diff -r 000000000000 -r f90c822e73f8 src/share/vm/opto/coalesce.cpp --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/share/vm/opto/coalesce.cpp Wed Apr 27 01:25:04 2016 +0800 @@ -0,0 +1,789 @@ +/* + * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved. + * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. + * + * This code is free software; you can redistribute it and/or modify it + * under the terms of the GNU General Public License version 2 only, as + * published by the Free Software Foundation. + * + * This code is distributed in the hope that it will be useful, but WITHOUT + * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or + * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License + * version 2 for more details (a copy is included in the LICENSE file that + * accompanied this code). + * + * You should have received a copy of the GNU General Public License version + * 2 along with this work; if not, write to the Free Software Foundation, + * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. + * + * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA + * or visit www.oracle.com if you need additional information or have any + * questions. + * + */ + +#include "precompiled.hpp" +#include "memory/allocation.inline.hpp" +#include "opto/block.hpp" +#include "opto/cfgnode.hpp" +#include "opto/chaitin.hpp" +#include "opto/coalesce.hpp" +#include "opto/connode.hpp" +#include "opto/indexSet.hpp" +#include "opto/machnode.hpp" +#include "opto/matcher.hpp" +#include "opto/regmask.hpp" + +#ifndef PRODUCT +void PhaseCoalesce::dump(Node *n) const { + // Being a const function means I cannot use 'Find' + uint r = _phc._lrg_map.find(n); + tty->print("L%d/N%d ",r,n->_idx); +} + +void PhaseCoalesce::dump() const { + // I know I have a block layout now, so I can print blocks in a loop + for( uint i=0; i<_phc._cfg.number_of_blocks(); i++ ) { + uint j; + Block* b = _phc._cfg.get_block(i); + // Print a nice block header + tty->print("B%d: ",b->_pre_order); + for( j=1; jnum_preds(); j++ ) + tty->print("B%d ", _phc._cfg.get_block_for_node(b->pred(j))->_pre_order); + tty->print("-> "); + for( j=0; j_num_succs; j++ ) + tty->print("B%d ",b->_succs[j]->_pre_order); + tty->print(" IDom: B%d/#%d\n", b->_idom ? b->_idom->_pre_order : 0, b->_dom_depth); + uint cnt = b->number_of_nodes(); + for( j=0; jget_node(j); + dump( n ); + tty->print("\t%s\t",n->Name()); + + // Dump the inputs + uint k; // Exit value of loop + for( k=0; kreq(); k++ ) // For all required inputs + if( n->in(k) ) dump( n->in(k) ); + else tty->print("_ "); + int any_prec = 0; + for( ; klen(); k++ ) // For all precedence inputs + if( n->in(k) ) { + if( !any_prec++ ) tty->print(" |"); + dump( n->in(k) ); + } + + // Dump node-specific info + n->dump_spec(tty); + tty->print("\n"); + + } + tty->print("\n"); + } +} +#endif + +// Combine the live ranges def'd by these 2 Nodes. N2 is an input to N1. +void PhaseCoalesce::combine_these_two(Node *n1, Node *n2) { + uint lr1 = _phc._lrg_map.find(n1); + uint lr2 = _phc._lrg_map.find(n2); + if( lr1 != lr2 && // Different live ranges already AND + !_phc._ifg->test_edge_sq( lr1, lr2 ) ) { // Do not interfere + LRG *lrg1 = &_phc.lrgs(lr1); + LRG *lrg2 = &_phc.lrgs(lr2); + // Not an oop->int cast; oop->oop, int->int, AND int->oop are OK. + + // Now, why is int->oop OK? We end up declaring a raw-pointer as an oop + // and in general that's a bad thing. However, int->oop conversions only + // happen at GC points, so the lifetime of the misclassified raw-pointer + // is from the CheckCastPP (that converts it to an oop) backwards up + // through a merge point and into the slow-path call, and around the + // diamond up to the heap-top check and back down into the slow-path call. + // The misclassified raw pointer is NOT live across the slow-path call, + // and so does not appear in any GC info, so the fact that it is + // misclassified is OK. + + if( (lrg1->_is_oop || !lrg2->_is_oop) && // not an oop->int cast AND + // Compatible final mask + lrg1->mask().overlap( lrg2->mask() ) ) { + // Merge larger into smaller. + if( lr1 > lr2 ) { + uint tmp = lr1; lr1 = lr2; lr2 = tmp; + Node *n = n1; n1 = n2; n2 = n; + LRG *ltmp = lrg1; lrg1 = lrg2; lrg2 = ltmp; + } + // Union lr2 into lr1 + _phc.Union( n1, n2 ); + if (lrg1->_maxfreq < lrg2->_maxfreq) + lrg1->_maxfreq = lrg2->_maxfreq; + // Merge in the IFG + _phc._ifg->Union( lr1, lr2 ); + // Combine register restrictions + lrg1->AND(lrg2->mask()); + } + } +} + +// Copy coalescing +void PhaseCoalesce::coalesce_driver() { + verify(); + // Coalesce from high frequency to low + for (uint i = 0; i < _phc._cfg.number_of_blocks(); i++) { + coalesce(_phc._blks[i]); + } +} + +// I am inserting copies to come out of SSA form. In the general case, I am +// doing a parallel renaming. I'm in the Named world now, so I can't do a +// general parallel renaming. All the copies now use "names" (live-ranges) +// to carry values instead of the explicit use-def chains. Suppose I need to +// insert 2 copies into the