747
duke@1 748 public void visitBlock(JCBlock tree) {
duke@1 749 if (env.info.scope.owner.kind == TYP) {
duke@1 750 // Block is a static or instance initializer;
duke@1 751 // let the owner of the environment be a freshly
duke@1 752 // created BLOCK-method.
duke@1 753 Env<AttrContext> localEnv =
duke@1 754 env.dup(tree, env.info.dup(env.info.scope.dupUnshared()));
duke@1 755 localEnv.info.scope.owner =
duke@1 756 new MethodSymbol(tree.flags | BLOCK, names.empty, null,
duke@1 757 env.info.scope.owner);
duke@1 758 if ((tree.flags & STATIC) != 0) localEnv.info.staticLevel++;
duke@1 759 attribStats(tree.stats, localEnv);
duke@1 760 } else {
duke@1 761 // Create a new local environment with a local scope.
duke@1 762 Env<AttrContext> localEnv =
duke@1 763 env.dup(tree, env.info.dup(env.info.scope.dup()));
duke@1 764 attribStats(tree.stats, localEnv);
duke@1 765 localEnv.info.scope.leave();
duke@1 766 }
duke@1 767 result = null;
duke@1 768 }
duke@1 769
duke@1 770 public void visitDoLoop(JCDoWhileLoop tree) {
duke@1 771 attribStat(tree.body, env.dup(tree));
duke@1 772 attribExpr(tree.cond, env, syms.booleanType);
duke@1 773 result = null;
duke@1 774 }
duke@1 775
duke@1 776 public void visitWhileLoop(JCWhileLoop tree) {
duke@1 777 attribExpr(tree.cond, env, syms.booleanType);
duke@1 778 attribStat(tree.body, env.dup(tree));
duke@1 779 result = null;
duke@1 780 }
duke@1 781
duke@1 782 public void visitForLoop(JCForLoop tree) {
duke@1 783 Env<AttrContext> loopEnv =
duke@1 784 env.dup(env.tree, env.info.dup(env.info.scope.dup()));
duke@1 785 attribStats(tree.init, loopEnv);
duke@1 786 if (tree.cond != null) attribExpr(tree.cond, loopEnv, syms.booleanType);
duke@1 787 loopEnv.tree = tree; // before, we were not in loop!
duke@1 788 attribStats(tree.step, loopEnv);
duke@1 789 attribStat(tree.body, loopEnv);
duke@1 790 loopEnv.info.scope.leave();
duke@1 791 result = null;
duke@1 792 }
duke@1 793
duke@1 794 public void visitForeachLoop(JCEnhancedForLoop tree) {
duke@1 795 Env<AttrContext> loopEnv =
duke@1 796 env.dup(env.tree, env.info.dup(env.info.scope.dup()));
duke@1 797 attribStat(tree.var, loopEnv);
duke@1 798 Type exprType = types.upperBound(attribExpr(tree.expr, loopEnv));
duke@1 799 chk.checkNonVoid(tree.pos(), exprType);
duke@1 800 Type elemtype = types.elemtype(exprType); // perhaps expr is an array?
duke@1 801 if (elemtype == null) {
duke@1 802 // or perhaps expr implements Iterable<T>?
duke@1 803 Type base = types.asSuper(exprType, syms.iterableType.tsym);
duke@1 804 if (base == null) {
duke@1 805 log.error(tree.expr.pos(), "foreach.not.applicable.to.type");
duke@1 806 elemtype = syms.errType;
duke@1 807 } else {
duke@1 808 List<Type> iterableParams = base.allparams();
duke@1 809 elemtype = iterableParams.isEmpty()
duke@1 810 ? syms.objectType
duke@1 811 : types.upperBound(iterableParams.head);
duke@1 812 }
duke@1 813 }
duke@1 814 chk.checkType(tree.expr.pos(), elemtype, tree.var.sym.type);
duke@1 815 loopEnv.tree = tree; // before, we were not in loop!
duke@1 816 attribStat(tree.body, loopEnv);
duke@1 817 loopEnv.info.scope.leave();
duke@1 818 result = null;
duke@1 819 }
duke@1 820
duke@1 821 public void visitLabelled(JCLabeledStatement tree) {
duke@1 822 // Check that label is not used in an enclosing statement
duke@1 823 Env<AttrContext> env1 = env;
duke@1 824 while (env1 != null && env1.tree.getTag() != JCTree.CLASSDEF) {
duke@1 825 if (env1.tree.getTag() == JCTree.LABELLED &&
duke@1 826 ((JCLabeledStatement) env1.tree).label == tree.label) {
duke@1 827 log.error(tree.pos(), "label.already.in.use",
duke@1 828 tree.label);
duke@1 829 break;
duke@1 830 }
duke@1 831 env1 = env1.next;
duke@1 832 }
duke@1 833
duke@1 834 attribStat(tree.body, env.dup(tree));
duke@1 835 result = null;
duke@1 836 }
duke@1 837
duke@1 838 public void visitSwitch(JCSwitch tree) {
duke@1 839 Type seltype = attribExpr(tree.selector, env);
duke@1 840
duke@1 841 Env<AttrContext> switchEnv =
duke@1 842 env.dup(tree, env.info.dup(env.info.scope.dup()));
duke@1 843
duke@1 844 boolean enumSwitch =
duke@1 845 allowEnums &&
duke@1 846 (seltype.tsym.flags() & Flags.ENUM) != 0;
duke@1 847 if (!enumSwitch)
duke@1 848 seltype = chk.checkType(tree.selector.pos(), seltype, syms.intType);
duke@1 849
duke@1 850 // Attribute all cases and
duke@1 851 // check that there are no duplicate case labels or default clauses.
duke@1 852 Set<Object> labels = new HashSet<Object>(); // The set of case labels.
duke@1 853 boolean hasDefault = false; // Is there a default label?
duke@1 854 for (List<JCCase> l = tree.cases; l.nonEmpty(); l = l.tail) {
duke@1 855 JCCase c = l.head;
duke@1 856 Env<AttrContext> caseEnv =
duke@1 857 switchEnv.dup(c, env.info.dup(switchEnv.info.scope.dup()));
duke@1 858 if (c.pat != null) {
duke@1 859 if (enumSwitch) {
duke@1 860 Symbol sym = enumConstant(c.pat, seltype);
duke@1 861 if (sym == null) {
duke@1 862 log.error(c.pat.pos(), "enum.const.req");
duke@1 863 } else if (!labels.add(sym)) {
duke@1 864 log.error(c.pos(), "duplicate.case.label");
duke@1 865 }
duke@1 866 } else {
duke@1 867 Type pattype = attribExpr(c.pat, switchEnv, seltype);
duke@1 868 if (pattype.tag != ERROR) {
duke@1 869 if (pattype.constValue() == null) {
duke@1 870 log.error(c.pat.pos(), "const.expr.req");
duke@1 871 } else if (labels.contains(pattype.constValue())) {
duke@1 872 log.error(c.pos(), "duplicate.case.label");
duke@1 873 } else {
duke@1 874 labels.add(pattype.constValue());
duke@1 875 }
duke@1 876 }
duke@1 877 }
duke@1 878 } else if (hasDefault) {
duke@1 879 log.error(c.pos(), "duplicate.default.label");
duke@1 880 } else {
duke@1 881 hasDefault = true;
duke@1 882 }
duke@1 883 attribStats(c.stats, caseEnv);
duke@1 884 caseEnv.info.scope.leave();
duke@1 885 addVars(c.stats, switchEnv.info.scope);
duke@1 886 }
duke@1 887
duke@1 888 switchEnv.info.scope.leave();
duke@1 889 result = null;
duke@1 890 }
duke@1 891 // where
duke@1 892 /** Add any variables defined in stats to the switch scope. */
duke@1 893 private static void addVars(List<JCStatement> stats, Scope switchScope) {
duke@1 894 for (;stats.nonEmpty(); stats = stats.tail) {
duke@1 895 JCTree stat = stats.head;
duke@1 896 if (stat.getTag() == JCTree.VARDEF)
duke@1 897 switchScope.enter(((JCVariableDecl) stat).sym);
duke@1 898 }
duke@1 899 }
duke@1 900 // where
duke@1 901 /** Return the selected enumeration constant symbol, or null. */
duke@1 902 private Symbol enumConstant(JCTree tree, Type enumType) {
duke@1 903 if (tree.getTag() != JCTree.IDENT) {
duke@1 904 log.error(tree.pos(), "enum.label.must.be.unqualified.enum");
duke@1 905 return syms.errSymbol;
duke@1 906 }
duke@1 907 JCIdent ident = (JCIdent)tree;
duke@1 908 Name name = ident.name;
duke@1 909 for (Scope.Entry e = enumType.tsym.members().lookup(name);
duke@1 910 e.scope != null; e = e.next()) {
duke@1 911 if (e.sym.kind == VAR) {
duke@1 912 Symbol s = ident.sym = e.sym;
duke@1 913 ((VarSymbol)s).getConstValue(); // ensure initializer is evaluated
duke@1 914 ident.type = s.type;
duke@1 915 return ((s.flags_field & Flags.ENUM) == 0)
duke@1 916 ? null : s;
duke@1 917 }
duke@1 918 }
duke@1 919 return null;
duke@1 920 }
duke@1 921
duke@1 922 public void visitSynchronized(JCSynchronized tree) {
duke@1 923 chk.checkRefType(tree.pos(), attribExpr(tree.lock, env));
duke@1 924 attribStat(tree.body, env);
duke@1 925 result = null;
duke@1 926 }
duke@1 927
duke@1 928 public void visitTry(JCTry tree) {
duke@1 929 // Attribute body
duke@1 930 attribStat(tree.body, env.dup(tree, env.info.dup()));
duke@1 931
duke@1 932 // Attribute catch clauses
duke@1 933 for (List<JCCatch> l = tree.catchers; l.nonEmpty(); l = l.tail) {
duke@1 934 JCCatch c = l.head;
duke@1 935 Env<AttrContext> catchEnv =
duke@1 936 env.dup(c, env.info.dup(env.info.scope.dup()));
duke@1 937 Type ctype = attribStat(c.param, catchEnv);
duke@1 938 if (c.param.type.tsym.kind == Kinds.VAR) {
duke@1 939 c.param.sym.setData(ElementKind.EXCEPTION_PARAMETER);
duke@1 940 }
duke@1 941 chk.checkType(c.param.vartype.pos(),
duke@1 942 chk.checkClassType(c.param.vartype.pos(), ctype),
duke@1 943 syms.throwableType);
duke@1 944 attribStat(c.body, catchEnv);
duke@1 945 catchEnv.info.scope.leave();
duke@1 946 }
duke@1 947
duke@1 948 // Attribute finalizer
duke@1 949 if (tree.finalizer != null) attribStat(tree.finalizer, env);
duke@1 950 result = null;
duke@1 951 }
duke@1 952
duke@1 953 public void visitConditional(JCConditional tree) {
duke@1 954 attribExpr(tree.cond, env, syms.booleanType);
duke@1 955 attribExpr(tree.truepart, env);
duke@1 956 attribExpr(tree.falsepart, env);
duke@1 957 result = check(tree,
duke@1 958 capture(condType(tree.pos(), tree.cond.type,
duke@1 959 tree.truepart.type, tree.falsepart.type)),
duke@1 960 VAL, pkind, pt);
duke@1 961 }
duke@1 962 //where
duke@1 963 /** Compute the type of a conditional expression, after
duke@1 964 * checking that it exists. See Spec 15.25.
duke@1 965 *
duke@1 966 * @param pos The source position to be used for
duke@1 967 * error diagnostics.
duke@1 968 * @param condtype The type of the expression's condition.
duke@1 969 * @param thentype The type of the expression's then-part.
duke@1 970 * @param elsetype The type of the expression's else-part.
duke@1 971 */
duke@1 972 private Type condType(DiagnosticPosition pos,
duke@1 973 Type condtype,
duke@1 974 Type thentype,
duke@1 975 Type elsetype) {
duke@1 976 Type ctype = condType1(pos, condtype, thentype, elsetype);
duke@1 977
duke@1 978 // If condition and both arms are numeric constants,
duke@1 979 // evaluate at compile-time.
duke@1 980 return ((condtype.constValue() != null) &&
duke@1 981 (thentype.constValue() != null) &&
duke@1 982 (elsetype.constValue() != null))
duke@1 983 ? cfolder.coerce(condtype.isTrue()?thentype:elsetype, ctype)
duke@1 984 : ctype;
duke@1 985 }
duke@1 986 /** Compute the type of a conditional expression, after
duke@1 987 * checking that it exists. Does not take into
duke@1 988 * account the special case where condition and both arms
duke@1 989 * are constants.
duke@1 990 *
duke@1 991 * @param pos The source position to be used for error
duke@1 992 * diagnostics.
duke@1 993 * @param condtype The type of the expression's condition.
duke@1 994 * @param thentype The type of the expression's then-part.
duke@1 995 * @param elsetype The type of the expression's else-part.
duke@1 996 */
duke@1 997 private Type condType1(DiagnosticPosition pos, Type condtype,
duke@1 998 Type thentype, Type elsetype) {
duke@1 999 // If same type, that is the result
duke@1 1000 if (types.isSameType(thentype, elsetype))
duke@1 1001 return thentype.baseType();
duke@1 1002
duke@1 1003 Type thenUnboxed = (!allowBoxing || thentype.isPrimitive())
duke@1 1004 ? thentype : types.unboxedType(thentype);
duke@1 1005 Type elseUnboxed = (!allowBoxing || elsetype.isPrimitive())
duke@1 1006 ? elsetype : types.unboxedType(elsetype);
duke@1 1007
duke@1 1008 // Otherwise, if both arms can be converted to a numeric
duke@1 1009 // type, return the least numeric type that fits both arms
duke@1 1010 // (i.e. return larger of the two, or return int if one
duke@1 1011 // arm is short, the other is char).
