diff -r 000000000000 -r f90c822e73f8 src/share/vm/opto/subnode.cpp --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/share/vm/opto/subnode.cpp Wed Apr 27 01:25:04 2016 +0800 @@ -0,0 +1,1468 @@ +/* + * Copyright (c) 1997, 2014, Oracle and/or its affiliates. All rights reserved. + * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. + * + * This code is free software; you can redistribute it and/or modify it + * under the terms of the GNU General Public License version 2 only, as + * published by the Free Software Foundation. + * + * This code is distributed in the hope that it will be useful, but WITHOUT + * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or + * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License + * version 2 for more details (a copy is included in the LICENSE file that + * accompanied this code). + * + * You should have received a copy of the GNU General Public License version + * 2 along with this work; if not, write to the Free Software Foundation, + * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. + * + * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA + * or visit www.oracle.com if you need additional information or have any + * questions. + * + */ + +#include "precompiled.hpp" +#include "compiler/compileLog.hpp" +#include "memory/allocation.inline.hpp" +#include "opto/addnode.hpp" +#include "opto/callnode.hpp" +#include "opto/cfgnode.hpp" +#include "opto/connode.hpp" +#include "opto/loopnode.hpp" +#include "opto/matcher.hpp" +#include "opto/mulnode.hpp" +#include "opto/opcodes.hpp" +#include "opto/phaseX.hpp" +#include "opto/subnode.hpp" +#include "runtime/sharedRuntime.hpp" + +// Portions of code courtesy of Clifford Click + +// Optimization - Graph Style + +#include "math.h" + +//============================================================================= +//------------------------------Identity--------------------------------------- +// If right input is a constant 0, return the left input. +Node *SubNode::Identity( PhaseTransform *phase ) { + assert(in(1) != this, "Must already have called Value"); + assert(in(2) != this, "Must already have called Value"); + + // Remove double negation + const Type *zero = add_id(); + if( phase->type( in(1) )->higher_equal( zero ) && + in(2)->Opcode() == Opcode() && + phase->type( in(2)->in(1) )->higher_equal( zero ) ) { + return in(2)->in(2); + } + + // Convert "(X+Y) - Y" into X and "(X+Y) - X" into Y + if( in(1)->Opcode() == Op_AddI ) { + if( phase->eqv(in(1)->in(2),in(2)) ) + return in(1)->in(1); + if (phase->eqv(in(1)->in(1),in(2))) + return in(1)->in(2); + + // Also catch: "(X + Opaque2(Y)) - Y". In this case, 'Y' is a loop-varying + // trip counter and X is likely to be loop-invariant (that's how O2 Nodes + // are originally used, although the optimizer sometimes jiggers things). + // This folding through an O2 removes a loop-exit use of a loop-varying + // value and generally lowers register pressure in and around the loop. + if( in(1)->in(2)->Opcode() == Op_Opaque2 && + phase->eqv(in(1)->in(2)->in(1),in(2)) ) + return in(1)->in(1); + } + + return ( phase->type( in(2) )->higher_equal( zero ) ) ? in(1) : this; +} + +//------------------------------Value------------------------------------------ +// A subtract node differences it's two inputs. +const Type* SubNode::Value_common(PhaseTransform *phase) const { + const Node* in1 = in(1); + const Node* in2 = in(2); + // Either input is TOP ==> the result is TOP + const Type* t1 = (in1 == this) ? Type::TOP : phase->type(in1); + if( t1 == Type::TOP ) return Type::TOP; + const Type* t2 = (in2 == this) ? Type::TOP : phase->type(in2); + if( t2 == Type::TOP ) return Type::TOP; + + // Not correct for SubFnode and AddFNode (must check for infinity) + // Equal? Subtract is zero + if (in1->eqv_uncast(in2)) return add_id(); + + // Either input is BOTTOM ==> the result is the local BOTTOM + if( t1 == Type::BOTTOM || t2 == Type::BOTTOM ) + return bottom_type(); + + return NULL; +} + +const Type* SubNode::Value(PhaseTransform *phase) const { + const Type* t = Value_common(phase); + if (t != NULL) { + return t; + } + const Type* t1 = phase->type(in(1)); + const Type* t2 = phase->type(in(2)); + return sub(t1,t2); // Local flavor of type subtraction + +} + +//============================================================================= + +//------------------------------Helper function-------------------------------- +static bool ok_to_convert(Node* inc, Node* iv) { + // Do not collapse (x+c0)-y if "+" is a loop increment, because the + // "-" is loop invariant and collapsing extends the live-range of "x" + // to overlap with the "+", forcing another register to be used in + // the loop. + // This test will be clearer with '&&' (apply DeMorgan's rule) + // but I like the early cutouts that happen here. + const PhiNode *phi; + if( ( !inc->in(1)->is_Phi() || + !(phi=inc->in(1)->as_Phi()) || + phi->is_copy() || + !phi->region()->is_CountedLoop() || + inc != phi->region()->as_CountedLoop()->incr() ) + && + // Do not collapse (x+c0)-iv if "iv" is a loop induction variable, + // because "x" maybe invariant. + ( !iv->is_loop_iv() ) + ) { + return true; + } else { + return false; + } +} +//------------------------------Ideal------------------------------------------ +Node *SubINode::Ideal(PhaseGVN *phase, bool can_reshape){ + Node *in1 = in(1); + Node *in2 = in(2); + uint op1 = in1->Opcode(); + uint op2 = in2->Opcode(); + +#ifdef ASSERT + // Check for dead loop + if( phase->eqv( in1, this ) || phase->eqv( in2, this ) || + ( op1 == Op_AddI || op1 == Op_SubI ) && + ( phase->eqv( in1->in(1), this ) || phase->eqv( in1->in(2), this ) || + phase->eqv( in1->in(1), in1 ) || phase->eqv( in1->in(2), in1 ) ) ) + assert(false, "dead loop in SubINode::Ideal"); +#endif + + const Type *t2 = phase->type( in2 ); + if( t2 == Type::TOP ) return NULL; + // Convert "x-c0" into "x+ -c0". + if( t2->base() == Type::Int ){ // Might be bottom or top... + const TypeInt *i = t2->is_int(); + if( i->is_con() ) + return new (phase->C) AddINode(in1, phase->intcon(-i->get_con())); + } + + // Convert "(x+c0) - y" into (x-y) + c0" + // Do not collapse (x+c0)-y if "+" is a loop increment or + // if "y" is a loop induction variable. + if( op1 == Op_AddI && ok_to_convert(in1, in2) ) { + const Type *tadd = phase->type( in1->in(2) ); + if( tadd->singleton() && tadd != Type::TOP ) { + Node *sub2 = phase->transform( new (phase->C) SubINode( in1->in(1), in2 )); + return new (phase->C) AddINode( sub2, in1->in(2) ); + } + } + + + // Convert "x - (y+c0)" into "(x-y) - c0" + // Need the same check as in above optimization but reversed. + if (op2 == Op_AddI && ok_to_convert(in2, in1)) { + Node* in21 = in2->in(1); + Node* in22 = in2->in(2); + const TypeInt* tcon = phase->type(in22)->isa_int(); + if (tcon != NULL && tcon->is_con()) { + Node* sub2 = phase->transform( new (phase->C) SubINode(in1, in21) ); + Node* neg_c0 = phase->intcon(- tcon->get_con()); + return new (phase->C) AddINode(sub2, neg_c0); + } + } + + const Type *t1 = phase->type( in1 ); + if( t1 == Type::TOP ) return NULL; + +#ifdef ASSERT + // Check for dead loop + if( ( op2 == Op_AddI || op2 == Op_SubI ) && + ( phase->eqv( in2->in(1), this ) || phase->eqv( in2->in(2), this ) || + phase->eqv( in2->in(1), in2 ) || phase->eqv( in2->in(2), in2 ) ) ) + assert(false, "dead loop in SubINode::Ideal"); +#endif + + // Convert "x - (x+y)" into "-y" + if( op2 == Op_AddI && + phase->eqv( in1, in2->in(1) ) ) + return new (phase->C) SubINode( phase->intcon(0),in2->in(2)); + // Convert "(x-y) - x" into "-y" + if( op1 == Op_SubI && + phase->eqv( in1->in(1), in2 ) ) + return new (phase->C) SubINode( phase->intcon(0),in1->in(2)); + // Convert "x - (y+x)" into "-y" + if( op2 == Op_AddI && + phase->eqv( in1, in2->in(2) ) ) + return new (phase->C) SubINode( phase->intcon(0),in2->in(1)); + + // Convert "0 - (x-y)" into "y-x" + if( t1 == TypeInt::ZERO && op2 == Op_SubI ) + return new (phase->C) SubINode( in2->in(2), in2->in(1) ); + + // Convert "0 - (x+con)" into "-con-x" + jint con; + if( t1 == TypeInt::ZERO && op2 == Op_AddI && + (con = in2->in(2)->find_int_con(0)) != 0 ) + return new (phase->C) SubINode( phase->intcon(-con), in2->in(1) ); + + // Convert "(X+A) - (X+B)" into "A - B" + if( op1 == Op_AddI && op2 == Op_AddI && in1->in(1) == in2->in(1) ) + return new (phase->C) SubINode( in1->in(2), in2->in(2) ); + + // Convert "(A+X) - (B+X)" into "A - B" + if( op1 == Op_AddI && op2 == Op_AddI && in1->in(2) == in2->in(2) ) + return new (phase->C) SubINode( in1->in(1), in2->in(1) ); + + // Convert "(A+X) - (X+B)" into "A - B" + if( op1 == Op_AddI && op2 == Op_AddI && in1->in(2) == in2->in(1) ) + return new (phase->C) SubINode( in1->in(1), in2->in(2) ); + + // Convert "(X+A) - (B+X)" into "A - B" + if( op1 == Op_AddI && op2 == Op_AddI && in1->in(1) == in2->in(2) ) + return new (phase->C) SubINode( in1->in(2), in2->in(1) ); + + // Convert "A-(B-C)" into (A+C)-B", since add is commutative and generally + // nicer to optimize than subtract. + if( op2 == Op_SubI && in2->outcnt() == 1) { + Node *add1 = phase->transform( new (phase->C) AddINode( in1, in2->in(2) ) ); + return new (phase->C) SubINode( add1, in2->in(1) ); + } + + return NULL; +} + +//------------------------------sub-------------------------------------------- +// A subtract node differences it's two inputs. +const Type *SubINode::sub( const Type *t1, const Type *t2 ) const { + const TypeInt *r0 = t1->is_int(); // Handy access + const TypeInt *r1 = t2->is_int(); + int32 lo = r0->_lo - r1->_hi; + int32 hi = r0->_hi - r1->_lo; + + // We next check for 32-bit overflow. + // If that happens, we just assume all integers are possible. + if( (((r0->_lo ^ r1->_hi) >= 0) || // lo ends have same signs OR + ((r0->_lo ^ lo) >= 0)) && // lo results have same signs AND + (((r0->_hi ^ r1->_lo) >= 0) || // hi ends have same signs OR + ((r0->_hi ^ hi) >= 0)) ) // hi results have same signs + return TypeInt::make(lo,hi,MAX2(r0->_widen,r1->_widen)); + else // Overflow; assume all integers + return TypeInt::INT; +} + +//============================================================================= +//------------------------------Ideal------------------------------------------ +Node *SubLNode::Ideal(PhaseGVN *phase, bool can_reshape) { + Node *in1 = in(1); + Node *in2 = in(2); + uint op1 = in1->Opcode(); + uint op2 = in2->Opcode(); + +#ifdef ASSERT + // Check for dead loop + if( phase->eqv( in1, this ) || phase->eqv( in2, this ) || + ( op1 == Op_AddL || op1 == Op_SubL ) && + ( phase->eqv( in1->in(1), this ) || phase->eqv( in1->in(2), this ) || + phase->eqv( in1->in(1), in1 ) || phase->eqv( in1->in(2), in1 ) ) ) + assert(false, "dead loop in SubLNode::Ideal"); +#endif + + if( phase->type( in2 ) == Type::TOP ) return NULL; + const TypeLong *i = phase->type( in2 )->isa_long(); + // Convert "x-c0" into "x+ -c0". + if( i && // Might be bottom or top... + i->is_con() ) + return new (phase->C) AddLNode(in1, phase->longcon(-i->get_con())); + + // Convert "(x+c0) - y" into (x-y) + c0" + // Do not collapse (x+c0)-y if "+" is a loop increment or + // if "y" is a loop induction variable. + if( op1 == Op_AddL && ok_to_convert(in1, in2) ) { + Node *in11 = in1->in(1); + const Type *tadd = phase->type( in1->in(2) ); + if( tadd->singleton() && tadd != Type::TOP ) { + Node *sub2 = phase->transform( new (phase->C) SubLNode( in11, in2 )); + return new (phase->C) AddLNode( sub2, in1->in(2) ); + } + } + + // Convert "x - (y+c0)" into "(x-y) - c0" + // Need the same check as in above optimization but reversed. + if (op2 == Op_AddL && ok_to_convert(in2, in1)) { + Node* in21 = in2->in(1); + Node* in22 = in2->in(2); + const TypeLong* tcon = phase->type(in22)->isa_long(); + if (tcon != NULL && tcon->is_con()) { + Node* sub2 = phase->transform( new (phase->C) SubLNode(in1, in21) ); + Node* neg_c0 = phase->longcon(- tcon->get_con()); + return new (phase->C) AddLNode(sub2, neg_c0); + } + } + + const Type *t1 = phase->type( in1 ); + if( t1 == Type::TOP ) return NULL; + +#ifdef ASSERT + // Check for dead loop + if( ( op2 == Op_AddL || op2 == Op_SubL ) && + ( phase->eqv( in2->in(1), this ) || phase->eqv( in2->in(2), this ) || + phase->eqv( in2->in(1), in2 ) || phase->eqv( in2->in(2), in2 ) ) ) + assert(false, "dead loop in SubLNode::Ideal"); +#endif + + // Convert "x - (x+y)" into "-y" + if( op2 == Op_AddL && + phase->eqv( in1, in2->in(1) ) ) + return new (phase->C) SubLNode( phase->makecon(TypeLong::ZERO), in2->in(2)); + // Convert "x - (y+x)" into "-y" + if( op2 == Op_AddL && + phase->eqv( in1, in2->in(2) ) ) + return new (phase->C) SubLNode( phase->makecon(TypeLong::ZERO),in2->in(1)); + + // Convert "0 - (x-y)" into "y-x" + if( phase->type( in1 ) == TypeLong::ZERO && op2 == Op_SubL ) + return new (phase->C) SubLNode( in2->in(2), in2->in(1) ); + + // Convert "(X+A) - (X+B)" into "A - B" + if( op1 == Op_AddL && op2 == Op_AddL && in1->in(1) == in2->in(1) ) + return new (phase->C) SubLNode( in1->in(2), in2->in(2) ); + + // Convert "(A+X) - (B+X)" into "A - B" + if( op1 == Op_AddL && op2 == Op_AddL && in1->in(2) == in2->in(2) ) + return new (phase->C) SubLNode( in1->in(1), in2->in(1) ); + + // Convert "A-(B-C)" into (A+C)-B" + if( op2 == Op_SubL && in2->outcnt() == 1) { + Node *add1 = phase->transform( new (phase->C) AddLNode( in1, in2->in(2) ) ); + return new (phase->C) SubLNode( add1, in2->in(1) ); + } + + return NULL; +} + +//------------------------------sub-------------------------------------------- +// A subtract node differences it's two inputs. +const Type *SubLNode::sub( const Type *t1, const Type *t2 ) const { + const TypeLong *r0 = t1->is_long(); // Handy access + const TypeLong *r1 = t2->is_long(); + jlong lo = r0->_lo - r1->_hi; + jlong hi = r0->_hi - r1->_lo; + + // We next check for 32-bit overflow. + // If that happens, we just assume all integers are possible. + if( (((r0->_lo ^ r1->_hi) >= 0) || // lo ends have same signs OR + ((r0->_lo ^ lo) >= 0)) && // lo results have same signs AND + (((r0->_hi ^ r1->_lo) >= 0) || // hi ends have same signs OR + ((r0->_hi ^ hi) >= 0)) ) // hi results have same signs + return TypeLong::make(lo,hi,MAX2(r0->_widen,r1->_widen)); + else // Overflow; assume all integers + return