src/share/classes/com/sun/tools/javac/jvm/Gen.java

Fri, 18 Jun 2010 15:12:04 -0700

author
jrose
date
Fri, 18 Jun 2010 15:12:04 -0700
changeset 573
005bec70ca27
parent 554
9d9f26857129
parent 571
f0e3ec1f9d9f
child 591
d1d7595fa824
permissions
-rw-r--r--

Merge

duke@1 1 /*
ohair@554 2 * Copyright (c) 1999, 2009, Oracle and/or its affiliates. All rights reserved.
duke@1 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@1 4 *
duke@1 5 * This code is free software; you can redistribute it and/or modify it
duke@1 6 * under the terms of the GNU General Public License version 2 only, as
ohair@554 7 * published by the Free Software Foundation. Oracle designates this
duke@1 8 * particular file as subject to the "Classpath" exception as provided
ohair@554 9 * by Oracle in the LICENSE file that accompanied this code.
duke@1 10 *
duke@1 11 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@1 12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@1 13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@1 14 * version 2 for more details (a copy is included in the LICENSE file that
duke@1 15 * accompanied this code).
duke@1 16 *
duke@1 17 * You should have received a copy of the GNU General Public License version
duke@1 18 * 2 along with this work; if not, write to the Free Software Foundation,
duke@1 19 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@1 20 *
ohair@554 21 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
ohair@554 22 * or visit www.oracle.com if you need additional information or have any
ohair@554 23 * questions.
duke@1 24 */
duke@1 25
duke@1 26 package com.sun.tools.javac.jvm;
duke@1 27 import java.util.*;
duke@1 28
jjg@308 29 import javax.lang.model.element.ElementKind;
jjg@308 30
duke@1 31 import com.sun.tools.javac.util.*;
duke@1 32 import com.sun.tools.javac.util.JCDiagnostic.DiagnosticPosition;
duke@1 33 import com.sun.tools.javac.util.List;
duke@1 34 import com.sun.tools.javac.code.*;
duke@1 35 import com.sun.tools.javac.comp.*;
duke@1 36 import com.sun.tools.javac.tree.*;
duke@1 37
duke@1 38 import com.sun.tools.javac.code.Symbol.*;
duke@1 39 import com.sun.tools.javac.code.Type.*;
duke@1 40 import com.sun.tools.javac.jvm.Code.*;
duke@1 41 import com.sun.tools.javac.jvm.Items.*;
duke@1 42 import com.sun.tools.javac.tree.JCTree.*;
duke@1 43
duke@1 44 import static com.sun.tools.javac.code.Flags.*;
duke@1 45 import static com.sun.tools.javac.code.Kinds.*;
duke@1 46 import static com.sun.tools.javac.code.TypeTags.*;
duke@1 47 import static com.sun.tools.javac.jvm.ByteCodes.*;
duke@1 48 import static com.sun.tools.javac.jvm.CRTFlags.*;
duke@1 49
duke@1 50 /** This pass maps flat Java (i.e. without inner classes) to bytecodes.
duke@1 51 *
duke@1 52 * <p><b>This is NOT part of any API supported by Sun Microsystems. If
duke@1 53 * you write code that depends on this, you do so at your own risk.
duke@1 54 * This code and its internal interfaces are subject to change or
duke@1 55 * deletion without notice.</b>
duke@1 56 */
duke@1 57 public class Gen extends JCTree.Visitor {
duke@1 58 protected static final Context.Key<Gen> genKey =
duke@1 59 new Context.Key<Gen>();
duke@1 60
duke@1 61 private final Log log;
duke@1 62 private final Symtab syms;
duke@1 63 private final Check chk;
duke@1 64 private final Resolve rs;
duke@1 65 private final TreeMaker make;
jjg@113 66 private final Names names;
duke@1 67 private final Target target;
duke@1 68 private final Type stringBufferType;
duke@1 69 private final Map<Type,Symbol> stringBufferAppend;
duke@1 70 private Name accessDollar;
duke@1 71 private final Types types;
duke@1 72
duke@1 73 /** Switch: GJ mode?
duke@1 74 */
duke@1 75 private final boolean allowGenerics;
duke@1 76
duke@1 77 /** Set when Miranda method stubs are to be generated. */
duke@1 78 private final boolean generateIproxies;
duke@1 79
duke@1 80 /** Format of stackmap tables to be generated. */
duke@1 81 private final Code.StackMapFormat stackMap;
duke@1 82
duke@1 83 /** A type that serves as the expected type for all method expressions.
duke@1 84 */
duke@1 85 private final Type methodType;
duke@1 86
duke@1 87 public static Gen instance(Context context) {
duke@1 88 Gen instance = context.get(genKey);
duke@1 89 if (instance == null)
duke@1 90 instance = new Gen(context);
duke@1 91 return instance;
duke@1 92 }
duke@1 93
duke@1 94 protected Gen(Context context) {
duke@1 95 context.put(genKey, this);
duke@1 96
jjg@113 97 names = Names.instance(context);
duke@1 98 log = Log.instance(context);
duke@1 99 syms = Symtab.instance(context);
duke@1 100 chk = Check.instance(context);
duke@1 101 rs = Resolve.instance(context);
duke@1 102 make = TreeMaker.instance(context);
duke@1 103 target = Target.instance(context);
duke@1 104 types = Types.instance(context);
duke@1 105 methodType = new MethodType(null, null, null, syms.methodClass);
duke@1 106 allowGenerics = Source.instance(context).allowGenerics();
duke@1 107 stringBufferType = target.useStringBuilder()
duke@1 108 ? syms.stringBuilderType
duke@1 109 : syms.stringBufferType;
duke@1 110 stringBufferAppend = new HashMap<Type,Symbol>();
duke@1 111 accessDollar = names.
duke@1 112 fromString("access" + target.syntheticNameChar());
duke@1 113
duke@1 114 Options options = Options.instance(context);
duke@1 115 lineDebugInfo =
duke@1 116 options.get("-g:") == null ||
duke@1 117 options.get("-g:lines") != null;
duke@1 118 varDebugInfo =
duke@1 119 options.get("-g:") == null
duke@1 120 ? options.get("-g") != null
duke@1 121 : options.get("-g:vars") != null;
duke@1 122 genCrt = options.get("-Xjcov") != null;
duke@1 123 debugCode = options.get("debugcode") != null;
jrose@571 124 allowInvokedynamic = target.hasInvokedynamic() || options.get("invokedynamic") != null;
duke@1 125
duke@1 126 generateIproxies =
duke@1 127 target.requiresIproxy() ||
duke@1 128 options.get("miranda") != null;
duke@1 129
duke@1 130 if (target.generateStackMapTable()) {
duke@1 131 // ignore cldc because we cannot have both stackmap formats
duke@1 132 this.stackMap = StackMapFormat.JSR202;
duke@1 133 } else {
duke@1 134 if (target.generateCLDCStackmap()) {
duke@1 135 this.stackMap = StackMapFormat.CLDC;
duke@1 136 } else {
duke@1 137 this.stackMap = StackMapFormat.NONE;
duke@1 138 }
duke@1 139 }
duke@1 140
duke@1 141 // by default, avoid jsr's for simple finalizers
duke@1 142 int setjsrlimit = 50;
duke@1 143 String jsrlimitString = options.get("jsrlimit");
duke@1 144 if (jsrlimitString != null) {
duke@1 145 try {
duke@1 146 setjsrlimit = Integer.parseInt(jsrlimitString);
duke@1 147 } catch (NumberFormatException ex) {
duke@1 148 // ignore ill-formed numbers for jsrlimit
duke@1 149 }
duke@1 150 }
duke@1 151 this.jsrlimit = setjsrlimit;
duke@1 152 this.useJsrLocally = false; // reset in visitTry
duke@1 153 }
duke@1 154
duke@1 155 /** Switches
duke@1 156 */
duke@1 157 private final boolean lineDebugInfo;
duke@1 158 private final boolean varDebugInfo;
duke@1 159 private final boolean genCrt;
duke@1 160 private final boolean debugCode;
jrose@267 161 private final boolean allowInvokedynamic;
duke@1 162
duke@1 163 /** Default limit of (approximate) size of finalizer to inline.
duke@1 164 * Zero means always use jsr. 100 or greater means never use
duke@1 165 * jsr.
duke@1 166 */
duke@1 167 private final int jsrlimit;
duke@1 168
duke@1 169 /** True if jsr is used.
duke@1 170 */
duke@1 171 private boolean useJsrLocally;
duke@1 172
duke@1 173 /* Constant pool, reset by genClass.
duke@1 174 */
duke@1 175 private Pool pool = new Pool();
duke@1 176
duke@1 177 /** Code buffer, set by genMethod.
duke@1 178 */
duke@1 179 private Code code;
duke@1 180
duke@1 181 /** Items structure, set by genMethod.
duke@1 182 */
duke@1 183 private Items items;
duke@1 184
duke@1 185 /** Environment for symbol lookup, set by genClass
duke@1 186 */
duke@1 187 private Env<AttrContext> attrEnv;
duke@1 188
duke@1 189 /** The top level tree.
duke@1 190 */
duke@1 191 private JCCompilationUnit toplevel;
duke@1 192
duke@1 193 /** The number of code-gen errors in this class.
duke@1 194 */
duke@1 195 private int nerrs = 0;
duke@1 196
duke@1 197 /** A hash table mapping syntax trees to their ending source positions.
duke@1 198 */
duke@1 199 private Map<JCTree, Integer> endPositions;
duke@1 200
duke@1 201 /** Generate code to load an integer constant.
duke@1 202 * @param n The integer to be loaded.
duke@1 203 */
duke@1 204 void loadIntConst(int n) {
duke@1 205 items.makeImmediateItem(syms.intType, n).load();
duke@1 206 }
duke@1 207
duke@1 208 /** The opcode that loads a zero constant of a given type code.
duke@1 209 * @param tc The given type code (@see ByteCode).
duke@1 210 */
duke@1 211 public static int zero(int tc) {
duke@1 212 switch(tc) {
duke@1 213 case INTcode: case BYTEcode: case SHORTcode: case CHARcode:
duke@1 214 return iconst_0;
duke@1 215 case LONGcode:
duke@1 216 return lconst_0;
duke@1 217 case FLOATcode:
duke@1 218 return fconst_0;
duke@1 219 case DOUBLEcode:
duke@1 220 return dconst_0;
duke@1 221 default:
duke@1 222 throw new AssertionError("zero");
duke@1 223 }
duke@1 224 }
duke@1 225
duke@1 226 /** The opcode that loads a one constant of a given type code.
duke@1 227 * @param tc The given type code (@see ByteCode).
duke@1 228 */
duke@1 229 public static int one(int tc) {
duke@1 230 return zero(tc) + 1;
duke@1 231 }
duke@1 232
duke@1 233 /** Generate code to load -1 of the given type code (either int or long).
duke@1 234 * @param tc The given type code (@see ByteCode).
duke@1 235 */
duke@1 236 void emitMinusOne(int tc) {
duke@1 237 if (tc == LONGcode) {
duke@1 238 items.makeImmediateItem(syms.longType, new Long(-1)).load();
duke@1 239 } else {
duke@1 240 code.emitop0(iconst_m1);
duke@1 241 }
duke@1 242 }
duke@1 243
duke@1 244 /** Construct a symbol to reflect the qualifying type that should
duke@1 245 * appear in the byte code as per JLS 13.1.
duke@1 246 *
duke@1 247 * For target >= 1.2: Clone a method with the qualifier as owner (except
duke@1 248 * for those cases where we need to work around VM bugs).
duke@1 249 *
duke@1 250 * For target <= 1.1: If qualified variable or method is defined in a
duke@1 251 * non-accessible class, clone it with the qualifier class as owner.
duke@1 252 *
duke@1 253 * @param sym The accessed symbol
duke@1 254 * @param site The qualifier's type.
duke@1 255 */
duke@1 256 Symbol binaryQualifier(Symbol sym, Type site) {
duke@1 257
duke@1 258 if (site.tag == ARRAY) {
duke@1 259 if (sym == syms.lengthVar ||
duke@1 260 sym.owner != syms.arrayClass)
duke@1 261 return sym;
duke@1 262 // array clone can be qualified by the array type in later targets
duke@1 263 Symbol qualifier = target.arrayBinaryCompatibility()
duke@1 264 ? new ClassSymbol(Flags.PUBLIC, site.tsym.name,
duke@1 265 site, syms.noSymbol)
duke@1 266 : syms.objectType.tsym;
duke@1 267 return sym.clone(qualifier);
duke@1 268 }
duke@1 269
duke@1 270 if (sym.owner == site.tsym ||
duke@1 271 (sym.flags() & (STATIC | SYNTHETIC)) == (STATIC | SYNTHETIC)) {
duke@1 272 return sym;
duke@1 273 }
duke@1 274 if (!target.obeyBinaryCompatibility())
duke@1 275 return rs.isAccessible(attrEnv, (TypeSymbol)sym.owner)
duke@1 276 ? sym
duke@1 277 : sym.clone(site.tsym);
duke@1 278
duke@1 279 if (!target.interfaceFieldsBinaryCompatibility()) {
duke@1 280 if ((sym.owner.flags() & INTERFACE) != 0 && sym.kind == VAR)
duke@1 281 return sym;
duke@1 282 }
duke@1 283
duke@1 284 // leave alone methods inherited from Object
duke@1 285 // JLS2 13.1.
duke@1 286 if (sym.owner == syms.objectType.tsym)
duke@1 287 return sym;
duke@1 288
duke@1 289 if (!target.interfaceObjectOverridesBinaryCompatibility()) {
duke@1 290 if ((sym.owner.flags() & INTERFACE) != 0 &&
duke@1 291 syms.objectType.tsym.members().lookup(sym.name).scope != null)
duke@1 292 return sym;
duke@1 293 }
duke@1 294
duke@1 295 return sym.clone(site.tsym);
duke@1 296 }
duke@1 297
duke@1 298 /** Insert a reference to given type in the constant pool,
duke@1 299 * checking for an array with too many dimensions;
duke@1 300 * return the reference's index.
duke@1 301 * @param type The type for which a reference is inserted.
duke@1 302 */
duke@1 303 int makeRef(DiagnosticPosition pos, Type type) {
duke@1 304 checkDimension(pos, type);
duke@1 305 return pool.put(type.tag == CLASS ? (Object)type.tsym : (Object)type);
duke@1 306 }
duke@1 307
duke@1 308 /** Check if the given type is an array with too many dimensions.
duke@1 309 */
duke@1 310 private void checkDimension(DiagnosticPosition pos, Type t) {
duke@1 311 switch (t.tag) {
duke@1 312 case METHOD:
duke@1 313 checkDimension(pos, t.getReturnType());
duke@1 314 for (List<Type> args = t.getParameterTypes(); args.nonEmpty(); args = args.tail)
duke@1 315 checkDimension(pos, args.head);
duke@1 316 break;
duke@1 317 case ARRAY:
duke@1 318 if (types.dimensions(t) > ClassFile.MAX_DIMENSIONS) {
duke@1 319 log.error(pos, "limit.dimensions");
duke@1 320 nerrs++;
duke@1 321 }
duke@1 322 break;
duke@1 323 default:
duke@1 324 break;
duke@1 325 }
duke@1 326 }
duke@1 327
duke@1 328 /** Create a tempory variable.
