src/share/native/sun/awt/image/jpeg/jdhuff.c

Fri, 11 Sep 2020 16:12:45 +0000

author
prr
date
Fri, 11 Sep 2020 16:12:45 +0000
changeset 14221
badfd40f15ac
parent 14220
276130887f7b
permissions
-rw-r--r--

8253019: Enhanced JPEG decoding
Reviewed-by: rhalade, mschoene, serb, psadhukhan

     1 /*
     2  * reserved comment block
     3  * DO NOT REMOVE OR ALTER!
     4  */
     5 /*
     6  * jdhuff.c
     7  *
     8  * Copyright (C) 1991-1997, Thomas G. Lane.
     9  * This file is part of the Independent JPEG Group's software.
    10  * For conditions of distribution and use, see the accompanying README file.
    11  *
    12  * This file contains Huffman entropy decoding routines.
    13  *
    14  * Much of the complexity here has to do with supporting input suspension.
    15  * If the data source module demands suspension, we want to be able to back
    16  * up to the start of the current MCU.  To do this, we copy state variables
    17  * into local working storage, and update them back to the permanent
    18  * storage only upon successful completion of an MCU.
    19  */
    21 #define JPEG_INTERNALS
    22 #include "jinclude.h"
    23 #include "jpeglib.h"
    24 #include "jdhuff.h"             /* Declarations shared with jdphuff.c */
    27 /*
    28  * Expanded entropy decoder object for Huffman decoding.
    29  *
    30  * The savable_state subrecord contains fields that change within an MCU,
    31  * but must not be updated permanently until we complete the MCU.
    32  */
    34 typedef struct {
    35   int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */
    36 } savable_state;
    38 /* This macro is to work around compilers with missing or broken
    39  * structure assignment.  You'll need to fix this code if you have
    40  * such a compiler and you change MAX_COMPS_IN_SCAN.
    41  */
    43 #ifndef NO_STRUCT_ASSIGN
    44 #define ASSIGN_STATE(dest,src)  ((dest) = (src))
    45 #else
    46 #if MAX_COMPS_IN_SCAN == 4
    47 #define ASSIGN_STATE(dest,src)  \
    48         ((dest).last_dc_val[0] = (src).last_dc_val[0], \
    49          (dest).last_dc_val[1] = (src).last_dc_val[1], \
    50          (dest).last_dc_val[2] = (src).last_dc_val[2], \
    51          (dest).last_dc_val[3] = (src).last_dc_val[3])
    52 #endif
    53 #endif
    56 typedef struct {
    57   struct jpeg_entropy_decoder pub; /* public fields */
    59   /* These fields are loaded into local variables at start of each MCU.
    60    * In case of suspension, we exit WITHOUT updating them.
    61    */
    62   bitread_perm_state bitstate;  /* Bit buffer at start of MCU */
    63   savable_state saved;          /* Other state at start of MCU */
    65   /* These fields are NOT loaded into local working state. */
    66   unsigned int restarts_to_go;  /* MCUs left in this restart interval */
    68   /* Pointers to derived tables (these workspaces have image lifespan) */
    69   d_derived_tbl * dc_derived_tbls[NUM_HUFF_TBLS];
    70   d_derived_tbl * ac_derived_tbls[NUM_HUFF_TBLS];
    72   /* Precalculated info set up by start_pass for use in decode_mcu: */
    74   /* Pointers to derived tables to be used for each block within an MCU */
    75   d_derived_tbl * dc_cur_tbls[D_MAX_BLOCKS_IN_MCU];
    76   d_derived_tbl * ac_cur_tbls[D_MAX_BLOCKS_IN_MCU];
    77   /* Whether we care about the DC and AC coefficient values for each block */
    78   boolean dc_needed[D_MAX_BLOCKS_IN_MCU];
    79   boolean ac_needed[D_MAX_BLOCKS_IN_MCU];
    80 } huff_entropy_decoder;
    82 typedef huff_entropy_decoder * huff_entropy_ptr;
    85 /*
    86  * Initialize for a Huffman-compressed scan.
    87  */
    89 METHODDEF(void)
    90 start_pass_huff_decoder (j_decompress_ptr cinfo)
    91 {
    92   huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
    93   int ci, blkn, dctbl, actbl;
    94   jpeg_component_info * compptr;
    96   /* Check that the scan parameters Ss, Se, Ah/Al are OK for sequential JPEG.
    97    * This ought to be an error condition, but we make it a warning because
    98    * there are some baseline files out there with all zeroes in these bytes.