TypeLong::LONG; +} + +//============================================================================= +//------------------------------Value------------------------------------------ +// A subtract node differences its two inputs. +const Type *SubFPNode::Value( PhaseTransform *phase ) const { + const Node* in1 = in(1); + const Node* in2 = in(2); + // Either input is TOP ==> the result is TOP + const Type* t1 = (in1 == this) ? Type::TOP : phase->type(in1); + if( t1 == Type::TOP ) return Type::TOP; + const Type* t2 = (in2 == this) ? Type::TOP : phase->type(in2); + if( t2 == Type::TOP ) return Type::TOP; + + // if both operands are infinity of same sign, the result is NaN; do + // not replace with zero + if( (t1->is_finite() && t2->is_finite()) ) { + if( phase->eqv(in1, in2) ) return add_id(); + } + + // Either input is BOTTOM ==> the result is the local BOTTOM + const Type *bot = bottom_type(); + if( (t1 == bot) || (t2 == bot) || + (t1 == Type::BOTTOM) || (t2 == Type::BOTTOM) ) + return bot; + + return sub(t1,t2); // Local flavor of type subtraction +} + + +//============================================================================= +//------------------------------Ideal------------------------------------------ +Node *SubFNode::Ideal(PhaseGVN *phase, bool can_reshape) { + const Type *t2 = phase->type( in(2) ); + // Convert "x-c0" into "x+ -c0". + if( t2->base() == Type::FloatCon ) { // Might be bottom or top... + // return new (phase->C, 3) AddFNode(in(1), phase->makecon( TypeF::make(-t2->getf()) ) ); + } + + // Not associative because of boundary conditions (infinity) + if( IdealizedNumerics && !phase->C->method()->is_strict() ) { + // Convert "x - (x+y)" into "-y" + if( in(2)->is_Add() && + phase->eqv(in(1),in(2)->in(1) ) ) + return new (phase->C) SubFNode( phase->makecon(TypeF::ZERO),in(2)->in(2)); + } + + // Cannot replace 0.0-X with -X because a 'fsub' bytecode computes + // 0.0-0.0 as +0.0, while a 'fneg' bytecode computes -0.0. + //if( phase->type(in(1)) == TypeF::ZERO ) + //return new (phase->C, 2) NegFNode(in(2)); + + return NULL; +} + +//------------------------------sub-------------------------------------------- +// A subtract node differences its two inputs. +const Type *SubFNode::sub( const Type *t1, const Type *t2 ) const { + // no folding if one of operands is infinity or NaN, do not do constant folding + if( g_isfinite(t1->getf()) && g_isfinite(t2->getf()) ) { + return TypeF::make( t1->getf() - t2->getf() ); + } + else if( g_isnan(t1->getf()) ) { + return t1; + } + else if( g_isnan(t2->getf()) ) { + return t2; + } + else { + return Type::FLOAT; + } +} + +//============================================================================= +//------------------------------Ideal------------------------------------------ +Node *SubDNode::Ideal(PhaseGVN *phase, bool can_reshape){ + const Type *t2 = phase->type( in(2) ); + // Convert "x-c0" into "x+ -c0". + if( t2->base() == Type::DoubleCon ) { // Might be bottom or top... + // return new (phase->C, 3) AddDNode(in(1), phase->makecon( TypeD::make(-t2->getd()) ) ); + } + + // Not associative because of boundary conditions (infinity) + if( IdealizedNumerics && !phase->C->method()->is_strict() ) { + // Convert "x - (x+y)" into "-y" + if( in(2)->is_Add() && + phase->eqv(in(1),in(2)->in(1) ) ) + return new (phase->C) SubDNode( phase->makecon(TypeD::ZERO),in(2)->in(2)); + } + + // Cannot replace 0.0-X with -X because a 'dsub' bytecode computes + // 0.0-0.0 as +0.0, while a 'dneg' bytecode computes -0.0. + //if( phase->type(in(1)) == TypeD::ZERO ) + //return new (phase->C, 2) NegDNode(in(2)); + + return NULL; +} + +//------------------------------sub-------------------------------------------- +// A subtract node differences its two inputs. +const Type *SubDNode::sub( const Type *t1, const Type *t2 ) const { + // no folding if one of operands is infinity or NaN, do not do constant folding + if( g_isfinite(t1->getd()) && g_isfinite(t2->getd()) ) { + return TypeD::make( t1->getd() - t2->getd() ); + } + else if( g_isnan(t1->getd()) ) { + return t1; + } + else if( g_isnan(t2->getd()) ) { + return t2; + } + else { + return Type::DOUBLE; + } +} + +//============================================================================= +//------------------------------Idealize--------------------------------------- +// Unlike SubNodes, compare must still flatten return value to the +// range -1, 0, 1. +// And optimizations like those for (X + Y) - X fail if overflow happens. +Node *CmpNode::Identity( PhaseTransform *phase ) { + return this; +} + +//============================================================================= +//------------------------------cmp-------------------------------------------- +// Simplify a CmpI (compare 2 integers) node, based on local information. +// If both inputs are constants, compare them. +const Type *CmpINode::sub( const Type *t1, const Type *t2 ) const { + const TypeInt *r0 = t1->is_int(); // Handy access + const TypeInt *r1 = t2->is_int(); + + if( r0->_hi < r1->_lo ) // Range is always low? + return TypeInt::CC_LT; + else if( r0->_lo > r1->_hi ) // Range is always high? + return TypeInt::CC_GT; + + else if( r0->is_con() && r1->is_con() ) { // comparing constants? + assert(r0->get_con() == r1->get_con(), "must be equal"); + return TypeInt::CC_EQ; // Equal results. + } else if( r0->_hi == r1->_lo ) // Range is never high? + return TypeInt::CC_LE; + else if( r0->_lo == r1->_hi ) // Range is never low? + return TypeInt::CC_GE; + return TypeInt::CC; // else use worst case results +} + +// Simplify a CmpU (compare 2 integers) node, based on local information. +// If both inputs are constants, compare them. +const Type *CmpUNode::sub( const Type *t1, const Type *t2 ) const { + assert(!t1->isa_ptr(), "obsolete usage of CmpU"); + + // comparing two unsigned ints + const TypeInt *r0 = t1->is_int(); // Handy access + const TypeInt *r1 = t2->is_int(); + + // Current installed version + // Compare ranges for non-overlap + juint lo0 = r0->_lo; + juint hi0 = r0->_hi; + juint lo1 = r1->_lo; + juint hi1 = r1->_hi; + + // If either one has both negative and positive values, + // it therefore contains both 0 and -1, and since [0..