diff -r 000000000000 -r f90c822e73f8 src/share/vm/opto/divnode.cpp --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/share/vm/opto/divnode.cpp Wed Apr 27 01:25:04 2016 +0800 @@ -0,0 +1,1325 @@ +/* + * Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved. + * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. + * + * This code is free software; you can redistribute it and/or modify it + * under the terms of the GNU General Public License version 2 only, as + * published by the Free Software Foundation. + * + * This code is distributed in the hope that it will be useful, but WITHOUT + * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or + * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License + * version 2 for more details (a copy is included in the LICENSE file that + * accompanied this code). + * + * You should have received a copy of the GNU General Public License version + * 2 along with this work; if not, write to the Free Software Foundation, + * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. + * + * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA + * or visit www.oracle.com if you need additional information or have any + * questions. + * + */ + +#include "precompiled.hpp" +#include "memory/allocation.inline.hpp" +#include "opto/addnode.hpp" +#include "opto/connode.hpp" +#include "opto/divnode.hpp" +#include "opto/machnode.hpp" +#include "opto/matcher.hpp" +#include "opto/mulnode.hpp" +#include "opto/phaseX.hpp" +#include "opto/subnode.hpp" + +// Portions of code courtesy of Clifford Click + +// Optimization - Graph Style + +#include + +//----------------------magic_int_divide_constants----------------------------- +// Compute magic multiplier and shift constant for converting a 32 bit divide +// by constant into a multiply/shift/add series. Return false if calculations +// fail. +// +// Borrowed almost verbatim from Hacker's Delight by Henry S. Warren, Jr. with +// minor type name and parameter changes. +static bool magic_int_divide_constants(jint d, jint &M, jint &s) { + int32_t p; + uint32_t ad, anc, delta, q1, r1, q2, r2, t; + const uint32_t two31 = 0x80000000L; // 2**31. + + ad = ABS(d); + if (d == 0 || d == 1) return false; + t = two31 + ((uint32_t)d >> 31); + anc = t - 1 - t%ad; // Absolute value of nc. + p = 31; // Init. p. + q1 = two31/anc; // Init. q1 = 2**p/|nc|. + r1 = two31 - q1*anc; // Init. r1 = rem(2**p, |nc|). + q2 = two31/ad; // Init. q2 = 2**p/|d|. + r2 = two31 - q2*ad; // Init. r2 = rem(2**p, |d|). + do { + p = p + 1; + q1 = 2*q1; // Update q1 = 2**p/|nc|. + r1 = 2*r1; // Update r1 = rem(2**p, |nc|). + if (r1 >= anc) { // (Must be an unsigned + q1 = q1 + 1; // comparison here). + r1 = r1 - anc; + } + q2 = 2*q2; // Update q2 = 2**p/|d|. + r2 = 2*r2; // Update r2 = rem(2**p, |d|). + if (r2 >= ad) { // (Must be an unsigned + q2 = q2 + 1; // comparison here). + r2 = r2 - ad; + } + delta = ad - r2; + } while (q1 < delta || (q1 == delta && r1 == 0)); + + M = q2 + 1; + if (d < 0) M = -M; // Magic number and + s = p - 32; // shift amount to return. + + return true; +} + +//--------------------------transform_int_divide------------------------------- +// Convert a division by constant divisor into an alternate Ideal graph. +// Return NULL if no transformation occurs. +static Node *transform_int_divide( PhaseGVN *phase, Node *dividend, jint divisor ) { + + // Check for invalid divisors + assert( divisor != 0 && divisor != min_jint, + "bad divisor for transforming to long multiply" ); + + bool d_pos = divisor >= 0; + jint d = d_pos ? divisor : -divisor; + const int N = 32; + + // Result + Node *q = NULL; + + if (d == 1) { + // division by +/- 1 + if (!d_pos) { + // Just negate the value + q = new (phase->C) SubINode(phase->intcon(0), dividend); + } + } else if ( is_power_of_2(d) ) { + // division by +/- a power of 2 + + // See if we can simply do a shift without rounding + bool needs_rounding = true; + const Type *dt = phase->type(dividend); + const TypeInt *dti = dt->isa_int(); + if (dti && dti->_lo >= 0) { + // we don't need to round a positive dividend + needs_rounding = false; + } else if( dividend->Opcode() == Op_AndI ) { + // An AND mask of sufficient size clears the low bits and + // I can avoid rounding. + const TypeInt *andconi_t = phase->type( dividend->in(2) )->isa_int(); + if( andconi_t && andconi_t->is_con() ) { + jint andconi = andconi_t->get_con(); + if( andconi < 0 && is_power_of_2(-andconi) && (-andconi) >= d ) { + if( (-andconi) == d ) // Remove AND if it clears bits which will be shifted + dividend = dividend->in(1); + needs_rounding = false; + } + } + } + + // Add rounding to the shift to handle the sign bit + int l = log2_intptr(d-1)+1; + if (needs_rounding) { + // Divide-by-power-of-2 can be made into a shift, but you have to do + // more math for the rounding. You need to add 0 for positive + // numbers, and "i-1" for negative numbers. Example: i=4, so the + // shift is by 2. You need to add 3 to negative dividends and 0 to + // positive ones. So (-7+3)>>2 becomes -1, (-4+3)>>2 becomes -1, + // (-2+3)>>2 becomes 0, etc. + + // Compute 0 or -1, based on sign bit + Node *sign = phase->transform(new (phase->C) RShiftINode(dividend, phase->intcon(N - 1))); + // Mask sign bit to the low sign bits + Node *round = phase->transform(new (phase->C) URShiftINode(sign, phase->intcon(N - l))); + // Round up before shifting + dividend = phase->transform(new (phase->C) AddINode(dividend, round)); + } + + // Shift for division + q = new (phase->C) RShiftINode(dividend, phase->intcon(l)); + + if (!d_pos) { + q = new (phase->C) SubINode(phase->intcon(0), phase->transform(q)); + } + } else { + // Attempt the jint constant divide -> multiply transform found in + // "Division by Invariant Integers using Multiplication" + // by Granlund and Montgomery + // See also "Hacker's Delight", chapter 10 by Warren. + + jint magic_const; + jint shift_const; + if (magic_int_divide_constants(d, magic_const, shift_const)) { + Node *magic = phase->longcon(magic_const); + Node *dividend_long = phase->transform(new (phase->C) ConvI2LNode(dividend)); + + // Compute the high half of the dividend x magic multiplication + Node *mul_hi = phase->transform(new (phase->C) MulLNode(dividend_long, magic)); + + if (magic_const < 0) { + mul_hi = phase->transform(new (phase->C) RShiftLNode(mul_hi, phase->intcon(N))); + mul_hi = phase->transform(new (phase->C) ConvL2INode(mul_hi)); + + // The magic multiplier is too large for a 32 bit constant. We've adjusted + // it down by 2^32, but have to add 1 dividend back in after the multiplication. + // This handles the "overflow" case described by Granlund and Montgomery. + mul_hi = phase->transform(new (phase->C) AddINode(dividend, mul_hi)); + + // Shift over the (adjusted) mulhi + if (shift_const != 0) { + mul_hi = phase->transform(new (phase->C) RShiftINode(mul_hi, phase->intcon(shift_const))); + } + } else { + // No add is required, we can merge the shifts together. + mul_hi = phase->transform(new (phase->C) RShiftLNode(mul_hi, phase->intcon(N + shift_const))); + mul_hi = phase->transform(new (phase->C) ConvL2INode(mul_hi)); + } + + // Get a 0 or -1 from the sign of the dividend. + Node *addend0 = mul_hi; + Node *addend1 = phase->transform(new (phase->C) RShiftINode(dividend, phase->intcon(N-1))); + + // If the divisor is negative, swap the order of the input addends; + // this has the effect of negating the quotient. + if (!d_pos) { + Node *temp = addend0; addend0 = addend1; addend1 = temp; + } + + // Adjust the final quotient by subtracting -1 (adding 1) + // from the mul_hi. + q = new (phase->C) SubINode(addend0, addend1); + } + } + + return q; +} + +//---------------------magic_long_divide_constants----------------------------- +// Compute magic multiplier and shift constant for converting a 64 bit divide +// by constant into a multiply/shift/add series. Return false if calculations +// fail. +// +// Borrowed almost verbatim from Hacker's Delight by Henry S. Warren, Jr. with +// minor type name and parameter changes. Adjusted to 64 bit word width. +static bool magic_long_divide_constants(jlong d, jlong &M, jint &s) { + int64_t p; + uint64_t ad, anc, delta, q1, r1, q2, r2, t; + const uint64_t two63 = 0x8000000000000000LL; // 2**63. + + ad = ABS(d); + if (d == 0 || d == 1) return false; + t = two63 + ((uint64_t)d >> 63); + anc = t - 1 - t%ad; // Absolute value of nc. + p = 63; // Init. p. + q1 = two63/anc; // Init. q1 = 2**p/|nc|. + r1 = two63 - q1*anc; // Init. r1 = rem(2**p, |nc|). + q2 = two63/ad; // Init. q2 = 2**p/|d|. + r2 = two63 - q2*ad; // Init. r2 = rem(2**p, |d|). + do { + p = p + 1; + q1 = 2*q1; // Update q1 = 2**p/|nc|. + r1 = 2*r1; // Update r1 = rem(2**p, |nc|). + if (r1 >= anc) { // (Must be an unsigned + q1 = q1 + 1; // comparison here). + r1 = r1 - anc; + } + q2 = 2*q2; // Update q2 = 2**p/|d|. + r2 = 2*r2; // Update r2 = rem(2**p, |d|). + if (r2 >= ad) { // (Must be an unsigned + q2 = q2 + 1; // comparison here). + r2 = r2 - ad; + } + delta = ad - r2; + } while (q1 < delta || (q1 == delta && r1 == 0)); + + M = q2 + 1; + if (d < 0) M = -M; // Magic number and + s = p - 64; // shift amount to return. + + return true; +} + +//---------------------long_by_long_mulhi-------------------------------------- +// Generate ideal node graph for upper half of a 64 bit x 64 bit multiplication +static Node* long_by_long_mulhi(PhaseGVN* phase, Node* dividend, jlong magic_const) { + // If the architecture supports a 64x64 mulhi, there is + // no need to synthesize it in ideal nodes. + if (Matcher::has_match_rule(Op_MulHiL)) { + Node* v = phase->longcon(magic_const); + return new (phase->C) MulHiLNode(dividend, v); + } + + // Taken from Hacker's Delight, Fig. 8-2. Multiply high signed. + // (http://www.hackersdelight.org/HDcode/mulhs.c) + // + // int mulhs(int u, int v) { + // unsigned u0, v0, w0; + // int u1, v1, w1, w2, t; + // + // u0 = u & 0xFFFF; u1 = u >> 16; + // v0 = v & 0xFFFF; v1 = v >> 16; + // w0 = u0*v0; + // t = u1*v0 + (w0 >> 16); + // w1 = t & 0xFFFF; + // w2 = t >> 16; + // w1 = u0*v1 + w1; + // return u1*v1 + w2 + (w1 >> 16); + // } + // + // Note: The version above is for 32x32 multiplications, while the + // following inline comments are adapted to 64x64. + + const int N = 64; + + // Dummy node to keep intermediate nodes alive during construction + Node* hook = new (phase->C) Node(4); + + // u0 = u & 0xFFFFFFFF; u1 = u >> 32; + Node* u0 = phase->transform(new (phase->C) AndLNode(dividend, phase->longcon(0xFFFFFFFF))); + Node* u1 = phase->transform(new (phase->C) RShiftLNode(dividend, phase->intcon(N / 2))); + hook->init_req(0, u0); + hook->init_req(1, u1); + + // v0 = v & 0xFFFFFFFF; v1 = v >> 32; + Node* v0 = phase->longcon(magic_const & 0xFFFFFFFF); + Node* v1 = phase->longcon(magic_const >> (N / 2)); + + // w0 = u0*v0; + Node* w0 = phase->transform(new (phase->C) MulLNode(u0, v0)); + + // t = u1*v0 + (w0 >> 32); + Node* u1v0 = phase->transform(new (phase->C) MulLNode(u1, v0)); + Node* temp = phase->transform(new (phase->C) URShiftLNode(w0, phase->intcon(N / 2))); + Node* t = phase->transform(new (phase->C) AddLNode(u1v0, temp)); + hook->init_req(2, t); + + // w1 = t & 0xFFFFFFFF; + Node* w1 = phase->transform(new (phase->C) AndLNode(t, phase->longcon(0xFFFFFFFF))); + hook->init_req(3, w1); + + // w2 = t >> 32; + Node* w2 = phase->transform(new (phase->C) RShiftLNode(t, phase->intcon(N / 2))); + + // w1 = u0*v1 + w1; + Node* u0v1 = phase->transform(new (phase->C) MulLNode(u0, v1)); + w1 = phase->transform(new (phase->C) AddLNode(u0v1, w1)); + + // return u1*v1 + w2 + (w1 >> 32); + Node* u1v1 = phase->transform(new (phase->C) MulLNode(u1, v1)); + Node* temp1 = phase->transform(new (phase->C) AddLNode(u1v1, w2)); + Node* temp2 = phase->transform(new (phase->C) RShiftLNode(w1, phase->intcon(N / 2))); + + // Remove the bogus extra edges used to keep things alive + PhaseIterGVN* igvn = phase->is_IterGVN(); + if (igvn != NULL) { + igvn->remove_dead_node(hook); + } else { + for (int i = 0; i < 4; i++) { + hook->set_req(i, NULL); + } + } + + return new (phase->C) AddLNode(temp1, temp2); +} + + +//--------------------------transform_long_divide------------------------------ +// Convert a division by constant divisor into an alternate Ideal graph. +// Return NULL if no transformation occurs. +static Node *transform_long_divide( PhaseGVN *phase, Node *dividend, jlong divisor ) { + // Check for invalid divisors + assert( divisor != 0L && divisor != min_jlong, + "bad divisor for transforming to long multiply" ); + + bool d_pos = divisor >= 0; + jlong d = d_pos ? divisor : -divisor; + const int N = 64; + + // Result + Node *q = NULL; + + if (d == 1) { + // division by +/- 1 + if (!d_pos) { + // Just negate the value + q = new (phase->C) SubLNode(phase->longcon(0), dividend); + } + } else if ( is_power_of_2_long(d) ) { + + // division by +/- a power of 2 + + // See if we can simply do a shift without rounding + bool needs_rounding = true; + const Type *dt = phase->type(dividend); + const TypeLong *dtl = dt->isa_long(); + + if (dtl && dtl->_lo > 0) { + // we don't need to round a positive dividend + needs_rounding = false; + } else if( dividend->Opcode() == Op_AndL ) { + // An AND mask of sufficient size clears the low bits and + // I can avoid rounding. + const TypeLong *andconl_t = phase->type( dividend->in(2) )->isa_long(); + if( andconl_t && andconl_t->is_con() ) { + jlong andconl = andconl_t->get_con(); + if( andconl < 0 && is_power_of_2_long(-andconl) && (-andconl) >= d ) { + if( (-andconl) == d ) // Remove AND if it clears bits which will be shifted + dividend = dividend->in(1); + needs_rounding = false; + } + } + } + + // Add rounding to the shift to handle the sign bit + int l = log2_long(d-1)+1; + if (needs_rounding) { + // Divide-by-power-of-2 can be made into a shift, but you have to do + // more math for the rounding. You need to add 0 for positive + // numbers, and "i-1" for negative numbers. Example: i=4, so the + // shift is by 2. You need to add 3 to negative dividends and 0 to + // positive ones. So (-7+3)>>2 becomes -1, (-4+3)>>2 becomes -1, + // (-2+3)>>2 becomes 0, etc. + + // Compute 0 or -1, based on sign bit + Node *sign = phase->transform(new (phase->C) RShiftLNode(dividend, phase->intcon(N - 1))); + // Mask sign bit to the low sign bits + Node *round = phase->transform(new (phase->C) URShiftLNode(sign, phase->intcon(N - l))); + // Round up before shifting + dividend = phase->transform(new (phase->C) AddLNode(dividend, round)); + } + + // Shift for division + q = new (phase->C) RShiftLNode(dividend, phase->intcon(l)); + + if (!d_pos) { + q = new (phase->C) SubLNode(phase->longcon(0), phase->transform(q)); + } + } else if ( !Matcher::use_asm_for_ldiv_by_con(d) ) { // Use hardware DIV instruction when + // it is faster than code generated below. + // Attempt the jlong constant divide -> multiply transform found in + // "Division by Invariant Integers using Multiplication" + // by Granlund and Montgomery + // See also "Hacker's Delight", chapter 10 by Warren. + + jlong magic_const; + jint shift_const; + if (magic_long_divide_constants(d, magic_const, shift_const)) { + // Compute the high half of the dividend x magic multiplication + Node *mul_hi = phase->transform(long_by_long_mulhi(phase, dividend, magic_const)); + + // The high half of the 128-bit multiply is computed. + if (magic_const < 0) { + // The magic multiplier is too large for a 64 bit constant. We've adjusted + // it down by 2^64, but have to add 1 dividend back in after the multiplication. + // This handles the "overflow" case described by Granlund and Montgomery. + mul_hi = phase->transform(new (phase->C) AddLNode(dividend, mul_hi)); + } + + // Shift over the (adjusted) mulhi + if (shift_const != 0) { + mul_hi = phase->transform(new (phase->C) RShiftLNode(mul_hi, phase->intcon(shift_const))); + } + + // Get a 0 or -1 from the sign of the dividend. + Node *addend0 = mul_hi; + Node *addend1 = phase->transform(new (phase->C) RShiftLNode(dividend, phase->intcon(N-1))); + + // If the divisor is negative, swap the order of the input addends; + // this has the effect of negating the quotient. + if (!d_pos) { + Node *temp = addend0; addend0 = addend1; addend1 = temp; + } + + // Adjust the final quotient by subtracting -1 (adding 1) + // from the mul_hi. + q = new (phase->C) SubLNode(addend0, addend1); + } + } + + return q; +} + +//============================================================================= +//------------------------------Identity--------------------------------------- +// If the divisor is 1, we are an identity on the dividend. +Node *DivINode::Identity( PhaseTransform *phase ) { + return (phase->type( in(2) )->higher_equal(TypeInt::ONE)) ? in(1) : this; +} + +//------------------------------Idealize--------------------------------------- +// Divides can be changed to multiplies and/or shifts +Node *DivINode::Ideal(PhaseGVN *phase, bool can_reshape) { + if (in(0) && remove_dead_region(phase, can_reshape)) return this; + // Don't bother trying to transform a dead node + if( in(0) && in(0)->is_top() ) return NULL; + + const Type *t = phase->type( in(2) ); + if( t == TypeInt::ONE ) // Identity? + return NULL; // Skip it + + const TypeInt *ti = t->isa_int(); + if( !ti ) return NULL; + if( !ti->is_con() ) return NULL; + jint i = ti->get_con(); // Get divisor + + if (i == 0) return NULL; // Dividing by zero constant does not idealize + + set_req(0,NULL); // Dividing by a not-zero constant; no faulting + + // Dividing by MININT does not optimize as a power-of-2 shift. + if( i == min_jint ) return NULL; + + return transform_int_divide( phase, in(1), i ); +} + +//------------------------------Value------------------------------------------ +// A DivINode divides its inputs. The third input is a Control input, used to +// prevent hoisting the divide above an unsafe test. +const Type *DivINode::Value( PhaseTransform *phase ) const { + // Either input is TOP ==> the result is TOP + const Type *t1 = phase->type( in(1) ); + const Type *t2 = phase->type( in(2) ); + if( t1 == Type::TOP ) return Type::TOP; + if( t2 == Type::TOP ) return Type::TOP; + + // x/x == 1 since we always generate the dynamic divisor check for 0. + if( phase->eqv( in(1), in(2) ) ) + return TypeInt::ONE; + + // Either input is BOTTOM ==> the result is the local BOTTOM + const Type *bot = bottom_type(); + if( (t1 == bot) || (t2 == bot) || + (t1 == Type::BOTTOM) || (t2 == Type::BOTTOM) ) + return bot; + + // Divide the two numbers. We approximate. + // If divisor is a constant and not zero + const TypeInt *i1 = t1->is_int(); + const TypeInt *i2 = t2->is_int(); + int widen = MAX2(i1->_widen, i2->_widen); + + if( i2->is_con() && i2->get_con() != 0 ) { + int32 d = i2->get_con(); // Divisor + jint lo, hi; + if( d >= 0 ) { + lo = i1->_lo/d; + hi = i1->_hi/d; + } else { + if( d == -1 && i1->_lo == min_jint ) { + // 'min_jint/-1' throws arithmetic exception during compilation + lo = min_jint; + // do not support holes, 'hi' must go to either min_jint or max_jint: + // [min_jint, -10]/[-1,-1] ==> [min_jint] UNION [10,max_jint] + hi = i1->_hi == min_jint ? min_jint : max_jint; + } else { + lo = i1->_hi/d; + hi = i1->_lo/d; + } + } + return TypeInt::make(lo, hi, widen); + } + + // If the dividend is a constant + if( i1->is_con() ) { + int32 d = i1->get_con(); + if( d < 0 ) { + if( d == min_jint ) { + // (-min_jint) == min_jint == (min_jint / -1) + return TypeInt::make(min_jint, max_jint/2 + 1, widen); + } else { + return TypeInt::make(d, -d, widen); + } + } + return TypeInt::make(-d, d, widen); + } + + // Otherwise we give up all hope + return TypeInt::INT; +} + + +//============================================================================= +//------------------------------Identity--------------------------------------- +// If the divisor is 1, we are an identity on the dividend. +Node *DivLNode::Identity( PhaseTransform *phase ) { + return (phase->type( in(2) )->higher_equal(TypeLong::ONE)) ? in(1) : this; +} + +//------------------------------Idealize--------------------------------------- +// Dividing by a power of 2 is a shift. +Node *DivLNode::Ideal( PhaseGVN *phase, bool can_reshape) { + if (in(0) && remove_dead_region(phase, can_reshape)) return this; + // Don't bother trying to transform a dead node + if( in(0) && in(0)->is_top() ) return NULL; + + const Type *t = phase->type( in(2) ); + if( t == TypeLong::ONE ) // Identity? + return NULL; // Skip it + + const TypeLong *tl = t->isa_long(); + if( !tl ) return NULL; + if( !tl->is_con() ) return NULL; + jlong l = tl->get_con(); // Get divisor + + if (l == 0) return NULL; // Dividing by zero constant does not idealize + + set_req(0,NULL); // Dividing by a not-zero constant; no faulting + + // Dividing by MINLONG does not optimize as a power-of-2 shift. + if( l == min_jlong ) return NULL; + + return transform_long_divide( phase, in(1), l ); +} + +//------------------------------Value------------------------------------------ +// A DivLNode divides its inputs. The third input is a Control input, used to +// prevent hoisting the divide above an unsafe test. +const Type *DivLNode::Value( PhaseTransform *phase ) const { + // Either input is TOP ==> the result is TOP + const Type *t1 = phase->type( in(1) ); + const Type *t2 = phase->type( in(2) ); + if( t1 == Type::TOP ) return Type::TOP; + if( t2 == Type::TOP ) return Type::TOP; + + // x/x == 1 since we always generate the dynamic divisor check for 0. + if( phase->eqv( in(1), in(2) ) ) + return TypeLong::ONE; + + // Either input is BOTTOM ==> the result is the local BOTTOM + const Type *bot = bottom_type(); + if( (t1 == bot) || (t2 == bot) || + (t1 == Type::BOTTOM) || (t2 == Type::BOTTOM) ) + return bot; + + // Divide the two numbers. We approximate. + // If divisor is a constant and not zero + const TypeLong *i1 = t1->is_long(); + const TypeLong *i2 = t2->is_long(); + int widen = MAX2(i1->_widen, i2->_widen); + + if( i2->is_con() && i2->get_con() != 0 ) { + jlong d = i2->get_con(); // Divisor + jlong lo, hi; + if( d >= 0 ) { + lo = i1->_lo/d; + hi = i1->_hi/d; + } else { + if( d == CONST64(-1) && i1->_lo == min_jlong ) { + // 'min_jlong/-1' throws arithmetic exception during compilation + lo = min_jlong; + // do not support holes, 'hi' must go to either min_jlong or max_jlong: + // [min_jlong, -10]/[-1,-1] ==> [min_jlong] UNION [10,max_jlong] + hi = i1->_hi == min_jlong ? min_jlong : max_jlong; + } else { + lo = i1->_hi/d; + hi = i1->_lo/d; + } + } + return TypeLong::make(lo, hi, widen); + } + + // If the dividend is a constant + if( i1->is_con() ) { + jlong d = i1->get_con(); + if( d < 0 ) { + if( d == min_jlong ) { + // (-min_jlong) == min_jlong == (min_jlong / -1) + return TypeLong::make(min_jlong, max_jlong/2 + 1, widen); + } else { + return TypeLong::make(d, -d, widen); + } + } + return TypeLong::make(-d, d, widen); + } + + // Otherwise we give up all hope + return TypeLong::LONG; +} + + +//============================================================================= +//------------------------------Value------------------------------------------ +// An DivFNode divides its inputs. The third input is a Control input, used to +// prevent hoisting the divide above an unsafe test. +const Type *DivFNode::Value( PhaseTransform *phase ) const { + // Either input is TOP ==> the result is TOP + const Type *t1 = phase->type( in(1) ); + const Type *t2 = phase->type( in(2) ); + if( t1 == Type::TOP ) return Type::TOP; + if( t2 == Type::TOP ) return Type::TOP; + + // Either input is BOTTOM ==> the result is the local BOTTOM + const Type *bot = bottom_type(); + if( (t1 == bot) || (t2 == bot) || + (t1 == Type::BOTTOM) || (t2 == Type::BOTTOM) ) + return bot; + + // x/x == 1, we ignore 0/0. + // Note: if t1 and t2 are zero then result is NaN (JVMS page 213) + // Does not work for variables