duke@1 329 * @param type The variable's type.
duke@1 330 */
duke@1 331 LocalItem makeTemp(Type type) {
duke@1 332 VarSymbol v = new VarSymbol(Flags.SYNTHETIC,
duke@1 333 names.empty,
duke@1 334 type,
duke@1 335 env.enclMethod.sym);
duke@1 336 code.newLocal(v);
duke@1 337 return items.makeLocalItem(v);
duke@1 338 }
duke@1 339
duke@1 340 /** Generate code to call a non-private method or constructor.
duke@1 341 * @param pos Position to be used for error reporting.
duke@1 342 * @param site The type of which the method is a member.
duke@1 343 * @param name The method's name.
duke@1 344 * @param argtypes The method's argument types.
duke@1 345 * @param isStatic A flag that indicates whether we call a
duke@1 346 * static or instance method.
duke@1 347 */
duke@1 348 void callMethod(DiagnosticPosition pos,
duke@1 349 Type site, Name name, List<Type> argtypes,
duke@1 350 boolean isStatic) {
duke@1 351 Symbol msym = rs.
duke@1 352 resolveInternalMethod(pos, attrEnv, site, name, argtypes, null);
duke@1 353 if (isStatic) items.makeStaticItem(msym).invoke();
duke@1 354 else items.makeMemberItem(msym, name == names.init).invoke();
duke@1 355 }
duke@1 356
duke@1 357 /** Is the given method definition an access method
duke@1 358 * resulting from a qualified super? This is signified by an odd
duke@1 359 * access code.
duke@1 360 */
duke@1 361 private boolean isAccessSuper(JCMethodDecl enclMethod) {
duke@1 362 return
duke@1 363 (enclMethod.mods.flags & SYNTHETIC) != 0 &&
duke@1 364 isOddAccessName(enclMethod.name);
duke@1 365 }
duke@1 366
duke@1 367 /** Does given name start with "access$" and end in an odd digit?
duke@1 368 */
duke@1 369 private boolean isOddAccessName(Name name) {
duke@1 370 return
duke@1 371 name.startsWith(accessDollar) &&
jjg@113 372 (name.getByteAt(name.getByteLength() - 1) & 1) == 1;
duke@1 373 }
duke@1 374
duke@1 375 /* ************************************************************************
duke@1 376 * Non-local exits
duke@1 377 *************************************************************************/
duke@1 378
duke@1 379 /** Generate code to invoke the finalizer associated with given
duke@1 380 * environment.
duke@1 381 * Any calls to finalizers are appended to the environments `cont' chain.
duke@1 382 * Mark beginning of gap in catch all range for finalizer.
duke@1 383 */
duke@1 384 void genFinalizer(Env<GenContext> env) {
duke@1 385 if (code.isAlive() && env.info.finalize != null)
duke@1 386 env.info.finalize.gen();
duke@1 387 }
duke@1 388
duke@1 389 /** Generate code to call all finalizers of structures aborted by
duke@1 390 * a non-local
duke@1 391 * exit. Return target environment of the non-local exit.
duke@1 392 * @param target The tree representing the structure that's aborted
duke@1 393 * @param env The environment current at the non-local exit.
duke@1 394 */
duke@1 395 Env<GenContext> unwind(JCTree target, Env<GenContext> env) {
duke@1 396 Env<GenContext> env1 = env;
duke@1 397 while (true) {
duke@1 398 genFinalizer(env1);
duke@1 399 if (env1.tree == target) break;
duke@1 400 env1 = env1.next;
duke@1 401 }
duke@1 402 return env1;
duke@1 403 }
duke@1 404
duke@1 405 /** Mark end of gap in catch-all range for finalizer.
duke@1 406 * @param env the environment which might contain the finalizer
duke@1 407 * (if it does, env.info.gaps != null).
duke@1 408 */
duke@1 409 void endFinalizerGap(Env<GenContext> env) {
duke@1 410 if (env.info.gaps != null && env.info.gaps.length() % 2 == 1)
duke@1 411 env.info.gaps.append(code.curPc());
duke@1 412 }
duke@1 413
duke@1 414 /** Mark end of all gaps in catch-all ranges for finalizers of environments
duke@1 415 * lying between, and including to two environments.
duke@1 416 * @param from the most deeply nested environment to mark
duke@1 417 * @param to the least deeply nested environment to mark
duke@1 418 */
duke@1 419 void endFinalizerGaps(Env<GenContext> from, Env<GenContext> to) {
duke@1 420 Env<GenContext> last = null;
duke@1 421 while (last != to) {
duke@1 422 endFinalizerGap(from);
duke@1 423 last = from;
duke@1 424 from = from.next;
duke@1 425 }
duke@1 426 }
duke@1 427
duke@1 428 /** Do any of the structures aborted by a non-local exit have
duke@1 429 * finalizers that require an empty stack?
duke@1 430 * @param target The tree representing the structure that's aborted
duke@1 431 * @param env The environment current at the non-local exit.
duke@1 432 */
duke@1 433 boolean hasFinally(JCTree target, Env<GenContext> env) {
duke@1 434 while (env.tree != target) {
duke@1 435 if (env.tree.getTag() == JCTree.TRY && env.info.finalize.hasFinalizer())
duke@1 436 return true;
duke@1 437 env = env.next;
duke@1 438 }
duke@1 439 return false;
duke@1 440 }
duke@1 441
duke@1 442 /* ************************************************************************
duke@1 443 * Normalizing class-members.
duke@1 444 *************************************************************************/
duke@1 445
duke@1 446 /** Distribute member initializer code into constructors and <clinit>
duke@1 447 * method.
duke@1 448 * @param defs The list of class member declarations.
duke@1 449 * @param c The enclosing class.
duke@1 450 */
duke@1 451 List<JCTree> normalizeDefs(List<JCTree> defs, ClassSymbol c) {
duke@1 452 ListBuffer<JCStatement> initCode = new ListBuffer<JCStatement>();
duke@1 453 ListBuffer<JCStatement> clinitCode = new ListBuffer<JCStatement>();
duke@1 454 ListBuffer<JCTree> methodDefs = new ListBuffer<JCTree>();
duke@1 455 // Sort definitions into three listbuffers:
duke@1 456 // - initCode for instance initializers
duke@1 457 // - clinitCode for class initializers
duke@1 458 // - methodDefs for method definitions
duke@1 459 for (List<JCTree> l = defs; l.nonEmpty(); l = l.tail) {
duke@1 460 JCTree def = l.head;
duke@1 461 switch (def.getTag()) {
duke@1 462 case JCTree.BLOCK:
duke@1 463 JCBlock block = (JCBlock)def;
duke@1 464 if ((block.flags & STATIC) != 0)
duke@1 465 clinitCode.append(block);
duke@1 466 else
duke@1 467 initCode.append(block);
duke@1 468 break;
duke@1 469 case JCTree.METHODDEF:
duke@1 470 methodDefs.append(def);
duke@1 471 break;
duke@1 472 case JCTree.VARDEF:
duke@1 473 JCVariableDecl vdef = (JCVariableDecl) def;
duke@1 474 VarSymbol sym = vdef.sym;
duke@1 475 checkDimension(vdef.pos(), sym.type);
duke@1 476 if (vdef.init != null) {
duke@1 477 if ((sym.flags() & STATIC) == 0) {
duke@1 478 // Always initialize instance variables.
duke@1 479 JCStatement init = make.at(vdef.pos()).
duke@1 480 Assignment(sym, vdef.init);
duke@1 481 initCode.append(init);
duke@1 482 if (endPositions != null) {
duke@1 483 Integer endPos = endPositions.remove(vdef);
duke@1 484 if (endPos != null) endPositions.put(init, endPos);
duke@1 485 }
duke@1 486 } else if (sym.getConstValue() == null) {
duke@1 487 // Initialize class (static) variables only if
duke@1 488 // they are not compile-time constants.
duke@1 489 JCStatement init = make.at(vdef.pos).
duke@1 490 Assignment(sym, vdef.init);
duke@1 491 clinitCode.append(init);
duke@1 492 if (endPositions != null) {
duke@1 493 Integer endPos = endPositions.remove(vdef);
duke@1 494 if (endPos != null) endPositions.put(init, endPos);
duke@1 495 }
duke@1 496 } else {
duke@1 497 checkStringConstant(vdef.init.pos(), sym.getConstValue());
duke@1 498 }
duke@1 499 }
duke@1 500 break;
duke@1 501 default:
duke@1 502 assert false;
duke@1 503 }
duke@1 504 }
duke@1 505 // Insert any instance initializers into all constructors.
duke@1 506 if (initCode.length() != 0) {
duke@1 507 List<JCStatement> inits = initCode.toList();
duke@1 508 for (JCTree t : methodDefs) {
duke@1 509 normalizeMethod((JCMethodDecl)t, inits);
duke@1 510 }
duke@1 511 }
duke@1 512 // If there are class initializers, create a <clinit> method
duke@1 513 // that contains them as its body.
duke@1 514 if (clinitCode.length() != 0) {
duke@1 515 MethodSymbol clinit = new MethodSymbol(
duke@1 516 STATIC, names.clinit,
duke@1 517 new MethodType(
duke@1 518 List.<Type>nil(), syms.voidType,
duke@1 519 List.<Type>nil(), syms.methodClass),
duke@1 520 c);
duke@1 521 c.members().enter(clinit);
duke@1 522 List<JCStatement> clinitStats = clinitCode.toList();
duke@1 523 JCBlock block = make.at(clinitStats.head.pos()).Block(0, clinitStats);
duke@1 524 block.endpos = TreeInfo.endPos(clinitStats.last());
duke@1 525 methodDefs.append(make.MethodDef(clinit, block));
duke@1 526 }
duke@1 527 // Return all method definitions.
duke@1 528 return methodDefs.toList();
duke@1 529 }
duke@1 530
duke@1 531 /** Check a constant value and report if it is a string that is
duke@1 532 * too large.
duke@1 533 */
duke@1 534 private void checkStringConstant(DiagnosticPosition pos, Object constValue) {
duke@1 535 if (nerrs != 0 || // only complain about a long string once
duke@1 536 constValue == null ||
duke@1 537 !(constValue instanceof String) ||
duke@1 538 ((String)constValue).length() < Pool.MAX_STRING_LENGTH)
duke@1 539 return;
duke@1 540 log.error(pos, "limit.string");
duke@1 541 nerrs++;
duke@1 542 }
duke@1 543
duke@1 544 /** Insert instance initializer code into initial constructor.
duke@1 545 * @param md The tree potentially representing a
duke@1 546 * constructor's definition.
duke@1 547 * @param initCode The list of instance initializer statements.
duke@1 548 */
duke@1 549 void normalizeMethod(JCMethodDecl md, List<JCStatement> initCode) {
duke@1 550 if (md.name == names.init && TreeInfo.isInitialConstructor(md)) {
duke@1 551 // We are seeing a constructor that does not call another
duke@1 552 // constructor of the same class.
duke@1 553 List<JCStatement> stats = md.body.stats;
duke@1 554 ListBuffer<JCStatement> newstats = new ListBuffer<JCStatement>();
duke@1 555
duke@1 556 if (stats.nonEmpty()) {
duke@1 557 // Copy initializers of synthetic variables generated in
duke@1 558 // the translation of inner classes.
duke@1 559 while (TreeInfo.isSyntheticInit(stats.head)) {
duke@1 560 newstats.append(stats.head);
duke@1 561 stats = stats.tail;
duke@1 562 }
duke@1 563 // Copy superclass constructor call
duke@1 564 newstats.append(stats.head);
duke@1 565 stats = stats.tail;
duke@1 566 // Copy remaining synthetic initializers.
duke@1 567 while (stats.nonEmpty() &&
duke@1 568 TreeInfo.isSyntheticInit(stats.head)) {
duke@1 569 newstats.append(stats.head);
duke@1 570 stats = stats.tail;
duke@1 571 }
duke@1 572 // Now insert the initializer code.
duke@1 573 newstats.appendList(initCode);
duke@1 574 // And copy all remaining statements.
duke@1 575 while (stats.nonEmpty()) {
duke@1 576 newstats.append(stats.head);
duke@1 577 stats = stats.tail;
duke@1 578 }
duke@1 579 }
duke@1 580 md.body.stats = newstats.toList();
duke@1 581 if (md.body.endpos == Position.NOPOS)
duke@1 582 md.body.endpos = TreeInfo.endPos(md.body.stats.last());
duke@1 583 }
duke@1 584 }
duke@1 585
duke@1 586 /* ********************************************************************
duke@1 587 * Adding miranda methods
duke@1 588 *********************************************************************/
duke@1 589
duke@1 590 /** Add abstract methods for all methods defined in one of
duke@1 591 * the interfaces of a given class,
duke@1 592 * provided they are not already implemented in the class.
duke@1 593 *
duke@1 594 * @param c The class whose interfaces are searched for methods
duke@1 595 * for which Miranda methods should be added.
duke@1 596 */
duke@1 597 void implementInterfaceMethods(ClassSymbol c) {
duke@1 598 implementInterfaceMethods(c, c);
duke@1 599 }
duke@1 600
duke@1 601 /** Add abstract methods for all methods defined in one of
duke@1 602 * the interfaces of a given class,
duke@1 603 * provided they are not already implemented in the class.
duke@1 604 *
duke@1 605 * @param c The class whose interfaces are searched for methods
duke@1 606 * for which Miranda methods should be added.
duke@1 607 * @param site The class in which a definition may be needed.
duke@1 608 */
duke@1 609 void implementInterfaceMethods(ClassSymbol c, ClassSymbol site) {
duke@1 610 for (List<Type> l = types.interfaces(c.type); l.nonEmpty(); l = l.tail) {
duke@1 611 ClassSymbol i = (ClassSymbol)l.head.tsym;
duke@1 612 for (Scope.Entry e = i.members().elems;
duke@1 613 e != null;
duke@1 614 e = e.sibling)
duke@1 615 {
duke@1 616 if (e.sym.kind == MTH && (e.sym.flags() & STATIC) == 0)
duke@1 617 {
duke@1 618 MethodSymbol absMeth = (MethodSymbol)e.sym;
duke@1 619 MethodSymbol implMeth = absMeth.binaryImplementation(site, types);
duke@1 620 if (implMeth == null)
duke@1 621 addAbstractMethod(site, absMeth);
duke@1 622 else if ((implMeth.flags() & IPROXY) != 0)
duke@1 623 adjustAbstractMethod(site, implMeth, absMeth);
duke@1 624 }
duke@1 625 }
duke@1 626 implementInterfaceMethods(i, site);
duke@1 627 }
duke@1 628 }
duke@1 629
duke@1 630 /** Add an abstract methods to a class
duke@1 631 * which implicitly implements a method defined in some interface
duke@1 632 * implemented by the class. These methods are called "Miranda methods".