duke@1 1012 if (thenUnboxed.isPrimitive() && elseUnboxed.isPrimitive()) {
duke@1 1013 // If one arm has an integer subrange type (i.e., byte,
duke@1 1014 // short, or char), and the other is an integer constant
duke@1 1015 // that fits into the subrange, return the subrange type.
duke@1 1016 if (thenUnboxed.tag < INT && elseUnboxed.tag == INT &&
duke@1 1017 types.isAssignable(elseUnboxed, thenUnboxed))
duke@1 1018 return thenUnboxed.baseType();
duke@1 1019 if (elseUnboxed.tag < INT && thenUnboxed.tag == INT &&
duke@1 1020 types.isAssignable(thenUnboxed, elseUnboxed))
duke@1 1021 return elseUnboxed.baseType();
duke@1 1022
duke@1 1023 for (int i = BYTE; i < VOID; i++) {
duke@1 1024 Type candidate = syms.typeOfTag[i];
duke@1 1025 if (types.isSubtype(thenUnboxed, candidate) &&
duke@1 1026 types.isSubtype(elseUnboxed, candidate))
duke@1 1027 return candidate;
duke@1 1028 }
duke@1 1029 }
duke@1 1030
duke@1 1031 // Those were all the cases that could result in a primitive
duke@1 1032 if (allowBoxing) {
duke@1 1033 if (thentype.isPrimitive())
duke@1 1034 thentype = types.boxedClass(thentype).type;
duke@1 1035 if (elsetype.isPrimitive())
duke@1 1036 elsetype = types.boxedClass(elsetype).type;
duke@1 1037 }
duke@1 1038
duke@1 1039 if (types.isSubtype(thentype, elsetype))
duke@1 1040 return elsetype.baseType();
duke@1 1041 if (types.isSubtype(elsetype, thentype))
duke@1 1042 return thentype.baseType();
duke@1 1043
duke@1 1044 if (!allowBoxing || thentype.tag == VOID || elsetype.tag == VOID) {
duke@1 1045 log.error(pos, "neither.conditional.subtype",
duke@1 1046 thentype, elsetype);
duke@1 1047 return thentype.baseType();
duke@1 1048 }
duke@1 1049
duke@1 1050 // both are known to be reference types. The result is
duke@1 1051 // lub(thentype,elsetype). This cannot fail, as it will
duke@1 1052 // always be possible to infer "Object" if nothing better.
duke@1 1053 return types.lub(thentype.baseType(), elsetype.baseType());
duke@1 1054 }
duke@1 1055
duke@1 1056 public void visitIf(JCIf tree) {
duke@1 1057 attribExpr(tree.cond, env, syms.booleanType);
duke@1 1058 attribStat(tree.thenpart, env);
duke@1 1059 if (tree.elsepart != null)
duke@1 1060 attribStat(tree.elsepart, env);
duke@1 1061 chk.checkEmptyIf(tree);
duke@1 1062 result = null;
duke@1 1063 }
duke@1 1064
duke@1 1065 public void visitExec(JCExpressionStatement tree) {
duke@1 1066 attribExpr(tree.expr, env);
duke@1 1067 result = null;
duke@1 1068 }
duke@1 1069
duke@1 1070 public void visitBreak(JCBreak tree) {
duke@1 1071 tree.target = findJumpTarget(tree.pos(), tree.getTag(), tree.label, env);
duke@1 1072 result = null;
duke@1 1073 }
duke@1 1074
duke@1 1075 public void visitContinue(JCContinue tree) {
duke@1 1076 tree.target = findJumpTarget(tree.pos(), tree.getTag(), tree.label, env);
duke@1 1077 result = null;
duke@1 1078 }
duke@1 1079 //where
duke@1 1080 /** Return the target of a break or continue statement, if it exists,
duke@1 1081 * report an error if not.
duke@1 1082 * Note: The target of a labelled break or continue is the
duke@1 1083 * (non-labelled) statement tree referred to by the label,
duke@1 1084 * not the tree representing the labelled statement itself.
duke@1 1085 *
duke@1 1086 * @param pos The position to be used for error diagnostics
duke@1 1087 * @param tag The tag of the jump statement. This is either
duke@1 1088 * Tree.BREAK or Tree.CONTINUE.
duke@1 1089 * @param label The label of the jump statement, or null if no
duke@1 1090 * label is given.
duke@1 1091 * @param env The environment current at the jump statement.
duke@1 1092 */
duke@1 1093 private JCTree findJumpTarget(DiagnosticPosition pos,
duke@1 1094 int tag,
duke@1 1095 Name label,
duke@1 1096 Env<AttrContext> env) {
duke@1 1097 // Search environments outwards from the point of jump.
duke@1 1098 Env<AttrContext> env1 = env;
duke@1 1099 LOOP:
duke@1 1100 while (env1 != null) {
duke@1 1101 switch (env1.tree.getTag()) {
duke@1 1102 case JCTree.LABELLED:
duke@1 1103 JCLabeledStatement labelled = (JCLabeledStatement)env1.tree;
duke@1 1104 if (label == labelled.label) {
duke@1 1105 // If jump is a continue, check that target is a loop.
duke@1 1106 if (tag == JCTree.CONTINUE) {
duke@1 1107 if (labelled.body.getTag() != JCTree.DOLOOP &&
duke@1 1108 labelled.body.getTag() != JCTree.WHILELOOP &&
duke@1 1109 labelled.body.getTag() != JCTree.FORLOOP &&
duke@1 1110 labelled.body.getTag() != JCTree.FOREACHLOOP)
duke@1 1111 log.error(pos, "not.loop.label", label);
duke@1 1112 // Found labelled statement target, now go inwards
duke@1 1113 // to next non-labelled tree.
duke@1 1114 return TreeInfo.referencedStatement(labelled);
duke@1 1115 } else {
duke@1 1116 return labelled;
duke@1 1117 }
duke@1 1118 }
duke@1 1119 break;
duke@1 1120 case JCTree.DOLOOP:
duke@1 1121 case JCTree.WHILELOOP:
duke@1 1122 case JCTree.FORLOOP:
duke@1 1123 case JCTree.FOREACHLOOP:
duke@1 1124 if (label == null) return env1.tree;
duke@1 1125 break;
duke@1 1126 case JCTree.SWITCH:
duke@1 1127 if (label == null && tag == JCTree.BREAK) return env1.tree;
duke@1 1128 break;
duke@1 1129 case JCTree.METHODDEF:
duke@1 1130 case JCTree.CLASSDEF:
duke@1 1131 break LOOP;
duke@1 1132 default:
duke@1 1133 }
duke@1 1134 env1 = env1.next;
duke@1 1135 }
duke@1 1136 if (label != null)
duke@1 1137 log.error(pos, "undef.label", label);
duke@1 1138 else if (tag == JCTree.CONTINUE)
duke@1 1139 log.error(pos, "cont.outside.loop");
duke@1 1140 else
duke@1 1141 log.error(pos, "break.outside.switch.loop");
duke@1 1142 return null;
duke@1 1143 }
duke@1 1144
duke@1 1145 public void visitReturn(JCReturn tree) {
duke@1 1146 // Check that there is an enclosing method which is
duke@1 1147 // nested within than the enclosing class.
duke@1 1148 if (env.enclMethod == null ||
duke@1 1149 env.enclMethod.sym.owner != env.enclClass.sym) {
duke@1 1150 log.error(tree.pos(), "ret.outside.meth");
duke@1 1151
duke@1 1152 } else {
duke@1 1153 // Attribute return expression, if it exists, and check that
duke@1 1154 // it conforms to result type of enclosing method.
duke@1 1155 Symbol m = env.enclMethod.sym;
duke@1 1156 if (m.type.getReturnType().tag == VOID) {
duke@1 1157 if (tree.expr != null)
duke@1 1158 log.error(tree.expr.pos(),
duke@1 1159 "cant.ret.val.from.meth.decl.void");
duke@1 1160 } else if (tree.expr == null) {
duke@1 1161 log.error(tree.pos(), "missing.ret.val");
duke@1 1162 } else {
duke@1 1163 attribExpr(tree.expr, env, m.type.getReturnType());
duke@1 1164 }
duke@1 1165 }
duke@1 1166 result = null;
duke@1 1167 }
duke@1 1168
duke@1 1169 public void visitThrow(JCThrow tree) {
duke@1 1170 attribExpr(tree.expr, env, syms.throwableType);
duke@1 1171 result = null;
duke@1 1172 }
duke@1 1173
duke@1 1174 public void visitAssert(JCAssert tree) {
duke@1 1175 attribExpr(tree.cond, env, syms.booleanType);
duke@1 1176 if (tree.detail != null) {
duke@1 1177 chk.checkNonVoid(tree.detail.pos(), attribExpr(tree.detail, env));
duke@1 1178 }
duke@1 1179 result = null;
duke@1 1180 }
duke@1 1181
duke@1 1182 /** Visitor method for method invocations.
duke@1 1183 * NOTE: The method part of an application will have in its type field
duke@1 1184 * the return type of the method, not the method's type itself!
duke@1 1185 */
duke@1 1186 public void visitApply(JCMethodInvocation tree) {
duke@1 1187 // The local environment of a method application is
duke@1 1188 // a new environment nested in the current one.
duke@1 1189 Env<AttrContext> localEnv = env.dup(tree, env.info.dup());
duke@1 1190
duke@1 1191 // The types of the actual method arguments.
duke@1 1192 List<Type> argtypes;
duke@1 1193
duke@1 1194 // The types of the actual method type arguments.
duke@1 1195 List<Type> typeargtypes = null;
duke@1 1196
duke@1 1197 Name methName = TreeInfo.name(tree.meth);
duke@1 1198
duke@1 1199 boolean isConstructorCall =
duke@1 1200 methName == names._this || methName == names._super;
duke@1 1201
duke@1 1202 if (isConstructorCall) {
duke@1 1203 // We are seeing a ...this(...) or ...super(...) call.
duke@1 1204 // Check that this is the first statement in a constructor.
duke@1 1205 if (checkFirstConstructorStat(tree, env)) {
duke@1 1206
duke@1 1207 // Record the fact
duke@1 1208 // that this is a constructor call (using isSelfCall).
duke@1 1209 localEnv.info.isSelfCall = true;
duke@1 1210
duke@1 1211 // Attribute arguments, yielding list of argument types.
duke@1 1212 argtypes = attribArgs(tree.args, localEnv);
duke@1 1213 typeargtypes = attribTypes(tree.typeargs, localEnv);
duke@1 1214
duke@1 1215 // Variable `site' points to the class in which the called
duke@1 1216 // constructor is defined.
duke@1 1217 Type site = env.enclClass.sym.type;
duke@1 1218 if (methName == names._super) {
duke@1 1219 if (site == syms.objectType) {
duke@1 1220 log.error(tree.meth.pos(), "no.superclass", site);
duke@1 1221 site = syms.errType;
duke@1 1222 } else {
duke@1 1223 site = types.supertype(site);
duke@1 1224 }
duke@1 1225 }
duke@1 1226
duke@1 1227 if (site.tag == CLASS) {
duke@1 1228 if (site.getEnclosingType().tag == CLASS) {
duke@1 1229 // we are calling a nested class
duke@1 1230
duke@1 1231 if (tree.meth.getTag() == JCTree.SELECT) {
duke@1 1232 JCTree qualifier = ((JCFieldAccess) tree.meth).selected;
duke@1 1233
duke@1 1234 // We are seeing a prefixed call, of the form
duke@1 1235 // <expr>.super(...).
duke@1 1236 // Check that the prefix expression conforms
duke@1 1237 // to the outer instance type of the class.
duke@1 1238 chk.checkRefType(qualifier.pos(),
duke@1 1239 attribExpr(qualifier, localEnv,
duke@1 1240 site.getEnclosingType()));
duke@1 1241 } else if (methName == names._super) {
duke@1 1242 // qualifier omitted; check for existence
duke@1 1243 // of an appropriate implicit qualifier.
duke@1 1244 rs.resolveImplicitThis(tree.meth.pos(),
duke@1 1245 localEnv, site);
duke@1 1246 }
duke@1 1247 } else if (tree.meth.getTag() == JCTree.SELECT) {
duke@1 1248 log.error(tree.meth.pos(), "illegal.qual.not.icls",
duke@1 1249 site.tsym);
duke@1 1250 }
duke@1 1251
duke@1 1252 // if we're calling a java.lang.Enum constructor,
duke@1 1253 // prefix the implicit String and int parameters
duke@1 1254 if (site.tsym == syms.enumSym && allowEnums)
duke@1 1255 argtypes = argtypes.prepend(syms.intType).prepend(syms.stringType);
duke@1 1256
duke@1 1257 // Resolve the called constructor under the assumption
duke@1 1258 // that we are referring to a superclass instance of the
duke@1 1259 // current instance (JLS ???).
duke@1 1260 boolean selectSuperPrev = localEnv.info.selectSuper;
duke@1 1261 localEnv.info.selectSuper = true;
duke@1 1262 localEnv.info.varArgs = false;
duke@1 1263 Symbol sym = rs.resolveConstructor(
duke@1 1264 tree.meth.pos(), localEnv, site, argtypes, typeargtypes);
duke@1 1265 localEnv.info.selectSuper = selectSuperPrev;
duke@1 1266
duke@1 1267 // Set method symbol to resolved constructor...
duke@1 1268 TreeInfo.setSymbol(tree.meth, sym);
duke@1 1269
duke@1 1270 // ...and check that it is legal in the current context.
duke@1 1271 // (this will also set the tree's type)
duke@1 1272 Type mpt = newMethTemplate(argtypes, typeargtypes);
duke@1 1273 checkId(tree.meth, site, sym, localEnv, MTH,
duke@1 1274 mpt, tree.varargsElement != null);
duke@1 1275 }
duke@1 1276 // Otherwise, `site' is an error type and we do nothing
duke@1 1277 }
duke@1 1278 result = tree.type = syms.voidType;
duke@1 1279 } else {
duke@1 1280 // Otherwise, we are seeing a regular method call.