    99    */
   100   if (cinfo->Ss != 0 || cinfo->Se != DCTSIZE2-1 ||
   101       cinfo->Ah != 0 || cinfo->Al != 0)
   102     WARNMS(cinfo, JWRN_NOT_SEQUENTIAL);
   104   for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
   105     compptr = cinfo->cur_comp_info[ci];
   106     dctbl = compptr->dc_tbl_no;
   107     actbl = compptr->ac_tbl_no;
   108     /* Compute derived values for Huffman tables */
   109     /* We may do this more than once for a table, but it's not expensive */
   110     jpeg_make_d_derived_tbl(cinfo, TRUE, dctbl,
   111                             & entropy->dc_derived_tbls[dctbl]);
   112     jpeg_make_d_derived_tbl(cinfo, FALSE, actbl,
   113                             & entropy->ac_derived_tbls[actbl]);
   114     /* Initialize DC predictions to 0 */
   115     entropy->saved.last_dc_val[ci] = 0;
   116   }
   118   /* Precalculate decoding info for each block in an MCU of this scan */
   119   for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
   120     ci = cinfo->MCU_membership[blkn];
   121     compptr = cinfo->cur_comp_info[ci];
   122     /* Precalculate which table to use for each block */
   123     entropy->dc_cur_tbls[blkn] = entropy->dc_derived_tbls[compptr->dc_tbl_no];
   124     entropy->ac_cur_tbls[blkn] = entropy->ac_derived_tbls[compptr->ac_tbl_no];
   125     /* Decide whether we really care about the coefficient values */
   126     if (compptr->component_needed) {
   127       entropy->dc_needed[blkn] = TRUE;
   128       /* we don't need the ACs if producing a 1/8th-size image */
   129       entropy->ac_needed[blkn] = (compptr->DCT_scaled_size > 1);
   130     } else {
   131       entropy->dc_needed[blkn] = entropy->ac_needed[blkn] = FALSE;
   132     }
   133   }
   135   /* Initialize bitread state variables */
   136   entropy->bitstate.bits_left = 0;
   137   entropy->bitstate.get_buffer = 0; /* unnecessary, but keeps Purify quiet */
   138   entropy->pub.insufficient_data = FALSE;
   140   /* Initialize restart counter */
   141   entropy->restarts_to_go = cinfo->restart_interval;
   142 }
   145 /*
   146  * Compute the derived values for a Huffman table.
   147  * This routine also performs some validation checks on the table.
   148  *
   149  * Note this is also used by jdphuff.c.
   150  */
   152 GLOBAL(void)
   153 jpeg_make_d_derived_tbl (j_decompress_ptr cinfo, boolean isDC, int tblno,
   154                          d_derived_tbl ** pdtbl)
   155 {
   156   JHUFF_TBL *htbl;
   157   d_derived_tbl *dtbl;
   158   int p, i, l, si, numsymbols;
   159   int lookbits, ctr;
   160   char huffsize[257];
   161   unsigned int huffcode[257];
   162   unsigned int code;
   164   /* Note that huffsize[] and huffcode[] are filled in code-length order,
   165    * paralleling the order of the symbols themselves in htbl->huffval[].
   166    */
   168   /* Find the input Huffman table */
   169   if (tblno < 0 || tblno >= NUM_HUFF_TBLS)
   170     ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
   171   htbl =
   172     isDC ? cinfo->dc_huff_tbl_ptrs[tblno] : cinfo->ac_huff_tbl_ptrs[tblno];
   173   if (htbl == NULL)
   174     ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
   176   /* Allocate a workspace if we haven't already done so. */
   177   if (*pdtbl == NULL)
   178     *pdtbl = (d_derived_tbl *)
   179       (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
   180                                   SIZEOF(d_derived_tbl));
   181   dtbl = *pdtbl;
   182   dtbl->pub = htbl;             /* fill in back link */
   184   /* Figure C.1: make table of Huffman code length for each symbol */
   186   p = 0;
   187   for (l = 1; l <= 16; l++) {
   188     i = (int) htbl->bits[l];
   189     if (i < 0 || p + i > 256)   /* protect against table overrun */
   190       ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
   191     while (i--)
   192       huffsize[p++] = (char) l;
   193   }
   194   huffsize[p] = 0;
   195   numsymbols = p;
   197   /* Figure C.2: generate the codes themselves */
   198   /* We also validate that the counts represent a legal Huffman code tree. */
   200   code = 0;
   201   si = huffsize[0];
   202   p = 0;
   203   while (huffsize[p]) {
   204     while (((int) huffsize[p]) == si) {
   205       huffcode[p++] = code;
   206       code++;
   207     }
   208     /* code is now 1 more than the last code used for codelength si; but
   209      * it must still fit in si bits, since no code is allowed to be all ones.