because of NaN's + if( phase->eqv( in(1), in(2) ) && t1->base() == Type::FloatCon) + if (!g_isnan(t1->getf()) && g_isfinite(t1->getf()) && t1->getf() != 0.0) // could be negative ZERO or NaN + return TypeF::ONE; + + if( t2 == TypeF::ONE ) + return t1; + + // If divisor is a constant and not zero, divide them numbers + if( t1->base() == Type::FloatCon && + t2->base() == Type::FloatCon && + t2->getf() != 0.0 ) // could be negative zero + return TypeF::make( t1->getf()/t2->getf() ); + + // If the dividend is a constant zero + // Note: if t1 and t2 are zero then result is NaN (JVMS page 213) + // Test TypeF::ZERO is not sufficient as it could be negative zero + + if( t1 == TypeF::ZERO && !g_isnan(t2->getf()) && t2->getf() != 0.0 ) + return TypeF::ZERO; + + // Otherwise we give up all hope + return Type::FLOAT; +} + +//------------------------------isA_Copy--------------------------------------- +// Dividing by self is 1. +// If the divisor is 1, we are an identity on the dividend. +Node *DivFNode::Identity( PhaseTransform *phase ) { + return (phase->type( in(2) ) == TypeF::ONE) ? in(1) : this; +} + + +//------------------------------Idealize--------------------------------------- +Node *DivFNode::Ideal(PhaseGVN *phase, bool can_reshape) { + if (in(0) && remove_dead_region(phase, can_reshape)) return this; + // Don't bother trying to transform a dead node + if( in(0) && in(0)->is_top() ) return NULL; + + const Type *t2 = phase->type( in(2) ); + if( t2 == TypeF::ONE ) // Identity? + return NULL; // Skip it + + const TypeF *tf = t2->isa_float_constant(); + if( !tf ) return NULL; + if( tf->base() != Type::FloatCon ) return NULL; + + // Check for out of range values + if( tf->is_nan() || !tf->is_finite() ) return NULL; + + // Get the value + float f = tf->getf(); + int exp; + + // Only for special case of dividing by a power of 2 + if( frexp((double)f, &exp) != 0.5 ) return NULL; + + // Limit the range of acceptable exponents + if( exp < -126 || exp > 126 ) return NULL; + + // Compute the reciprocal + float reciprocal = ((float)1.0) / f; + + assert( frexp((double)reciprocal, &exp) == 0.5, "reciprocal should be power of 2" ); + + // return multiplication by the reciprocal + return (new (phase->C) MulFNode(in(1), phase->makecon(TypeF::make(reciprocal)))); +} + +//============================================================================= +//------------------------------Value------------------------------------------ +// An DivDNode divides its inputs. The third input is a Control input, used to +// prevent hoisting the divide above an unsafe test. +const Type *DivDNode::Value( PhaseTransform *phase ) const { + // Either input is TOP ==> the result is TOP + const Type *t1 = phase->type( in(1) ); + const Type *t2 = phase->type( in(2) ); + if( t1 == Type::TOP ) return Type::TOP; + if( t2 == Type::TOP ) return Type::TOP; + + // Either input is BOTTOM ==> the result is the local BOTTOM + const Type *bot = bottom_type(); + if( (t1 == bot) || (t2 == bot) || + (t1 == Type::BOTTOM) || (t2 == Type::BOTTOM) ) + return bot; + + // x/x == 1, we ignore 0/0. + // Note: if t1 and t2 are zero then result is NaN (JVMS page 213) + // Does not work for variables because of NaN's + if( phase->eqv( in(1), in(2) ) && t1->base() == Type::DoubleCon) + if (!g_isnan(t1->getd()) && g_isfinite(t1->getd()) && t1->getd() != 0.0) // could be negative ZERO or NaN + return TypeD::ONE; + + if( t2 == TypeD::ONE ) + return t1; + +#if defined(IA32) + if (!phase->C->method()->is_strict()) + // Can't trust native compilers to properly fold strict double + // division with round-to-zero on this platform. +#endif + { + // If divisor is a constant and not zero, divide them numbers + if( t1->base() == Type::DoubleCon && + t2->base() == Type::DoubleCon && + t2->getd() != 0.0 ) // could be negative zero + return TypeD::make( t1->getd()/t2->getd() ); + } + + // If the dividend is a constant zero + // Note: if t1 and t2 are zero then result is NaN (JVMS page 213) + // Test TypeF::ZERO is not sufficient as it could be negative zero + if( t1 == TypeD::ZERO && !g_isnan(t2->getd()) && t2->getd() != 0.0 ) + return TypeD::ZERO; + + // Otherwise we give up all hope + return Type::DOUBLE; +} + + +//------------------------------isA_Copy--------------------------------------- +// Dividing by self is 1. +// If the divisor is 1, we are an identity on the dividend. +Node *DivDNode::Identity( PhaseTransform *phase ) { + return (phase->type( in(2) ) == TypeD::ONE) ? in(1) : this; +} + +//------------------------------Idealize--------------------------------------- +Node *DivDNode::Ideal(PhaseGVN *phase, bool can_reshape) { + if (in(0) && remove_dead_region(phase, can_reshape)) return this; + // Don't bother trying to transform a dead node + if( in(0) && in(0)->is_top() ) return NULL; + + const Type *t2 = phase->type( in(2) ); + if( t2 == TypeD::ONE ) // Identity? + return NULL; // Skip it + + const TypeD *td = t2->isa_double_constant(); + if( !td ) return NULL; + if( td->base() != Type::DoubleCon ) return NULL; + + // Check for out of range values + if( td->is_nan() || !td->is_finite() ) return NULL; + + // Get the value + double d = td->getd(); + int exp; + + // Only for special case of dividing by a power of 2 + if( frexp(d, &exp) != 0.5 ) return NULL; + + // Limit the range of acceptable exponents + if( exp < -1021 || exp > 1022 ) return NULL; + + // Compute the reciprocal + double reciprocal = 1.0 / d; + + assert( frexp(reciprocal, &exp) == 0.5, "reciprocal should be power of 2" ); + + // return multiplication by the reciprocal + return (new (phase->C) MulDNode(in(1), phase->makecon(TypeD::make(reciprocal)))); +} + +//============================================================================= +//------------------------------Idealize--------------------------------------- +Node *ModINode::Ideal(PhaseGVN *phase, bool can_reshape) { + // Check for dead control input + if( in(0) && remove_dead_region(phase, can_reshape) ) return