duke@1 1281 // Attribute the arguments, yielding list of argument types, ...
duke@1 1282 argtypes = attribArgs(tree.args, localEnv);
duke@1 1283 typeargtypes = attribTypes(tree.typeargs, localEnv);
duke@1 1284
duke@1 1285 // ... and attribute the method using as a prototype a methodtype
duke@1 1286 // whose formal argument types is exactly the list of actual
duke@1 1287 // arguments (this will also set the method symbol).
duke@1 1288 Type mpt = newMethTemplate(argtypes, typeargtypes);
duke@1 1289 localEnv.info.varArgs = false;
duke@1 1290 Type mtype = attribExpr(tree.meth, localEnv, mpt);
duke@1 1291 if (localEnv.info.varArgs)
duke@1 1292 assert mtype.isErroneous() || tree.varargsElement != null;
duke@1 1293
duke@1 1294 // Compute the result type.
duke@1 1295 Type restype = mtype.getReturnType();
duke@1 1296 assert restype.tag != WILDCARD : mtype;
duke@1 1297
duke@1 1298 // as a special case, array.clone() has a result that is
duke@1 1299 // the same as static type of the array being cloned
duke@1 1300 if (tree.meth.getTag() == JCTree.SELECT &&
duke@1 1301 allowCovariantReturns &&
duke@1 1302 methName == names.clone &&
duke@1 1303 types.isArray(((JCFieldAccess) tree.meth).selected.type))
duke@1 1304 restype = ((JCFieldAccess) tree.meth).selected.type;
duke@1 1305
duke@1 1306 // as a special case, x.getClass() has type Class<? extends |X|>
duke@1 1307 if (allowGenerics &&
duke@1 1308 methName == names.getClass && tree.args.isEmpty()) {
duke@1 1309 Type qualifier = (tree.meth.getTag() == JCTree.SELECT)
duke@1 1310 ? ((JCFieldAccess) tree.meth).selected.type
duke@1 1311 : env.enclClass.sym.type;
duke@1 1312 restype = new
duke@1 1313 ClassType(restype.getEnclosingType(),
duke@1 1314 List.<Type>of(new WildcardType(types.erasure(qualifier),
duke@1 1315 BoundKind.EXTENDS,
duke@1 1316 syms.boundClass)),
duke@1 1317 restype.tsym);
duke@1 1318 }
duke@1 1319
duke@1 1320 // Check that value of resulting type is admissible in the
duke@1 1321 // current context. Also, capture the return type
duke@1 1322 result = check(tree, capture(restype), VAL, pkind, pt);
duke@1 1323 }
duke@1 1324 chk.validate(tree.typeargs);
duke@1 1325 }
duke@1 1326 //where
duke@1 1327 /** Check that given application node appears as first statement
duke@1 1328 * in a constructor call.
duke@1 1329 * @param tree The application node
duke@1 1330 * @param env The environment current at the application.
duke@1 1331 */
duke@1 1332 boolean checkFirstConstructorStat(JCMethodInvocation tree, Env<AttrContext> env) {
duke@1 1333 JCMethodDecl enclMethod = env.enclMethod;
duke@1 1334 if (enclMethod != null && enclMethod.name == names.init) {
duke@1 1335 JCBlock body = enclMethod.body;
duke@1 1336 if (body.stats.head.getTag() == JCTree.EXEC &&
duke@1 1337 ((JCExpressionStatement) body.stats.head).expr == tree)
duke@1 1338 return true;
duke@1 1339 }
duke@1 1340 log.error(tree.pos(),"call.must.be.first.stmt.in.ctor",
duke@1 1341 TreeInfo.name(tree.meth));
duke@1 1342 return false;
duke@1 1343 }
duke@1 1344
duke@1 1345 /** Obtain a method type with given argument types.
duke@1 1346 */
duke@1 1347 Type newMethTemplate(List<Type> argtypes, List<Type> typeargtypes) {
duke@1 1348 MethodType mt = new MethodType(argtypes, null, null, syms.methodClass);
duke@1 1349 return (typeargtypes == null) ? mt : (Type)new ForAll(typeargtypes, mt);
duke@1 1350 }
duke@1 1351
duke@1 1352 public void visitNewClass(JCNewClass tree) {
duke@1 1353 Type owntype = syms.errType;
duke@1 1354
duke@1 1355 // The local environment of a class creation is
duke@1 1356 // a new environment nested in the current one.
duke@1 1357 Env<AttrContext> localEnv = env.dup(tree, env.info.dup());
duke@1 1358
duke@1 1359 // The anonymous inner class definition of the new expression,
duke@1 1360 // if one is defined by it.
duke@1 1361 JCClassDecl cdef = tree.def;
duke@1 1362
duke@1 1363 // If enclosing class is given, attribute it, and
duke@1 1364 // complete class name to be fully qualified
duke@1 1365 JCExpression clazz = tree.clazz; // Class field following new
duke@1 1366 JCExpression clazzid = // Identifier in class field
duke@1 1367 (clazz.getTag() == JCTree.TYPEAPPLY)
duke@1 1368 ? ((JCTypeApply) clazz).clazz
duke@1 1369 : clazz;
duke@1 1370
duke@1 1371 JCExpression clazzid1 = clazzid; // The same in fully qualified form
duke@1 1372
duke@1 1373 if (tree.encl != null) {
duke@1 1374 // We are seeing a qualified new, of the form
duke@1 1375 // <expr>.new C <...> (...) ...
duke@1 1376 // In this case, we let clazz stand for the name of the
duke@1 1377 // allocated class C prefixed with the type of the qualifier
duke@1 1378 // expression, so that we can
duke@1 1379 // resolve it with standard techniques later. I.e., if
duke@1 1380 // <expr> has type T, then <expr>.new C <...> (...)
duke@1 1381 // yields a clazz T.C.
duke@1 1382 Type encltype = chk.checkRefType(tree.encl.pos(),
duke@1 1383 attribExpr(tree.encl, env));
duke@1 1384 clazzid1 = make.at(clazz.pos).Select(make.Type(encltype),
duke@1 1385 ((JCIdent) clazzid).name);
duke@1 1386 if (clazz.getTag() == JCTree.TYPEAPPLY)
duke@1 1387 clazz = make.at(tree.pos).
duke@1 1388 TypeApply(clazzid1,
duke@1 1389 ((JCTypeApply) clazz).arguments);
duke@1 1390 else
duke@1 1391 clazz = clazzid1;
duke@1 1392 // System.out.println(clazz + " generated.");//DEBUG
duke@1 1393 }
duke@1 1394
duke@1 1395 // Attribute clazz expression and store
duke@1 1396 // symbol + type back into the attributed tree.
duke@1 1397 Type clazztype = chk.checkClassType(
duke@1 1398 tree.clazz.pos(), attribType(clazz, env), true);
duke@1 1399 chk.validate(clazz);
duke@1 1400 if (tree.encl != null) {
duke@1 1401 // We have to work in this case to store
duke@1 1402 // symbol + type back into the attributed tree.
duke@1 1403 tree.clazz.type = clazztype;
duke@1 1404 TreeInfo.setSymbol(clazzid, TreeInfo.symbol(clazzid1));
duke@1 1405 clazzid.type = ((JCIdent) clazzid).sym.type;
duke@1 1406 if (!clazztype.isErroneous()) {
duke@1 1407 if (cdef != null && clazztype.tsym.isInterface()) {
duke@1 1408 log.error(tree.encl.pos(), "anon.class.impl.intf.no.qual.for.new");
duke@1 1409 } else if (clazztype.tsym.isStatic()) {
duke@1 1410 log.error(tree.encl.pos(), "qualified.new.of.static.class", clazztype.tsym);
duke@1 1411 }
duke@1 1412 }
duke@1 1413 } else if (!clazztype.tsym.isInterface() &&
duke@1 1414 clazztype.getEnclosingType().tag == CLASS) {
duke@1 1415 // Check for the existence of an apropos outer instance
duke@1 1416 rs.resolveImplicitThis(tree.pos(), env, clazztype);
duke@1 1417 }
duke@1 1418
duke@1 1419 // Attribute constructor arguments.
duke@1 1420 List<Type> argtypes = attribArgs(tree.args, localEnv);
duke@1 1421 List<Type> typeargtypes = attribTypes(tree.typeargs, localEnv);
duke@1 1422
duke@1 1423 // If we have made no mistakes in the class type...
duke@1 1424 if (clazztype.tag == CLASS) {
duke@1 1425 // Enums may not be instantiated except implicitly
duke@1 1426 if (allowEnums &&
duke@1 1427 (clazztype.tsym.flags_field&Flags.ENUM) != 0 &&
duke@1 1428 (env.tree.getTag() != JCTree.VARDEF ||
duke@1 1429 (((JCVariableDecl) env.tree).mods.flags&Flags.ENUM) == 0 ||
duke@1 1430 ((JCVariableDecl) env.tree).init != tree))
duke@1 1431 log.error(tree.pos(), "enum.cant.be.instantiated");
duke@1 1432 // Check that class is not abstract
duke@1 1433 if (cdef == null &&
duke@1 1434 (clazztype.tsym.flags() & (ABSTRACT | INTERFACE)) != 0) {
duke@1 1435 log.error(tree.pos(), "abstract.cant.be.instantiated",
duke@1 1436 clazztype.tsym);
duke@1 1437 } else if (cdef != null && clazztype.tsym.isInterface()) {
duke@1 1438 // Check that no constructor arguments are given to
duke@1 1439 // anonymous classes implementing an interface
duke@1 1440 if (!argtypes.isEmpty())
duke@1 1441 log.error(tree.args.head.pos(), "anon.class.impl.intf.no.args");
duke@1 1442
duke@1 1443 if (!typeargtypes.isEmpty())
duke@1 1444 log.error(tree.typeargs.head.pos(), "anon.class.impl.intf.no.typeargs");
duke@1 1445
duke@1 1446 // Error recovery: pretend no arguments were supplied.
duke@1 1447 argtypes = List.nil();
duke@1 1448 typeargtypes = List.nil();
duke@1 1449 }
duke@1 1450
duke@1 1451 // Resolve the called constructor under the assumption
duke@1 1452 // that we are referring to a superclass instance of the
duke@1 1453 // current instance (JLS ???).
duke@1 1454 else {
duke@1 1455 localEnv.info.selectSuper = cdef != null;
duke@1 1456 localEnv.info.varArgs = false;
duke@1 1457 tree.constructor = rs.resolveConstructor(
duke@1 1458 tree.pos(), localEnv, clazztype, argtypes, typeargtypes);
duke@1 1459 Type ctorType = checkMethod(clazztype,
duke@1 1460 tree.constructor,
duke@1 1461 localEnv,
duke@1 1462 tree.args,
duke@1 1463 argtypes,
duke@1 1464 typeargtypes,
duke@1 1465 localEnv.info.varArgs);
duke@1 1466 if (localEnv.info.varArgs)
duke@1 1467 assert ctorType.isErroneous() || tree.varargsElement != null;
duke@1 1468 }
duke@1 1469
duke@1 1470 if (cdef != null) {
duke@1 1471 // We are seeing an anonymous class instance creation.
duke@1 1472 // In this case, the class instance creation
duke@1 1473 // expression
duke@1 1474 //
duke@1 1475 // E.new <typeargs1>C<typargs2>(args) { ... }
duke@1 1476 //
duke@1 1477 // is represented internally as
duke@1 1478 //
duke@1 1479 // E . new <typeargs1>C<typargs2>(args) ( class <empty-name> { ... } ) .
duke@1 1480 //
duke@1 1481 // This expression is then *transformed* as follows:
duke@1 1482 //
duke@1 1483 // (1) add a STATIC flag to the class definition
duke@1 1484 // if the current environment is static
duke@1 1485 // (2) add an extends or implements clause
duke@1 1486 // (3) add a constructor.
duke@1 1487 //
duke@1 1488 // For instance, if C is a class, and ET is the type of E,
duke@1 1489 // the expression
duke@1 1490 //
duke@1 1491 // E.new <typeargs1>C<typargs2>(args) { ... }
duke@1 1492 //
duke@1 1493 // is translated to (where X is a fresh name and typarams is the
duke@1 1494 // parameter list of the super constructor):
duke@1 1495 //
duke@1 1496 // new <typeargs1>X(<*nullchk*>E, args) where
duke@1 1497 // X extends C<typargs2> {
duke@1 1498 // <typarams> X(ET e, args) {
duke@1 1499 // e.<typeargs1>super(args)
duke@1 1500 // }
duke@1 1501 // ...
duke@1 1502 // }
duke@1 1503 if (Resolve.isStatic(env)) cdef.mods.flags |= STATIC;
duke@1 1504
duke@1 1505 if (clazztype.tsym.isInterface()) {
duke@1 1506 cdef.implementing = List.of(clazz);
duke@1 1507 } else {
duke@1 1508 cdef.extending = clazz;
duke@1 1509 }
duke@1 1510
duke@1 1511 attribStat(cdef, localEnv);
duke@1 1512
duke@1 1513 // If an outer instance is given,
duke@1 1514 // prefix it to the constructor arguments
duke@1 1515 // and delete it from the new expression
duke@1 1516 if (tree.encl != null && !clazztype.tsym.isInterface()) {
duke@1 1517 tree.args = tree.args.prepend(makeNullCheck(tree.encl));
duke@1 1518 argtypes = argtypes.prepend(tree.encl.type);
duke@1 1519 tree.encl = null;
duke@1 1520 }
duke@1 1521
duke@1 1522 // Reassign clazztype and recompute constructor.