-1] is the + // full unsigned range, the type must act as an unsigned bottom. + bool bot0 = ((jint)(lo0 ^ hi0) < 0); + bool bot1 = ((jint)(lo1 ^ hi1) < 0); + + if (bot0 || bot1) { + // All unsigned values are LE -1 and GE 0. + if (lo0 == 0 && hi0 == 0) { + return TypeInt::CC_LE; // 0 <= bot + } else if (lo1 == 0 && hi1 == 0) { + return TypeInt::CC_GE; // bot >= 0 + } + } else { + // We can use ranges of the form [lo..hi] if signs are the same. + assert(lo0 <= hi0 && lo1 <= hi1, "unsigned ranges are valid"); + // results are reversed, '-' > '+' for unsigned compare + if (hi0 < lo1) { + return TypeInt::CC_LT; // smaller + } else if (lo0 > hi1) { + return TypeInt::CC_GT; // greater + } else if (hi0 == lo1 && lo0 == hi1) { + return TypeInt::CC_EQ; // Equal results + } else if (lo0 >= hi1) { + return TypeInt::CC_GE; + } else if (hi0 <= lo1) { + // Check for special case in Hashtable::get. (See below.) + if ((jint)lo0 >= 0 && (jint)lo1 >= 0 && is_index_range_check()) + return TypeInt::CC_LT; + return TypeInt::CC_LE; + } + } + // Check for special case in Hashtable::get - the hash index is + // mod'ed to the table size so the following range check is useless. + // Check for: (X Mod Y) CmpU Y, where the mod result and Y both have + // to be positive. + // (This is a gross hack, since the sub method never + // looks at the structure of the node in any other case.) + if ((jint)lo0 >= 0 && (jint)lo1 >= 0 && is_index_range_check()) + return TypeInt::CC_LT; + return TypeInt::CC; // else use worst case results +} + +const Type* CmpUNode::Value(PhaseTransform *phase) const { + const Type* t = SubNode::Value_common(phase); + if (t != NULL) { + return t; + } + const Node* in1 = in(1); + const Node* in2 = in(2); + const Type* t1 = phase->type(in1); + const Type* t2 = phase->type(in2); + assert(t1->isa_int(), "CmpU has only Int type inputs"); + if (t2 == TypeInt::INT) { // Compare to bottom? + return bottom_type(); + } + uint in1_op = in1->Opcode(); + if (in1_op == Op_AddI || in1_op == Op_SubI) { + // The problem rise when result of AddI(SubI) may overflow + // signed integer value. Let say the input type is + // [256, maxint] then +128 will create 2 ranges due to + // overflow: [minint, minint+127] and [384, maxint]. + // But C2 type system keep only 1 type range and as result + // it use general [minint, maxint] for this case which we + // can't optimize. + // + // Make 2 separate type ranges based on types of AddI(SubI) inputs + // and compare results of their compare. If results are the same + // CmpU node can be optimized. + const Node* in11 = in1->in(1); + const Node* in12 = in1->in(2); + const Type* t11 = (in11 == in1) ? Type::TOP : phase->type(in11); + const Type* t12 = (in12 == in1) ? Type::TOP : phase->type(in12); + // Skip cases when input types are top or bottom. + if ((t11 != Type::TOP) && (t11 != TypeInt::INT) && + (t12 != Type::TOP) && (t12 != TypeInt::INT)) { + const TypeInt *r0 = t11->is_int(); + const TypeInt *r1 = t12->is_int(); + jlong lo_r0 = r0->_lo; + jlong hi_r0 = r0->_hi; + jlong lo_r1 = r1->_lo; + jlong hi_r1 = r1->_hi; + if (in1_op == Op_SubI) { + jlong tmp = hi_r1; + hi_r1 = -lo_r1; + lo_r1 = -tmp; + // Note, for substructing [minint,x] type range + // long arithmetic provides correct overflow answer. + // The confusion come from the fact that in 32-bit + // -minint == minint but in 64-bit -minint == maxint+1. + } + jlong lo_long = lo_r0 + lo_r1; + jlong hi_long = hi_r0 + hi_r1; + int lo_tr1 = min_jint; + int hi_tr1 = (int)hi_long; + int lo_tr2 = (int)lo_long; + int hi_tr2 = max_jint; + bool underflow = lo_long != (jlong)lo_tr2; + bool overflow = hi_long != (jlong)hi_tr1; + // Use sub(t1, t2) when there is no overflow (one type range) + // or when both overflow and underflow (too complex). + if ((underflow != overflow) && (hi_tr1 < lo_tr2)) { + // Overflow only on one boundary, compare 2 separate type ranges. + int w = MAX2(r0->_widen, r1->_widen); // _widen does not matter here + const TypeInt* tr1 = TypeInt::make(lo_tr1, hi_tr1, w); + const TypeInt* tr2 = TypeInt::make(lo_tr2, hi_tr2, w); + const Type* cmp1 = sub(tr1, t2); + const Type* cmp2 = sub(tr2, t2); + if (cmp1 == cmp2) { + return cmp1; // Hit! + } + } + } + } + + return sub(t1, t2); // Local flavor of type subtraction +} + +bool CmpUNode::is_index_range_check() const { + // Check for the "(X ModI Y) CmpU Y" shape + return (in(1)->Opcode() == Op_ModI && + in(1)->in(2)->eqv_uncast(in(2))); +} + +//------------------------------Idealize--------------------------------------- +Node *CmpINode::Ideal( PhaseGVN *phase, bool can_reshape ) { + if (phase->type(in(2))->higher_equal(TypeInt::ZERO)) { + switch (in(1)->Opcode()) { + case Op_CmpL3: // Collapse a CmpL3/CmpI into a CmpL + return new (phase->C) CmpLNode(in(1)->in(1),in(1)->in(2)); + case Op_CmpF3: // Collapse a CmpF3/CmpI into a CmpF + return new (phase->C) CmpFNode(in(1)->in(1),in(1)->in(2)); + case Op_CmpD3: // Collapse a CmpD3/CmpI into a CmpD + return new (phase->C) CmpDNode(in(1)->in(1),in(1)->in(2)); + //case Op_SubI: + // If (x - y) cannot overflow, then ((x - y) 0) + // can be turned into (x y). + // This is handled (with more general cases) by Ideal_sub_algebra. + } + } + return NULL; // No change +} + + +//============================================================================= +// Simplify a CmpL (compare 2 longs ) node, based on local information. +// If both inputs are constants, compare them. +const Type *CmpLNode::sub( const Type *t1, const Type *t2 ) const { + const TypeLong *r0 = t1->is_long(); // Handy access + const TypeLong *r1 = t2->is_long(); + + if( r0->_hi < r1->_lo ) // Range is always low? + return TypeInt::CC_LT; + else if( r0->_lo > r1->_hi ) // Range is always high? + return TypeInt::CC_GT; + + else if( r0->is_con() && r1->is_con() ) { // comparing constants? + assert(r0->get_con() == r1->get_con(), "must be equal"); + return TypeInt::CC_EQ; // Equal results. + } else if( r0->_hi == r1->_lo ) // Range is never high? + return TypeInt::CC_LE; + else if( r0->_lo == r1->_hi ) // Range is never low? + return TypeInt::CC_GE; + return TypeInt::CC; // else use worst case results +} + +//============================================================================= +//------------------------------sub-------------------------------------------- +// Simplify an CmpP (compare 2 pointers) node, based on local information. +// If both inputs are constants, compare them. +const Type *CmpPNode::sub( const Type *t1, const Type *t2 ) const { + const TypePtr *r0 = t1->is_ptr(); // Handy access + const TypePtr *r1 = t2->is_ptr(); + + // Undefined inputs makes for an undefined result + if( TypePtr::above_centerline(r0->_ptr) || + TypePtr::above_centerline(r1->_ptr) ) + return Type::TOP; + + if (r0 == r1 && r0->singleton()) { + // Equal pointer constants (klasses, nulls, etc.) + return TypeInt::CC_EQ; + } + + // See if it is 2 unrelated classes. + const TypeOopPtr* p0 = r0->isa_oopptr(); + const TypeOopPtr* p1 = r1->isa_oopptr(); + if (p0 && p1) { + Node* in1 = in(1)->uncast(); + Node* in2 = in(2)->uncast(); + AllocateNode* alloc1 = AllocateNode::Ideal_allocation(in1, NULL); + AllocateNode* alloc2 = AllocateNode::Ideal_allocation(in2, NULL); + if (MemNode::detect_ptr_independence(in1, alloc1, in2, alloc2, NULL)) { + return TypeInt::CC_GT; // different pointers + } + ciKlass* klass0 = p0->klass(); + bool xklass0 = p0->klass_is_exact(); + ciKlass* klass1 = p1->klass(); + bool xklass1 = p1->klass_is_exact(); + int kps = (p0->isa_klassptr()?1:0) + (p1->isa_klassptr()?1:0); + if (klass0 && klass1 && + kps != 1 && // both or neither are klass pointers + klass0->is_loaded() && !klass0->is_interface() && // do not trust interfaces + klass1->is_loaded() && !klass1->is_interface() && + (!klass0->is_obj_array_klass() || + !klass0->as_obj_array_klass()->base_element_klass()->is_interface()) && + (!klass1->is_obj_array_klass() || + !klass1->as_obj_array_klass()->base_element_klass()->is_interface())) { + bool unrelated_classes = false; + // See if neither subclasses the other, or if the class on top + // is precise. In either of these cases, the compare is known + // to fail if