duke@1 633 * Enter the newly created method into its enclosing class scope.
duke@1 634 * Note that it is not entered into the class tree, as the emitter
duke@1 635 * doesn't need to see it there to emit an abstract method.
duke@1 636 *
duke@1 637 * @param c The class to which the Miranda method is added.
duke@1 638 * @param m The interface method symbol for which a Miranda method
duke@1 639 * is added.
duke@1 640 */
duke@1 641 private void addAbstractMethod(ClassSymbol c,
duke@1 642 MethodSymbol m) {
duke@1 643 MethodSymbol absMeth = new MethodSymbol(
duke@1 644 m.flags() | IPROXY | SYNTHETIC, m.name,
duke@1 645 m.type, // was c.type.memberType(m), but now only !generics supported
duke@1 646 c);
duke@1 647 c.members().enter(absMeth); // add to symbol table
duke@1 648 }
duke@1 649
duke@1 650 private void adjustAbstractMethod(ClassSymbol c,
duke@1 651 MethodSymbol pm,
duke@1 652 MethodSymbol im) {
duke@1 653 MethodType pmt = (MethodType)pm.type;
duke@1 654 Type imt = types.memberType(c.type, im);
duke@1 655 pmt.thrown = chk.intersect(pmt.getThrownTypes(), imt.getThrownTypes());
duke@1 656 }
duke@1 657
duke@1 658 /* ************************************************************************
duke@1 659 * Traversal methods
duke@1 660 *************************************************************************/
duke@1 661
duke@1 662 /** Visitor argument: The current environment.
duke@1 663 */
duke@1 664 Env<GenContext> env;
duke@1 665
duke@1 666 /** Visitor argument: The expected type (prototype).
duke@1 667 */
duke@1 668 Type pt;
duke@1 669
duke@1 670 /** Visitor result: The item representing the computed value.
duke@1 671 */
duke@1 672 Item result;
duke@1 673
duke@1 674 /** Visitor method: generate code for a definition, catching and reporting
duke@1 675 * any completion failures.
duke@1 676 * @param tree The definition to be visited.
duke@1 677 * @param env The environment current at the definition.
duke@1 678 */
duke@1 679 public void genDef(JCTree tree, Env<GenContext> env) {
duke@1 680 Env<GenContext> prevEnv = this.env;
duke@1 681 try {
duke@1 682 this.env = env;
duke@1 683 tree.accept(this);
duke@1 684 } catch (CompletionFailure ex) {
duke@1 685 chk.completionError(tree.pos(), ex);
duke@1 686 } finally {
duke@1 687 this.env = prevEnv;
duke@1 688 }
duke@1 689 }
duke@1 690
duke@1 691 /** Derived visitor method: check whether CharacterRangeTable
duke@1 692 * should be emitted, if so, put a new entry into CRTable
duke@1 693 * and call method to generate bytecode.
duke@1 694 * If not, just call method to generate bytecode.
duke@1 695 * @see #genStat(Tree, Env)
duke@1 696 *
duke@1 697 * @param tree The tree to be visited.
duke@1 698 * @param env The environment to use.
duke@1 699 * @param crtFlags The CharacterRangeTable flags
duke@1 700 * indicating type of the entry.
duke@1 701 */
duke@1 702 public void genStat(JCTree tree, Env<GenContext> env, int crtFlags) {
duke@1 703 if (!genCrt) {
duke@1 704 genStat(tree, env);
duke@1 705 return;
duke@1 706 }
duke@1 707 int startpc = code.curPc();
duke@1 708 genStat(tree, env);
duke@1 709 if (tree.getTag() == JCTree.BLOCK) crtFlags |= CRT_BLOCK;
duke@1 710 code.crt.put(tree, crtFlags, startpc, code.curPc());
duke@1 711 }
duke@1 712
duke@1 713 /** Derived visitor method: generate code for a statement.
duke@1 714 */
duke@1 715 public void genStat(JCTree tree, Env<GenContext> env) {
duke@1 716 if (code.isAlive()) {
duke@1 717 code.statBegin(tree.pos);
duke@1 718 genDef(tree, env);
duke@1 719 } else if (env.info.isSwitch && tree.getTag() == JCTree.VARDEF) {
duke@1 720 // variables whose declarations are in a switch
duke@1 721 // can be used even if the decl is unreachable.
duke@1 722 code.newLocal(((JCVariableDecl) tree).sym);
duke@1 723 }
duke@1 724 }
duke@1 725
duke@1 726 /** Derived visitor method: check whether CharacterRangeTable
duke@1 727 * should be emitted, if so, put a new entry into CRTable
duke@1 728 * and call method to generate bytecode.
duke@1 729 * If not, just call method to generate bytecode.
duke@1 730 * @see #genStats(List, Env)
duke@1 731 *
duke@1 732 * @param trees The list of trees to be visited.
duke@1 733 * @param env The environment to use.
duke@1 734 * @param crtFlags The CharacterRangeTable flags
duke@1 735 * indicating type of the entry.
duke@1 736 */
duke@1 737 public void genStats(List<JCStatement> trees, Env<GenContext> env, int crtFlags) {
duke@1 738 if (!genCrt) {
duke@1 739 genStats(trees, env);
duke@1 740 return;
duke@1 741 }
duke@1 742 if (trees.length() == 1) { // mark one statement with the flags
duke@1 743 genStat(trees.head, env, crtFlags | CRT_STATEMENT);
duke@1 744 } else {
duke@1 745 int startpc = code.curPc();
duke@1 746 genStats(trees, env);
duke@1 747 code.crt.put(trees, crtFlags, startpc, code.curPc());
duke@1 748 }
duke@1 749 }
duke@1 750
duke@1 751 /** Derived visitor method: generate code for a list of statements.
duke@1 752 */
duke@1 753 public void genStats(List<? extends JCTree> trees, Env<GenContext> env) {
duke@1 754 for (List<? extends JCTree> l = trees; l.nonEmpty(); l = l.tail)
duke@1 755 genStat(l.head, env, CRT_STATEMENT);
duke@1 756 }
duke@1 757
duke@1 758 /** Derived visitor method: check whether CharacterRangeTable
duke@1 759 * should be emitted, if so, put a new entry into CRTable
duke@1 760 * and call method to generate bytecode.
duke@1 761 * If not, just call method to generate bytecode.
duke@1 762 * @see #genCond(Tree,boolean)
duke@1 763 *
duke@1 764 * @param tree The tree to be visited.
duke@1 765 * @param crtFlags The CharacterRangeTable flags
duke@1 766 * indicating type of the entry.
duke@1 767 */
duke@1 768 public CondItem genCond(JCTree tree, int crtFlags) {
duke@1 769 if (!genCrt) return genCond(tree, false);
duke@1 770 int startpc = code.curPc();
duke@1 771 CondItem item = genCond(tree, (crtFlags & CRT_FLOW_CONTROLLER) != 0);
duke@1 772 code.crt.put(tree, crtFlags, startpc, code.curPc());
duke@1 773 return item;
duke@1 774 }
duke@1 775
duke@1 776 /** Derived visitor method: generate code for a boolean
duke@1 777 * expression in a control-flow context.
duke@1 778 * @param _tree The expression to be visited.
duke@1 779 * @param markBranches The flag to indicate that the condition is
duke@1 780 * a flow controller so produced conditions
duke@1 781 * should contain a proper tree to generate
duke@1 782 * CharacterRangeTable branches for them.
duke@1 783 */
duke@1 784 public CondItem genCond(JCTree _tree, boolean markBranches) {
duke@1 785 JCTree inner_tree = TreeInfo.skipParens(_tree);
duke@1 786 if (inner_tree.getTag() == JCTree.CONDEXPR) {
duke@1 787 JCConditional tree = (JCConditional)inner_tree;
duke@1 788 CondItem cond = genCond(tree.cond, CRT_FLOW_CONTROLLER);
duke@1 789 if (cond.isTrue()) {
duke@1 790 code.resolve(cond.trueJumps);
duke@1 791 CondItem result = genCond(tree.truepart, CRT_FLOW_TARGET);
duke@1 792 if (markBranches) result.tree = tree.truepart;
duke@1 793 return result;
duke@1 794 }
duke@1 795 if (cond.isFalse()) {
duke@1 796 code.resolve(cond.falseJumps);
duke@1 797 CondItem result = genCond(tree.falsepart, CRT_FLOW_TARGET);
duke@1 798 if (markBranches) result.tree = tree.falsepart;
duke@1 799 return result;
duke@1 800 }
duke@1 801 Chain secondJumps = cond.jumpFalse();
duke@1 802 code.resolve(cond.trueJumps);
duke@1 803 CondItem first = genCond(tree.truepart, CRT_FLOW_TARGET);
duke@1 804 if (markBranches) first.tree = tree.truepart;
duke@1 805 Chain falseJumps = first.jumpFalse();
duke@1 806 code.resolve(first.trueJumps);
duke@1 807 Chain trueJumps = code.branch(goto_);
duke@1 808 code.resolve(secondJumps);
duke@1 809 CondItem second = genCond(tree.falsepart, CRT_FLOW_TARGET);
duke@1 810 CondItem result = items.makeCondItem(second.opcode,
jjg@507 811 Code.mergeChains(trueJumps, second.trueJumps),
jjg@507 812 Code.mergeChains(falseJumps, second.falseJumps));
duke@1 813 if (markBranches) result.tree = tree.falsepart;
duke@1 814 return result;
duke@1 815 } else {
duke@1 816 CondItem result = genExpr(_tree, syms.booleanType).mkCond();
duke@1 817 if (markBranches) result.tree = _tree;
duke@1 818 return result;
duke@1 819 }
duke@1 820 }
duke@1 821
duke@1 822 /** Visitor method: generate code for an expression, catching and reporting
duke@1 823 * any completion failures.
duke@1 824 * @param tree The expression to be visited.
duke@1 825 * @param pt The expression's expected type (proto-type).
duke@1 826 */
duke@1 827 public Item genExpr(JCTree tree, Type pt) {
duke@1 828 Type prevPt = this.pt;
duke@1 829 try {
duke@1 830 if (tree.type.constValue() != null) {
duke@1 831 // Short circuit any expressions which are constants
duke@1 832 checkStringConstant(tree.pos(), tree.type.constValue());
duke@1 833 result = items.makeImmediateItem(tree.type, tree.type.constValue());
duke@1 834 } else {
duke@1 835 this.pt = pt;
duke@1 836 tree.accept(this);
duke@1 837 }
duke@1 838 return result.coerce(pt);
duke@1 839 } catch (CompletionFailure ex) {
duke@1 840 chk.completionError(tree.pos(), ex);
duke@1 841 code.state.stacksize = 1;
duke@1 842 return items.makeStackItem(pt);
duke@1 843 } finally {
duke@1 844 this.pt = prevPt;
duke@1 845 }
duke@1 846 }
duke@1 847
duke@1 848 /** Derived visitor method: generate code for a list of method arguments.
duke@1 849 * @param trees The argument expressions to be visited.
duke@1 850 * @param pts The expression's expected types (i.e. the formal parameter
duke@1 851 * types of the invoked method).
duke@1 852 */
duke@1 853 public void genArgs(List<JCExpression> trees, List<Type> pts) {
duke@1 854 for (List<JCExpression> l = trees; l.nonEmpty(); l = l.tail) {
duke@1 855 genExpr(l.head, pts.head).load();
duke@1 856 pts = pts.tail;
duke@1 857 }
duke@1 858 // require lists be of same length
duke@1 859 assert pts.isEmpty();
duke@1 860 }
duke@1 861
duke@1 862 /* ************************************************************************
duke@1 863 * Visitor methods for statements and definitions
duke@1 864 *************************************************************************/
duke@1 865
duke@1 866 /** Thrown when the byte code size exceeds limit.
duke@1 867 */
duke@1 868 public static class CodeSizeOverflow extends RuntimeException {
duke@1 869 private static final long serialVersionUID = 0;
duke@1 870 public CodeSizeOverflow() {}
duke@1 871 }
duke@1 872
duke@1 873 public void visitMethodDef(JCMethodDecl tree) {
duke@1 874 // Create a new local environment that points pack at method
duke@1 875 // definition.
duke@1 876 Env<GenContext> localEnv = env.dup(tree);
duke@1 877 localEnv.enclMethod = tree;
duke@1 878
duke@1 879 // The expected type of every return statement in this method
duke@1 880 // is the method's return type.
duke@1 881 this.pt = tree.sym.erasure(types).getReturnType();
duke@1 882
duke@1 883 checkDimension(tree.pos(), tree.sym.erasure(types));
duke@1 884 genMethod(tree, localEnv, false);
duke@1 885 }
duke@1 886 //where
duke@1 887 /** Generate code for a method.
duke@1 888 * @param tree The tree representing the method definition.
duke@1 889 * @param env The environment current for the method body.
duke@1 890 * @param fatcode A flag that indicates whether all jumps are
duke@1 891 * within 32K. We first invoke this method under
duke@1 892 * the assumption that fatcode == false, i.e. all
duke@1 893 * jumps are within 32K. If this fails, fatcode
duke@1 894 * is set to true and we try again.
duke@1 895 */
duke@1 896 void genMethod(JCMethodDecl tree, Env<GenContext> env, boolean fatcode) {
duke@1 897 MethodSymbol meth = tree.sym;
duke@1 898 // System.err.println("Generating " + meth + " in " + meth.owner); //DEBUG
duke@1 899 if (Code.width(types.erasure(env.enclMethod.sym.type).getParameterTypes()) +
duke@1 900 (((tree.mods.flags & STATIC) == 0 || meth.isConstructor()) ? 1 : 0) >
duke@1 901 ClassFile.MAX_PARAMETERS) {
duke@1 902 log.error(tree.pos(), "limit.parameters");
duke@1 903 nerrs++;
duke@1 904 }
duke@1 905
duke@1 906 else if (tree.body != null) {
duke@1 907 // Create a new code structure and initialize it.
duke@1 908 int startpcCrt = initCode(tree, env, fatcode);
duke@1 909
duke@1 910 try {
duke@1 911 genStat(tree.body, env);
duke@1 912 } catch (CodeSizeOverflow e) {
duke@1 913 // Failed due to code limit, try again with jsr/ret
duke@1 914 startpcCrt = initCode(tree, env, fatcode);
duke@1 915 genStat(tree.body, env);
duke@1 916 }
duke@1 917
duke@1 918 if (code.state.stacksize != 0) {
duke@1 919 log.error(tree.body.pos(), "stack.sim.error", tree);
duke@1 920 throw new AssertionError();
duke@1 921 }
duke@1 922
duke@1 923 // If last statement could complete normally, insert a
duke@1 924 // return at the end.