   210      */
   211     if (((INT32) code) >= (((INT32) 1) << si))
   212       ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
   213     code <<= 1;
   214     si++;
   215   }
   217   /* Figure F.15: generate decoding tables for bit-sequential decoding */
   219   p = 0;
   220   for (l = 1; l <= 16; l++) {
   221     if (htbl->bits[l]) {
   222       /* valoffset[l] = huffval[] index of 1st symbol of code length l,
   223        * minus the minimum code of length l
   224        */
   225       dtbl->valoffset[l] = (INT32) p - (INT32) huffcode[p];
   226       p += htbl->bits[l];
   227       dtbl->maxcode[l] = huffcode[p-1]; /* maximum code of length l */
   228     } else {
   229       dtbl->maxcode[l] = -1;    /* -1 if no codes of this length */
   230     }
   231   }
   232   dtbl->maxcode[17] = 0xFFFFFL; /* ensures jpeg_huff_decode terminates */
   234   /* Compute lookahead tables to speed up decoding.
   235    * First we set all the table entries to 0, indicating "too long";
   236    * then we iterate through the Huffman codes that are short enough and
   237    * fill in all the entries that correspond to bit sequences starting
   238    * with that code.
   239    */
   241   MEMZERO(dtbl->look_nbits, SIZEOF(dtbl->look_nbits));
   243   p = 0;
   244   for (l = 1; l <= HUFF_LOOKAHEAD; l++) {
   245     for (i = 1; i <= (int) htbl->bits[l]; i++, p++) {
   246       /* l = current code's length, p = its index in huffcode[] & huffval[]. */
   247       /* Generate left-justified code followed by all possible bit sequences */
   248       lookbits = huffcode[p] << (HUFF_LOOKAHEAD-l);
   249       for (ctr = 1 << (HUFF_LOOKAHEAD-l); ctr > 0; ctr--) {
   250         dtbl->look_nbits[lookbits] = l;
   251         dtbl->look_sym[lookbits] = htbl->huffval[p];
   252         lookbits++;
   253       }
   254     }
   255   }
   257   /* Validate symbols as being reasonable.
   258    * For AC tables, we make no check, but accept all byte values 0..255.
   259    * For DC tables, we require the symbols to be in range 0..15.
   260    * (Tighter bounds could be applied depending on the data depth and mode,
   261    * but this is sufficient to ensure safe decoding.)
   262    */
   263   if (isDC) {
   264     for (i = 0; i < numsymbols; i++) {
   265       int sym = htbl->huffval[i];
   266       if (sym < 0 || sym > 15)
   267         ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
   268     }
   269   }
   270 }
   273 /*
   274  * Out-of-line code for bit fetching (shared with jdphuff.c).
   275  * See jdhuff.h for info about usage.
   276  * Note: current values of get_buffer and bits_left are passed as parameters,
   277  * but are returned in the corresponding fields of the state struct.
   278  *
   279  * On most machines MIN_GET_BITS should be 25 to allow the full 32-bit width
   280  * of get_buffer to be used.  (On machines with wider words, an even larger
   281  * buffer could be used.)  However, on some machines 32-bit shifts are
   282  * quite slow and take time proportional to the number of places shifted.
   283  * (This is true with most PC compilers, for instance.)  In this case it may
   284  * be a win to set MIN_GET_BITS to the minimum value of 15.  This reduces the
   285  * average shift distance at the cost of more calls to jpeg_fill_bit_buffer.