at least one of the pointers is provably not null. + if (klass0->equals(klass1)) { // if types are unequal but klasses are equal + // Do nothing; we know nothing for imprecise types + } else if (klass0->is_subtype_of(klass1)) { + // If klass1's type is PRECISE, then classes are unrelated. + unrelated_classes = xklass1; + } else if (klass1->is_subtype_of(klass0)) { + // If klass0's type is PRECISE, then classes are unrelated. + unrelated_classes = xklass0; + } else { // Neither subtypes the other + unrelated_classes = true; + } + if (unrelated_classes) { + // The oops classes are known to be unrelated. If the joined PTRs of + // two oops is not Null and not Bottom, then we are sure that one + // of the two oops is non-null, and the comparison will always fail. + TypePtr::PTR jp = r0->join_ptr(r1->_ptr); + if (jp != TypePtr::Null && jp != TypePtr::BotPTR) { + return TypeInt::CC_GT; + } + } + } + } + + // Known constants can be compared exactly + // Null can be distinguished from any NotNull pointers + // Unknown inputs makes an unknown result + if( r0->singleton() ) { + intptr_t bits0 = r0->get_con(); + if( r1->singleton() ) + return bits0 == r1->get_con() ? TypeInt::CC_EQ : TypeInt::CC_GT; + return ( r1->_ptr == TypePtr::NotNull && bits0==0 ) ? TypeInt::CC_GT : TypeInt::CC; + } else if( r1->singleton() ) { + intptr_t bits1 = r1->get_con(); + return ( r0->_ptr == TypePtr::NotNull && bits1==0 ) ? TypeInt::CC_GT : TypeInt::CC; + } else + return TypeInt::CC; +} + +static inline Node* isa_java_mirror_load(PhaseGVN* phase, Node* n) { + // Return the klass node for + // LoadP(AddP(foo:Klass, #java_mirror)) + // or NULL if not matching. + if (n->Opcode() != Op_LoadP) return NULL; + + const TypeInstPtr* tp = phase->type(n)->isa_instptr(); + if (!tp || tp->klass() != phase->C->env()->Class_klass()) return NULL; + + Node* adr = n->in(MemNode::Address); + intptr_t off = 0; + Node* k = AddPNode::Ideal_base_and_offset(adr, phase, off); + if (k == NULL) return NULL; + const TypeKlassPtr* tkp = phase->type(k)->isa_klassptr(); + if (!tkp || off != in_bytes(Klass::java_mirror_offset())) return NULL; + + // We've found the klass node of a Java mirror load. + return k; +} + +static inline Node* isa_const_java_mirror(PhaseGVN* phase, Node* n) { + // for ConP(Foo.class) return ConP(Foo.klass) + // otherwise return NULL + if (!n->is_Con()) return NULL; + + const TypeInstPtr* tp = phase->type(n)->isa_instptr(); + if (!tp) return NULL; + + ciType* mirror_type = tp->java_mirror_type(); + // TypeInstPtr::java_mirror_type() returns non-NULL for compile- + // time Class constants only. + if (!mirror_type) return NULL; + + // x.getClass() == int.class can never be true (for all primitive types) + // Return a ConP(NULL) node for this case. + if (mirror_type->is_classless()) { + return phase->makecon(TypePtr::NULL_PTR); + } + + // return the ConP(Foo.klass) + assert(mirror_type->is_klass(), "mirror_type should represent a Klass*"); + return phase->makecon(TypeKlassPtr::make(mirror_type->as_klass())); +} + +//------------------------------Ideal------------------------------------------ +// Normalize comparisons between Java mirror loads to compare the klass instead. +// +// Also check for the case of comparing an unknown klass loaded from the primary +// super-type array vs a known klass with no subtypes. This amounts to +// checking to see an unknown klass subtypes a known klass with no subtypes; +// this only happens on an exact match. We can shorten this test by 1 load. +Node *CmpPNode::Ideal( PhaseGVN *phase, bool can_reshape ) { + // Normalize comparisons between Java mirrors into comparisons of the low- + // level klass, where a dependent load could be shortened. + // + // The new pattern has a nice effect of matching the same pattern used in the + // fast path of instanceof/checkcast/Class.isInstance(), which allows + // redundant exact type check be optimized away by GVN. + // For example, in + // if (x.getClass() == Foo.class) { + // Foo foo = (Foo) x; + // // ... use a ... + // } + // a CmpPNode could be shared between if_acmpne and checkcast + { + Node* k1 = isa_java_mirror_load(phase, in(1)); + Node* k2 = isa_java_mirror_load(phase, in(2)); + Node* conk2 = isa_const_java_mirror(phase, in(2)); + + if (k1 && (k2 || conk2)) { + Node* lhs = k1; + Node* rhs = (k2 != NULL) ? k2 : conk2; + this->set_req(1, lhs); + this->set_req(2, rhs); + return this; + } + } + + // Constant pointer on right? + const TypeKlassPtr* t2 = phase->type(in(2))->isa_klassptr(); + if (t2 == NULL || !t2->klass_is_exact()) + return NULL; + // Get the constant klass we are comparing to. + ciKlass* superklass = t2->klass(); + + // Now check for LoadKlass on left. + Node* ldk1 = in(1); + if (ldk1->is_DecodeNKlass()) { + ldk1 = ldk1->in(1); + if (ldk1->Opcode() != Op_LoadNKlass ) + return NULL; + } else if (ldk1->Opcode() != Op_LoadKlass ) + return NULL; + // Take apart the address of the LoadKlass: + Node* adr1 = ldk1->in(MemNode::Address); + intptr_t con2 = 0; + Node* ldk2 = AddPNode::Ideal_base_and_offset(adr1, phase, con2); + if (ldk2 == NULL) + return NULL; + if (con2 == oopDesc::klass_offset_in_bytes()) { + // We are inspecting an object's concrete class. + // Short-circuit the check if the query is abstract. + if (superklass->is_interface() || + superklass->is_abstract()) { + // Make it come out always false: + this->set_req(2, phase->makecon(TypePtr::NULL_PTR)); + return this; + } + } + + // Check for a LoadKlass from primary supertype array. + // Any nested loadklass from loadklass+con must be from the p.s. array. + if (ldk2->is_DecodeNKlass()) { + // Keep ldk2 as DecodeN since it could be used in CmpP below. + if (ldk2->in(1)->Opcode() != Op_LoadNKlass ) + return NULL; + } else if (ldk2->Opcode() != Op_LoadKlass) + return NULL; + + // Verify that we understand the situation + if (con2 != (intptr_t) superklass->super_check_offset()) + return NULL; // Might be element-klass loading from array klass + + // If 'superklass' has no subklasses and is not an interface, then we are + // assured that the only input which will pass the type check is + // 'superklass' itself. + // + // We could be more liberal here, and allow the optimization on interfaces + // which have a single implementor. This would require us to increase the + // expressiveness of the add_dependency() mechanism. + // %%% Do this after we fix TypeOopPtr: Deps are expressive enough now. + + // Object arrays must have their base element have no subtypes + while (superklass->is_obj_array_klass()) { + ciType* elem = superklass->as_obj_array_klass()->element_type(); + superklass = elem->as_klass(); + } + if (superklass->is_instance_klass()) { + ciInstanceKlass* ik = superklass->as_instance_klass(); + if (ik->has_subklass() || ik->is_interface()) return NULL; + // Add a dependency if there is a chance that a subclass will be added later. + if (!ik->is_final()) { + phase->C->dependencies()->assert_leaf_type(ik); + } + } + + // Bypass the dependent load, and compare directly + this->set_req(1,ldk2); + + return this; +} + +//============================================================================= +//------------------------------sub-------------------------------------------- +// Simplify