duke@1 1523 clazztype = cdef.sym.type;
duke@1 1524 Symbol sym = rs.resolveConstructor(
duke@1 1525 tree.pos(), localEnv, clazztype, argtypes,
duke@1 1526 typeargtypes, true, tree.varargsElement != null);
duke@1 1527 assert sym.kind < AMBIGUOUS || tree.constructor.type.isErroneous();
duke@1 1528 tree.constructor = sym;
duke@1 1529 }
duke@1 1530
duke@1 1531 if (tree.constructor != null && tree.constructor.kind == MTH)
duke@1 1532 owntype = clazztype;
duke@1 1533 }
duke@1 1534 result = check(tree, owntype, VAL, pkind, pt);
duke@1 1535 chk.validate(tree.typeargs);
duke@1 1536 }
duke@1 1537
duke@1 1538 /** Make an attributed null check tree.
duke@1 1539 */
duke@1 1540 public JCExpression makeNullCheck(JCExpression arg) {
duke@1 1541 // optimization: X.this is never null; skip null check
duke@1 1542 Name name = TreeInfo.name(arg);
duke@1 1543 if (name == names._this || name == names._super) return arg;
duke@1 1544
duke@1 1545 int optag = JCTree.NULLCHK;
duke@1 1546 JCUnary tree = make.at(arg.pos).Unary(optag, arg);
duke@1 1547 tree.operator = syms.nullcheck;
duke@1 1548 tree.type = arg.type;
duke@1 1549 return tree;
duke@1 1550 }
duke@1 1551
duke@1 1552 public void visitNewArray(JCNewArray tree) {
duke@1 1553 Type owntype = syms.errType;
duke@1 1554 Type elemtype;
duke@1 1555 if (tree.elemtype != null) {
duke@1 1556 elemtype = attribType(tree.elemtype, env);
duke@1 1557 chk.validate(tree.elemtype);
duke@1 1558 owntype = elemtype;
duke@1 1559 for (List<JCExpression> l = tree.dims; l.nonEmpty(); l = l.tail) {
duke@1 1560 attribExpr(l.head, env, syms.intType);
duke@1 1561 owntype = new ArrayType(owntype, syms.arrayClass);
duke@1 1562 }
duke@1 1563 } else {
duke@1 1564 // we are seeing an untyped aggregate { ... }
duke@1 1565 // this is allowed only if the prototype is an array
duke@1 1566 if (pt.tag == ARRAY) {
duke@1 1567 elemtype = types.elemtype(pt);
duke@1 1568 } else {
duke@1 1569 if (pt.tag != ERROR) {
duke@1 1570 log.error(tree.pos(), "illegal.initializer.for.type",
duke@1 1571 pt);
duke@1 1572 }
duke@1 1573 elemtype = syms.errType;
duke@1 1574 }
duke@1 1575 }
duke@1 1576 if (tree.elems != null) {
duke@1 1577 attribExprs(tree.elems, env, elemtype);
duke@1 1578 owntype = new ArrayType(elemtype, syms.arrayClass);
duke@1 1579 }
duke@1 1580 if (!types.isReifiable(elemtype))
duke@1 1581 log.error(tree.pos(), "generic.array.creation");
duke@1 1582 result = check(tree, owntype, VAL, pkind, pt);
duke@1 1583 }
duke@1 1584
duke@1 1585 public void visitParens(JCParens tree) {
duke@1 1586 Type owntype = attribTree(tree.expr, env, pkind, pt);
duke@1 1587 result = check(tree, owntype, pkind, pkind, pt);
duke@1 1588 Symbol sym = TreeInfo.symbol(tree);
duke@1 1589 if (sym != null && (sym.kind&(TYP|PCK)) != 0)
duke@1 1590 log.error(tree.pos(), "illegal.start.of.type");
duke@1 1591 }
duke@1 1592
duke@1 1593 public void visitAssign(JCAssign tree) {
duke@1 1594 Type owntype = attribTree(tree.lhs, env.dup(tree), VAR, Type.noType);
duke@1 1595 Type capturedType = capture(owntype);
duke@1 1596 attribExpr(tree.rhs, env, owntype);
duke@1 1597 result = check(tree, capturedType, VAL, pkind, pt);
duke@1 1598 }
duke@1 1599
duke@1 1600 public void visitAssignop(JCAssignOp tree) {
duke@1 1601 // Attribute arguments.
duke@1 1602 Type owntype = attribTree(tree.lhs, env, VAR, Type.noType);
duke@1 1603 Type operand = attribExpr(tree.rhs, env);
duke@1 1604 // Find operator.
duke@1 1605 Symbol operator = tree.operator = rs.resolveBinaryOperator(
duke@1 1606 tree.pos(), tree.getTag() - JCTree.ASGOffset, env,
duke@1 1607 owntype, operand);
duke@1 1608
duke@1 1609 if (operator.kind == MTH) {
duke@1 1610 chk.checkOperator(tree.pos(),
duke@1 1611 (OperatorSymbol)operator,
duke@1 1612 tree.getTag() - JCTree.ASGOffset,
duke@1 1613 owntype,
duke@1 1614 operand);
jjg@9 1615 chk.checkDivZero(tree.rhs.pos(), operator, operand);
jjg@9 1616 chk.checkCastable(tree.rhs.pos(),
jjg@9 1617 operator.type.getReturnType(),
jjg@9 1618 owntype);
duke@1 1619 }
duke@1 1620 result = check(tree, owntype, VAL, pkind, pt);
duke@1 1621 }
duke@1 1622
duke@1 1623 public void visitUnary(JCUnary tree) {
duke@1 1624 // Attribute arguments.
duke@1 1625 Type argtype = (JCTree.PREINC <= tree.getTag() && tree.getTag() <= JCTree.POSTDEC)
duke@1 1626 ? attribTree(tree.arg, env, VAR, Type.noType)
duke@1 1627 : chk.checkNonVoid(tree.arg.pos(), attribExpr(tree.arg, env));
duke@1 1628
duke@1 1629 // Find operator.
duke@1 1630 Symbol operator = tree.operator =
duke@1 1631 rs.resolveUnaryOperator(tree.pos(), tree.getTag(), env, argtype);
duke@1 1632
duke@1 1633 Type owntype = syms.errType;
duke@1 1634 if (operator.kind == MTH) {
duke@1 1635 owntype = (JCTree.PREINC <= tree.getTag() && tree.getTag() <= JCTree.POSTDEC)
duke@1 1636 ? tree.arg.type
duke@1 1637 : operator.type.getReturnType();
duke@1 1638 int opc = ((OperatorSymbol)operator).opcode;
duke@1 1639
duke@1 1640 // If the argument is constant, fold it.
duke@1 1641 if (argtype.constValue() != null) {
duke@1 1642 Type ctype = cfolder.fold1(opc, argtype);
duke@1 1643 if (ctype != null) {
duke@1 1644 owntype = cfolder.coerce(ctype, owntype);
duke@1 1645
duke@1 1646 // Remove constant types from arguments to
duke@1 1647 // conserve space. The parser will fold concatenations
duke@1 1648 // of string literals; the code here also
duke@1 1649 // gets rid of intermediate results when some of the
duke@1 1650 // operands are constant identifiers.
duke@1 1651 if (tree.arg.type.tsym == syms.stringType.tsym) {
duke@1 1652 tree.arg.type = syms.stringType;
duke@1 1653 }
duke@1 1654 }
duke@1 1655 }
duke@1 1656 }
duke@1 1657 result = check(tree, owntype, VAL, pkind, pt);
duke@1 1658 }
duke@1 1659
duke@1 1660 public void visitBinary(JCBinary tree) {
duke@1 1661 // Attribute arguments.
duke@1 1662 Type left = chk.checkNonVoid(tree.lhs.pos(), attribExpr(tree.lhs, env));
duke@1 1663 Type right = chk.checkNonVoid(tree.lhs.pos(), attribExpr(tree.rhs, env));
duke@1 1664
duke@1 1665 // Find operator.
duke@1 1666 Symbol operator = tree.operator =
duke@1 1667 rs.resolveBinaryOperator(tree.pos(), tree.getTag(), env, left, right);
duke@1 1668
duke@1 1669 Type owntype = syms.errType;
duke@1 1670 if (operator.kind == MTH) {
duke@1 1671 owntype = operator.type.getReturnType();
duke@1 1672 int opc = chk.checkOperator(tree.lhs.pos(),
duke@1 1673 (OperatorSymbol)operator,
duke@1 1674 tree.getTag(),
duke@1 1675 left,
duke@1 1676 right);
duke@1 1677
duke@1 1678 // If both arguments are constants, fold them.
duke@1 1679 if (left.constValue() != null && right.constValue() != null) {
duke@1 1680 Type ctype = cfolder.fold2(opc, left, right);
duke@1 1681 if (ctype != null) {
duke@1 1682 owntype = cfolder.coerce(ctype, owntype);
duke@1 1683
duke@1 1684 // Remove constant types from arguments to
duke@1 1685 // conserve space. The parser will fold concatenations
duke@1 1686 // of string literals; the code here also
duke@1 1687 // gets rid of intermediate results when some of the
duke@1 1688 // operands are constant identifiers.
duke@1 1689 if (tree.lhs.type.tsym == syms.stringType.tsym) {
duke@1 1690 tree.lhs.type = syms.stringType;
duke@1 1691 }
duke@1 1692 if (tree.rhs.type.tsym == syms.stringType.tsym) {
duke@1 1693 tree.rhs.type = syms.stringType;
duke@1 1694 }
duke@1 1695 }
duke@1 1696 }
duke@1 1697
duke@1 1698 // Check that argument types of a reference ==, != are
duke@1 1699 // castable to each other, (JLS???).
duke@1 1700 if ((opc == ByteCodes.if_acmpeq || opc == ByteCodes.if_acmpne)) {
duke@1 1701 if (!types.isCastable(left, right, new Warner(tree.pos()))) {
duke@1 1702 log.error(tree.pos(), "incomparable.types", left, right);
duke@1 1703 }
duke@1 1704 }
duke@1 1705
duke@1 1706 chk.checkDivZero(tree.rhs.pos(), operator, right);
duke@1 1707 }
duke@1 1708 result = check(tree, owntype, VAL, pkind, pt);
duke@1 1709 }
duke@1 1710
duke@1 1711 public void visitTypeCast(JCTypeCast tree) {
duke@1 1712 Type clazztype = attribType(tree.clazz, env);
duke@1 1713 Type exprtype = attribExpr(tree.expr, env, Infer.anyPoly);
duke@1 1714 Type owntype = chk.checkCastable(tree.expr.pos(), exprtype, clazztype);
duke@1 1715 if (exprtype.constValue() != null)
duke@1 1716 owntype = cfolder.coerce(exprtype, owntype);
duke@1 1717 result = check(tree, capture(owntype), VAL, pkind, pt);
duke@1 1718 }
duke@1 1719
duke@1 1720 public void visitTypeTest(JCInstanceOf tree) {
duke@1 1721 Type exprtype = chk.checkNullOrRefType(
duke@1 1722 tree.expr.pos(), attribExpr(tree.expr, env));
duke@1 1723 Type clazztype = chk.checkReifiableReferenceType(
duke@1 1724 tree.clazz.pos(), attribType(tree.clazz, env));
duke@1 1725 chk.checkCastable(tree.expr.pos(), exprtype, clazztype);
duke@1 1726 result = check(tree, syms.booleanType, VAL, pkind, pt);
duke@1 1727 }
duke@1 1728
duke@1 1729 public void visitIndexed(JCArrayAccess tree) {
duke@1 1730 Type owntype = syms.errType;
duke@1 1731 Type atype = attribExpr(tree.indexed, env);
duke@1 1732 attribExpr(tree.index, env, syms.intType);
duke@1 1733 if (types.isArray(atype))
duke@1 1734 owntype = types.elemtype(atype);
duke@1 1735 else if (atype.tag != ERROR)
duke@1 1736 log.error(tree.pos(), "array.req.but.found", atype);
duke@1 1737 if ((pkind & VAR) == 0) owntype = capture(owntype);
duke@1 1738 result = check(tree, owntype, VAR, pkind, pt);
duke@1 1739 }
duke@1 1740
duke@1 1741 public void visitIdent(JCIdent tree) {
duke@1 1742 Symbol sym;
duke@1 1743 boolean varArgs = false;
duke@1 1744
duke@1 1745 // Find symbol
duke@1 1746 if (pt.tag == METHOD || pt.tag == FORALL) {
duke@1 1747 // If we are looking for a method, the prototype `pt' will be a
duke@1 1748 // method type with the type of the call's arguments as parameters.
duke@1 1749 env.info.varArgs = false;
duke@1 1750 sym = rs.resolveMethod(tree.pos(), env, tree.name, pt.getParameterTypes(), pt.getTypeArguments());
duke@1 1751 varArgs = env.info.varArgs;
duke@1 1752 } else if (tree.sym != null && tree.sym.kind != VAR) {
duke@1 1753 sym = tree.sym;
duke@1 1754 } else {
duke@1 1755 sym = rs.resolveIdent(tree.pos(), env, tree.name, pkind);
duke@1 1756 }
duke@1 1757 tree.sym = sym;
duke@1 1758
duke@1 1759 // (1) Also find the environment current for the class where
duke@1 1760 // sym is defined (`symEnv').
duke@1 1761 // Only for pre-tiger versions (1.4 and earlier):
duke@1 1762 // (2) Also determine whether we access symbol out of an anonymous
duke@1 1763 // class in a this or super call. This is illegal for instance
duke@1 1764 // members since such classes don't carry a this$n link.
duke@1 1765 // (`noOuterThisPath').
duke@1 1766 Env<AttrContext> symEnv = env;
duke@1 1767 boolean noOuterThisPath = false;
duke@1 1768 if (env.enclClass.sym.owner.kind != PCK && // we are in an inner class
duke@1 1769 (sym.kind & (VAR | MTH | TYP)) != 0 &&
duke@1 1770 sym.owner.kind == TYP &&
duke@1 1771 tree.name != names._this && tree.name != names._super) {
duke@1 1772
duke@1 1773 // Find environment in which identifier is defined.