   286  */
   288 #ifdef SLOW_SHIFT_32
   289 #define MIN_GET_BITS  15        /* minimum allowable value */
   290 #else
   291 #define MIN_GET_BITS  (BIT_BUF_SIZE-7)
   292 #endif
   295 GLOBAL(boolean)
   296 jpeg_fill_bit_buffer (bitread_working_state * state,
   297                       register bit_buf_type get_buffer, register int bits_left,
   298                       int nbits)
   299 /* Load up the bit buffer to a depth of at least nbits */
   300 {
   301   /* Copy heavily used state fields into locals (hopefully registers) */
   302   register const JOCTET * next_input_byte = state->next_input_byte;
   303   register size_t bytes_in_buffer = state->bytes_in_buffer;
   304   j_decompress_ptr cinfo = state->cinfo;
   306   /* Attempt to load at least MIN_GET_BITS bits into get_buffer. */
   307   /* (It is assumed that no request will be for more than that many bits.) */
   308   /* We fail to do so only if we hit a marker or are forced to suspend. */
   310   if (cinfo->unread_marker == 0) {      /* cannot advance past a marker */
   311     while (bits_left < MIN_GET_BITS) {
   312       register int c;
   314       /* Attempt to read a byte */
   315       if (bytes_in_buffer == 0) {
   316         if (! (*cinfo->src->fill_input_buffer) (cinfo))
   317           return FALSE;
   318         next_input_byte = cinfo->src->next_input_byte;
   319         bytes_in_buffer = cinfo->src->bytes_in_buffer;
   320       }
   321       bytes_in_buffer--;
   322       c = GETJOCTET(*next_input_byte++);
   324       /* If it's 0xFF, check and discard stuffed zero byte */
   325       if (c == 0xFF) {
   326         /* Loop here to discard any padding FF's on terminating marker,
   327          * so that we can save a valid unread_marker value.  NOTE: we will
   328          * accept multiple FF's followed by a 0 as meaning a single FF data
   329          * byte.  This data pattern is not valid according to the standard.
   330          */
   331         do {
   332           if (bytes_in_buffer == 0) {
   333             if (! (*cinfo->src->fill_input_buffer) (cinfo))
   334               return FALSE;
   335             next_input_byte = cinfo->src->next_input_byte;
   336             bytes_in_buffer = cinfo->src->bytes_in_buffer;
   337           }
   338           bytes_in_buffer--;
   339           c = GETJOCTET(*next_input_byte++);
   340         } while (c == 0xFF);
   342         if (c == 0) {
   343           /* Found FF/00, which represents an FF data byte */
   344           c = 0xFF;
   345         } else {
   346           /* Oops, it's actually a marker indicating end of compressed data.
   347            * Save the marker code for later use.
   348            * Fine point: it might appear that we should save the marker into
   349            * bitread working state, not straight into permanent state.  But
   350            * once we have hit a marker, we cannot need to suspend within the
   351            * current MCU, because we will read no more bytes from the data
   352            * source.  So it is OK to update permanent state right away.
   353            */
   354           cinfo->unread_marker = c;
   355           /* See if we need to insert some fake zero bits. */
   356           goto no_more_bytes;
   357         }
   358       }
   360       /* OK, load c into get_buffer */
   361       get_buffer = (get_buffer << 8) | c;
   362       bits_left += 8;
   363     } /* end while */
   364   } else {
   365   no_more_bytes:
   366     /* We get here if we've read the marker that terminates the compressed
   367      * data segment.  There should be enough bits in the buffer register
   368      * to satisfy the request; if so, no problem.
   369      */
   370     if (nbits > bits_left) {
   371       /* Uh-oh.  Report corrupted data to user and stuff zeroes into
   372        * the data stream, so that we can produce some kind of image.
   373        * We use a nonvolatile flag to ensure that only one warning message
   374        * appears per data segment.
   375        */
   376       if (! cinfo->entropy->insufficient_data) {
   377         WARNMS(cinfo, JWRN_HIT_MARKER);
   378         cinfo->entropy->insufficient_data = TRUE;
   379       }
   380       /* Fill the buffer with zero bits */
   381       get_buffer <<= MIN_GET_BITS - bits_left;
   382       bits_left = MIN_GET_BITS;
   383     }
   384   }
   386   /* Unload the local registers */
   387   state->next_input_byte = next_input_byte;
   388   state->bytes_in_buffer = bytes_in_buffer;
   389   state->get_buffer = get_buffer;
   390   state->bits_left = bits_left;
   392   return TRUE;
   393 }
   396 /*
   397  * Out-of-line code for Huffman code decoding.
   398  * See jdhuff.h for info about usage.