an CmpN (compare 2 pointers) node, based on local information. +// If both inputs are constants, compare them. +const Type *CmpNNode::sub( const Type *t1, const Type *t2 ) const { + const TypePtr *r0 = t1->make_ptr(); // Handy access + const TypePtr *r1 = t2->make_ptr(); + + // Undefined inputs makes for an undefined result + if ((r0 == NULL) || (r1 == NULL) || + TypePtr::above_centerline(r0->_ptr) || + TypePtr::above_centerline(r1->_ptr)) { + return Type::TOP; + } + if (r0 == r1 && r0->singleton()) { + // Equal pointer constants (klasses, nulls, etc.) + return TypeInt::CC_EQ; + } + + // See if it is 2 unrelated classes. + const TypeOopPtr* p0 = r0->isa_oopptr(); + const TypeOopPtr* p1 = r1->isa_oopptr(); + if (p0 && p1) { + ciKlass* klass0 = p0->klass(); + bool xklass0 = p0->klass_is_exact(); + ciKlass* klass1 = p1->klass(); + bool xklass1 = p1->klass_is_exact(); + int kps = (p0->isa_klassptr()?1:0) + (p1->isa_klassptr()?1:0); + if (klass0 && klass1 && + kps != 1 && // both or neither are klass pointers + !klass0->is_interface() && // do not trust interfaces + !klass1->is_interface()) { + bool unrelated_classes = false; + // See if neither subclasses the other, or if the class on top + // is precise. In either of these cases, the compare is known + // to fail if at least one of the pointers is provably not null. + if (klass0->equals(klass1)) { // if types are unequal but klasses are equal + // Do nothing; we know nothing for imprecise types + } else if (klass0->is_subtype_of(klass1)) { + // If klass1's type is PRECISE, then classes are unrelated. + unrelated_classes = xklass1; + } else if (klass1->is_subtype_of(klass0)) { + // If klass0's type is PRECISE, then classes are unrelated. + unrelated_classes = xklass0; + } else { // Neither subtypes the other + unrelated_classes = true; + } + if (unrelated_classes) { + // The oops classes are known to be unrelated. If the joined PTRs of + // two oops is not Null and not Bottom, then we are sure that one + // of the two oops is non-null, and the comparison will always fail. + TypePtr::PTR jp = r0->join_ptr(r1->_ptr); + if (jp != TypePtr::Null && jp != TypePtr::BotPTR) { + return TypeInt::CC_GT; + } + } + } + } + + // Known constants can be compared exactly + // Null can be distinguished from any NotNull pointers + // Unknown inputs makes an unknown result + if( r0->singleton() ) { + intptr_t bits0 = r0->get_con(); + if( r1->singleton() ) + return bits0 == r1->get_con() ? TypeInt::CC_EQ : TypeInt::CC_GT; + return ( r1->_ptr == TypePtr::NotNull && bits0==0 ) ? TypeInt::CC_GT : TypeInt::CC; + } else if( r1->singleton() ) { + intptr_t bits1 = r1->get_con(); + return ( r0->_ptr == TypePtr::NotNull && bits1==0 ) ? TypeInt::CC_GT : TypeInt::CC; + } else + return TypeInt::CC; +} + +//------------------------------Ideal------------------------------------------ +Node *CmpNNode::Ideal( PhaseGVN *phase, bool can_reshape ) { + return NULL; +} + +//============================================================================= +//------------------------------Value------------------------------------------ +// Simplify an CmpF (compare 2 floats ) node, based on local information. +// If both inputs are constants, compare them. +const Type *CmpFNode::Value( PhaseTransform *phase ) const { + const Node* in1 = in(1); + const Node* in2 = in(2); + // Either input is TOP ==> the result is TOP + const Type* t1 = (in1 == this) ? Type::TOP : phase->type(in1); + if( t1 == Type::TOP ) return Type::TOP; + const Type* t2 = (in2 == this) ? Type::TOP : phase->type(in2); + if( t2 == Type::TOP ) return Type::TOP; + + // Not constants? Don't know squat - even if they are the same + // value! If they are NaN's they compare to LT instead of EQ. + const TypeF *tf1 = t1->isa_float_constant(); + const TypeF *tf2 = t2->isa_float_constant(); + if( !tf1 || !tf2 ) return TypeInt::CC; + + // This implements the Java bytecode fcmpl, so unordered returns -1. + if( tf1->is_nan() || tf2->is_nan() ) + return TypeInt::CC_LT; + + if( tf1->_f < tf2->_f ) return TypeInt::CC_LT; + if( tf1->_f > tf2->_f ) return TypeInt::CC_GT; + assert( tf1->_f == tf2->_f, "do not understand FP behavior" ); + return TypeInt::CC_EQ; +} + + +//============================================================================= +//------------------------------Value------------------------------------------ +// Simplify an CmpD (compare 2 doubles ) node, based on local information. +// If both inputs are constants, compare them. +const Type *CmpDNode::Value( PhaseTransform *phase ) const { + const Node* in1 = in(1); + const Node* in2 = in(2); + // Either input is TOP ==> the result is TOP + const Type* t1 = (in1 == this) ? Type::TOP : phase->type(in1); + if( t1 == Type::TOP ) return Type::TOP; + const Type* t2 = (in2 == this) ? Type::TOP : phase->type(in2); + if( t2 == Type::TOP ) return Type::TOP; + + // Not constants? Don't know squat - even if they are the same + // value! If they are NaN's they compare to LT instead of EQ. + const TypeD *td1 = t1->isa_double_constant(); + const TypeD *td2 = t2->isa_double_constant(); + if( !td1 || !td2 ) return TypeInt::CC; + + // This implements the Java bytecode dcmpl, so unordered returns -1. + if( td1->is_nan() || td2->is_nan() ) + return TypeInt::CC_LT; + + if( td1->_d < td2->_d ) return TypeInt::CC_LT; + if( td1->_d > td2->_d ) return TypeInt::CC_GT; + assert( td1->_d == td2->_d, "do not understand FP behavior" ); + return TypeInt::CC_EQ; +} + +//------------------------------Ideal------------------------------------------ +Node *CmpDNode::Ideal(PhaseGVN *phase, bool can_reshape){ + // Check if we can change this to a CmpF and remove a ConvD2F operation. + // Change (CMPD (F2D (float)) (ConD value)) + // To (CMPF (float) (ConF value)) + // Valid when 'value' does not lose precision as a float. + // Benefits: eliminates conversion, does not require 24-bit mode + + // NaNs prevent commuting operands. This transform works regardless of the + // order of ConD and ConvF2D inputs by preserving the original order. + int idx_f2d = 1; // ConvF2D on left side? + if( in(idx_f2d)->Opcode() != Op_ConvF2D ) + idx_f2d = 2; // No, swap to check for reversed args + int idx_con = 3-idx_f2d; // Check for the constant on other input + + if( ConvertCmpD2CmpF && + in(idx_f2d)->Opcode() == Op_ConvF2D && + in(idx_con)->Opcode() == Op_ConD ) { + const TypeD *t2 = in(idx_con)->bottom_type()->is_double_constant(); + double t2_value_as_double = t2->_d; + float t2_value_as_float = (float)t2_value_as_double; + if( t2_value_as_double == (double)t2_value_as_float ) { + // Test value can be represented as a float + // Eliminate the conversion to double and create new comparison + Node *new_in1 = in(idx_f2d)->in(1); + Node *new_in2 = phase->makecon( TypeF::make(t2_value_as_float) ); + if( idx_f2d != 1 ) { // Must flip args to match original order + Node *tmp = new_in1; + new_in1 = new_in2; + new_in2 = tmp; + } + CmpFNode *new_cmp = (Opcode() == Op_CmpD3) + ? new (phase->C) CmpF3Node( new_in1, new_in2 ) + : new (phase->C) CmpFNode ( new_in1, new_in2 ) ; + return new_cmp; // Changed to CmpFNode + } + // Testing value required the precision of a double + } + return NULL; // No change +} + + +//============================================================================= +//------------------------------cc2logical------------------------------------- +// Convert a condition code type to a logical type +const Type *BoolTest::cc2logical( const Type *CC ) const { + if( CC == Type::TOP ) return Type::TOP; + if( CC->base() != Type::Int ) return TypeInt::BOOL; // Bottom or worse + const TypeInt *ti = CC->is_int(); + if( ti->is_con() ) { // Only 1 kind of condition codes set? + // Match low order 2 bits + int tmp = ((ti->get_con()&3) == (_test&3)) ? 