duke@1 925 if (code.isAlive()) {
duke@1 926 code.statBegin(TreeInfo.endPos(tree.body));
duke@1 927 if (env.enclMethod == null ||
duke@1 928 env.enclMethod.sym.type.getReturnType().tag == VOID) {
duke@1 929 code.emitop0(return_);
duke@1 930 } else {
duke@1 931 // sometime dead code seems alive (4415991);
duke@1 932 // generate a small loop instead
duke@1 933 int startpc = code.entryPoint();
duke@1 934 CondItem c = items.makeCondItem(goto_);
duke@1 935 code.resolve(c.jumpTrue(), startpc);
duke@1 936 }
duke@1 937 }
duke@1 938 if (genCrt)
duke@1 939 code.crt.put(tree.body,
duke@1 940 CRT_BLOCK,
duke@1 941 startpcCrt,
duke@1 942 code.curPc());
duke@1 943
duke@1 944 code.endScopes(0);
duke@1 945
duke@1 946 // If we exceeded limits, panic
duke@1 947 if (code.checkLimits(tree.pos(), log)) {
duke@1 948 nerrs++;
duke@1 949 return;
duke@1 950 }
duke@1 951
duke@1 952 // If we generated short code but got a long jump, do it again
duke@1 953 // with fatCode = true.
duke@1 954 if (!fatcode && code.fatcode) genMethod(tree, env, true);
duke@1 955
duke@1 956 // Clean up
duke@1 957 if(stackMap == StackMapFormat.JSR202) {
duke@1 958 code.lastFrame = null;
duke@1 959 code.frameBeforeLast = null;
duke@1 960 }
duke@1 961 }
duke@1 962 }
duke@1 963
duke@1 964 private int initCode(JCMethodDecl tree, Env<GenContext> env, boolean fatcode) {
duke@1 965 MethodSymbol meth = tree.sym;
duke@1 966
duke@1 967 // Create a new code structure.
duke@1 968 meth.code = code = new Code(meth,
duke@1 969 fatcode,
duke@1 970 lineDebugInfo ? toplevel.lineMap : null,
duke@1 971 varDebugInfo,
duke@1 972 stackMap,
duke@1 973 debugCode,
duke@1 974 genCrt ? new CRTable(tree, env.toplevel.endPositions)
duke@1 975 : null,
duke@1 976 syms,
duke@1 977 types,
duke@1 978 pool);
duke@1 979 items = new Items(pool, code, syms, types);
duke@1 980 if (code.debugCode)
duke@1 981 System.err.println(meth + " for body " + tree);
duke@1 982
duke@1 983 // If method is not static, create a new local variable address
duke@1 984 // for `this'.
duke@1 985 if ((tree.mods.flags & STATIC) == 0) {
duke@1 986 Type selfType = meth.owner.type;
duke@1 987 if (meth.isConstructor() && selfType != syms.objectType)
duke@1 988 selfType = UninitializedType.uninitializedThis(selfType);
duke@1 989 code.setDefined(
duke@1 990 code.newLocal(
duke@1 991 new VarSymbol(FINAL, names._this, selfType, meth.owner)));
duke@1 992 }
duke@1 993
duke@1 994 // Mark all parameters as defined from the beginning of
duke@1 995 // the method.
duke@1 996 for (List<JCVariableDecl> l = tree.params; l.nonEmpty(); l = l.tail) {
duke@1 997 checkDimension(l.head.pos(), l.head.sym.type);
duke@1 998 code.setDefined(code.newLocal(l.head.sym));
duke@1 999 }
duke@1 1000
duke@1 1001 // Get ready to generate code for method body.
duke@1 1002 int startpcCrt = genCrt ? code.curPc() : 0;
duke@1 1003 code.entryPoint();
duke@1 1004
duke@1 1005 // Suppress initial stackmap
duke@1 1006 code.pendingStackMap = false;
duke@1 1007
duke@1 1008 return startpcCrt;
duke@1 1009 }
duke@1 1010
duke@1 1011 public void visitVarDef(JCVariableDecl tree) {
duke@1 1012 VarSymbol v = tree.sym;
duke@1 1013 code.newLocal(v);
duke@1 1014 if (tree.init != null) {
duke@1 1015 checkStringConstant(tree.init.pos(), v.getConstValue());
duke@1 1016 if (v.getConstValue() == null || varDebugInfo) {
duke@1 1017 genExpr(tree.init, v.erasure(types)).load();
duke@1 1018 items.makeLocalItem(v).store();
duke@1 1019 }
duke@1 1020 }
duke@1 1021 checkDimension(tree.pos(), v.type);
duke@1 1022 }
duke@1 1023
duke@1 1024 public void visitSkip(JCSkip tree) {
duke@1 1025 }
duke@1 1026
duke@1 1027 public void visitBlock(JCBlock tree) {
duke@1 1028 int limit = code.nextreg;
duke@1 1029 Env<GenContext> localEnv = env.dup(tree, new GenContext());
duke@1 1030 genStats(tree.stats, localEnv);
duke@1 1031 // End the scope of all block-local variables in variable info.
duke@1 1032 if (env.tree.getTag() != JCTree.METHODDEF) {
duke@1 1033 code.statBegin(tree.endpos);
duke@1 1034 code.endScopes(limit);
duke@1 1035 code.pendingStatPos = Position.NOPOS;
duke@1 1036 }
duke@1 1037 }
duke@1 1038
duke@1 1039 public void visitDoLoop(JCDoWhileLoop tree) {
duke@1 1040 genLoop(tree, tree.body, tree.cond, List.<JCExpressionStatement>nil(), false);
duke@1 1041 }
duke@1 1042
duke@1 1043 public void visitWhileLoop(JCWhileLoop tree) {
duke@1 1044 genLoop(tree, tree.body, tree.cond, List.<JCExpressionStatement>nil(), true);
duke@1 1045 }
duke@1 1046
duke@1 1047 public void visitForLoop(JCForLoop tree) {
duke@1 1048 int limit = code.nextreg;
duke@1 1049 genStats(tree.init, env);
duke@1 1050 genLoop(tree, tree.body, tree.cond, tree.step, true);
duke@1 1051 code.endScopes(limit);
duke@1 1052 }
duke@1 1053 //where
duke@1 1054 /** Generate code for a loop.
duke@1 1055 * @param loop The tree representing the loop.
duke@1 1056 * @param body The loop's body.
duke@1 1057 * @param cond The loop's controling condition.
duke@1 1058 * @param step "Step" statements to be inserted at end of
duke@1 1059 * each iteration.
duke@1 1060 * @param testFirst True if the loop test belongs before the body.
duke@1 1061 */
duke@1 1062 private void genLoop(JCStatement loop,
duke@1 1063 JCStatement body,
duke@1 1064 JCExpression cond,
duke@1 1065 List<JCExpressionStatement> step,
duke@1 1066 boolean testFirst) {
duke@1 1067 Env<GenContext> loopEnv = env.dup(loop, new GenContext());
duke@1 1068 int startpc = code.entryPoint();
duke@1 1069 if (testFirst) {
duke@1 1070 CondItem c;
duke@1 1071 if (cond != null) {
duke@1 1072 code.statBegin(cond.pos);
duke@1 1073 c = genCond(TreeInfo.skipParens(cond), CRT_FLOW_CONTROLLER);
duke@1 1074 } else {
duke@1 1075 c = items.makeCondItem(goto_);
duke@1 1076 }
duke@1 1077 Chain loopDone = c.jumpFalse();
duke@1 1078 code.resolve(c.trueJumps);
duke@1 1079 genStat(body, loopEnv, CRT_STATEMENT | CRT_FLOW_TARGET);
duke@1 1080 code.resolve(loopEnv.info.cont);
duke@1 1081 genStats(step, loopEnv);
duke@1 1082 code.resolve(code.branch(goto_), startpc);
duke@1 1083 code.resolve(loopDone);
duke@1 1084 } else {
duke@1 1085 genStat(body, loopEnv, CRT_STATEMENT | CRT_FLOW_TARGET);
duke@1 1086 code.resolve(loopEnv.info.cont);
duke@1 1087 genStats(step, loopEnv);
duke@1 1088 CondItem c;
duke@1 1089 if (cond != null) {
duke@1 1090 code.statBegin(cond.pos);
duke@1 1091 c = genCond(TreeInfo.skipParens(cond), CRT_FLOW_CONTROLLER);
duke@1 1092 } else {
duke@1 1093 c = items.makeCondItem(goto_);
duke@1 1094 }
duke@1 1095 code.resolve(c.jumpTrue(), startpc);
duke@1 1096 code.resolve(c.falseJumps);
duke@1 1097 }
duke@1 1098 code.resolve(loopEnv.info.exit);
duke@1 1099 }
duke@1 1100
duke@1 1101 public void visitForeachLoop(JCEnhancedForLoop tree) {
duke@1 1102 throw new AssertionError(); // should have been removed by Lower.
duke@1 1103 }
duke@1 1104
duke@1 1105 public void visitLabelled(JCLabeledStatement tree) {
duke@1 1106 Env<GenContext> localEnv = env.dup(tree, new GenContext());
duke@1 1107 genStat(tree.body, localEnv, CRT_STATEMENT);
duke@1 1108 code.resolve(localEnv.info.exit);
duke@1 1109 }
duke@1 1110
duke@1 1111 public void visitSwitch(JCSwitch tree) {
duke@1 1112 int limit = code.nextreg;
duke@1 1113 assert tree.selector.type.tag != CLASS;
duke@1 1114 int startpcCrt = genCrt ? code.curPc() : 0;
duke@1 1115 Item sel = genExpr(tree.selector, syms.intType);
duke@1 1116 List<JCCase> cases = tree.cases;
duke@1 1117 if (cases.isEmpty()) {
duke@1 1118 // We are seeing: switch <sel> {}
duke@1 1119 sel.load().drop();
duke@1 1120 if (genCrt)
duke@1 1121 code.crt.put(TreeInfo.skipParens(tree.selector),
duke@1 1122 CRT_FLOW_CONTROLLER, startpcCrt, code.curPc());
duke@1 1123 } else {
duke@1 1124 // We are seeing a nonempty switch.
duke@1 1125 sel.load();
duke@1 1126 if (genCrt)
duke@1 1127 code.crt.put(TreeInfo.skipParens(tree.selector),
duke@1 1128 CRT_FLOW_CONTROLLER, startpcCrt, code.curPc());
duke@1 1129 Env<GenContext> switchEnv = env.dup(tree, new GenContext());
duke@1 1130 switchEnv.info.isSwitch = true;
duke@1 1131
duke@1 1132 // Compute number of labels and minimum and maximum label values.
duke@1 1133 // For each case, store its label in an array.
duke@1 1134 int lo = Integer.MAX_VALUE; // minimum label.
duke@1 1135 int hi = Integer.MIN_VALUE; // maximum label.
duke@1 1136 int nlabels = 0; // number of labels.
duke@1 1137
duke@1 1138 int[] labels = new int[cases.length()]; // the label array.
duke@1 1139 int defaultIndex = -1; // the index of the default clause.
duke@1 1140
duke@1 1141 List<JCCase> l = cases;
duke@1 1142 for (int i = 0; i < labels.length; i++) {
duke@1 1143 if (l.head.pat != null) {
duke@1 1144 int val = ((Number)l.head.pat.type.constValue()).intValue();
duke@1 1145 labels[i] = val;
duke@1 1146 if (val < lo) lo = val;
duke@1 1147 if (hi < val) hi = val;
duke@1 1148 nlabels++;
duke@1 1149 } else {
duke@1 1150 assert defaultIndex == -1;
duke@1 1151 defaultIndex = i;
duke@1 1152 }
duke@1 1153 l = l.tail;
duke@1 1154 }
duke@1 1155
duke@1 1156 // Determine whether to issue a tableswitch or a lookupswitch
duke@1 1157 // instruction.
duke@1 1158 long table_space_cost = 4 + ((long) hi - lo + 1); // words
duke@1 1159 long table_time_cost = 3; // comparisons
duke@1 1160 long lookup_space_cost = 3 + 2 * (long) nlabels;
duke@1 1161 long lookup_time_cost = nlabels;
duke@1 1162 int opcode =
duke@1 1163 nlabels > 0 &&
duke@1 1164 table_space_cost + 3 * table_time_cost <=
duke@1 1165 lookup_space_cost + 3 * lookup_time_cost
duke@1 1166 ?
duke@1 1167 tableswitch : lookupswitch;
duke@1 1168
duke@1 1169 int startpc = code.curPc(); // the position of the selector operation
duke@1 1170 code.emitop0(opcode);
duke@1 1171 code.align(4);
duke@1 1172 int tableBase = code.curPc(); // the start of the jump table
duke@1 1173 int[] offsets = null; // a table of offsets for a lookupswitch
duke@1 1174 code.emit4(-1); // leave space for default offset
duke@1 1175 if (opcode == tableswitch) {
duke@1 1176 code.emit4(lo); // minimum label
duke@1 1177 code.emit4(hi); // maximum label
duke@1 1178 for (long i = lo; i <= hi; i++) { // leave space for jump table
duke@1 1179 code.emit4(-1);
duke@1 1180 }
duke@1 1181 } else {
duke@1 1182 code.emit4(nlabels); // number of labels
duke@1 1183 for (int i = 0; i < nlabels; i++) {
duke@1 1184 code.emit4(-1); code.emit4(-1); // leave space for lookup table
duke@1 1185 }
duke@1 1186 offsets = new int[labels.length];
duke@1 1187 }
duke@1 1188 Code.State stateSwitch = code.state.dup();
duke@1 1189 code.markDead();
duke@1 1190
duke@1 1191 // For each case do:
duke@1 1192 l = cases;
duke@1 1193 for (int i = 0; i < labels.length; i++) {
duke@1 1194 JCCase c = l.head;
duke@1 1195 l = l.tail;
duke@1 1196
duke@1 1197 int pc = code.entryPoint(stateSwitch);
duke@1 1198 // Insert offset directly into code or else into the
duke@1 1199 // offsets table.
duke@1 1200 if (i != defaultIndex) {
duke@1 1201 if (opcode == tableswitch) {
duke@1 1202 code.put4(
duke@1 1203 tableBase + 4 * (labels[i] - lo + 3),
duke@1 1204 pc - startpc);
duke@1 1205 } else {
duke@1 1206 offsets[i] = pc - startpc;
duke@1 1207 }
duke@1 1208 } else {
duke@1 1209 code.put4(tableBase, pc - startpc);
duke@1 1210 }
duke@1 1211
duke@1 1212 // Generate code for the statements in this case.
duke@1 1213 genStats(c.stats, switchEnv, CRT_FLOW_TARGET);
duke@1 1214 }
duke@1 1215
duke@1 1216 // Resolve all breaks.
duke@1 1217 code.resolve(switchEnv.info.exit);
duke@1 1218
duke@1 1219 // If we have not set the default offset, we do so now.
duke@1 1220 if (code.get4(tableBase) == -1) {
duke@1 1221 code.put4(tableBase, code.entryPoint(stateSwitch) - startpc);
duke@1 1222 }
duke@1 1223
duke@1 1224 if (opcode == tableswitch) {
duke@1 1225 // Let any unfilled slots point to the default case.