duke@1 1774 while (symEnv.outer != null &&
duke@1 1775 !sym.isMemberOf(symEnv.enclClass.sym, types)) {
duke@1 1776 if ((symEnv.enclClass.sym.flags() & NOOUTERTHIS) != 0)
duke@1 1777 noOuterThisPath = !allowAnonOuterThis;
duke@1 1778 symEnv = symEnv.outer;
duke@1 1779 }
duke@1 1780 }
duke@1 1781
duke@1 1782 // If symbol is a variable, ...
duke@1 1783 if (sym.kind == VAR) {
duke@1 1784 VarSymbol v = (VarSymbol)sym;
duke@1 1785
duke@1 1786 // ..., evaluate its initializer, if it has one, and check for
duke@1 1787 // illegal forward reference.
duke@1 1788 checkInit(tree, env, v, false);
duke@1 1789
duke@1 1790 // If symbol is a local variable accessed from an embedded
duke@1 1791 // inner class check that it is final.
duke@1 1792 if (v.owner.kind == MTH &&
duke@1 1793 v.owner != env.info.scope.owner &&
duke@1 1794 (v.flags_field & FINAL) == 0) {
duke@1 1795 log.error(tree.pos(),
duke@1 1796 "local.var.accessed.from.icls.needs.final",
duke@1 1797 v);
duke@1 1798 }
duke@1 1799
duke@1 1800 // If we are expecting a variable (as opposed to a value), check
duke@1 1801 // that the variable is assignable in the current environment.
duke@1 1802 if (pkind == VAR)
duke@1 1803 checkAssignable(tree.pos(), v, null, env);
duke@1 1804 }
duke@1 1805
duke@1 1806 // In a constructor body,
duke@1 1807 // if symbol is a field or instance method, check that it is
duke@1 1808 // not accessed before the supertype constructor is called.
duke@1 1809 if ((symEnv.info.isSelfCall || noOuterThisPath) &&
duke@1 1810 (sym.kind & (VAR | MTH)) != 0 &&
duke@1 1811 sym.owner.kind == TYP &&
duke@1 1812 (sym.flags() & STATIC) == 0) {
duke@1 1813 chk.earlyRefError(tree.pos(), sym.kind == VAR ? sym : thisSym(tree.pos(), env));
duke@1 1814 }
duke@1 1815 Env<AttrContext> env1 = env;
mcimadamore@28 1816 if (sym.kind != ERR && sym.kind != TYP && sym.owner != null && sym.owner != env1.enclClass.sym) {
duke@1 1817 // If the found symbol is inaccessible, then it is
duke@1 1818 // accessed through an enclosing instance. Locate this
duke@1 1819 // enclosing instance:
duke@1 1820 while (env1.outer != null && !rs.isAccessible(env, env1.enclClass.sym.type, sym))
duke@1 1821 env1 = env1.outer;
duke@1 1822 }
duke@1 1823 result = checkId(tree, env1.enclClass.sym.type, sym, env, pkind, pt, varArgs);
duke@1 1824 }
duke@1 1825
duke@1 1826 public void visitSelect(JCFieldAccess tree) {
duke@1 1827 // Determine the expected kind of the qualifier expression.
duke@1 1828 int skind = 0;
duke@1 1829 if (tree.name == names._this || tree.name == names._super ||
duke@1 1830 tree.name == names._class)
duke@1 1831 {
duke@1 1832 skind = TYP;
duke@1 1833 } else {
duke@1 1834 if ((pkind & PCK) != 0) skind = skind | PCK;
duke@1 1835 if ((pkind & TYP) != 0) skind = skind | TYP | PCK;
duke@1 1836 if ((pkind & (VAL | MTH)) != 0) skind = skind | VAL | TYP;
duke@1 1837 }
duke@1 1838
duke@1 1839 // Attribute the qualifier expression, and determine its symbol (if any).
duke@1 1840 Type site = attribTree(tree.selected, env, skind, Infer.anyPoly);
duke@1 1841 if ((pkind & (PCK | TYP)) == 0)
duke@1 1842 site = capture(site); // Capture field access
duke@1 1843
duke@1 1844 // don't allow T.class T[].class, etc
duke@1 1845 if (skind == TYP) {
duke@1 1846 Type elt = site;
duke@1 1847 while (elt.tag == ARRAY)
duke@1 1848 elt = ((ArrayType)elt).elemtype;
duke@1 1849 if (elt.tag == TYPEVAR) {
duke@1 1850 log.error(tree.pos(), "type.var.cant.be.deref");
duke@1 1851 result = syms.errType;
duke@1 1852 return;
duke@1 1853 }
duke@1 1854 }
duke@1 1855
duke@1 1856 // If qualifier symbol is a type or `super', assert `selectSuper'
duke@1 1857 // for the selection. This is relevant for determining whether
duke@1 1858 // protected symbols are accessible.
duke@1 1859 Symbol sitesym = TreeInfo.symbol(tree.selected);
duke@1 1860 boolean selectSuperPrev = env.info.selectSuper;
duke@1 1861 env.info.selectSuper =
duke@1 1862 sitesym != null &&
duke@1 1863 sitesym.name == names._super;
duke@1 1864
duke@1 1865 // If selected expression is polymorphic, strip
duke@1 1866 // type parameters and remember in env.info.tvars, so that
duke@1 1867 // they can be added later (in Attr.checkId and Infer.instantiateMethod).
duke@1 1868 if (tree.selected.type.tag == FORALL) {
duke@1 1869 ForAll pstype = (ForAll)tree.selected.type;
duke@1 1870 env.info.tvars = pstype.tvars;
duke@1 1871 site = tree.selected.type = pstype.qtype;
duke@1 1872 }
duke@1 1873
duke@1 1874 // Determine the symbol represented by the selection.
duke@1 1875 env.info.varArgs = false;
duke@1 1876 Symbol sym = selectSym(tree, site, env, pt, pkind);
duke@1 1877 if (sym.exists() && !isType(sym) && (pkind & (PCK | TYP)) != 0) {
duke@1 1878 site = capture(site);
duke@1 1879 sym = selectSym(tree, site, env, pt, pkind);
duke@1 1880 }
duke@1 1881 boolean varArgs = env.info.varArgs;
duke@1 1882 tree.sym = sym;
duke@1 1883
mcimadamore@27 1884 if (site.tag == TYPEVAR && !isType(sym) && sym.kind != ERR) {
mcimadamore@27 1885 while (site.tag == TYPEVAR) site = site.getUpperBound();
mcimadamore@27 1886 site = capture(site);
mcimadamore@27 1887 }
duke@1 1888
duke@1 1889 // If that symbol is a variable, ...
duke@1 1890 if (sym.kind == VAR) {
duke@1 1891 VarSymbol v = (VarSymbol)sym;
duke@1 1892
duke@1 1893 // ..., evaluate its initializer, if it has one, and check for
duke@1 1894 // illegal forward reference.
duke@1 1895 checkInit(tree, env, v, true);
duke@1 1896
duke@1 1897 // If we are expecting a variable (as opposed to a value), check
duke@1 1898 // that the variable is assignable in the current environment.
duke@1 1899 if (pkind == VAR)
duke@1 1900 checkAssignable(tree.pos(), v, tree.selected, env);
duke@1 1901 }
duke@1 1902
duke@1 1903 // Disallow selecting a type from an expression
duke@1 1904 if (isType(sym) && (sitesym==null || (sitesym.kind&(TYP|PCK)) == 0)) {
duke@1 1905 tree.type = check(tree.selected, pt,
duke@1 1906 sitesym == null ? VAL : sitesym.kind, TYP|PCK, pt);
duke@1 1907 }
duke@1 1908
duke@1 1909 if (isType(sitesym)) {
duke@1 1910 if (sym.name == names._this) {
duke@1 1911 // If `C' is the currently compiled class, check that
duke@1 1912 // C.this' does not appear in a call to a super(...)
duke@1 1913 if (env.info.isSelfCall &&
duke@1 1914 site.tsym == env.enclClass.sym) {
duke@1 1915 chk.earlyRefError(tree.pos(), sym);
duke@1 1916 }
duke@1 1917 } else {
duke@1 1918 // Check if type-qualified fields or methods are static (JLS)
duke@1 1919 if ((sym.flags() & STATIC) == 0 &&
duke@1 1920 sym.name != names._super &&
duke@1 1921 (sym.kind == VAR || sym.kind == MTH)) {
duke@1 1922 rs.access(rs.new StaticError(sym),
duke@1 1923 tree.pos(), site, sym.name, true);
duke@1 1924 }
duke@1 1925 }
duke@1 1926 }
duke@1 1927
duke@1 1928 // If we are selecting an instance member via a `super', ...
duke@1 1929 if (env.info.selectSuper && (sym.flags() & STATIC) == 0) {
duke@1 1930
duke@1 1931 // Check that super-qualified symbols are not abstract (JLS)
duke@1 1932 rs.checkNonAbstract(tree.pos(), sym);
duke@1 1933
duke@1 1934 if (site.isRaw()) {
duke@1 1935 // Determine argument types for site.
duke@1 1936 Type site1 = types.asSuper(env.enclClass.sym.type, site.tsym);
duke@1 1937 if (site1 != null) site = site1;
duke@1 1938 }
duke@1 1939 }
duke@1 1940
duke@1 1941 env.info.selectSuper = selectSuperPrev;
duke@1 1942 result = checkId(tree, site, sym, env, pkind, pt, varArgs);
duke@1 1943 env.info.tvars = List.nil();
duke@1 1944 }
duke@1 1945 //where
duke@1 1946 /** Determine symbol referenced by a Select expression,
duke@1 1947 *
duke@1 1948 * @param tree The select tree.
duke@1 1949 * @param site The type of the selected expression,
duke@1 1950 * @param env The current environment.
duke@1 1951 * @param pt The current prototype.
duke@1 1952 * @param pkind The expected kind(s) of the Select expression.
duke@1 1953 */
duke@1 1954 private Symbol selectSym(JCFieldAccess tree,
duke@1 1955 Type site,
duke@1 1956 Env<AttrContext> env,
duke@1 1957 Type pt,
duke@1 1958 int pkind) {
duke@1 1959 DiagnosticPosition pos = tree.pos();
duke@1 1960 Name name = tree.name;
duke@1 1961
duke@1 1962 switch (site.tag) {
duke@1 1963 case PACKAGE:
duke@1 1964 return rs.access(
duke@1 1965 rs.findIdentInPackage(env, site.tsym, name, pkind),
duke@1 1966 pos, site, name, true);
duke@1 1967 case ARRAY:
duke@1 1968 case CLASS:
duke@1 1969 if (pt.tag == METHOD || pt.tag == FORALL) {
duke@1 1970 return rs.resolveQualifiedMethod(
duke@1 1971 pos, env, site, name, pt.getParameterTypes(), pt.getTypeArguments());
duke@1 1972 } else if (name == names._this || name == names._super) {
duke@1 1973 return rs.resolveSelf(pos, env, site.tsym, name);
duke@1 1974 } else if (name == names._class) {
duke@1 1975 // In this case, we have already made sure in
duke@1 1976 // visitSelect that qualifier expression is a type.
duke@1 1977 Type t = syms.classType;
duke@1 1978 List<Type> typeargs = allowGenerics
duke@1 1979 ? List.of(types.erasure(site))
duke@1 1980 : List.<Type>nil();
duke@1 1981 t = new ClassType(t.getEnclosingType(), typeargs, t.tsym);
duke@1 1982 return new VarSymbol(
duke@1 1983 STATIC | PUBLIC | FINAL, names._class, t, site.tsym);
duke@1 1984 } else {
duke@1 1985 // We are seeing a plain identifier as selector.
duke@1 1986 Symbol sym = rs.findIdentInType(env, site, name, pkind);
duke@1 1987 if ((pkind & ERRONEOUS) == 0)
duke@1 1988 sym = rs.access(sym, pos, site, name, true);
duke@1 1989 return sym;
duke@1 1990 }
duke@1 1991 case WILDCARD:
duke@1 1992 throw new AssertionError(tree);
duke@1 1993 case TYPEVAR:
duke@1 1994 // Normally, site.getUpperBound() shouldn't be null.
duke@1 1995 // It should only happen during memberEnter/attribBase
duke@1 1996 // when determining the super type which *must* be
duke@1 1997 // done before attributing the type variables. In
duke@1 1998 // other words, we are seeing this illegal program:
duke@1 1999 // class B<T> extends A<T.foo> {}
duke@1 2000 Symbol sym = (site.getUpperBound() != null)
duke@1 2001 ? selectSym(tree, capture(site.getUpperBound()), env, pt, pkind)
duke@1 2002 : null;
duke@1 2003 if (sym == null || isType(sym)) {
duke@1 2004 log.error(pos, "type.var.cant.be.deref");
duke@1 2005 return syms.errSymbol;
duke@1 2006 } else {
duke@1 2007 return sym;
duke@1 2008 }
duke@1 2009 case ERROR:
duke@1 2010 // preserve identifier names through errors
duke@1 2011 return new ErrorType(name, site.tsym).tsym;
duke@1 2012 default:
duke@1 2013 // The qualifier expression is of a primitive type -- only
duke@1 2014 // .class is allowed for these.
duke@1 2015 if (name == names._class) {
duke@1 2016 // In this case, we have already made sure in Select that
duke@1 2017 // qualifier expression is a type.
duke@1 2018 Type t = syms.classType;
duke@1 2019 Type arg = types.boxedClass(site).type;
duke@1 2020 t = new ClassType(t.getEnclosingType(), List.of(arg), t.tsym);
duke@1 2021 return new VarSymbol(
duke@1 2022 STATIC | PUBLIC | FINAL, names._class, t, site.tsym);
duke@1 2023 } else {
duke@1 2024 log.error(pos, "cant.deref", site);
duke@1 2025 return syms.errSymbol;
duke@1 2026 }
duke@1 2027 }
duke@1 2028 }
duke@1 2029
duke@1 2030 /** Determine type of identifier or select expression and check that
duke@1 2031 * (1) the referenced symbol is not deprecated
duke@1 2032 * (2) the symbol's type is safe (@see checkSafe)
duke@1 2033 * (3) if symbol is a variable, check that its type and kind are
duke@1 2034 * compatible with the prototype and protokind.