1 : 0; + if( _test & 4 ) tmp = 1-tmp; // Optionally complement result + return TypeInt::make(tmp); // Boolean result + } + + if( CC == TypeInt::CC_GE ) { + if( _test == ge ) return TypeInt::ONE; + if( _test == lt ) return TypeInt::ZERO; + } + if( CC == TypeInt::CC_LE ) { + if( _test == le ) return TypeInt::ONE; + if( _test == gt ) return TypeInt::ZERO; + } + + return TypeInt::BOOL; +} + +//------------------------------dump_spec------------------------------------- +// Print special per-node info +#ifndef PRODUCT +void BoolTest::dump_on(outputStream *st) const { + const char *msg[] = {"eq","gt","of","lt","ne","le","nof","ge"}; + st->print("%s", msg[_test]); +} +#endif + +//============================================================================= +uint BoolNode::hash() const { return (Node::hash() << 3)|(_test._test+1); } +uint BoolNode::size_of() const { return sizeof(BoolNode); } + +//------------------------------operator==------------------------------------- +uint BoolNode::cmp( const Node &n ) const { + const BoolNode *b = (const BoolNode *)&n; // Cast up + return (_test._test == b->_test._test); +} + +//-------------------------------make_predicate-------------------------------- +Node* BoolNode::make_predicate(Node* test_value, PhaseGVN* phase) { + if (test_value->is_Con()) return test_value; + if (test_value->is_Bool()) return test_value; + Compile* C = phase->C; + if (test_value->is_CMove() && + test_value->in(CMoveNode::Condition)->is_Bool()) { + BoolNode* bol = test_value->in(CMoveNode::Condition)->as_Bool(); + const Type* ftype = phase->type(test_value->in(CMoveNode::IfFalse)); + const Type* ttype = phase->type(test_value->in(CMoveNode::IfTrue)); + if (ftype == TypeInt::ZERO && !TypeInt::ZERO->higher_equal(ttype)) { + return bol; + } else if (ttype == TypeInt::ZERO && !TypeInt::ZERO->higher_equal(ftype)) { + return phase->transform( bol->negate(phase) ); + } + // Else fall through. The CMove gets in the way of the test. + // It should be the case that make_predicate(bol->as_int_value()) == bol. + } + Node* cmp = new (C) CmpINode(test_value, phase->intcon(0)); + cmp = phase->transform(cmp); + Node* bol = new (C) BoolNode(cmp, BoolTest::ne); + return phase->transform(bol); +} + +//--------------------------------as_int_value--------------------------------- +Node* BoolNode::as_int_value(PhaseGVN* phase) { + // Inverse to make_predicate. The CMove probably boils down to a Conv2B. + Node* cmov = CMoveNode::make(phase->C, NULL, this, + phase->intcon(0), phase->intcon(1), + TypeInt::BOOL); + return phase->transform(cmov); +} + +//----------------------------------negate------------------------------------- +BoolNode* BoolNode::negate(PhaseGVN* phase) { + Compile* C = phase->C; + return new (C) BoolNode(in(1), _test.negate()); +} + + +//------------------------------Ideal------------------------------------------ +Node *BoolNode::Ideal(PhaseGVN *phase, bool can_reshape) { + // Change "bool tst (cmp con x)" into "bool ~tst (cmp x con)". + // This moves the constant to the right. Helps value-numbering. + Node *cmp = in(1); + if( !cmp->is_Sub() ) return NULL; + int cop = cmp->Opcode(); + if( cop == Op_FastLock || cop == Op_FastUnlock) return NULL; + Node *cmp1 = cmp->in(1); + Node *cmp2 = cmp->in(2); + if( !cmp1 ) return NULL; + + if (_test._test == BoolTest::overflow || _test._test == BoolTest::no_overflow) { + return NULL; + } + + // Constant on left? + Node *con = cmp1; + uint op2 = cmp2->Opcode(); + // Move constants to the right of compare's to canonicalize. + // Do not muck with Opaque1 nodes, as this indicates a loop + // guard that cannot change shape. + if( con->is_Con() && !cmp2->is_Con() && op2 != Op_Opaque1 && + // Because of NaN's, CmpD and CmpF are not commutative + cop != Op_CmpD && cop != Op_CmpF && + // Protect against swapping inputs to a compare when it is used by a + // counted loop exit, which requires maintaining the loop-limit as in(2) + !is_counted_loop_exit_test() ) { + // Ok, commute the constant to the right of the cmp node. + // Clone the Node, getting a new Node of the same class + cmp = cmp->clone(); + // Swap inputs to the clone + cmp->swap_edges(1, 2); + cmp = phase->transform( cmp ); + return new (phase->C) BoolNode( cmp, _test.commute() ); + } + + // Change "bool eq/ne (cmp (xor X 1) 0)" into "bool ne/eq (cmp X 0)". + // The XOR-1 is an idiom used to flip the sense of a bool. We flip the + // test instead. + int cmp1_op = cmp1->Opcode(); + const TypeInt* cmp2_type = phase->type(cmp2)->isa_int(); + if (cmp2_type == NULL) return NULL; + Node* j_xor = cmp1; + if( cmp2_type == TypeInt::ZERO && + cmp1_op == Op_XorI && + j_xor->in(1) != j_xor && // An xor of itself is dead + phase->type( j_xor->in(1) ) == TypeInt::BOOL && + phase->type( j_xor->in(2) ) == TypeInt::ONE && + (_test._test == BoolTest::eq || + _test._test == BoolTest::ne) ) { + Node *ncmp = phase->transform(new (phase->C) CmpINode(j_xor->in(1),cmp2)); + return new (phase->C) BoolNode( ncmp, _test.negate() ); + } + + // Change "bool eq/ne (cmp (Conv2B X) 0)" into "bool eq/ne (cmp X 0)". + // This is a standard idiom for branching on a boolean value. + Node *c2b = cmp1; + if( cmp2_type == TypeInt::ZERO && + cmp1_op == Op_Conv2B && + (_test._test == BoolTest::eq || + _test._test == BoolTest::ne) ) { + Node *ncmp = phase->transform(phase->type(c2b->in(1))->isa_int() + ? (Node*)new (phase->C) CmpINode(c2b->in(1),cmp2) + : (Node*)new (phase->C) CmpPNode(c2b->in(1),phase->makecon(TypePtr::NULL_PTR)) + ); + return new (phase->C) BoolNode( ncmp, _test._test ); + } + + // Comparing a SubI against a zero is equal to comparing the SubI + // arguments directly. This only works for eq and ne comparisons + // due to possible integer overflow. + if ((_test._test == BoolTest::eq || _test._test == BoolTest::ne) && + (cop == Op_CmpI) && + (cmp1->Opcode() == Op_SubI) && + ( cmp2_type == TypeInt::ZERO ) ) { + Node *ncmp = phase->transform( new (phase->C) CmpINode(cmp1->in(1),cmp1->in(2))); + return new (phase->C) BoolNode( ncmp, _test._test ); + } + + // Change (-A vs 0) into (A vs 0) by commuting the test. Disallow in the + // most general case because negating 0x80000000 does nothing. Needed for + // the CmpF3/SubI/CmpI idiom. + if( cop == Op_CmpI && + cmp1->Opcode() == Op_SubI && + cmp2_type == TypeInt::ZERO && + phase->type( cmp1->in(1) ) == TypeInt::ZERO && + phase->type( cmp1->in(2) )->higher_equal(TypeInt::SYMINT) ) { + Node *ncmp = phase->transform( new (phase->C) CmpINode(cmp1->in(2),cmp2)); + return new (phase->C) BoolNode( ncmp, _test.commute() ); + } + + // The transformation below is not valid for either signed or unsigned + // comparisons due to wraparound concerns at MAX_VALUE and MIN_VALUE. + // This transformation can be resurrected when we are able to + // make inferences about the range of values being subtracted from + // (or added to) relative to the wraparound point. + // + // // Remove +/-1's if possible. + // // "X <= Y-1" becomes "X < Y" + // // "X+1 <= Y" becomes "X < Y" + // // "X < Y+1" becomes "X <= Y" + // // "X-1 < Y" becomes "X <= Y" + // // Do not this to compares off of the counted-loop-end. These guys are + // // checking the trip counter and they want to use the post-incremented + // // counter. If they use the PRE-incremented counter, then the counter has + // // to be incremented in a private block on a loop backedge. + // if( du && du->cnt(this) && du->out(this)[0]->Opcode() == Op_CountedLoopEnd ) + // return NULL; + // #ifndef PRODUCT + // // Do not do this in a wash GVN pass during verification. + // // Gets triggered by too many simple optimizations to be bothered with + // // re-trying it again and again. + // if( !phase->allow_progress() ) return NULL; + // #endif + // // Not valid for unsigned compare because of corner cases in involving zero. + // // For example, replacing "X-1 Opcode() == Op_CmpU ) return NULL; + // int cmp2_op = cmp2->Opcode(); + // if( _test._test == BoolTest::le ) { + // if( cmp1_op == Op_AddI && + // phase->type( cmp1->in(2) ) == TypeInt::ONE ) + // return clone_cmp( cmp, cmp1->in(1), cmp2, phase, BoolTest::lt ); + // else if( cmp2_op == Op_AddI && + // phase->type( cmp2->in(2) ) == TypeInt::MINUS_1 ) + // return clone_cmp( cmp, cmp1, cmp2->in(1), phase, BoolTest::lt ); + // } else if( _test._test == BoolTest::lt ) { + // if( cmp1_op == Op_AddI && + // phase->type( cmp1->in(2) ) == TypeInt::MINUS_1 ) + // return clone_cmp( cmp, cmp1->in(1), cmp2, phase, BoolTest::le ); + // else if( cmp2_op == Op_AddI && + // phase->type( cmp2->in(2) ) == TypeInt::ONE ) + // return clone_cmp( cmp, cmp1, cmp2->in(1), phase, BoolTest::le ); + // } + + return NULL; +} + +//------------------------------Value------------------------------------------ +// Simplify a Bool (convert condition codes to boolean (1 or 0)) node, +// based on local information. If the input is constant, do it. +const Type *BoolNode::Value( PhaseTransform *phase ) const { + return _test.cc2logical( phase->type( in(1) ) ); +} + +//------------------------------dump_spec-------------------------------------- +// Dump special per-node info +#ifndef PRODUCT +void BoolNode::dump_spec(outputStream *st) const { + st->print("["); + _test.dump_on(st); + st->print("]"); +} +#endif + +//------------------------------is_counted_loop_exit_test-------------------------------------- +// Returns true if node is used by a counted loop node. +bool BoolNode::is_counted_loop_exit_test() { + for( DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++ ) { + Node* use = fast_out(i); + if (use->is_CountedLoopEnd()) { + return true; + } + } + return false; +} + +//============================================================================= +//------------------------------Value------------------------------------------ +// Compute sqrt +const Type *SqrtDNode::Value( PhaseTransform *phase ) const { + const Type *t1 = phase->type( in(1) ); + if( t1 == Type::TOP ) return Type::TOP; + if( t1->base() != Type::DoubleCon ) return Type::DOUBLE; + double d = t1->getd(); + if( d < 0.0 ) return Type::DOUBLE; + return TypeD::make( sqrt( d ) ); +} + +//============================================================================= +//------------------------------Value------------------------------------------ +// Compute cos +const Type *CosDNode::Value( PhaseTransform *phase ) const { + const Type *t1 = phase->type( in(1) ); + if( t1 == Type::TOP ) return Type::TOP; + if( t1->base() != Type::DoubleCon ) return Type::DOUBLE; + double d = t1->getd(); + return TypeD::make( StubRoutines::intrinsic_cos( d ) ); +} + +//============================================================================= +//------------------------------Value------------------------------------------ +// Compute sin +const Type *SinDNode::Value( PhaseTransform *phase ) const { + const Type *t1 = phase->type( in(1) ); + if( t1 == Type::TOP ) return Type::TOP; + if( t1->base() != Type::DoubleCon ) return Type::DOUBLE; + double d = t1->getd(); + return TypeD::make( StubRoutines::intrinsic_sin( d ) ); +} + +//============================================================================= +//------------------------------Value------------------------------------------ +// Compute tan +const Type *TanDNode::Value( PhaseTransform *phase ) const { + const Type *t1 = phase->type( in(1) ); + if( t1 == Type::TOP ) return Type::TOP; + if( t1->base() != Type::DoubleCon ) return Type::DOUBLE; + double d = t1->getd(); + return TypeD::make( StubRoutines::intrinsic_tan( d ) ); +} + +//============================================================================= +//------------------------------Value------------------------------------------ +// Compute log +const Type *LogDNode::Value( PhaseTransform *phase ) const { + const Type *t1 = phase->type( in(1) ); + if( t1 == Type::TOP ) return Type::TOP; + if( t1->base() != Type::DoubleCon ) return Type::DOUBLE; + double d = t1->getd(); + return TypeD::make( StubRoutines::intrinsic_log( d ) ); +} + +//============================================================================= +//------------------------------Value------------------------------------------ +// Compute log10 +const Type *Log10DNode::Value( PhaseTransform *phase ) const { + const Type *t1 = phase->type( in(1) ); + if( t1 == Type::TOP ) return Type::TOP; + if( t1->base() != Type::DoubleCon ) return Type::DOUBLE; + double d = t1->getd(); + return TypeD::make( StubRoutines::intrinsic_log10( d ) ); +} + +//============================================================================= +//------------------------------Value------------------------------------------ +// Compute exp +const Type *ExpDNode::Value( PhaseTransform *phase ) const { + const Type *t1 = phase->type( in(1) ); + if( t1 == Type::TOP ) return Type::TOP; + if( t1->base() != Type::DoubleCon ) return Type::DOUBLE; + double d = t1->getd(); + return TypeD::make( StubRoutines::intrinsic_exp( d ) ); +} + + +//============================================================================= +//------------------------------Value------------------------------------------ +// Compute pow +const Type *PowDNode::Value( PhaseTransform *phase ) const { + const Type *t1 = phase->type( in(1) ); + if( t1 == Type::TOP ) return Type::TOP; + if( t1->base() != Type::DoubleCon ) return Type::DOUBLE; + const Type *t2 = phase->type( in(2) ); + if( t2 == Type::TOP ) return Type::TOP; + if( t2->base() != Type::DoubleCon ) return Type::DOUBLE; + double d1 = t1->getd(); + double d2 = t2->getd(); + return TypeD::make( StubRoutines::intrinsic_pow( d1, d2 ) ); +}