duke@1 1226 int defaultOffset = code.get4(tableBase);
duke@1 1227 for (long i = lo; i <= hi; i++) {
duke@1 1228 int t = (int)(tableBase + 4 * (i - lo + 3));
duke@1 1229 if (code.get4(t) == -1)
duke@1 1230 code.put4(t, defaultOffset);
duke@1 1231 }
duke@1 1232 } else {
duke@1 1233 // Sort non-default offsets and copy into lookup table.
duke@1 1234 if (defaultIndex >= 0)
duke@1 1235 for (int i = defaultIndex; i < labels.length - 1; i++) {
duke@1 1236 labels[i] = labels[i+1];
duke@1 1237 offsets[i] = offsets[i+1];
duke@1 1238 }
duke@1 1239 if (nlabels > 0)
duke@1 1240 qsort2(labels, offsets, 0, nlabels - 1);
duke@1 1241 for (int i = 0; i < nlabels; i++) {
duke@1 1242 int caseidx = tableBase + 8 * (i + 1);
duke@1 1243 code.put4(caseidx, labels[i]);
duke@1 1244 code.put4(caseidx + 4, offsets[i]);
duke@1 1245 }
duke@1 1246 }
duke@1 1247 }
duke@1 1248 code.endScopes(limit);
duke@1 1249 }
duke@1 1250 //where
duke@1 1251 /** Sort (int) arrays of keys and values
duke@1 1252 */
duke@1 1253 static void qsort2(int[] keys, int[] values, int lo, int hi) {
duke@1 1254 int i = lo;
duke@1 1255 int j = hi;
duke@1 1256 int pivot = keys[(i+j)/2];
duke@1 1257 do {
duke@1 1258 while (keys[i] < pivot) i++;
duke@1 1259 while (pivot < keys[j]) j--;
duke@1 1260 if (i <= j) {
duke@1 1261 int temp1 = keys[i];
duke@1 1262 keys[i] = keys[j];
duke@1 1263 keys[j] = temp1;
duke@1 1264 int temp2 = values[i];
duke@1 1265 values[i] = values[j];
duke@1 1266 values[j] = temp2;
duke@1 1267 i++;
duke@1 1268 j--;
duke@1 1269 }
duke@1 1270 } while (i <= j);
duke@1 1271 if (lo < j) qsort2(keys, values, lo, j);
duke@1 1272 if (i < hi) qsort2(keys, values, i, hi);
duke@1 1273 }
duke@1 1274
duke@1 1275 public void visitSynchronized(JCSynchronized tree) {
duke@1 1276 int limit = code.nextreg;
duke@1 1277 // Generate code to evaluate lock and save in temporary variable.
duke@1 1278 final LocalItem lockVar = makeTemp(syms.objectType);
duke@1 1279 genExpr(tree.lock, tree.lock.type).load().duplicate();
duke@1 1280 lockVar.store();
duke@1 1281
duke@1 1282 // Generate code to enter monitor.
duke@1 1283 code.emitop0(monitorenter);
duke@1 1284 code.state.lock(lockVar.reg);
duke@1 1285
duke@1 1286 // Generate code for a try statement with given body, no catch clauses
duke@1 1287 // in a new environment with the "exit-monitor" operation as finalizer.
duke@1 1288 final Env<GenContext> syncEnv = env.dup(tree, new GenContext());
duke@1 1289 syncEnv.info.finalize = new GenFinalizer() {
duke@1 1290 void gen() {
duke@1 1291 genLast();
duke@1 1292 assert syncEnv.info.gaps.length() % 2 == 0;
duke@1 1293 syncEnv.info.gaps.append(code.curPc());
duke@1 1294 }
duke@1 1295 void genLast() {
duke@1 1296 if (code.isAlive()) {
duke@1 1297 lockVar.load();
duke@1 1298 code.emitop0(monitorexit);
duke@1 1299 code.state.unlock(lockVar.reg);
duke@1 1300 }
duke@1 1301 }
duke@1 1302 };
duke@1 1303 syncEnv.info.gaps = new ListBuffer<Integer>();
duke@1 1304 genTry(tree.body, List.<JCCatch>nil(), syncEnv);
duke@1 1305 code.endScopes(limit);
duke@1 1306 }
duke@1 1307
duke@1 1308 public void visitTry(final JCTry tree) {
duke@1 1309 // Generate code for a try statement with given body and catch clauses,
duke@1 1310 // in a new environment which calls the finally block if there is one.
duke@1 1311 final Env<GenContext> tryEnv = env.dup(tree, new GenContext());
duke@1 1312 final Env<GenContext> oldEnv = env;
duke@1 1313 if (!useJsrLocally) {
duke@1 1314 useJsrLocally =
duke@1 1315 (stackMap == StackMapFormat.NONE) &&
duke@1 1316 (jsrlimit <= 0 ||
duke@1 1317 jsrlimit < 100 &&
duke@1 1318 estimateCodeComplexity(tree.finalizer)>jsrlimit);
duke@1 1319 }
duke@1 1320 tryEnv.info.finalize = new GenFinalizer() {
duke@1 1321 void gen() {
duke@1 1322 if (useJsrLocally) {
duke@1 1323 if (tree.finalizer != null) {
duke@1 1324 Code.State jsrState = code.state.dup();
jjg@507 1325 jsrState.push(Code.jsrReturnValue);
duke@1 1326 tryEnv.info.cont =
duke@1 1327 new Chain(code.emitJump(jsr),
duke@1 1328 tryEnv.info.cont,
duke@1 1329 jsrState);
duke@1 1330 }
duke@1 1331 assert tryEnv.info.gaps.length() % 2 == 0;
duke@1 1332 tryEnv.info.gaps.append(code.curPc());
duke@1 1333 } else {
duke@1 1334 assert tryEnv.info.gaps.length() % 2 == 0;
duke@1 1335 tryEnv.info.gaps.append(code.curPc());
duke@1 1336 genLast();
duke@1 1337 }
duke@1 1338 }
duke@1 1339 void genLast() {
duke@1 1340 if (tree.finalizer != null)
duke@1 1341 genStat(tree.finalizer, oldEnv, CRT_BLOCK);
duke@1 1342 }
duke@1 1343 boolean hasFinalizer() {
duke@1 1344 return tree.finalizer != null;
duke@1 1345 }
duke@1 1346 };
duke@1 1347 tryEnv.info.gaps = new ListBuffer<Integer>();
duke@1 1348 genTry(tree.body, tree.catchers, tryEnv);
duke@1 1349 }
duke@1 1350 //where
duke@1 1351 /** Generate code for a try or synchronized statement
duke@1 1352 * @param body The body of the try or synchronized statement.
duke@1 1353 * @param catchers The lis of catch clauses.
duke@1 1354 * @param env the environment current for the body.
duke@1 1355 */
duke@1 1356 void genTry(JCTree body, List<JCCatch> catchers, Env<GenContext> env) {
duke@1 1357 int limit = code.nextreg;
duke@1 1358 int startpc = code.curPc();
duke@1 1359 Code.State stateTry = code.state.dup();
duke@1 1360 genStat(body, env, CRT_BLOCK);
duke@1 1361 int endpc = code.curPc();
duke@1 1362 boolean hasFinalizer =
duke@1 1363 env.info.finalize != null &&
duke@1 1364 env.info.finalize.hasFinalizer();
duke@1 1365 List<Integer> gaps = env.info.gaps.toList();
duke@1 1366 code.statBegin(TreeInfo.endPos(body));
duke@1 1367 genFinalizer(env);
duke@1 1368 code.statBegin(TreeInfo.endPos(env.tree));
duke@1 1369 Chain exitChain = code.branch(goto_);
duke@1 1370 endFinalizerGap(env);
duke@1 1371 if (startpc != endpc) for (List<JCCatch> l = catchers; l.nonEmpty(); l = l.tail) {
duke@1 1372 // start off with exception on stack
duke@1 1373 code.entryPoint(stateTry, l.head.param.sym.type);
duke@1 1374 genCatch(l.head, env, startpc, endpc, gaps);
duke@1 1375 genFinalizer(env);
duke@1 1376 if (hasFinalizer || l.tail.nonEmpty()) {
duke@1 1377 code.statBegin(TreeInfo.endPos(env.tree));
jjg@507 1378 exitChain = Code.mergeChains(exitChain,
duke@1 1379 code.branch(goto_));
duke@1 1380 }
duke@1 1381 endFinalizerGap(env);
duke@1 1382 }
duke@1 1383 if (hasFinalizer) {
duke@1 1384 // Create a new register segement to avoid allocating
duke@1 1385 // the same variables in finalizers and other statements.
duke@1 1386 code.newRegSegment();
duke@1 1387
duke@1 1388 // Add a catch-all clause.
duke@1 1389
duke@1 1390 // start off with exception on stack
duke@1 1391 int catchallpc = code.entryPoint(stateTry, syms.throwableType);
duke@1 1392
duke@1 1393 // Register all exception ranges for catch all clause.
duke@1 1394 // The range of the catch all clause is from the beginning
duke@1 1395 // of the try or synchronized block until the present
duke@1 1396 // code pointer excluding all gaps in the current
duke@1 1397 // environment's GenContext.
duke@1 1398 int startseg = startpc;
duke@1 1399 while (env.info.gaps.nonEmpty()) {
duke@1 1400 int endseg = env.info.gaps.next().intValue();
duke@1 1401 registerCatch(body.pos(), startseg, endseg,
duke@1 1402 catchallpc, 0);
duke@1 1403 startseg = env.info.gaps.next().intValue();
duke@1 1404 }
duke@1 1405 code.statBegin(TreeInfo.finalizerPos(env.tree));
duke@1 1406 code.markStatBegin();
duke@1 1407
duke@1 1408 Item excVar = makeTemp(syms.throwableType);
duke@1 1409 excVar.store();
duke@1 1410 genFinalizer(env);
duke@1 1411 excVar.load();
duke@1 1412 registerCatch(body.pos(), startseg,
duke@1 1413 env.info.gaps.next().intValue(),
duke@1 1414 catchallpc, 0);
duke@1 1415 code.emitop0(athrow);
duke@1 1416 code.markDead();
duke@1 1417
duke@1 1418 // If there are jsr's to this finalizer, ...
duke@1 1419 if (env.info.cont != null) {
duke@1 1420 // Resolve all jsr's.
duke@1 1421 code.resolve(env.info.cont);
duke@1 1422
duke@1 1423 // Mark statement line number
duke@1 1424 code.statBegin(TreeInfo.finalizerPos(env.tree));
duke@1 1425 code.markStatBegin();
duke@1 1426
duke@1 1427 // Save return address.
duke@1 1428 LocalItem retVar = makeTemp(syms.throwableType);
duke@1 1429 retVar.store();
duke@1 1430
duke@1 1431 // Generate finalizer code.
duke@1 1432 env.info.finalize.genLast();
duke@1 1433
duke@1 1434 // Return.
duke@1 1435 code.emitop1w(ret, retVar.reg);
duke@1 1436 code.markDead();
duke@1 1437 }
duke@1 1438 }
duke@1 1439
duke@1 1440 // Resolve all breaks.
duke@1 1441 code.resolve(exitChain);
duke@1 1442
duke@1 1443 code.endScopes(limit);
duke@1 1444 }
duke@1 1445
duke@1 1446 /** Generate code for a catch clause.
duke@1 1447 * @param tree The catch clause.
duke@1 1448 * @param env The environment current in the enclosing try.
duke@1 1449 * @param startpc Start pc of try-block.
duke@1 1450 * @param endpc End pc of try-block.
duke@1 1451 */
duke@1 1452 void genCatch(JCCatch tree,
duke@1 1453 Env<GenContext> env,
duke@1 1454 int startpc, int endpc,
duke@1 1455 List<Integer> gaps) {
duke@1 1456 if (startpc != endpc) {
mcimadamore@550 1457 List<JCExpression> subClauses = TreeInfo.isMultiCatch(tree) ?
mcimadamore@550 1458 ((JCTypeDisjoint)tree.param.vartype).components :
mcimadamore@550 1459 List.of(tree.param.vartype);
mcimadamore@550 1460 for (JCExpression subCatch : subClauses) {
mcimadamore@550 1461 int catchType = makeRef(tree.pos(), subCatch.type);
mcimadamore@550 1462 List<Integer> lGaps = gaps;
mcimadamore@550 1463 while (lGaps.nonEmpty()) {
mcimadamore@550 1464 int end = lGaps.head.intValue();
mcimadamore@550 1465 registerCatch(tree.pos(),
mcimadamore@550 1466 startpc, end, code.curPc(),
mcimadamore@550 1467 catchType);
mcimadamore@550 1468 lGaps = lGaps.tail;
mcimadamore@550 1469 startpc = lGaps.head.intValue();
mcimadamore@550 1470 lGaps = lGaps.tail;
mcimadamore@550 1471 }
mcimadamore@550 1472 if (startpc < endpc)
mcimadamore@550 1473 registerCatch(tree.pos(),
mcimadamore@550 1474 startpc, endpc, code.curPc(),
mcimadamore@550 1475 catchType);
duke@1 1476 }
duke@1 1477 VarSymbol exparam = tree.param.sym;
duke@1 1478 code.statBegin(tree.pos);
duke@1 1479 code.markStatBegin();
duke@1 1480 int limit = code.nextreg;
duke@1 1481 int exlocal = code.newLocal(exparam);
duke@1 1482 items.makeLocalItem(exparam).store();
duke@1 1483 code.statBegin(TreeInfo.firstStatPos(tree.body));
duke@1 1484 genStat(tree.body, env, CRT_BLOCK);
duke@1 1485 code.endScopes(limit);
duke@1 1486 code.statBegin(TreeInfo.endPos(tree.body));
duke@1 1487 }
duke@1 1488 }
duke@1 1489
duke@1 1490 /** Register a catch clause in the "Exceptions" code-attribute.
duke@1 1491 */
duke@1 1492 void registerCatch(DiagnosticPosition pos,
duke@1 1493 int startpc, int endpc,
duke@1 1494 int handler_pc, int catch_type) {
duke@1 1495 if (startpc != endpc) {
duke@1 1496 char startpc1 = (char)startpc;
duke@1 1497 char endpc1 = (char)endpc;
duke@1 1498 char handler_pc1 = (char)handler_pc;
duke@1 1499 if (startpc1 == startpc &&
duke@1 1500 endpc1 == endpc &&
duke@1 1501 handler_pc1 == handler_pc) {
duke@1 1502 code.addCatch(startpc1, endpc1, handler_pc1,
duke@1 1503 (char)catch_type);
duke@1 1504 } else {
duke@1 1505 if (!useJsrLocally && !target.generateStackMapTable()) {
duke@1 1506 useJsrLocally = true;
duke@1 1507 throw new CodeSizeOverflow();
duke@1 1508 } else {
duke@1 1509 log.error(pos, "limit.code.too.large.for.try.stmt");
duke@1 1510 nerrs++;
duke@1 1511 }
duke@1 1512 }
duke@1 1513 }
duke@1 1514 }
duke@1 1515
duke@1 1516 /** Very roughly estimate the number of instructions needed for
duke@1 1517 * the given tree.