this; + // Don't bother trying to transform a dead node + if( in(0) && in(0)->is_top() ) return NULL; + + // Get the modulus + const Type *t = phase->type( in(2) ); + if( t == Type::TOP ) return NULL; + const TypeInt *ti = t->is_int(); + + // Check for useless control input + // Check for excluding mod-zero case + if( in(0) && (ti->_hi < 0 || ti->_lo > 0) ) { + set_req(0, NULL); // Yank control input + return this; + } + + // See if we are MOD'ing by 2^k or 2^k-1. + if( !ti->is_con() ) return NULL; + jint con = ti->get_con(); + + Node *hook = new (phase->C) Node(1); + + // First, special check for modulo 2^k-1 + if( con >= 0 && con < max_jint && is_power_of_2(con+1) ) { + uint k = exact_log2(con+1); // Extract k + + // Basic algorithm by David Detlefs. See fastmod_int.java for gory details. + static int unroll_factor[] = { 999, 999, 29, 14, 9, 7, 5, 4, 4, 3, 3, 2, 2, 2, 2, 2, 1 /*past here we assume 1 forever*/}; + int trip_count = 1; + if( k < ARRAY_SIZE(unroll_factor)) trip_count = unroll_factor[k]; + + // If the unroll factor is not too large, and if conditional moves are + // ok, then use this case + if( trip_count <= 5 && ConditionalMoveLimit != 0 ) { + Node *x = in(1); // Value being mod'd + Node *divisor = in(2); // Also is mask + + hook->init_req(0, x); // Add a use to x to prevent him from dying + // Generate code to reduce X rapidly to nearly 2^k-1. + for( int i = 0; i < trip_count; i++ ) { + Node *xl = phase->transform( new (phase->C) AndINode(x,divisor) ); + Node *xh = phase->transform( new (phase->C) RShiftINode(x,phase->intcon(k)) ); // Must be signed + x = phase->transform( new (phase->C) AddINode(xh,xl) ); + hook->set_req(0, x); + } + + // Generate sign-fixup code. Was original value positive? + // int hack_res = (i >= 0) ? divisor : 1; + Node *cmp1 = phase->transform( new (phase->C) CmpINode( in(1), phase->intcon(0) ) ); + Node *bol1 = phase->transform( new (phase->C) BoolNode( cmp1, BoolTest::ge ) ); + Node *cmov1= phase->transform( new (phase->C) CMoveINode(bol1, phase->intcon(1), divisor, TypeInt::POS) ); + // if( x >= hack_res ) x -= divisor; + Node *sub = phase->transform( new (phase->C) SubINode( x, divisor ) ); + Node *cmp2 = phase->transform( new (phase->C) CmpINode( x, cmov1 ) ); + Node *bol2 = phase->transform( new (phase->C) BoolNode( cmp2, BoolTest::ge ) ); + // Convention is to not transform the return value of an Ideal + // since Ideal is expected to return a modified 'this' or a new node. + Node *cmov2= new (phase->C) CMoveINode(bol2, x, sub, TypeInt::INT); + // cmov2 is now the mod + + // Now remove the bogus extra edges used to keep things alive + if (can_reshape) { + phase->is_IterGVN()->remove_dead_node(hook); + } else { + hook->set_req(0, NULL); // Just yank bogus edge during Parse phase + } + return cmov2; + } + } + + // Fell thru, the unroll case is not appropriate. Transform the modulo + // into a long multiply/int multiply/subtract case + + // Cannot handle mod 0, and min_jint isn't handled by the transform + if( con == 0 || con == min_jint ) return NULL; + + // Get the absolute value of the constant; at this point, we can use this + jint pos_con = (con >= 0) ? con : -con; + + // integer Mod 1 is always 0 + if( pos_con == 1 ) return new (phase->C) ConINode(TypeInt::ZERO); + + int log2_con = -1; + + // If this is a power of two, they maybe we can mask it + if( is_power_of_2(pos_con) ) { + log2_con = log2_intptr((intptr_t)pos_con); + + const Type *dt = phase->type(in(1)); + const TypeInt *dti = dt->isa_int(); + + // See if this can be masked, if the dividend is non-negative + if( dti && dti->_lo >= 0 ) + return ( new (phase->C) AndINode( in(1), phase->intcon( pos_con-1 ) ) ); + } + + // Save in(1) so that it cannot be changed or deleted + hook->init_req(0, in(1)); + + // Divide using the transform from DivI to MulL + Node *result = transform_int_divide( phase, in(1), pos_con ); + if (result != NULL) { + Node *divide = phase->transform(result); + + // Re-multiply, using a shift if this is a power of two + Node *mult = NULL; + + if( log2_con >= 0 ) + mult = phase->transform( new (phase->C) LShiftINode( divide, phase->intcon( log2_con ) ) ); + else + mult = phase->transform( new (phase->C) MulINode( divide, phase->intcon( pos_con ) ) ); + + // Finally, subtract the multiplied divided value from the original + result = new (phase->C) SubINode( in(1), mult ); + } + + // Now remove the bogus extra edges used to keep things alive + if (can_reshape) { + phase->is_IterGVN()->remove_dead_node(hook); + } else { + hook->set_req(0, NULL); // Just yank bogus edge during Parse phase + } + + // return the value + return result; +} + +//------------------------------Value------------------------------------------ +const Type *ModINode::Value( PhaseTransform *phase ) const { + // Either input is TOP ==> the result is TOP + const Type *t1 = phase->type( in(1) ); + const Type *t2 = phase->type( in(2) ); + if( t1 == Type::TOP ) return Type::TOP; + if( t2 == Type::TOP ) return Type::TOP; + + // We always generate the dynamic check for 0. + // 0 MOD X is 0 + if( t1 == TypeInt::ZERO ) return TypeInt::ZERO; + // X MOD X is 0 + if( phase->eqv( in(1), in(2) ) ) return TypeInt::ZERO; + + // Either input is BOTTOM ==> the result is the local BOTTOM + const Type *bot = bottom_type(); + if( (t1 == bot) || (t2 == bot) || + (t1 == Type::BOTTOM) || (t2 == Type::BOTTOM) ) + return bot; + + const TypeInt *i1 = t1->is_int(); + const TypeInt *i2 = t2->is_int(); + if( !i1->is_con() || !i2->is_con() ) { + if( i1->_lo >= 0 && i2->_lo >= 0 ) + return TypeInt::POS; + // If both numbers are not constants, we know little. + return TypeInt::INT; + } + // Mod by zero? Throw exception at runtime! + if( !i2->get_con() ) return TypeInt::POS; + + // We must be modulo'ing 2 float constants. + // Check for min_jint % '-1', result is defined to be '0'. + if( i1->get_con() == min_jint && i2->get_con() == -1 ) + return TypeInt::ZERO; + + return