duke@1 2035 * (4) if symbol is an instance field of a raw type,
duke@1 2036 * which is being assigned to, issue an unchecked warning if its
duke@1 2037 * type changes under erasure.
duke@1 2038 * (5) if symbol is an instance method of a raw type, issue an
duke@1 2039 * unchecked warning if its argument types change under erasure.
duke@1 2040 * If checks succeed:
duke@1 2041 * If symbol is a constant, return its constant type
duke@1 2042 * else if symbol is a method, return its result type
duke@1 2043 * otherwise return its type.
duke@1 2044 * Otherwise return errType.
duke@1 2045 *
duke@1 2046 * @param tree The syntax tree representing the identifier
duke@1 2047 * @param site If this is a select, the type of the selected
duke@1 2048 * expression, otherwise the type of the current class.
duke@1 2049 * @param sym The symbol representing the identifier.
duke@1 2050 * @param env The current environment.
duke@1 2051 * @param pkind The set of expected kinds.
duke@1 2052 * @param pt The expected type.
duke@1 2053 */
duke@1 2054 Type checkId(JCTree tree,
duke@1 2055 Type site,
duke@1 2056 Symbol sym,
duke@1 2057 Env<AttrContext> env,
duke@1 2058 int pkind,
duke@1 2059 Type pt,
duke@1 2060 boolean useVarargs) {
duke@1 2061 if (pt.isErroneous()) return syms.errType;
duke@1 2062 Type owntype; // The computed type of this identifier occurrence.
duke@1 2063 switch (sym.kind) {
duke@1 2064 case TYP:
duke@1 2065 // For types, the computed type equals the symbol's type,
duke@1 2066 // except for two situations:
duke@1 2067 owntype = sym.type;
duke@1 2068 if (owntype.tag == CLASS) {
duke@1 2069 Type ownOuter = owntype.getEnclosingType();
duke@1 2070
duke@1 2071 // (a) If the symbol's type is parameterized, erase it
duke@1 2072 // because no type parameters were given.
duke@1 2073 // We recover generic outer type later in visitTypeApply.
duke@1 2074 if (owntype.tsym.type.getTypeArguments().nonEmpty()) {
duke@1 2075 owntype = types.erasure(owntype);
duke@1 2076 }
duke@1 2077
duke@1 2078 // (b) If the symbol's type is an inner class, then
duke@1 2079 // we have to interpret its outer type as a superclass
duke@1 2080 // of the site type. Example:
duke@1 2081 //
duke@1 2082 // class Tree<A> { class Visitor { ... } }
duke@1 2083 // class PointTree extends Tree<Point> { ... }
duke@1 2084 // ...PointTree.Visitor...
duke@1 2085 //
duke@1 2086 // Then the type of the last expression above is
duke@1 2087 // Tree<Point>.Visitor.
duke@1 2088 else if (ownOuter.tag == CLASS && site != ownOuter) {
duke@1 2089 Type normOuter = site;
duke@1 2090 if (normOuter.tag == CLASS)
duke@1 2091 normOuter = types.asEnclosingSuper(site, ownOuter.tsym);
duke@1 2092 if (normOuter == null) // perhaps from an import
duke@1 2093 normOuter = types.erasure(ownOuter);
duke@1 2094 if (normOuter != ownOuter)
duke@1 2095 owntype = new ClassType(
duke@1 2096 normOuter, List.<Type>nil(), owntype.tsym);
duke@1 2097 }
duke@1 2098 }
duke@1 2099 break;
duke@1 2100 case VAR:
duke@1 2101 VarSymbol v = (VarSymbol)sym;
duke@1 2102 // Test (4): if symbol is an instance field of a raw type,
duke@1 2103 // which is being assigned to, issue an unchecked warning if
duke@1 2104 // its type changes under erasure.
duke@1 2105 if (allowGenerics &&
duke@1 2106 pkind == VAR &&
duke@1 2107 v.owner.kind == TYP &&
duke@1 2108 (v.flags() & STATIC) == 0 &&
duke@1 2109 (site.tag == CLASS || site.tag == TYPEVAR)) {
duke@1 2110 Type s = types.asOuterSuper(site, v.owner);
duke@1 2111 if (s != null &&
duke@1 2112 s.isRaw() &&
duke@1 2113 !types.isSameType(v.type, v.erasure(types))) {
duke@1 2114 chk.warnUnchecked(tree.pos(),
duke@1 2115 "unchecked.assign.to.var",
duke@1 2116 v, s);
duke@1 2117 }
duke@1 2118 }
duke@1 2119 // The computed type of a variable is the type of the
duke@1 2120 // variable symbol, taken as a member of the site type.
duke@1 2121 owntype = (sym.owner.kind == TYP &&
duke@1 2122 sym.name != names._this && sym.name != names._super)
duke@1 2123 ? types.memberType(site, sym)
duke@1 2124 : sym.type;
duke@1 2125
duke@1 2126 if (env.info.tvars.nonEmpty()) {
duke@1 2127 Type owntype1 = new ForAll(env.info.tvars, owntype);
duke@1 2128 for (List<Type> l = env.info.tvars; l.nonEmpty(); l = l.tail)
duke@1 2129 if (!owntype.contains(l.head)) {
duke@1 2130 log.error(tree.pos(), "undetermined.type", owntype1);
duke@1 2131 owntype1 = syms.errType;
duke@1 2132 }
duke@1 2133 owntype = owntype1;
duke@1 2134 }
duke@1 2135
duke@1 2136 // If the variable is a constant, record constant value in
duke@1 2137 // computed type.
duke@1 2138 if (v.getConstValue() != null && isStaticReference(tree))
duke@1 2139 owntype = owntype.constType(v.getConstValue());
duke@1 2140
duke@1 2141 if (pkind == VAL) {
duke@1 2142 owntype = capture(owntype); // capture "names as expressions"
duke@1 2143 }
duke@1 2144 break;
duke@1 2145 case MTH: {
duke@1 2146 JCMethodInvocation app = (JCMethodInvocation)env.tree;
duke@1 2147 owntype = checkMethod(site, sym, env, app.args,
duke@1 2148 pt.getParameterTypes(), pt.getTypeArguments(),
duke@1 2149 env.info.varArgs);
duke@1 2150 break;
duke@1 2151 }
duke@1 2152 case PCK: case ERR:
duke@1 2153 owntype = sym.type;
duke@1 2154 break;
duke@1 2155 default:
duke@1 2156 throw new AssertionError("unexpected kind: " + sym.kind +
duke@1 2157 " in tree " + tree);
duke@1 2158 }
duke@1 2159
duke@1 2160 // Test (1): emit a `deprecation' warning if symbol is deprecated.
duke@1 2161 // (for constructors, the error was given when the constructor was
duke@1 2162 // resolved)
duke@1 2163 if (sym.name != names.init &&
duke@1 2164 (sym.flags() & DEPRECATED) != 0 &&
duke@1 2165 (env.info.scope.owner.flags() & DEPRECATED) == 0 &&
duke@1 2166 sym.outermostClass() != env.info.scope.owner.outermostClass())
duke@1 2167 chk.warnDeprecated(tree.pos(), sym);
duke@1 2168
duke@1 2169 if ((sym.flags() & PROPRIETARY) != 0)
duke@1 2170 log.strictWarning(tree.pos(), "sun.proprietary", sym);
duke@1 2171
duke@1 2172 // Test (3): if symbol is a variable, check that its type and
duke@1 2173 // kind are compatible with the prototype and protokind.
duke@1 2174 return check(tree, owntype, sym.kind, pkind, pt);
duke@1 2175 }
duke@1 2176
duke@1 2177 /** Check that variable is initialized and evaluate the variable's
duke@1 2178 * initializer, if not yet done. Also check that variable is not
duke@1 2179 * referenced before it is defined.
duke@1 2180 * @param tree The tree making up the variable reference.
duke@1 2181 * @param env The current environment.
duke@1 2182 * @param v The variable's symbol.
duke@1 2183 */
duke@1 2184 private void checkInit(JCTree tree,
duke@1 2185 Env<AttrContext> env,
duke@1 2186 VarSymbol v,
duke@1 2187 boolean onlyWarning) {
duke@1 2188 // System.err.println(v + " " + ((v.flags() & STATIC) != 0) + " " +
duke@1 2189 // tree.pos + " " + v.pos + " " +
duke@1 2190 // Resolve.isStatic(env));//DEBUG
duke@1 2191
duke@1 2192 // A forward reference is diagnosed if the declaration position
duke@1 2193 // of the variable is greater than the current tree position
duke@1 2194 // and the tree and variable definition occur in the same class
duke@1 2195 // definition. Note that writes don't count as references.
duke@1 2196 // This check applies only to class and instance
duke@1 2197 // variables. Local variables follow different scope rules,
duke@1 2198 // and are subject to definite assignment checking.
duke@1 2199 if (v.pos > tree.pos &&
duke@1 2200 v.owner.kind == TYP &&
duke@1 2201 canOwnInitializer(env.info.scope.owner) &&
duke@1 2202 v.owner == env.info.scope.owner.enclClass() &&
duke@1 2203 ((v.flags() & STATIC) != 0) == Resolve.isStatic(env) &&
duke@1 2204 (env.tree.getTag() != JCTree.ASSIGN ||
duke@1 2205 TreeInfo.skipParens(((JCAssign) env.tree).lhs) != tree)) {
duke@1 2206
mcimadamore@18 2207 if (!onlyWarning || isStaticEnumField(v)) {
duke@1 2208 log.error(tree.pos(), "illegal.forward.ref");
duke@1 2209 } else if (useBeforeDeclarationWarning) {
duke@1 2210 log.warning(tree.pos(), "forward.ref", v);
duke@1 2211 }
duke@1 2212 }
duke@1 2213
duke@1 2214 v.getConstValue(); // ensure initializer is evaluated
duke@1 2215
duke@1 2216 checkEnumInitializer(tree, env, v);
duke@1 2217 }
duke@1 2218
duke@1 2219 /**
duke@1 2220 * Check for illegal references to static members of enum. In
duke@1 2221 * an enum type, constructors and initializers may not
duke@1 2222 * reference its static members unless they are constant.
duke@1 2223 *
duke@1 2224 * @param tree The tree making up the variable reference.
duke@1 2225 * @param env The current environment.
duke@1 2226 * @param v The variable's symbol.
duke@1 2227 * @see JLS 3rd Ed. (8.9 Enums)
duke@1 2228 */
duke@1 2229 private void checkEnumInitializer(JCTree tree, Env<AttrContext> env, VarSymbol v) {
duke@1 2230 // JLS 3rd Ed.:
duke@1 2231 //
duke@1 2232 // "It is a compile-time error to reference a static field
duke@1 2233 // of an enum type that is not a compile-time constant
duke@1 2234 // (15.28) from constructors, instance initializer blocks,
duke@1 2235 // or instance variable initializer expressions of that
duke@1 2236 // type. It is a compile-time error for the constructors,
duke@1 2237 // instance initializer blocks, or instance variable
duke@1 2238 // initializer expressions of an enum constant e to refer
duke@1 2239 // to itself or to an enum constant of the same type that
duke@1 2240 // is declared to the right of e."
mcimadamore@18 2241 if (isStaticEnumField(v)) {
duke@1 2242 ClassSymbol enclClass = env.info.scope.owner.enclClass();
duke@1 2243
duke@1 2244 if (enclClass == null || enclClass.owner == null)
duke@1 2245 return;
duke@1 2246
duke@1 2247 // See if the enclosing class is the enum (or a
duke@1 2248 // subclass thereof) declaring v. If not, this
duke@1 2249 // reference is OK.
duke@1 2250 if (v.owner != enclClass && !types.isSubtype(enclClass.type, v.owner.type))
duke@1 2251 return;
duke@1 2252
duke@1 2253 // If the reference isn't from an initializer, then
duke@1 2254 // the reference is OK.
duke@1 2255 if (!Resolve.isInitializer(env))
duke@1 2256 return;
duke@1 2257
duke@1 2258 log.error(tree.pos(), "illegal.enum.static.ref");
duke@1 2259 }
duke@1 2260 }
duke@1 2261
mcimadamore@18 2262 /** Is the given symbol a static, non-constant field of an Enum?
mcimadamore@18 2263 * Note: enum literals should not be regarded as such
mcimadamore@18 2264 */
mcimadamore@18 2265 private boolean isStaticEnumField(VarSymbol v) {
mcimadamore@18 2266 return Flags.isEnum(v.owner) &&
mcimadamore@18 2267 Flags.isStatic(v) &&
mcimadamore@18 2268 !Flags.isConstant(v) &&
mcimadamore@18 2269 v.name != names._class;
duke@1 2270 }
duke@1 2271
duke@1 2272 /** Can the given symbol be the owner of code which forms part
duke@1 2273 * if class initialization? This is the case if the symbol is
duke@1 2274 * a type or field, or if the symbol is the synthetic method.
duke@1 2275 * owning a block.
duke@1 2276 */
duke@1 2277 private boolean canOwnInitializer(Symbol sym) {
duke@1 2278 return
duke@1 2279 (sym.kind & (VAR | TYP)) != 0 ||
duke@1 2280 (sym.kind == MTH && (sym.flags() & BLOCK) != 0);
duke@1 2281 }
duke@1 2282
duke@1 2283 Warner noteWarner = new Warner();
duke@1 2284
duke@1 2285 /**
duke@1 2286 * Check that method arguments conform to its instantation.
duke@1 2287 **/
duke@1 2288 public Type checkMethod(Type site,
duke@1 2289 Symbol sym,
duke@1 2290 Env<AttrContext> env,
duke@1 2291 final List<JCExpression> argtrees,
duke@1 2292 List<Type> argtypes,
duke@1 2293 List<Type> typeargtypes,
duke@1 2294 boolean useVarargs) {
duke@1 2295 // Test (5): if symbol is an instance method of a raw type, issue
duke@1 2296 // an unchecked warning if its argument types change under erasure.