duke@1 1518 */
duke@1 1519 int estimateCodeComplexity(JCTree tree) {
duke@1 1520 if (tree == null) return 0;
duke@1 1521 class ComplexityScanner extends TreeScanner {
duke@1 1522 int complexity = 0;
duke@1 1523 public void scan(JCTree tree) {
duke@1 1524 if (complexity > jsrlimit) return;
duke@1 1525 super.scan(tree);
duke@1 1526 }
duke@1 1527 public void visitClassDef(JCClassDecl tree) {}
duke@1 1528 public void visitDoLoop(JCDoWhileLoop tree)
duke@1 1529 { super.visitDoLoop(tree); complexity++; }
duke@1 1530 public void visitWhileLoop(JCWhileLoop tree)
duke@1 1531 { super.visitWhileLoop(tree); complexity++; }
duke@1 1532 public void visitForLoop(JCForLoop tree)
duke@1 1533 { super.visitForLoop(tree); complexity++; }
duke@1 1534 public void visitSwitch(JCSwitch tree)
duke@1 1535 { super.visitSwitch(tree); complexity+=5; }
duke@1 1536 public void visitCase(JCCase tree)
duke@1 1537 { super.visitCase(tree); complexity++; }
duke@1 1538 public void visitSynchronized(JCSynchronized tree)
duke@1 1539 { super.visitSynchronized(tree); complexity+=6; }
duke@1 1540 public void visitTry(JCTry tree)
duke@1 1541 { super.visitTry(tree);
duke@1 1542 if (tree.finalizer != null) complexity+=6; }
duke@1 1543 public void visitCatch(JCCatch tree)
duke@1 1544 { super.visitCatch(tree); complexity+=2; }
duke@1 1545 public void visitConditional(JCConditional tree)
duke@1 1546 { super.visitConditional(tree); complexity+=2; }
duke@1 1547 public void visitIf(JCIf tree)
duke@1 1548 { super.visitIf(tree); complexity+=2; }
duke@1 1549 // note: for break, continue, and return we don't take unwind() into account.
duke@1 1550 public void visitBreak(JCBreak tree)
duke@1 1551 { super.visitBreak(tree); complexity+=1; }
duke@1 1552 public void visitContinue(JCContinue tree)
duke@1 1553 { super.visitContinue(tree); complexity+=1; }
duke@1 1554 public void visitReturn(JCReturn tree)
duke@1 1555 { super.visitReturn(tree); complexity+=1; }
duke@1 1556 public void visitThrow(JCThrow tree)
duke@1 1557 { super.visitThrow(tree); complexity+=1; }
duke@1 1558 public void visitAssert(JCAssert tree)
duke@1 1559 { super.visitAssert(tree); complexity+=5; }
duke@1 1560 public void visitApply(JCMethodInvocation tree)
duke@1 1561 { super.visitApply(tree); complexity+=2; }
duke@1 1562 public void visitNewClass(JCNewClass tree)
duke@1 1563 { scan(tree.encl); scan(tree.args); complexity+=2; }
duke@1 1564 public void visitNewArray(JCNewArray tree)
duke@1 1565 { super.visitNewArray(tree); complexity+=5; }
duke@1 1566 public void visitAssign(JCAssign tree)
duke@1 1567 { super.visitAssign(tree); complexity+=1; }
duke@1 1568 public void visitAssignop(JCAssignOp tree)
duke@1 1569 { super.visitAssignop(tree); complexity+=2; }
duke@1 1570 public void visitUnary(JCUnary tree)
duke@1 1571 { complexity+=1;
duke@1 1572 if (tree.type.constValue() == null) super.visitUnary(tree); }
duke@1 1573 public void visitBinary(JCBinary tree)
duke@1 1574 { complexity+=1;
duke@1 1575 if (tree.type.constValue() == null) super.visitBinary(tree); }
duke@1 1576 public void visitTypeTest(JCInstanceOf tree)
duke@1 1577 { super.visitTypeTest(tree); complexity+=1; }
duke@1 1578 public void visitIndexed(JCArrayAccess tree)
duke@1 1579 { super.visitIndexed(tree); complexity+=1; }
duke@1 1580 public void visitSelect(JCFieldAccess tree)
duke@1 1581 { super.visitSelect(tree);
duke@1 1582 if (tree.sym.kind == VAR) complexity+=1; }
duke@1 1583 public void visitIdent(JCIdent tree) {
duke@1 1584 if (tree.sym.kind == VAR) {
duke@1 1585 complexity+=1;
duke@1 1586 if (tree.type.constValue() == null &&
duke@1 1587 tree.sym.owner.kind == TYP)
duke@1 1588 complexity+=1;
duke@1 1589 }
duke@1 1590 }
duke@1 1591 public void visitLiteral(JCLiteral tree)
duke@1 1592 { complexity+=1; }
duke@1 1593 public void visitTree(JCTree tree) {}
duke@1 1594 public void visitWildcard(JCWildcard tree) {
duke@1 1595 throw new AssertionError(this.getClass().getName());
duke@1 1596 }
duke@1 1597 }
duke@1 1598 ComplexityScanner scanner = new ComplexityScanner();
duke@1 1599 tree.accept(scanner);
duke@1 1600 return scanner.complexity;
duke@1 1601 }
duke@1 1602
duke@1 1603 public void visitIf(JCIf tree) {
duke@1 1604 int limit = code.nextreg;
duke@1 1605 Chain thenExit = null;
duke@1 1606 CondItem c = genCond(TreeInfo.skipParens(tree.cond),
duke@1 1607 CRT_FLOW_CONTROLLER);
duke@1 1608 Chain elseChain = c.jumpFalse();
duke@1 1609 if (!c.isFalse()) {
duke@1 1610 code.resolve(c.trueJumps);
duke@1 1611 genStat(tree.thenpart, env, CRT_STATEMENT | CRT_FLOW_TARGET);
duke@1 1612 thenExit = code.branch(goto_);
duke@1 1613 }
duke@1 1614 if (elseChain != null) {
duke@1 1615 code.resolve(elseChain);
duke@1 1616 if (tree.elsepart != null)
duke@1 1617 genStat(tree.elsepart, env,CRT_STATEMENT | CRT_FLOW_TARGET);
duke@1 1618 }
duke@1 1619 code.resolve(thenExit);
duke@1 1620 code.endScopes(limit);
duke@1 1621 }
duke@1 1622
duke@1 1623 public void visitExec(JCExpressionStatement tree) {
duke@1 1624 // Optimize x++ to ++x and x-- to --x.
duke@1 1625 JCExpression e = tree.expr;
duke@1 1626 switch (e.getTag()) {
duke@1 1627 case JCTree.POSTINC:
duke@1 1628 ((JCUnary) e).setTag(JCTree.PREINC);
duke@1 1629 break;
duke@1 1630 case JCTree.POSTDEC:
duke@1 1631 ((JCUnary) e).setTag(JCTree.PREDEC);
duke@1 1632 break;
duke@1 1633 }
duke@1 1634 genExpr(tree.expr, tree.expr.type).drop();
duke@1 1635 }
duke@1 1636
duke@1 1637 public void visitBreak(JCBreak tree) {
duke@1 1638 Env<GenContext> targetEnv = unwind(tree.target, env);
duke@1 1639 assert code.state.stacksize == 0;
duke@1 1640 targetEnv.info.addExit(code.branch(goto_));
duke@1 1641 endFinalizerGaps(env, targetEnv);
duke@1 1642 }
duke@1 1643
duke@1 1644 public void visitContinue(JCContinue tree) {
duke@1 1645 Env<GenContext> targetEnv = unwind(tree.target, env);
duke@1 1646 assert code.state.stacksize == 0;
duke@1 1647 targetEnv.info.addCont(code.branch(goto_));
duke@1 1648 endFinalizerGaps(env, targetEnv);
duke@1 1649 }
duke@1 1650
duke@1 1651 public void visitReturn(JCReturn tree) {
duke@1 1652 int limit = code.nextreg;
duke@1 1653 final Env<GenContext> targetEnv;
duke@1 1654 if (tree.expr != null) {
duke@1 1655 Item r = genExpr(tree.expr, pt).load();
duke@1 1656 if (hasFinally(env.enclMethod, env)) {
duke@1 1657 r = makeTemp(pt);
duke@1 1658 r.store();
duke@1 1659 }
duke@1 1660 targetEnv = unwind(env.enclMethod, env);
duke@1 1661 r.load();
duke@1 1662 code.emitop0(ireturn + Code.truncate(Code.typecode(pt)));
duke@1 1663 } else {
duke@1 1664 targetEnv = unwind(env.enclMethod, env);
duke@1 1665 code.emitop0(return_);
duke@1 1666 }
duke@1 1667 endFinalizerGaps(env, targetEnv);
duke@1 1668 code.endScopes(limit);
duke@1 1669 }
duke@1 1670
duke@1 1671 public void visitThrow(JCThrow tree) {
duke@1 1672 genExpr(tree.expr, tree.expr.type).load();
duke@1 1673 code.emitop0(athrow);
duke@1 1674 }
duke@1 1675
duke@1 1676 /* ************************************************************************
duke@1 1677 * Visitor methods for expressions
duke@1 1678 *************************************************************************/
duke@1 1679
duke@1 1680 public void visitApply(JCMethodInvocation tree) {
jjg@308 1681 setTypeAnnotationPositions(tree.pos);
duke@1 1682 // Generate code for method.
duke@1 1683 Item m = genExpr(tree.meth, methodType);
duke@1 1684 // Generate code for all arguments, where the expected types are
duke@1 1685 // the parameters of the method's external type (that is, any implicit
duke@1 1686 // outer instance of a super(...) call appears as first parameter).
duke@1 1687 genArgs(tree.args,
duke@1 1688 TreeInfo.symbol(tree.meth).externalType(types).getParameterTypes());
duke@1 1689 result = m.invoke();
duke@1 1690 }
duke@1 1691
duke@1 1692 public void visitConditional(JCConditional tree) {
duke@1 1693 Chain thenExit = null;
duke@1 1694 CondItem c = genCond(tree.cond, CRT_FLOW_CONTROLLER);
duke@1 1695 Chain elseChain = c.jumpFalse();
duke@1 1696 if (!c.isFalse()) {
duke@1 1697 code.resolve(c.trueJumps);
duke@1 1698 int startpc = genCrt ? code.curPc() : 0;
duke@1 1699 genExpr(tree.truepart, pt).load();
duke@1 1700 code.state.forceStackTop(tree.type);
duke@1 1701 if (genCrt) code.crt.put(tree.truepart, CRT_FLOW_TARGET,
duke@1 1702 startpc, code.curPc());
duke@1 1703 thenExit = code.branch(goto_);
duke@1 1704 }
duke@1 1705 if (elseChain != null) {
duke@1 1706 code.resolve(elseChain);
duke@1 1707 int startpc = genCrt ? code.curPc() : 0;
duke@1 1708 genExpr(tree.falsepart, pt).load();
duke@1 1709 code.state.forceStackTop(tree.type);
duke@1 1710 if (genCrt) code.crt.put(tree.falsepart, CRT_FLOW_TARGET,
duke@1 1711 startpc, code.curPc());
duke@1 1712 }
duke@1 1713 code.resolve(thenExit);
duke@1 1714 result = items.makeStackItem(pt);
duke@1 1715 }
duke@1 1716
jjg@308 1717 private void setTypeAnnotationPositions(int treePos) {
jjg@308 1718 MethodSymbol meth = code.meth;
jjg@308 1719
jjg@308 1720 for (Attribute.TypeCompound ta : meth.typeAnnotations) {
jjg@308 1721 if (ta.position.pos == treePos) {
jjg@308 1722 ta.position.offset = code.cp;
jjg@478 1723 ta.position.lvarOffset = new int[] { code.cp };
jjg@310 1724 ta.position.isValidOffset = true;
jjg@308 1725 }
jjg@308 1726 }
jjg@308 1727
jjg@308 1728 if (code.meth.getKind() != ElementKind.CONSTRUCTOR
jjg@308 1729 && code.meth.getKind() != ElementKind.STATIC_INIT)
jjg@308 1730 return;
jjg@308 1731
jjg@308 1732 for (Attribute.TypeCompound ta : meth.owner.typeAnnotations) {
jjg@308 1733 if (ta.position.pos == treePos) {
jjg@308 1734 ta.position.offset = code.cp;
jjg@478 1735 ta.position.lvarOffset = new int[] { code.cp };
jjg@310 1736 ta.position.isValidOffset = true;
jjg@308 1737 }
jjg@308 1738 }
jjg@308 1739
jjg@308 1740 ClassSymbol clazz = meth.enclClass();
jjg@308 1741 for (Symbol s : new com.sun.tools.javac.model.FilteredMemberList(clazz.members())) {
jjg@308 1742 if (!s.getKind().isField())
jjg@308 1743 continue;
jjg@308 1744 for (Attribute.TypeCompound ta : s.typeAnnotations) {
jjg@308 1745 if (ta.position.pos == treePos) {
jjg@308 1746 ta.position.offset = code.cp;
jjg@478 1747 ta.position.lvarOffset = new int[] { code.cp };
jjg@310 1748 ta.position.isValidOffset = true;
jjg@308 1749 }
jjg@308 1750 }
jjg@308 1751 }
jjg@308 1752 }
jjg@308 1753
duke@1 1754 public void visitNewClass(JCNewClass tree) {
duke@1 1755 // Enclosing instances or anonymous classes should have been eliminated
duke@1 1756 // by now.
duke@1 1757 assert tree.encl == null && tree.def == null;
jjg@308 1758 setTypeAnnotationPositions(tree.pos);
duke@1 1759
duke@1 1760 code.emitop2(new_, makeRef(tree.pos(), tree.type));
duke@1 1761 code.emitop0(dup);
duke@1 1762
duke@1 1763 // Generate code for all arguments, where the expected types are
duke@1 1764 // the parameters of the constructor's external type (that is,
duke@1 1765 // any implicit outer instance appears as first parameter).