   399  */
   401 GLOBAL(int)
   402 jpeg_huff_decode (bitread_working_state * state,
   403                   register bit_buf_type get_buffer, register int bits_left,
   404                   d_derived_tbl * htbl, int min_bits)
   405 {
   406   register int l = min_bits;
   407   register INT32 code;
   409   /* HUFF_DECODE has determined that the code is at least min_bits */
   410   /* bits long, so fetch that many bits in one swoop. */
   412   CHECK_BIT_BUFFER(*state, l, return -1);
   413   code = GET_BITS(l);
   415   /* Collect the rest of the Huffman code one bit at a time. */
   416   /* This is per Figure F.16 in the JPEG spec. */
   418   while (code > htbl->maxcode[l]) {
   419     code <<= 1;
   420     CHECK_BIT_BUFFER(*state, 1, return -1);
   421     code |= GET_BITS(1);
   422     l++;
   423   }
   425   /* Unload the local registers */
   426   state->get_buffer = get_buffer;
   427   state->bits_left = bits_left;
   429   /* With garbage input we may reach the sentinel value l = 17. */
   431   if (l > 16) {
   432     WARNMS(state->cinfo, JWRN_HUFF_BAD_CODE);
   433     return 0;                   /* fake a zero as the safest result */
   434   }
   436   return htbl->pub->huffval[ (int) (code + htbl->valoffset[l]) ];
   437 }
   440 /*
   441  * Figure F.12: extend sign bit.
   442  * On some machines, a shift and add will be faster than a table lookup.
   443  */
   445 #ifdef AVOID_TABLES
   447 #define HUFF_EXTEND(x,s)  ((x) < (1<<((s)-1)) ? (x) + (((-1)<<(s)) + 1) : (x))
   449 #else
   451 #define HUFF_EXTEND(x,s)  ((x) < extend_test[s] ? (x) + extend_offset[s] : (x))
   453 static const int extend_test[16] =   /* entry n is 2**(n-1) */
   454   { 0, 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080,
   455     0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000 };
   457 static const int extend_offset[16] = /* entry n is (-1 << n) + 1 */
   458   { 0, ((-1)<<1) + 1, ((-1)<<2) + 1, ((-1)<<3) + 1, ((-1)<<4) + 1,
   459     ((-1)<<5) + 1, ((-1)<<6) + 1, ((-1)<<7) + 1, ((-1)<<8) + 1,
   460     ((-1)<<9) + 1, ((-1)<<10) + 1, ((-1)<<11) + 1, ((-1)<<12) + 1,
   461     ((-1)<<13) + 1, ((-1)<<14) + 1, ((-1)<<15) + 1 };
   463 #endif /* AVOID_TABLES */
   466 /*
   467  * Check for a restart marker & resynchronize decoder.
   468  * Returns FALSE if must suspend.
   469  */
   471 LOCAL(boolean)
   472 process_restart (j_decompress_ptr cinfo)
   473 {
   474   huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
   475   int ci;
   477   /* Throw away any unused bits remaining in bit buffer; */
   478   /* include any full bytes in next_marker's count of discarded bytes */
   479   cinfo->marker->discarded_bytes += entropy->bitstate.bits_left / 8;
   480   entropy->bitstate.bits_left = 0;
   482   /* Advance past the RSTn marker */
   483   if (! (*cinfo->marker->read_restart_marker) (cinfo))
   484     return FALSE;
   486   /* Re-initialize DC predictions to 0 */
   487   for (ci = 0; ci < cinfo->comps_in_scan; ci++)
   488     entropy->saved.last_dc_val[ci] = 0;
   490   /* Reset restart counter */
   491   entropy->restarts_to_go = cinfo->restart_interval;
   493   /* Reset out-of-data flag, unless read_restart_marker left us smack up
   494    * against a marker.  In that case we will end up treating the next data
   495    * segment as empty, and we can avoid producing bogus output pixels by
   496    * leaving the flag set.
   497    */
   498   if (cinfo->unread_marker == 0)
   499     entropy->pub.insufficient_data = FALSE;
   501   return TRUE;
   502 }
   505 /*
   506  * Decode and return one MCU's worth of Huffman-compressed coefficients.
   507  * The coefficients are reordered from zigzag order into natural array order,
   508  * but are not dequantized.
   509  *
   510  * The i'th block of the MCU is stored into the block pointed to by
   511  * MCU_data[i].  WE ASSUME THIS AREA HAS BEEN ZEROED BY THE CALLER.
   512  * (Wholesale zeroing is usually a little faster than retail...)
   513  *
   514  * Returns FALSE if data source requested suspension.  In that case no
   515  * changes have been made to permanent state.  (Exception: some output
   516  * coefficients may already have been assigned.  This is harmless for
   517  * this module, since we'll just re-assign them on the next call.)
   518  */
   520 METHODDEF(boolean)
   521 decode_mcu (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
   522 {
   523   huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
   524   int blkn;
   525   BITREAD_STATE_VARS;
   526   savable_state state;
   528   /* Process restart marker if needed; may have to suspend */
   529   if (cinfo->restart_interval) {
   530     if (entropy->restarts_to_go == 0)
   531       if (! process_restart(cinfo))
   532         return FALSE;
   533   }
   535   /* If we've run out of data, just leave the MCU set to zeroes.