duke@1 2297 if (allowGenerics &&
duke@1 2298 (sym.flags() & STATIC) == 0 &&
duke@1 2299 (site.tag == CLASS || site.tag == TYPEVAR)) {
duke@1 2300 Type s = types.asOuterSuper(site, sym.owner);
duke@1 2301 if (s != null && s.isRaw() &&
duke@1 2302 !types.isSameTypes(sym.type.getParameterTypes(),
duke@1 2303 sym.erasure(types).getParameterTypes())) {
duke@1 2304 chk.warnUnchecked(env.tree.pos(),
duke@1 2305 "unchecked.call.mbr.of.raw.type",
duke@1 2306 sym, s);
duke@1 2307 }
duke@1 2308 }
duke@1 2309
duke@1 2310 // Compute the identifier's instantiated type.
duke@1 2311 // For methods, we need to compute the instance type by
duke@1 2312 // Resolve.instantiate from the symbol's type as well as
duke@1 2313 // any type arguments and value arguments.
duke@1 2314 noteWarner.warned = false;
duke@1 2315 Type owntype = rs.instantiate(env,
duke@1 2316 site,
duke@1 2317 sym,
duke@1 2318 argtypes,
duke@1 2319 typeargtypes,
duke@1 2320 true,
duke@1 2321 useVarargs,
duke@1 2322 noteWarner);
duke@1 2323 boolean warned = noteWarner.warned;
duke@1 2324
duke@1 2325 // If this fails, something went wrong; we should not have
duke@1 2326 // found the identifier in the first place.
duke@1 2327 if (owntype == null) {
duke@1 2328 if (!pt.isErroneous())
duke@1 2329 log.error(env.tree.pos(),
duke@1 2330 "internal.error.cant.instantiate",
duke@1 2331 sym, site,
duke@1 2332 Type.toString(pt.getParameterTypes()));
duke@1 2333 owntype = syms.errType;
duke@1 2334 } else {
duke@1 2335 // System.out.println("call : " + env.tree);
duke@1 2336 // System.out.println("method : " + owntype);
duke@1 2337 // System.out.println("actuals: " + argtypes);
duke@1 2338 List<Type> formals = owntype.getParameterTypes();
duke@1 2339 Type last = useVarargs ? formals.last() : null;
duke@1 2340 if (sym.name==names.init &&
duke@1 2341 sym.owner == syms.enumSym)
duke@1 2342 formals = formals.tail.tail;
duke@1 2343 List<JCExpression> args = argtrees;
duke@1 2344 while (formals.head != last) {
duke@1 2345 JCTree arg = args.head;
duke@1 2346 Warner warn = chk.convertWarner(arg.pos(), arg.type, formals.head);
duke@1 2347 assertConvertible(arg, arg.type, formals.head, warn);
duke@1 2348 warned |= warn.warned;
duke@1 2349 args = args.tail;
duke@1 2350 formals = formals.tail;
duke@1 2351 }
duke@1 2352 if (useVarargs) {
duke@1 2353 Type varArg = types.elemtype(last);
duke@1 2354 while (args.tail != null) {
duke@1 2355 JCTree arg = args.head;
duke@1 2356 Warner warn = chk.convertWarner(arg.pos(), arg.type, varArg);
duke@1 2357 assertConvertible(arg, arg.type, varArg, warn);
duke@1 2358 warned |= warn.warned;
duke@1 2359 args = args.tail;
duke@1 2360 }
duke@1 2361 } else if ((sym.flags() & VARARGS) != 0 && allowVarargs) {
duke@1 2362 // non-varargs call to varargs method
duke@1 2363 Type varParam = owntype.getParameterTypes().last();
duke@1 2364 Type lastArg = argtypes.last();
duke@1 2365 if (types.isSubtypeUnchecked(lastArg, types.elemtype(varParam)) &&
duke@1 2366 !types.isSameType(types.erasure(varParam), types.erasure(lastArg)))
duke@1 2367 log.warning(argtrees.last().pos(), "inexact.non-varargs.call",
duke@1 2368 types.elemtype(varParam),
duke@1 2369 varParam);
duke@1 2370 }
duke@1 2371
duke@1 2372 if (warned && sym.type.tag == FORALL) {
duke@1 2373 String typeargs = "";
duke@1 2374 if (typeargtypes != null && typeargtypes.nonEmpty()) {
duke@1 2375 typeargs = "<" + Type.toString(typeargtypes) + ">";
duke@1 2376 }
duke@1 2377 chk.warnUnchecked(env.tree.pos(),
duke@1 2378 "unchecked.meth.invocation.applied",
duke@1 2379 sym,
duke@1 2380 sym.location(),
duke@1 2381 typeargs,
duke@1 2382 Type.toString(argtypes));
duke@1 2383 owntype = new MethodType(owntype.getParameterTypes(),
duke@1 2384 types.erasure(owntype.getReturnType()),
duke@1 2385 owntype.getThrownTypes(),
duke@1 2386 syms.methodClass);
duke@1 2387 }
duke@1 2388 if (useVarargs) {
duke@1 2389 JCTree tree = env.tree;
duke@1 2390 Type argtype = owntype.getParameterTypes().last();
duke@1 2391 if (!types.isReifiable(argtype))
duke@1 2392 chk.warnUnchecked(env.tree.pos(),
duke@1 2393 "unchecked.generic.array.creation",
duke@1 2394 argtype);
duke@1 2395 Type elemtype = types.elemtype(argtype);
duke@1 2396 switch (tree.getTag()) {
duke@1 2397 case JCTree.APPLY:
duke@1 2398 ((JCMethodInvocation) tree).varargsElement = elemtype;
duke@1 2399 break;
duke@1 2400 case JCTree.NEWCLASS:
duke@1 2401 ((JCNewClass) tree).varargsElement = elemtype;
duke@1 2402 break;
duke@1 2403 default:
duke@1 2404 throw new AssertionError(""+tree);
duke@1 2405 }
duke@1 2406 }
duke@1 2407 }
duke@1 2408 return owntype;
duke@1 2409 }
duke@1 2410
duke@1 2411 private void assertConvertible(JCTree tree, Type actual, Type formal, Warner warn) {
duke@1 2412 if (types.isConvertible(actual, formal, warn))
duke@1 2413 return;
duke@1 2414
duke@1 2415 if (formal.isCompound()
duke@1 2416 && types.isSubtype(actual, types.supertype(formal))
duke@1 2417 && types.isSubtypeUnchecked(actual, types.interfaces(formal), warn))
duke@1 2418 return;
duke@1 2419
duke@1 2420 if (false) {
duke@1 2421 // TODO: make assertConvertible work
duke@1 2422 chk.typeError(tree.pos(), JCDiagnostic.fragment("incompatible.types"), actual, formal);
duke@1 2423 throw new AssertionError("Tree: " + tree
duke@1 2424 + " actual:" + actual
duke@1 2425 + " formal: " + formal);
duke@1 2426 }
duke@1 2427 }
duke@1 2428
duke@1 2429 public void visitLiteral(JCLiteral tree) {
duke@1 2430 result = check(
duke@1 2431 tree, litType(tree.typetag).constType(tree.value), VAL, pkind, pt);
duke@1 2432 }
duke@1 2433 //where
duke@1 2434 /** Return the type of a literal with given type tag.
duke@1 2435 */
duke@1 2436 Type litType(int tag) {
duke@1 2437 return (tag == TypeTags.CLASS) ? syms.stringType : syms.typeOfTag[tag];
duke@1 2438 }
duke@1 2439
duke@1 2440 public void visitTypeIdent(JCPrimitiveTypeTree tree) {
duke@1 2441 result = check(tree, syms.typeOfTag[tree.typetag], TYP, pkind, pt);
duke@1 2442 }
duke@1 2443
duke@1 2444 public void visitTypeArray(JCArrayTypeTree tree) {
duke@1 2445 Type etype = attribType(tree.elemtype, env);
duke@1 2446 Type type = new ArrayType(etype, syms.arrayClass);
duke@1 2447 result = check(tree, type, TYP, pkind, pt);
duke@1 2448 }
duke@1 2449
duke@1 2450 /** Visitor method for parameterized types.
duke@1 2451 * Bound checking is left until later, since types are attributed
duke@1 2452 * before supertype structure is completely known
duke@1 2453 */
duke@1 2454 public void visitTypeApply(JCTypeApply tree) {
duke@1 2455 Type owntype = syms.errType;
duke@1 2456
duke@1 2457 // Attribute functor part of application and make sure it's a class.
duke@1 2458 Type clazztype = chk.checkClassType(tree.clazz.pos(), attribType(tree.clazz, env));
duke@1 2459
duke@1 2460 // Attribute type parameters
duke@1 2461 List<Type> actuals = attribTypes(tree.arguments, env);
duke@1 2462
duke@1 2463 if (clazztype.tag == CLASS) {
duke@1 2464 List<Type> formals = clazztype.tsym.type.getTypeArguments();
duke@1 2465
duke@1 2466 if (actuals.length() == formals.length()) {
duke@1 2467 List<Type> a = actuals;
duke@1 2468 List<Type> f = formals;
duke@1 2469 while (a.nonEmpty()) {
duke@1 2470 a.head = a.head.withTypeVar(f.head);
duke@1 2471 a = a.tail;
duke@1 2472 f = f.tail;
duke@1 2473 }
duke@1 2474 // Compute the proper generic outer
duke@1 2475 Type clazzOuter = clazztype.getEnclosingType();
duke@1 2476 if (clazzOuter.tag == CLASS) {
duke@1 2477 Type site;
duke@1 2478 if (tree.clazz.getTag() == JCTree.IDENT) {
duke@1 2479 site = env.enclClass.sym.type;
duke@1 2480 } else if (tree.clazz.getTag() == JCTree.SELECT) {
duke@1 2481 site = ((JCFieldAccess) tree.clazz).selected.type;
duke@1 2482 } else throw new AssertionError(""+tree);
duke@1 2483 if (clazzOuter.tag == CLASS && site != clazzOuter) {
duke@1 2484 if (site.tag == CLASS)
duke@1 2485 site = types.asOuterSuper(site, clazzOuter.tsym);
duke@1 2486 if (site == null)
duke@1 2487 site = types.erasure(clazzOuter);
duke@1 2488 clazzOuter = site;
duke@1 2489 }
duke@1 2490 }
duke@1 2491 owntype = new ClassType(clazzOuter, actuals, clazztype.tsym);
duke@1 2492 } else {
duke@1 2493 if (formals.length() != 0) {
duke@1 2494 log.error(tree.pos(), "wrong.number.type.args",
duke@1 2495 Integer.toString(formals.length()));
duke@1 2496 } else {
duke@1 2497 log.error(tree.pos(), "type.doesnt.take.params", clazztype.tsym);
duke@1 2498 }
duke@1 2499 owntype = syms.errType;
duke@1 2500 }
duke@1 2501 }
duke@1 2502 result = check(tree, owntype, TYP, pkind, pt);
duke@1 2503 }
duke@1 2504
duke@1 2505 public void visitTypeParameter(JCTypeParameter tree) {
duke@1 2506 TypeVar a = (TypeVar)tree.type;
duke@1 2507 Set<Type> boundSet = new HashSet<Type>();
duke@1 2508 if (a.bound.isErroneous())
duke@1 2509 return;
duke@1 2510 List<Type> bs = types.getBounds(a);
duke@1 2511 if (tree.bounds.nonEmpty()) {
duke@1 2512 // accept class or interface or typevar as first bound.
duke@1 2513 Type b = checkBase(bs.head, tree.bounds.head, env, false, false, false);
duke@1 2514 boundSet.add(types.erasure(b));
duke@1 2515 if (b.tag == TYPEVAR) {
duke@1 2516 // if first bound was a typevar, do not accept further bounds.
duke@1 2517 if (tree.bounds.tail.nonEmpty()) {
duke@1 2518 log.error(tree.bounds.tail.head.pos(),
duke@1 2519 "type.var.may.not.be.followed.by.other.bounds");
duke@1 2520 tree.bounds = List.of(tree.bounds.head);
mcimadamore@7 2521 a.bound = bs.head;
duke@1 2522 }
duke@1 2523 } else {
duke@1 2524 // if first bound was a class or interface, accept only interfaces
duke@1 2525 // as further bounds.
duke@1 2526 for (JCExpression bound : tree.bounds.tail) {
duke@1 2527 bs = bs.tail;
duke@1 2528 Type i = checkBase(bs.head, bound, env, false, true, false);
duke@1 2529 if (i.tag == CLASS)
duke@1 2530 chk.checkNotRepeated(bound.pos(), types.erasure(i), boundSet);
duke@1 2531 }
duke@1 2532 }
duke@1 2533 }
duke@1 2534 bs = types.getBounds(a);
duke@1 2535
duke@1 2536 // in case of multiple bounds ...
duke@1 2537 if (bs.length() > 1) {
duke@1 2538 // ... the variable's bound is a class type flagged COMPOUND
duke@1 2539 // (see comment for TypeVar.bound).
duke@1 2540 // In this case, generate a class tree that represents the
duke@1 2541 // bound class, ...