duke@1 1766 genArgs(tree.args, tree.constructor.externalType(types).getParameterTypes());
duke@1 1767
duke@1 1768 items.makeMemberItem(tree.constructor, true).invoke();
duke@1 1769 result = items.makeStackItem(tree.type);
duke@1 1770 }
duke@1 1771
duke@1 1772 public void visitNewArray(JCNewArray tree) {
jjg@308 1773 setTypeAnnotationPositions(tree.pos);
jjg@308 1774
duke@1 1775 if (tree.elems != null) {
duke@1 1776 Type elemtype = types.elemtype(tree.type);
duke@1 1777 loadIntConst(tree.elems.length());
duke@1 1778 Item arr = makeNewArray(tree.pos(), tree.type, 1);
duke@1 1779 int i = 0;
duke@1 1780 for (List<JCExpression> l = tree.elems; l.nonEmpty(); l = l.tail) {
duke@1 1781 arr.duplicate();
duke@1 1782 loadIntConst(i);
duke@1 1783 i++;
duke@1 1784 genExpr(l.head, elemtype).load();
duke@1 1785 items.makeIndexedItem(elemtype).store();
duke@1 1786 }
duke@1 1787 result = arr;
duke@1 1788 } else {
duke@1 1789 for (List<JCExpression> l = tree.dims; l.nonEmpty(); l = l.tail) {
duke@1 1790 genExpr(l.head, syms.intType).load();
duke@1 1791 }
duke@1 1792 result = makeNewArray(tree.pos(), tree.type, tree.dims.length());
duke@1 1793 }
duke@1 1794 }
duke@1 1795 //where
duke@1 1796 /** Generate code to create an array with given element type and number
duke@1 1797 * of dimensions.
duke@1 1798 */
duke@1 1799 Item makeNewArray(DiagnosticPosition pos, Type type, int ndims) {
duke@1 1800 Type elemtype = types.elemtype(type);
duke@1 1801 if (types.dimensions(elemtype) + ndims > ClassFile.MAX_DIMENSIONS) {
duke@1 1802 log.error(pos, "limit.dimensions");
duke@1 1803 nerrs++;
duke@1 1804 }
duke@1 1805 int elemcode = Code.arraycode(elemtype);
duke@1 1806 if (elemcode == 0 || (elemcode == 1 && ndims == 1)) {
duke@1 1807 code.emitAnewarray(makeRef(pos, elemtype), type);
duke@1 1808 } else if (elemcode == 1) {
duke@1 1809 code.emitMultianewarray(ndims, makeRef(pos, type), type);
duke@1 1810 } else {
duke@1 1811 code.emitNewarray(elemcode, type);
duke@1 1812 }
duke@1 1813 return items.makeStackItem(type);
duke@1 1814 }
duke@1 1815
duke@1 1816 public void visitParens(JCParens tree) {
duke@1 1817 result = genExpr(tree.expr, tree.expr.type);
duke@1 1818 }
duke@1 1819
duke@1 1820 public void visitAssign(JCAssign tree) {
duke@1 1821 Item l = genExpr(tree.lhs, tree.lhs.type);
duke@1 1822 genExpr(tree.rhs, tree.lhs.type).load();
duke@1 1823 result = items.makeAssignItem(l);
duke@1 1824 }
duke@1 1825
duke@1 1826 public void visitAssignop(JCAssignOp tree) {
duke@1 1827 OperatorSymbol operator = (OperatorSymbol) tree.operator;
duke@1 1828 Item l;
duke@1 1829 if (operator.opcode == string_add) {
duke@1 1830 // Generate code to make a string buffer
duke@1 1831 makeStringBuffer(tree.pos());
duke@1 1832
duke@1 1833 // Generate code for first string, possibly save one
duke@1 1834 // copy under buffer
duke@1 1835 l = genExpr(tree.lhs, tree.lhs.type);
duke@1 1836 if (l.width() > 0) {
duke@1 1837 code.emitop0(dup_x1 + 3 * (l.width() - 1));
duke@1 1838 }
duke@1 1839
duke@1 1840 // Load first string and append to buffer.
duke@1 1841 l.load();
duke@1 1842 appendString(tree.lhs);
duke@1 1843
duke@1 1844 // Append all other strings to buffer.
duke@1 1845 appendStrings(tree.rhs);
duke@1 1846
duke@1 1847 // Convert buffer to string.
duke@1 1848 bufferToString(tree.pos());
duke@1 1849 } else {
duke@1 1850 // Generate code for first expression
duke@1 1851 l = genExpr(tree.lhs, tree.lhs.type);
duke@1 1852
duke@1 1853 // If we have an increment of -32768 to +32767 of a local
duke@1 1854 // int variable we can use an incr instruction instead of
duke@1 1855 // proceeding further.
duke@1 1856 if ((tree.getTag() == JCTree.PLUS_ASG || tree.getTag() == JCTree.MINUS_ASG) &&
duke@1 1857 l instanceof LocalItem &&
duke@1 1858 tree.lhs.type.tag <= INT &&
duke@1 1859 tree.rhs.type.tag <= INT &&
duke@1 1860 tree.rhs.type.constValue() != null) {
duke@1 1861 int ival = ((Number) tree.rhs.type.constValue()).intValue();
duke@1 1862 if (tree.getTag() == JCTree.MINUS_ASG) ival = -ival;
duke@1 1863 ((LocalItem)l).incr(ival);
duke@1 1864 result = l;
duke@1 1865 return;
duke@1 1866 }
duke@1 1867 // Otherwise, duplicate expression, load one copy
duke@1 1868 // and complete binary operation.
duke@1 1869 l.duplicate();
duke@1 1870 l.coerce(operator.type.getParameterTypes().head).load();
duke@1 1871 completeBinop(tree.lhs, tree.rhs, operator).coerce(tree.lhs.type);
duke@1 1872 }
duke@1 1873 result = items.makeAssignItem(l);
duke@1 1874 }
duke@1 1875
duke@1 1876 public void visitUnary(JCUnary tree) {
duke@1 1877 OperatorSymbol operator = (OperatorSymbol)tree.operator;
duke@1 1878 if (tree.getTag() == JCTree.NOT) {
duke@1 1879 CondItem od = genCond(tree.arg, false);
duke@1 1880 result = od.negate();
duke@1 1881 } else {
duke@1 1882 Item od = genExpr(tree.arg, operator.type.getParameterTypes().head);
duke@1 1883 switch (tree.getTag()) {
duke@1 1884 case JCTree.POS:
duke@1 1885 result = od.load();
duke@1 1886 break;
duke@1 1887 case JCTree.NEG:
duke@1 1888 result = od.load();
duke@1 1889 code.emitop0(operator.opcode);
duke@1 1890 break;
duke@1 1891 case JCTree.COMPL:
duke@1 1892 result = od.load();
duke@1 1893 emitMinusOne(od.typecode);
duke@1 1894 code.emitop0(operator.opcode);
duke@1 1895 break;
duke@1 1896 case JCTree.PREINC: case JCTree.PREDEC:
duke@1 1897 od.duplicate();
duke@1 1898 if (od instanceof LocalItem &&
duke@1 1899 (operator.opcode == iadd || operator.opcode == isub)) {
duke@1 1900 ((LocalItem)od).incr(tree.getTag() == JCTree.PREINC ? 1 : -1);
duke@1 1901 result = od;
duke@1 1902 } else {
duke@1 1903 od.load();
duke@1 1904 code.emitop0(one(od.typecode));
duke@1 1905 code.emitop0(operator.opcode);
duke@1 1906 // Perform narrowing primitive conversion if byte,
duke@1 1907 // char, or short. Fix for 4304655.
duke@1 1908 if (od.typecode != INTcode &&
duke@1 1909 Code.truncate(od.typecode) == INTcode)
duke@1 1910 code.emitop0(int2byte + od.typecode - BYTEcode);
duke@1 1911 result = items.makeAssignItem(od);
duke@1 1912 }
duke@1 1913 break;
duke@1 1914 case JCTree.POSTINC: case JCTree.POSTDEC:
duke@1 1915 od.duplicate();
duke@1 1916 if (od instanceof LocalItem &&
duke@1 1917 (operator.opcode == iadd || operator.opcode == isub)) {
duke@1 1918 Item res = od.load();
duke@1 1919 ((LocalItem)od).incr(tree.getTag() == JCTree.POSTINC ? 1 : -1);
duke@1 1920 result = res;
duke@1 1921 } else {
duke@1 1922 Item res = od.load();
duke@1 1923 od.stash(od.typecode);
duke@1 1924 code.emitop0(one(od.typecode));
duke@1 1925 code.emitop0(operator.opcode);
duke@1 1926 // Perform narrowing primitive conversion if byte,
duke@1 1927 // char, or short. Fix for 4304655.
duke@1 1928 if (od.typecode != INTcode &&
duke@1 1929 Code.truncate(od.typecode) == INTcode)
duke@1 1930 code.emitop0(int2byte + od.typecode - BYTEcode);
duke@1 1931 od.store();
duke@1 1932 result = res;
duke@1 1933 }
duke@1 1934 break;
duke@1 1935 case JCTree.NULLCHK:
duke@1 1936 result = od.load();
duke@1 1937 code.emitop0(dup);
duke@1 1938 genNullCheck(tree.pos());
duke@1 1939 break;
duke@1 1940 default:
duke@1 1941 assert false;
duke@1 1942 }
duke@1 1943 }
duke@1 1944 }
duke@1 1945
duke@1 1946 /** Generate a null check from the object value at stack top. */
duke@1 1947 private void genNullCheck(DiagnosticPosition pos) {
duke@1 1948 callMethod(pos, syms.objectType, names.getClass,
duke@1 1949 List.<Type>nil(), false);
duke@1 1950 code.emitop0(pop);
duke@1 1951 }
duke@1 1952
duke@1 1953 public void visitBinary(JCBinary tree) {
duke@1 1954 OperatorSymbol operator = (OperatorSymbol)tree.operator;
duke@1 1955 if (operator.opcode == string_add) {
duke@1 1956 // Create a string buffer.
duke@1 1957 makeStringBuffer(tree.pos());
duke@1 1958 // Append all strings to buffer.
duke@1 1959 appendStrings(tree);
duke@1 1960 // Convert buffer to string.
duke@1 1961 bufferToString(tree.pos());
duke@1 1962 result = items.makeStackItem(syms.stringType);
duke@1 1963 } else if (tree.getTag() == JCTree.AND) {
duke@1 1964 CondItem lcond = genCond(tree.lhs, CRT_FLOW_CONTROLLER);
duke@1 1965 if (!lcond.isFalse()) {
duke@1 1966 Chain falseJumps = lcond.jumpFalse();
duke@1 1967 code.resolve(lcond.trueJumps);
duke@1 1968 CondItem rcond = genCond(tree.rhs, CRT_FLOW_TARGET);
duke@1 1969 result = items.
duke@1 1970 makeCondItem(rcond.opcode,
duke@1 1971 rcond.trueJumps,
jjg@507 1972 Code.mergeChains(falseJumps,
duke@1 1973 rcond.falseJumps));
duke@1 1974 } else {
duke@1 1975 result = lcond;
duke@1 1976 }
duke@1 1977 } else if (tree.getTag() == JCTree.OR) {
duke@1 1978 CondItem lcond = genCond(tree.lhs, CRT_FLOW_CONTROLLER);
duke@1 1979 if (!lcond.isTrue()) {
duke@1 1980 Chain trueJumps = lcond.jumpTrue();
duke@1 1981 code.resolve(lcond.falseJumps);
duke@1 1982 CondItem rcond = genCond(tree.rhs, CRT_FLOW_TARGET);
duke@1 1983 result = items.
duke@1 1984 makeCondItem(rcond.opcode,
jjg@507 1985 Code.mergeChains(trueJumps, rcond.trueJumps),
duke@1 1986 rcond.falseJumps);
duke@1 1987 } else {
duke@1 1988 result = lcond;
duke@1 1989 }
duke@1 1990 } else {
duke@1 1991 Item od = genExpr(tree.lhs, operator.type.getParameterTypes().head);
duke@1 1992 od.load();
duke@1 1993 result = completeBinop(tree.lhs, tree.rhs, operator);
duke@1 1994 }
duke@1 1995 }
duke@1 1996 //where
duke@1 1997 /** Make a new string buffer.
duke@1 1998 */
duke@1 1999 void makeStringBuffer(DiagnosticPosition pos) {
duke@1 2000 code.emitop2(new_, makeRef(pos, stringBufferType));
duke@1 2001 code.emitop0(dup);
duke@1 2002 callMethod(
duke@1 2003 pos, stringBufferType, names.init, List.<Type>nil(), false);
duke@1 2004 }
duke@1 2005
duke@1 2006 /** Append value (on tos) to string buffer (on tos - 1).
duke@1 2007 */
duke@1 2008 void appendString(JCTree tree) {
duke@1 2009 Type t = tree.type.baseType();
duke@1 2010 if (t.tag > lastBaseTag && t.tsym != syms.stringType.tsym) {
duke@1 2011 t = syms.objectType;
duke@1 2012 }
duke@1 2013 items.makeMemberItem(getStringBufferAppend(tree, t), false).invoke();
duke@1 2014 }
duke@1 2015 Symbol getStringBufferAppend(JCTree tree, Type t) {
duke@1 2016 assert t.constValue() == null;
duke@1 2017 Symbol method = stringBufferAppend.get(t);
duke@1 2018 if (method == null) {
duke@1 2019 method = rs.resolveInternalMethod(tree.pos(),
duke@1 2020 attrEnv,
duke@1 2021 stringBufferType,
duke@1 2022 names.append,
duke@1 2023 List.of(t),
duke@1 2024 null);
duke@1 2025 stringBufferAppend.put(t, method);
duke@1 2026 }
duke@1 2027 return method;
duke@1 2028 }
duke@1 2029
duke@1 2030 /** Add all strings in tree to string buffer.
duke@1 2031 */
duke@1 2032 void appendStrings(JCTree tree) {
duke@1 2033 tree = TreeInfo.skipParens(tree);
duke@1 2034 if (tree.getTag() == JCTree.PLUS && tree.type.constValue() == null) {
duke@1 2035 JCBinary op = (JCBinary) tree;
duke@1 2036 if (op.operator.kind == MTH &&
duke@1 2037 ((OperatorSymbol) op.operator).opcode == string_add) {
duke@1 2038 appendStrings(op.lhs);
duke@1 2039 appendStrings(op.rhs);
duke@1 2040 return;
duke@1 2041 }
duke@1 2042 }
duke@1 2043 genExpr(tree, tree.type).load();
duke@1 2044 appendString(tree);
duke@1 2045 }
duke@1 2046
duke@1 2047 /** Convert string buffer on tos to string.
duke@1 2048 */
duke@1 2049 void bufferToString(DiagnosticPosition pos) {
duke@1 2050 callMethod(
duke@1 2051 pos,
duke@1 2052 stringBufferType,
duke@1 2053 names.toString,
duke@1 2054 List.<Type>nil(),
duke@1 2055 false);
duke@1 2056 }
duke@1 2057
duke@1 2058 /** Complete generating code for operation, with left operand
duke@1 2059 * already on stack.
duke@1 2060 * @param lhs The tree representing the left operand.
duke@1 2061 * @param rhs The tree representing the right operand.
duke@1 2062 * @param operator The operator symbol.