TypeInt::make( i1->get_con() % i2->get_con() ); +} + + +//============================================================================= +//------------------------------Idealize--------------------------------------- +Node *ModLNode::Ideal(PhaseGVN *phase, bool can_reshape) { + // Check for dead control input + if( in(0) && remove_dead_region(phase, can_reshape) ) return this; + // Don't bother trying to transform a dead node + if( in(0) && in(0)->is_top() ) return NULL; + + // Get the modulus + const Type *t = phase->type( in(2) ); + if( t == Type::TOP ) return NULL; + const TypeLong *tl = t->is_long(); + + // Check for useless control input + // Check for excluding mod-zero case + if( in(0) && (tl->_hi < 0 || tl->_lo > 0) ) { + set_req(0, NULL); // Yank control input + return this; + } + + // See if we are MOD'ing by 2^k or 2^k-1. + if( !tl->is_con() ) return NULL; + jlong con = tl->get_con(); + + Node *hook = new (phase->C) Node(1); + + // Expand mod + if( con >= 0 && con < max_jlong && is_power_of_2_long(con+1) ) { + uint k = exact_log2_long(con+1); // Extract k + + // Basic algorithm by David Detlefs. See fastmod_long.java for gory details. + // Used to help a popular random number generator which does a long-mod + // of 2^31-1 and shows up in SpecJBB and SciMark. + static int unroll_factor[] = { 999, 999, 61, 30, 20, 15, 12, 10, 8, 7, 6, 6, 5, 5, 4, 4, 4, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1 /*past here we assume 1 forever*/}; + int trip_count = 1; + if( k < ARRAY_SIZE(unroll_factor)) trip_count = unroll_factor[k]; + + // If the unroll factor is not too large, and if conditional moves are + // ok, then use this case + if( trip_count <= 5 && ConditionalMoveLimit != 0 ) { + Node *x = in(1); // Value being mod'd + Node *divisor = in(2); // Also is mask + + hook->init_req(0, x); // Add a use to x to prevent him from dying + // Generate code to reduce X rapidly to nearly 2^k-1. + for( int i = 0; i < trip_count; i++ ) { + Node *xl = phase->transform( new (phase->C) AndLNode(x,divisor) ); + Node *xh = phase->transform( new (phase->C) RShiftLNode(x,phase->intcon(k)) ); // Must be signed + x = phase->transform( new (phase->C) AddLNode(xh,xl) ); + hook->set_req(0, x); // Add a use to x to prevent him from dying + } + + // Generate sign-fixup code. Was original value positive? + // long hack_res = (i >= 0) ? divisor : CONST64(1); + Node *cmp1 = phase->transform( new (phase->C) CmpLNode( in(1), phase->longcon(0) ) ); + Node *bol1 = phase->transform( new (phase->C) BoolNode( cmp1, BoolTest::ge ) ); + Node *cmov1= phase->transform( new (phase->C) CMoveLNode(bol1, phase->longcon(1), divisor, TypeLong::LONG) ); + // if( x >= hack_res ) x -= divisor; + Node *sub = phase->transform( new (phase->C) SubLNode( x, divisor ) ); + Node *cmp2 = phase->transform( new (phase->C) CmpLNode( x, cmov1 ) ); + Node *bol2 = phase->transform( new (phase->C) BoolNode( cmp2, BoolTest::ge ) ); + // Convention is to not transform the return value of an Ideal + // since Ideal is expected to return a modified 'this' or a new node. + Node *cmov2= new (phase->C) CMoveLNode(bol2, x, sub, TypeLong::LONG); + // cmov2 is now the mod + + // Now remove the bogus extra edges used to keep things alive + if (can_reshape) { + phase->is_IterGVN()->remove_dead_node(hook); + } else { + hook->set_req(0, NULL); // Just yank bogus edge during Parse phase + } + return cmov2; + } + } + + // Fell thru, the unroll case is not appropriate. Transform the modulo + // into a long multiply/int multiply/subtract case + + // Cannot handle mod 0, and min_jlong isn't handled by the transform + if( con == 0 || con == min_jlong ) return NULL; + + // Get the absolute value of the constant; at this point, we can use this + jlong pos_con = (con >= 0) ? con : -con; + + // integer Mod 1 is always 0 + if( pos_con == 1 ) return new (phase->C) ConLNode(TypeLong::ZERO); + + int log2_con = -1; + + // If this is a power of two, then maybe we can mask it + if( is_power_of_2_long(pos_con) ) { + log2_con = exact_log2_long(pos_con); + + const Type *dt = phase->type(in(1)); + const TypeLong *dtl = dt->isa_long(); + + // See if this can be masked, if the dividend is non-negative + if( dtl && dtl->_lo >= 0 ) + return ( new (phase->C) AndLNode( in(1), phase->longcon( pos_con-1 ) ) ); + } + + // Save in(1) so that it cannot be changed or deleted + hook->init_req(0, in(1)); + + // Divide using the transform from DivL to MulL + Node *result = transform_long_divide( phase, in(1), pos_con ); + if (result != NULL) { + Node *divide = phase->transform(result); + + // Re-multiply, using a shift if this is a power of two + Node *mult = NULL; + + if( log2_con >= 0 ) + mult = phase->transform( new (phase->C) LShiftLNode( divide, phase->intcon( log2_con ) ) ); + else + mult = phase->transform( new (phase->C) MulLNode( divide, phase->longcon( pos_con ) ) ); + + // Finally, subtract the multiplied divided value from the original + result = new (phase->C) SubLNode( in(1), mult ); + } + + // Now remove the bogus extra edges used to keep things alive + if (can_reshape) { + phase->is_IterGVN()->remove_dead_node(hook); + } else { + hook->set_req(0, NULL); // Just yank bogus edge during Parse phase + } + + // return the value + return result; +} + +//------------------------------Value------------------------------------------ +const Type *ModLNode::Value( PhaseTransform *phase ) const { + // Either input is TOP ==> the result is TOP + const Type *t1 = phase->type( in(1) ); + const Type *t2 = phase->type( in(2) ); + if( t1 == Type::TOP ) return Type::TOP; + if( t2 == Type::TOP ) return Type::TOP; + + // We always generate the dynamic check for 0. + // 0 MOD X is 0 + if( t1 == TypeLong::ZERO ) return TypeLong::ZERO; + // X MOD X is 0 + if( phase->eqv( in(1), in(2) ) ) return TypeLong::ZERO; + + // Either input is BOTTOM ==> the result is the local BOTTOM + const Type *bot = bottom_type(); + if( (t1 == bot) || (t2 == bot) || + (t1 == Type::BOTTOM) || (t2 == Type::BOTTOM) ) + return bot; + + const TypeLong *i1 = t1->is_long(); + const TypeLong *i2 = t2->is_long(); + if( !i1->is_con() || !i2->is_con() ) { + if( i1->_lo >= CONST64(0) && i2->_lo >= CONST64(0) ) + return TypeLong::POS; + // If both numbers are not constants, we know little. + return TypeLong::LONG; + } + // Mod by zero? Throw exception at runtime! + if( !i2->get_con() ) return TypeLong::POS; + + // We must be modulo'ing 2 float constants. + // Check for min_jint % '-1', result is defined to be '0'. + if( i1->get_con() == min_jlong && i2->get_con() == -1 ) + return TypeLong::ZERO; + + return TypeLong::make( i1->get_con() % i2->get_con() ); +} + + +//============================================================================= +//------------------------------Value------------------------------------------ +const Type *ModFNode::Value( PhaseTransform *phase ) const { + // Either input is TOP ==> the result is TOP + const Type *t1 = phase->type( in(1) ); + const Type *t2 = phase->type( in(2) ); + if( t1 == Type::TOP ) return Type::TOP; + if( t2 == Type::TOP ) return Type::TOP; + + // Either input is BOTTOM ==> the result is the local BOTTOM + const Type *bot = bottom_type(); + if( (t1 == bot) || (t2 == bot) || + (t1 == Type::BOTTOM) || (t2 == Type::BOTTOM) ) + return bot; + + // If either number is not a constant, we know nothing. + if ((t1->base() != Type::FloatCon) || (t2->base() != Type::FloatCon)) { + return Type::FLOAT; // note: x%x can be either NaN or 0 + } + + float f1 = t1->getf(); + float f2 = t2->getf(); + jint x1 = jint_cast(f1); // note: *(int*)&f1, not just (int)f1 + jint x2 = jint_cast(f2); + + // If either is a NaN, return an input NaN + if (g_isnan(f1)) return t1; + if (g_isnan(f2)) return t2; + + // If an operand is infinity or the divisor is +/- zero, punt. + if (!g_isfinite(f1) || !g_isfinite(f2) || x2 == 0 || x2 == min_jint) + return Type::FLOAT; + + // We must be modulo'ing 2 float constants. + // Make sure that the sign of the fmod is equal to the sign of the dividend + jint xr = jint_cast(fmod(f1, f2)); + if ((x1 ^ xr) < 0) { + xr ^= min_jint; + } + + return TypeF::make(jfloat_cast(xr)); +} + + +//============================================================================= +//------------------------------Value------------------------------------------ +const Type *ModDNode::Value( PhaseTransform *phase ) const { + // Either input is TOP ==> the result is TOP + const Type *t1 = phase->type( in(1) ); + const Type *t2 = phase->type( in(2) ); + if( t1 == Type::TOP ) return Type::TOP; + if( t2 == Type::TOP ) return Type::TOP; + + // Either input is BOTTOM ==> the result is the local BOTTOM + const Type *bot = bottom_type(); + if( (t1 == bot) || (t2 == bot) || + (t1 == Type::BOTTOM) || (t2 == Type::BOTTOM) ) + return bot; + + // If either number is not a constant, we know nothing. + if ((t1->base() != Type::DoubleCon) || (t2->base() != Type::DoubleCon)) { + return Type::DOUBLE; // note: x%x can be either NaN or 0 + } + + double f1 = t1->getd(); + double f2 = t2->getd(); + jlong x1 = jlong_cast(f1); // note: *(long*)&f1, not just (long)f1 + jlong x2 = jlong_cast(f2); + + // If either is a NaN, return an input NaN + if (g_isnan(f1)) return t1; + if (g_isnan(f2)) return t2; + + // If an operand is infinity or the divisor is +/- zero, punt. + if (!g_isfinite(f1) || !g_isfinite(f2) || x2 == 0 || x2 == min_jlong) + return Type::DOUBLE; + + // We must be modulo'ing 2 double constants. + // Make sure that the sign of the fmod is equal to the sign of the dividend + jlong xr = jlong_cast(fmod(f1, f2)); + if ((x1 ^ xr) < 0) { + xr ^= min_jlong; + } + + return TypeD::make(jdouble_cast(xr)); +} + +//============================================================================= + +DivModNode::DivModNode( Node *c, Node *dividend, Node *divisor ) : MultiNode(3) { + init_req(0, c); + init_req(1, dividend); + init_req(2, divisor); +} + +//------------------------------make------------------------------------------ +DivModINode* DivModINode::make(Compile* C, Node* div_or_mod) { + Node* n = div_or_mod; + assert(n->Opcode() == Op_DivI || n->Opcode() == Op_ModI, + "only div or mod input pattern accepted"); + + DivModINode* divmod = new (C) DivModINode(n->in(0), n->in(1), n->in(2)); + Node* dproj = new (C) ProjNode(divmod, DivModNode::div_proj_num); + Node* mproj = new (C) ProjNode(divmod, DivModNode::mod_proj_num); + return divmod; +} + +//------------------------------make------------------------------------------ +DivModLNode* DivModLNode::make(Compile* C, Node* div_or_mod) { + Node* n = div_or_mod; + assert(n->Opcode() == Op_DivL || n->Opcode() == Op_ModL, + "only div or mod input pattern accepted"); + + DivModLNode* divmod = new (C) DivModLNode(n->in(0), n->in(1), n->in(2)); + Node* dproj = new (C) ProjNode(divmod, DivModNode::div_proj_num); + Node* mproj = new (C) ProjNode(divmod, DivModNode::mod_proj_num); + return divmod; +} + +//------------------------------match------------------------------------------ +// return result(s) along with their RegMask info +Node *DivModINode::match( const ProjNode *proj, const Matcher *match ) { + uint ideal_reg = proj->ideal_reg(); + RegMask rm; + if (proj->_con == div_proj_num) { + rm = match->divI_proj_mask(); + } else { + assert(proj->_con == mod_proj_num, "must be div or mod projection"); + rm = match->modI_proj_mask(); + } + return new (match->C)MachProjNode(this, proj->_con, rm, ideal_reg); +} + + +//------------------------------match------------------------------------------ +// return result(s) along with their RegMask info +Node *DivModLNode::match( const ProjNode *proj, const Matcher *match ) { + uint ideal_reg = proj->ideal_reg(); + RegMask rm; + if (proj->_con == div_proj_num) { + rm = match->divL_proj_mask(); + } else { + assert(proj->_con == mod_proj_num, "must be div or mod projection"); + rm = match->modL_proj_mask(); + } + return new (match->C)MachProjNode(this, proj->_con, rm, ideal_reg); +}