duke@1 2542 JCTree extending;
duke@1 2543 List<JCExpression> implementing;
duke@1 2544 if ((bs.head.tsym.flags() & INTERFACE) == 0) {
duke@1 2545 extending = tree.bounds.head;
duke@1 2546 implementing = tree.bounds.tail;
duke@1 2547 } else {
duke@1 2548 extending = null;
duke@1 2549 implementing = tree.bounds;
duke@1 2550 }
duke@1 2551 JCClassDecl cd = make.at(tree.pos).ClassDef(
duke@1 2552 make.Modifiers(PUBLIC | ABSTRACT),
duke@1 2553 tree.name, List.<JCTypeParameter>nil(),
duke@1 2554 extending, implementing, List.<JCTree>nil());
duke@1 2555
duke@1 2556 ClassSymbol c = (ClassSymbol)a.getUpperBound().tsym;
duke@1 2557 assert (c.flags() & COMPOUND) != 0;
duke@1 2558 cd.sym = c;
duke@1 2559 c.sourcefile = env.toplevel.sourcefile;
duke@1 2560
duke@1 2561 // ... and attribute the bound class
duke@1 2562 c.flags_field |= UNATTRIBUTED;
duke@1 2563 Env<AttrContext> cenv = enter.classEnv(cd, env);
duke@1 2564 enter.typeEnvs.put(c, cenv);
duke@1 2565 }
duke@1 2566 }
duke@1 2567
duke@1 2568
duke@1 2569 public void visitWildcard(JCWildcard tree) {
duke@1 2570 //- System.err.println("visitWildcard("+tree+");");//DEBUG
duke@1 2571 Type type = (tree.kind.kind == BoundKind.UNBOUND)
duke@1 2572 ? syms.objectType
duke@1 2573 : attribType(tree.inner, env);
duke@1 2574 result = check(tree, new WildcardType(chk.checkRefType(tree.pos(), type),
duke@1 2575 tree.kind.kind,
duke@1 2576 syms.boundClass),
duke@1 2577 TYP, pkind, pt);
duke@1 2578 }
duke@1 2579
duke@1 2580 public void visitAnnotation(JCAnnotation tree) {
duke@1 2581 log.error(tree.pos(), "annotation.not.valid.for.type", pt);
duke@1 2582 result = tree.type = syms.errType;
duke@1 2583 }
duke@1 2584
duke@1 2585 public void visitErroneous(JCErroneous tree) {
duke@1 2586 if (tree.errs != null)
duke@1 2587 for (JCTree err : tree.errs)
duke@1 2588 attribTree(err, env, ERR, pt);
duke@1 2589 result = tree.type = syms.errType;
duke@1 2590 }
duke@1 2591
duke@1 2592 /** Default visitor method for all other trees.
duke@1 2593 */
duke@1 2594 public void visitTree(JCTree tree) {
duke@1 2595 throw new AssertionError();
duke@1 2596 }
duke@1 2597
duke@1 2598 /** Main method: attribute class definition associated with given class symbol.
duke@1 2599 * reporting completion failures at the given position.
duke@1 2600 * @param pos The source position at which completion errors are to be
duke@1 2601 * reported.
duke@1 2602 * @param c The class symbol whose definition will be attributed.
duke@1 2603 */
duke@1 2604 public void attribClass(DiagnosticPosition pos, ClassSymbol c) {
duke@1 2605 try {
duke@1 2606 annotate.flush();
duke@1 2607 attribClass(c);
duke@1 2608 } catch (CompletionFailure ex) {
duke@1 2609 chk.completionError(pos, ex);
duke@1 2610 }
duke@1 2611 }
duke@1 2612
duke@1 2613 /** Attribute class definition associated with given class symbol.
duke@1 2614 * @param c The class symbol whose definition will be attributed.
duke@1 2615 */
duke@1 2616 void attribClass(ClassSymbol c) throws CompletionFailure {
duke@1 2617 if (c.type.tag == ERROR) return;
duke@1 2618
duke@1 2619 // Check for cycles in the inheritance graph, which can arise from
duke@1 2620 // ill-formed class files.
duke@1 2621 chk.checkNonCyclic(null, c.type);
duke@1 2622
duke@1 2623 Type st = types.supertype(c.type);
duke@1 2624 if ((c.flags_field & Flags.COMPOUND) == 0) {
duke@1 2625 // First, attribute superclass.
duke@1 2626 if (st.tag == CLASS)
duke@1 2627 attribClass((ClassSymbol)st.tsym);
duke@1 2628
duke@1 2629 // Next attribute owner, if it is a class.
duke@1 2630 if (c.owner.kind == TYP && c.owner.type.tag == CLASS)
duke@1 2631 attribClass((ClassSymbol)c.owner);
duke@1 2632 }
duke@1 2633
duke@1 2634 // The previous operations might have attributed the current class
duke@1 2635 // if there was a cycle. So we test first whether the class is still
duke@1 2636 // UNATTRIBUTED.
duke@1 2637 if ((c.flags_field & UNATTRIBUTED) != 0) {
duke@1 2638 c.flags_field &= ~UNATTRIBUTED;
duke@1 2639
duke@1 2640 // Get environment current at the point of class definition.
duke@1 2641 Env<AttrContext> env = enter.typeEnvs.get(c);
duke@1 2642
duke@1 2643 // The info.lint field in the envs stored in enter.typeEnvs is deliberately uninitialized,
duke@1 2644 // because the annotations were not available at the time the env was created. Therefore,
duke@1 2645 // we look up the environment chain for the first enclosing environment for which the
duke@1 2646 // lint value is set. Typically, this is the parent env, but might be further if there
duke@1 2647 // are any envs created as a result of TypeParameter nodes.
duke@1 2648 Env<AttrContext> lintEnv = env;
duke@1 2649 while (lintEnv.info.lint == null)
duke@1 2650 lintEnv = lintEnv.next;
duke@1 2651
duke@1 2652 // Having found the enclosing lint value, we can initialize the lint value for this class
duke@1 2653 env.info.lint = lintEnv.info.lint.augment(c.attributes_field, c.flags());
duke@1 2654
duke@1 2655 Lint prevLint = chk.setLint(env.info.lint);
duke@1 2656 JavaFileObject prev = log.useSource(c.sourcefile);
duke@1 2657
duke@1 2658 try {
duke@1 2659 // java.lang.Enum may not be subclassed by a non-enum
duke@1 2660 if (st.tsym == syms.enumSym &&
duke@1 2661 ((c.flags_field & (Flags.ENUM|Flags.COMPOUND)) == 0))
duke@1 2662 log.error(env.tree.pos(), "enum.no.subclassing");
duke@1 2663
duke@1 2664 // Enums may not be extended by source-level classes
duke@1 2665 if (st.tsym != null &&
duke@1 2666 ((st.tsym.flags_field & Flags.ENUM) != 0) &&
duke@1 2667 ((c.flags_field & Flags.ENUM) == 0) &&
duke@1 2668 !target.compilerBootstrap(c)) {
duke@1 2669 log.error(env.tree.pos(), "enum.types.not.extensible");
duke@1 2670 }
duke@1 2671 attribClassBody(env, c);
duke@1 2672
duke@1 2673 chk.checkDeprecatedAnnotation(env.tree.pos(), c);
duke@1 2674 } finally {
duke@1 2675 log.useSource(prev);
duke@1 2676 chk.setLint(prevLint);
duke@1 2677 }
duke@1 2678
duke@1 2679 }
duke@1 2680 }
duke@1 2681
duke@1 2682 public void visitImport(JCImport tree) {
duke@1 2683 // nothing to do
duke@1 2684 }
duke@1 2685
duke@1 2686 /** Finish the attribution of a class. */
duke@1 2687 private void attribClassBody(Env<AttrContext> env, ClassSymbol c) {
duke@1 2688 JCClassDecl tree = (JCClassDecl)env.tree;
duke@1 2689 assert c == tree.sym;
duke@1 2690
duke@1 2691 // Validate annotations
duke@1 2692 chk.validateAnnotations(tree.mods.annotations, c);
duke@1 2693
duke@1 2694 // Validate type parameters, supertype and interfaces.
mcimadamore@42 2695 attribBounds(tree.typarams);
duke@1 2696 chk.validateTypeParams(tree.typarams);
duke@1 2697 chk.validate(tree.extending);
duke@1 2698 chk.validate(tree.implementing);
duke@1 2699
duke@1 2700 // If this is a non-abstract class, check that it has no abstract
duke@1 2701 // methods or unimplemented methods of an implemented interface.
duke@1 2702 if ((c.flags() & (ABSTRACT | INTERFACE)) == 0) {
duke@1 2703 if (!relax)
duke@1 2704 chk.checkAllDefined(tree.pos(), c);
duke@1 2705 }
duke@1 2706
duke@1 2707 if ((c.flags() & ANNOTATION) != 0) {
duke@1 2708 if (tree.implementing.nonEmpty())
duke@1 2709 log.error(tree.implementing.head.pos(),
duke@1 2710 "cant.extend.intf.annotation");
duke@1 2711 if (tree.typarams.nonEmpty())
duke@1 2712 log.error(tree.typarams.head.pos(),
duke@1 2713 "intf.annotation.cant.have.type.params");
duke@1 2714 } else {
duke@1 2715 // Check that all extended classes and interfaces
duke@1 2716 // are compatible (i.e. no two define methods with same arguments
duke@1 2717 // yet different return types). (JLS 8.4.6.3)
duke@1 2718 chk.checkCompatibleSupertypes(tree.pos(), c.type);
duke@1 2719 }
duke@1 2720
duke@1 2721 // Check that class does not import the same parameterized interface
duke@1 2722 // with two different argument lists.
duke@1 2723 chk.checkClassBounds(tree.pos(), c.type);
duke@1 2724
duke@1 2725 tree.type = c.type;
duke@1 2726
duke@1 2727 boolean assertsEnabled = false;
duke@1 2728 assert assertsEnabled = true;
duke@1 2729 if (assertsEnabled) {
duke@1 2730 for (List<JCTypeParameter> l = tree.typarams;
duke@1 2731 l.nonEmpty(); l = l.tail)
duke@1 2732 assert env.info.scope.lookup(l.head.name).scope != null;
duke@1 2733 }
duke@1 2734
duke@1 2735 // Check that a generic class doesn't extend Throwable
duke@1 2736 if (!c.type.allparams().isEmpty() && types.isSubtype(c.type, syms.throwableType))
duke@1 2737 log.error(tree.extending.pos(), "generic.throwable");
duke@1 2738
duke@1 2739 // Check that all methods which implement some
duke@1 2740 // method conform to the method they implement.
duke@1 2741 chk.checkImplementations(tree);
duke@1 2742
duke@1 2743 for (List<JCTree> l = tree.defs; l.nonEmpty(); l = l.tail) {
duke@1 2744 // Attribute declaration
duke@1 2745 attribStat(l.head, env);
duke@1 2746 // Check that declarations in inner classes are not static (JLS 8.1.2)
duke@1 2747 // Make an exception for static constants.
duke@1 2748 if (c.owner.kind != PCK &&
duke@1 2749 ((c.flags() & STATIC) == 0 || c.name == names.empty) &&
duke@1 2750 (TreeInfo.flags(l.head) & (STATIC | INTERFACE)) != 0) {
duke@1 2751 Symbol sym = null;
duke@1 2752 if (l.head.getTag() == JCTree.VARDEF) sym = ((JCVariableDecl) l.head).sym;
duke@1 2753 if (sym == null ||
duke@1 2754 sym.kind != VAR ||
duke@1 2755 ((VarSymbol) sym).getConstValue() == null)
duke@1 2756 log.error(l.head.pos(), "icls.cant.have.static.decl");
duke@1 2757 }
duke@1 2758 }
duke@1 2759
duke@1 2760 // Check for cycles among non-initial constructors.
duke@1 2761 chk.checkCyclicConstructors(tree);
duke@1 2762
duke@1 2763 // Check for cycles among annotation elements.
duke@1 2764 chk.checkNonCyclicElements(tree);
duke@1 2765
duke@1 2766 // Check for proper use of serialVersionUID
duke@1 2767 if (env.info.lint.isEnabled(Lint.LintCategory.SERIAL) &&
duke@1 2768 isSerializable(c) &&
duke@1 2769 (c.flags() & Flags.ENUM) == 0 &&
duke@1 2770 (c.flags() & ABSTRACT) == 0) {
duke@1 2771 checkSerialVersionUID(tree, c);
duke@1 2772 }
duke@1 2773 }
duke@1 2774 // where
duke@1 2775 /** check if a class is a subtype of Serializable, if that is available. */
duke@1 2776 private boolean isSerializable(ClassSymbol c) {
duke@1 2777 try {
duke@1 2778 syms.serializableType.complete();
duke@1 2779 }
duke@1 2780 catch (CompletionFailure e) {
duke@1 2781 return false;
duke@1 2782 }
duke@1 2783 return types.isSubtype(c.type, syms.serializableType);
duke@1 2784 }
duke@1 2785
duke@1 2786 /** Check that an appropriate serialVersionUID member is defined. */
duke@1 2787 private void checkSerialVersionUID(JCClassDecl tree, ClassSymbol c) {
duke@1 2788
duke@1 2789 // check for presence of serialVersionUID
duke@1 2790 Scope.Entry e = c.members().lookup(names.serialVersionUID);
duke@1 2791 while (e.scope != null && e.sym.kind != VAR) e = e.next();
duke@1 2792 if (e.scope == null) {
duke@1 2793 log.warning(tree.pos(), "missing.SVUID", c);
duke@1 2794 return;
duke@1 2795 }
duke@1 2796
duke@1 2797 // check that it is static final
duke@1 2798 VarSymbol svuid = (VarSymbol)e.sym;
duke@1 2799 if ((svuid.flags() & (STATIC | FINAL)) !=
duke@1 2800 (STATIC | FINAL))
duke@1 2801 log.warning(TreeInfo.diagnosticPositionFor(svuid, tree), "improper.SVUID", c);
duke@1 2802
duke@1 2803 // check that it is long
duke@1 2804 else if (svuid.type.tag != TypeTags.LONG)
duke@1 2805 log.warning(TreeInfo.diagnosticPositionFor(svuid, tree), "long.SVUID", c);
duke@1 2806
duke@1 2807 // check constant
duke@1 2808 else if (svuid.getConstValue() == null)
duke@1 2809 log.warning(TreeInfo.diagnosticPositionFor(svuid, tree), "constant.SVUID", c);
duke@1 2810 }
duke@1 2811
duke@1 2812 private Type capture(Type type) {
duke@1 2813 return types.capture(type);
duke@1 2814 }
duke@1 2815 }

mercurial