duke@1 2063 */
duke@1 2064 Item completeBinop(JCTree lhs, JCTree rhs, OperatorSymbol operator) {
duke@1 2065 MethodType optype = (MethodType)operator.type;
duke@1 2066 int opcode = operator.opcode;
duke@1 2067 if (opcode >= if_icmpeq && opcode <= if_icmple &&
duke@1 2068 rhs.type.constValue() instanceof Number &&
duke@1 2069 ((Number) rhs.type.constValue()).intValue() == 0) {
duke@1 2070 opcode = opcode + (ifeq - if_icmpeq);
duke@1 2071 } else if (opcode >= if_acmpeq && opcode <= if_acmpne &&
duke@1 2072 TreeInfo.isNull(rhs)) {
duke@1 2073 opcode = opcode + (if_acmp_null - if_acmpeq);
duke@1 2074 } else {
duke@1 2075 // The expected type of the right operand is
duke@1 2076 // the second parameter type of the operator, except for
duke@1 2077 // shifts with long shiftcount, where we convert the opcode
duke@1 2078 // to a short shift and the expected type to int.
duke@1 2079 Type rtype = operator.erasure(types).getParameterTypes().tail.head;
duke@1 2080 if (opcode >= ishll && opcode <= lushrl) {
duke@1 2081 opcode = opcode + (ishl - ishll);
duke@1 2082 rtype = syms.intType;
duke@1 2083 }
duke@1 2084 // Generate code for right operand and load.
duke@1 2085 genExpr(rhs, rtype).load();
duke@1 2086 // If there are two consecutive opcode instructions,
duke@1 2087 // emit the first now.
duke@1 2088 if (opcode >= (1 << preShift)) {
duke@1 2089 code.emitop0(opcode >> preShift);
duke@1 2090 opcode = opcode & 0xFF;
duke@1 2091 }
duke@1 2092 }
duke@1 2093 if (opcode >= ifeq && opcode <= if_acmpne ||
duke@1 2094 opcode == if_acmp_null || opcode == if_acmp_nonnull) {
duke@1 2095 return items.makeCondItem(opcode);
duke@1 2096 } else {
duke@1 2097 code.emitop0(opcode);
duke@1 2098 return items.makeStackItem(optype.restype);
duke@1 2099 }
duke@1 2100 }
duke@1 2101
duke@1 2102 public void visitTypeCast(JCTypeCast tree) {
jjg@308 2103 setTypeAnnotationPositions(tree.pos);
duke@1 2104 result = genExpr(tree.expr, tree.clazz.type).load();
duke@1 2105 // Additional code is only needed if we cast to a reference type
duke@1 2106 // which is not statically a supertype of the expression's type.
duke@1 2107 // For basic types, the coerce(...) in genExpr(...) will do
duke@1 2108 // the conversion.
duke@1 2109 if (tree.clazz.type.tag > lastBaseTag &&
duke@1 2110 types.asSuper(tree.expr.type, tree.clazz.type.tsym) == null) {
duke@1 2111 code.emitop2(checkcast, makeRef(tree.pos(), tree.clazz.type));
duke@1 2112 }
duke@1 2113 }
duke@1 2114
duke@1 2115 public void visitWildcard(JCWildcard tree) {
duke@1 2116 throw new AssertionError(this.getClass().getName());
duke@1 2117 }
duke@1 2118
duke@1 2119 public void visitTypeTest(JCInstanceOf tree) {
jjg@308 2120 setTypeAnnotationPositions(tree.pos);
jjg@308 2121
duke@1 2122 genExpr(tree.expr, tree.expr.type).load();
duke@1 2123 code.emitop2(instanceof_, makeRef(tree.pos(), tree.clazz.type));
duke@1 2124 result = items.makeStackItem(syms.booleanType);
duke@1 2125 }
duke@1 2126
duke@1 2127 public void visitIndexed(JCArrayAccess tree) {
duke@1 2128 genExpr(tree.indexed, tree.indexed.type).load();
duke@1 2129 genExpr(tree.index, syms.intType).load();
duke@1 2130 result = items.makeIndexedItem(tree.type);
duke@1 2131 }
duke@1 2132
duke@1 2133 public void visitIdent(JCIdent tree) {
duke@1 2134 Symbol sym = tree.sym;
duke@1 2135 if (tree.name == names._this || tree.name == names._super) {
duke@1 2136 Item res = tree.name == names._this
duke@1 2137 ? items.makeThisItem()
duke@1 2138 : items.makeSuperItem();
duke@1 2139 if (sym.kind == MTH) {
duke@1 2140 // Generate code to address the constructor.
duke@1 2141 res.load();
duke@1 2142 res = items.makeMemberItem(sym, true);
duke@1 2143 }
duke@1 2144 result = res;
duke@1 2145 } else if (sym.kind == VAR && sym.owner.kind == MTH) {
duke@1 2146 result = items.makeLocalItem((VarSymbol)sym);
duke@1 2147 } else if ((sym.flags() & STATIC) != 0) {
duke@1 2148 if (!isAccessSuper(env.enclMethod))
duke@1 2149 sym = binaryQualifier(sym, env.enclClass.type);
duke@1 2150 result = items.makeStaticItem(sym);
duke@1 2151 } else {
duke@1 2152 items.makeThisItem().load();
duke@1 2153 sym = binaryQualifier(sym, env.enclClass.type);
duke@1 2154 result = items.makeMemberItem(sym, (sym.flags() & PRIVATE) != 0);
duke@1 2155 }
duke@1 2156 }
duke@1 2157
duke@1 2158 public void visitSelect(JCFieldAccess tree) {
duke@1 2159 Symbol sym = tree.sym;
duke@1 2160
duke@1 2161 if (tree.name == names._class) {
duke@1 2162 assert target.hasClassLiterals();
jjg@308 2163 setTypeAnnotationPositions(tree.pos);
duke@1 2164 code.emitop2(ldc2, makeRef(tree.pos(), tree.selected.type));
duke@1 2165 result = items.makeStackItem(pt);
duke@1 2166 return;
jjg@487 2167 } else if (tree.name == names.TYPE) {
jjg@487 2168 // Set the annotation positions for primitive class literals
jjg@487 2169 // (e.g. int.class) which have been converted to TYPE field
jjg@487 2170 // access on the corresponding boxed type (e.g. Integer.TYPE).
jjg@487 2171 setTypeAnnotationPositions(tree.pos);
duke@1 2172 }
duke@1 2173
duke@1 2174 Symbol ssym = TreeInfo.symbol(tree.selected);
duke@1 2175
duke@1 2176 // Are we selecting via super?
duke@1 2177 boolean selectSuper =
duke@1 2178 ssym != null && (ssym.kind == TYP || ssym.name == names._super);
duke@1 2179
duke@1 2180 // Are we accessing a member of the superclass in an access method
duke@1 2181 // resulting from a qualified super?
duke@1 2182 boolean accessSuper = isAccessSuper(env.enclMethod);
duke@1 2183
duke@1 2184 Item base = (selectSuper)
duke@1 2185 ? items.makeSuperItem()
duke@1 2186 : genExpr(tree.selected, tree.selected.type);
duke@1 2187
duke@1 2188 if (sym.kind == VAR && ((VarSymbol) sym).getConstValue() != null) {
duke@1 2189 // We are seeing a variable that is constant but its selecting
duke@1 2190 // expression is not.
duke@1 2191 if ((sym.flags() & STATIC) != 0) {
duke@1 2192 if (!selectSuper && (ssym == null || ssym.kind != TYP))
duke@1 2193 base = base.load();
duke@1 2194 base.drop();
duke@1 2195 } else {
duke@1 2196 base.load();
duke@1 2197 genNullCheck(tree.selected.pos());
duke@1 2198 }
duke@1 2199 result = items.
duke@1 2200 makeImmediateItem(sym.type, ((VarSymbol) sym).getConstValue());
jrose@267 2201 } else if (allowInvokedynamic && sym.kind == MTH && ssym == syms.invokeDynamicType.tsym) {
jrose@267 2202 base.drop();
jrose@267 2203 result = items.makeDynamicItem(sym);
duke@1 2204 } else {
duke@1 2205 if (!accessSuper)
duke@1 2206 sym = binaryQualifier(sym, tree.selected.type);
duke@1 2207 if ((sym.flags() & STATIC) != 0) {
duke@1 2208 if (!selectSuper && (ssym == null || ssym.kind != TYP))
duke@1 2209 base = base.load();
duke@1 2210 base.drop();
duke@1 2211 result = items.makeStaticItem(sym);
duke@1 2212 } else {
duke@1 2213 base.load();
duke@1 2214 if (sym == syms.lengthVar) {
duke@1 2215 code.emitop0(arraylength);
duke@1 2216 result = items.makeStackItem(syms.intType);
duke@1 2217 } else {
duke@1 2218 result = items.
duke@1 2219 makeMemberItem(sym,
duke@1 2220 (sym.flags() & PRIVATE) != 0 ||
duke@1 2221 selectSuper || accessSuper);
duke@1 2222 }
duke@1 2223 }
duke@1 2224 }
duke@1 2225 }
duke@1 2226
duke@1 2227 public void visitLiteral(JCLiteral tree) {
duke@1 2228 if (tree.type.tag == TypeTags.BOT) {
duke@1 2229 code.emitop0(aconst_null);
duke@1 2230 if (types.dimensions(pt) > 1) {
duke@1 2231 code.emitop2(checkcast, makeRef(tree.pos(), pt));
duke@1 2232 result = items.makeStackItem(pt);
duke@1 2233 } else {
duke@1 2234 result = items.makeStackItem(tree.type);
duke@1 2235 }
duke@1 2236 }
duke@1 2237 else
duke@1 2238 result = items.makeImmediateItem(tree.type, tree.value);
duke@1 2239 }
duke@1 2240
duke@1 2241 public void visitLetExpr(LetExpr tree) {
duke@1 2242 int limit = code.nextreg;
duke@1 2243 genStats(tree.defs, env);
duke@1 2244 result = genExpr(tree.expr, tree.expr.type).load();
duke@1 2245 code.endScopes(limit);
duke@1 2246 }
duke@1 2247
duke@1 2248 /* ************************************************************************
duke@1 2249 * main method
duke@1 2250 *************************************************************************/
duke@1 2251
duke@1 2252 /** Generate code for a class definition.
duke@1 2253 * @param env The attribution environment that belongs to the
duke@1 2254 * outermost class containing this class definition.
duke@1 2255 * We need this for resolving some additional symbols.
duke@1 2256 * @param cdef The tree representing the class definition.
duke@1 2257 * @return True if code is generated with no errors.
duke@1 2258 */
duke@1 2259 public boolean genClass(Env<AttrContext> env, JCClassDecl cdef) {
duke@1 2260 try {
duke@1 2261 attrEnv = env;
duke@1 2262 ClassSymbol c = cdef.sym;
duke@1 2263 this.toplevel = env.toplevel;
duke@1 2264 this.endPositions = toplevel.endPositions;
duke@1 2265 // If this is a class definition requiring Miranda methods,
duke@1 2266 // add them.
duke@1 2267 if (generateIproxies &&
duke@1 2268 (c.flags() & (INTERFACE|ABSTRACT)) == ABSTRACT
duke@1 2269 && !allowGenerics // no Miranda methods available with generics
duke@1 2270 )
duke@1 2271 implementInterfaceMethods(c);
duke@1 2272 cdef.defs = normalizeDefs(cdef.defs, c);
duke@1 2273 c.pool = pool;
duke@1 2274 pool.reset();
duke@1 2275 Env<GenContext> localEnv =
duke@1 2276 new Env<GenContext>(cdef, new GenContext());
duke@1 2277 localEnv.toplevel = env.toplevel;
duke@1 2278 localEnv.enclClass = cdef;
duke@1 2279 for (List<JCTree> l = cdef.defs; l.nonEmpty(); l = l.tail) {
duke@1 2280 genDef(l.head, localEnv);
duke@1 2281 }
duke@1 2282 if (pool.numEntries() > Pool.MAX_ENTRIES) {
duke@1 2283 log.error(cdef.pos(), "limit.pool");
duke@1 2284 nerrs++;
duke@1 2285 }
duke@1 2286 if (nerrs != 0) {
duke@1 2287 // if errors, discard code
duke@1 2288 for (List<JCTree> l = cdef.defs; l.nonEmpty(); l = l.tail) {
duke@1 2289 if (l.head.getTag() == JCTree.METHODDEF)
duke@1 2290 ((JCMethodDecl) l.head).sym.code = null;
duke@1 2291 }
duke@1 2292 }
duke@1 2293 cdef.defs = List.nil(); // discard trees
duke@1 2294 return nerrs == 0;
duke@1 2295 } finally {
duke@1 2296 // note: this method does NOT support recursion.
duke@1 2297 attrEnv = null;
duke@1 2298 this.env = null;
duke@1 2299 toplevel = null;
duke@1 2300 endPositions = null;
duke@1 2301 nerrs = 0;
duke@1 2302 }
duke@1 2303 }
duke@1 2304
duke@1 2305 /* ************************************************************************
duke@1 2306 * Auxiliary classes
duke@1 2307 *************************************************************************/
duke@1 2308
duke@1 2309 /** An abstract class for finalizer generation.
duke@1 2310 */
duke@1 2311 abstract class GenFinalizer {
duke@1 2312 /** Generate code to clean up when unwinding. */
duke@1 2313 abstract void gen();
duke@1 2314
duke@1 2315 /** Generate code to clean up at last. */
duke@1 2316 abstract void genLast();
duke@1 2317
duke@1 2318 /** Does this finalizer have some nontrivial cleanup to perform? */
duke@1 2319 boolean hasFinalizer() { return true; }
duke@1 2320 }
duke@1 2321
duke@1 2322 /** code generation contexts,
duke@1 2323 * to be used as type parameter for environments.
duke@1 2324 */
duke@1 2325 static class GenContext {
duke@1 2326
duke@1 2327 /** A chain for all unresolved jumps that exit the current environment.
duke@1 2328 */
duke@1 2329 Chain exit = null;
duke@1 2330
duke@1 2331 /** A chain for all unresolved jumps that continue in the
duke@1 2332 * current environment.
duke@1 2333 */
duke@1 2334 Chain cont = null;
duke@1 2335
duke@1 2336 /** A closure that generates the finalizer of the current environment.
duke@1 2337 * Only set for Synchronized and Try contexts.
duke@1 2338 */
duke@1 2339 GenFinalizer finalize = null;
duke@1 2340
duke@1 2341 /** Is this a switch statement? If so, allocate registers
duke@1 2342 * even when the variable declaration is unreachable.
duke@1 2343 */
duke@1 2344 boolean isSwitch = false;
duke@1 2345
duke@1 2346 /** A list buffer containing all gaps in the finalizer range,
duke@1 2347 * where a catch all exception should not apply.
duke@1 2348 */
duke@1 2349 ListBuffer<Integer> gaps = null;
duke@1 2350
duke@1 2351 /** Add given chain to exit chain.
duke@1 2352 */
duke@1 2353 void addExit(Chain c) {
duke@1 2354 exit = Code.mergeChains(c, exit);
duke@1 2355 }
duke@1 2356
duke@1 2357 /** Add given chain to cont chain.
duke@1 2358 */
duke@1 2359 void addCont(Chain c) {
duke@1 2360 cont = Code.mergeChains(c, cont);
duke@1 2361 }
duke@1 2362 }
duke@1 2363 }

mercurial