   536    * This way, we return uniform gray for the remainder of the segment.
   537    */
   538   if (! entropy->pub.insufficient_data) {
   540     /* Load up working state */
   541     BITREAD_LOAD_STATE(cinfo,entropy->bitstate);
   542     ASSIGN_STATE(state, entropy->saved);
   544     /* Outer loop handles each block in the MCU */
   546     for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
   547       JBLOCKROW block = MCU_data[blkn];
   548       d_derived_tbl * dctbl = entropy->dc_cur_tbls[blkn];
   549       d_derived_tbl * actbl = entropy->ac_cur_tbls[blkn];
   550       register int s, k, r;
   552       /* Decode a single block's worth of coefficients */
   554       /* Section F.2.2.1: decode the DC coefficient difference */
   555       HUFF_DECODE(s, br_state, dctbl, return FALSE, label1);
   556       if (s) {
   557         CHECK_BIT_BUFFER(br_state, s, return FALSE);
   558         r = GET_BITS(s);
   559         s = HUFF_EXTEND(r, s);
   560       }
   562       if (entropy->dc_needed[blkn]) {
   563         /* Convert DC difference to actual value, update last_dc_val */
   564         int ci = cinfo->MCU_membership[blkn];
   565         s += state.last_dc_val[ci];
   566         state.last_dc_val[ci] = s;
   567         /* Output the DC coefficient (assumes jpeg_natural_order[0] = 0) */
   568         (*block)[0] = (JCOEF) s;
   569       }
   571       if (entropy->ac_needed[blkn]) {
   573         /* Section F.2.2.2: decode the AC coefficients */
   574         /* Since zeroes are skipped, output area must be cleared beforehand */
   575         for (k = 1; k < DCTSIZE2; k++) {
   576           HUFF_DECODE(s, br_state, actbl, return FALSE, label2);
   578           r = s >> 4;
   579           s &= 15;
   581           if (s) {
   582             k += r;
   583             CHECK_BIT_BUFFER(br_state, s, return FALSE);
   584             r = GET_BITS(s);
   585             s = HUFF_EXTEND(r, s);
   586             /* Output coefficient in natural (dezigzagged) order.
   587              * Note: the extra entries in jpeg_natural_order[] will save us
   588              * if k >= DCTSIZE2, which could happen if the data is corrupted.
   589              */
   590             (*block)[jpeg_natural_order[k]] = (JCOEF) s;
   591           } else {
   592             if (r != 15)
   593               break;
   594             k += 15;
   595           }
   596         }
   598       } else {
   600         /* Section F.2.2.2: decode the AC coefficients */
   601         /* In this path we just discard the values */
   602         for (k = 1; k < DCTSIZE2; k++) {
   603           HUFF_DECODE(s, br_state, actbl, return FALSE, label3);
   605           r = s >> 4;
   606           s &= 15;
   608           if (s) {
   609             k += r;
   610             CHECK_BIT_BUFFER(br_state, s, return FALSE);
   611             DROP_BITS(s);
   612           } else {
   613             if (r != 15)
   614               break;
   615             k += 15;
   616           }
   617         }
   619       }
   620     }
   622     /* Completed MCU, so update state */
   623     BITREAD_SAVE_STATE(cinfo,entropy->bitstate);
   624     ASSIGN_STATE(entropy->saved, state);
   625   }
   627   /* Account for restart interval (no-op if not using restarts) */
   628   entropy->restarts_to_go--;
   630   return TRUE;
   631 }
   634 /*
   635  * Module initialization routine for Huffman entropy decoding.
   636  */
   638 GLOBAL(void)
   639 jinit_huff_decoder (j_decompress_ptr cinfo)
   640 {
   641   huff_entropy_ptr entropy;
   642   int i;
   644   entropy = (huff_entropy_ptr)
   645     (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
   646                                 SIZEOF(huff_entropy_decoder));
   647   cinfo->entropy = (struct jpeg_entropy_decoder *) entropy;
   648   entropy->pub.start_pass = start_pass_huff_decoder;
   649   entropy->pub.decode_mcu = decode_mcu;
   651   /* Mark tables unallocated */
   652   for (i = 0; i < NUM_HUFF_TBLS; i++) {
   653     entropy->dc_derived_tbls[i] = entropy->ac_derived_tbls[i] = NULL;
   654   }
   655 }

mercurial