same block. They copy L161->L128 and L128->L132. +// If I insert them in the wrong order then L128 will get clobbered before it +// can get used by the second copy. This cannot happen in the SSA model; +// direct use-def chains get me the right value. It DOES happen in the named +// model so I have to handle the reordering of copies. +// +// In general, I need to topo-sort the placed copies to avoid conflicts. +// Its possible to have a closed cycle of copies (e.g., recirculating the same +// values around a loop). In this case I need a temp to break the cycle. +void PhaseAggressiveCoalesce::insert_copy_with_overlap( Block *b, Node *copy, uint dst_name, uint src_name ) { + + // Scan backwards for the locations of the last use of the dst_name. + // I am about to clobber the dst_name, so the copy must be inserted + // after the last use. Last use is really first-use on a backwards scan. + uint i = b->end_idx()-1; + while(1) { + Node *n = b->get_node(i); + // Check for end of virtual copies; this is also the end of the + // parallel renaming effort. + if (n->_idx < _unique) { + break; + } + uint idx = n->is_Copy(); + assert( idx || n->is_Con() || n->is_MachProj(), "Only copies during parallel renaming" ); + if (idx && _phc._lrg_map.find(n->in(idx)) == dst_name) { + break; + } + i--; + } + uint last_use_idx = i; + + // Also search for any kill of src_name that exits the block. + // Since the copy uses src_name, I have to come before any kill. + uint kill_src_idx = b->end_idx(); + // There can be only 1 kill that exits any block and that is + // the last kill. Thus it is the first kill on a backwards scan. + i = b->end_idx()-1; + while (1) { + Node *n = b->get_node(i); + // Check for end of virtual copies; this is also the end of the + // parallel renaming effort. + if (n->_idx < _unique) { + break; + } + assert( n->is_Copy() || n->is_Con() || n->is_MachProj(), "Only copies during parallel renaming" ); + if (_phc._lrg_map.find(n) == src_name) { + kill_src_idx = i; + break; + } + i--; + } + // Need a temp? Last use of dst comes after the kill of src? + if (last_use_idx >= kill_src_idx) { + // Need to break a cycle with a temp + uint idx = copy->is_Copy(); + Node *tmp = copy->clone(); + uint max_lrg_id = _phc._lrg_map.max_lrg_id(); + _phc.new_lrg(tmp, max_lrg_id); + _phc._lrg_map.set_max_lrg_id(max_lrg_id + 1); + + // Insert new temp between copy and source + tmp ->set_req(idx,copy->in(idx)); + copy->set_req(idx,tmp); + // Save source in temp early, before source is killed + b->insert_node(tmp, kill_src_idx); + _phc._cfg.map_node_to_block(tmp, b); + last_use_idx++; + } + + // Insert just after last use + b->insert_node(copy, last_use_idx + 1); +} + +void PhaseAggressiveCoalesce::insert_copies( Matcher &matcher ) { + // We do LRGs compressing and fix a liveout data only here since the other + // place in Split() is guarded by the assert which we never hit. + _phc._lrg_map.compress_uf_map_for_nodes(); + // Fix block's liveout data for compressed live ranges. + for (uint lrg = 1; lrg < _phc._lrg_map.max_lrg_id(); lrg++) { + uint compressed_lrg = _phc._lrg_map.find(lrg); + if (lrg != compressed_lrg) { + for (uint bidx = 0; bidx < _phc._cfg.number_of_blocks(); bidx++) { + IndexSet *liveout = _phc._live->live(_phc._cfg.get_block(bidx)); + if (liveout->member(lrg)) { + liveout->remove(lrg); + liveout->insert(compressed_lrg); + } + } + } + } + + // All new nodes added are actual copies to replace virtual copies. + // Nodes with index less than '_unique' are original, non-virtual Nodes. + _unique = C->unique(); + + for (uint i = 0; i < _phc._cfg.number_of_blocks(); i++) { + C->check_node_count(NodeLimitFudgeFactor, "out of nodes in coalesce"); + if (C->failing()) return; + Block *b = _phc._cfg.get_block(i); + uint cnt = b->num_preds(); // Number of inputs to the Phi + + for( uint l = 1; lnumber_of_nodes(); l++ ) { + Node *n = b->get_node(l); + + // Do not use removed-copies, use copied value instead + uint ncnt = n->req(); + for( uint k = 1; kin(k); + uint cidx = copy->is_Copy(); + if( cidx ) { + Node *def = copy->in(cidx); + if (_phc._lrg_map.find(copy) == _phc._lrg_map.find(def)) { + n->set_req(k, def); + } + } + } + + // Remove any explicit copies that get coalesced. + uint cidx = n->is_Copy(); + if( cidx ) { + Node *def = n->in(cidx); + if (_phc._lrg_map.find(n) == _phc._lrg_map.find(def)) { + n->replace_by(def); + n->set_req(cidx,NULL); + b->remove_node(l); + l--; + continue; + } + } + + if (n->is_Phi()) { + // Get the chosen name for the Phi + uint phi_name = _phc._lrg_map.find(n); + // Ignore the pre-allocated specials + if (!phi_name) { + continue; + } + // Check for mismatch inputs to Phi + for (uint j = 1; j < cnt; j++) { + Node *m = n->in(j); + uint src_name = _phc._lrg_map.find(m); + if (src_name != phi_name) { + Block *pred = _phc._cfg.get_block_for_node(b->pred(j)); + Node *copy; + assert(!m->is_Con() || m->is_Mach(), "all Con must be Mach"); + // Rematerialize constants instead of copying them + if( m->is_Mach() && m->as_Mach()->is_Con() && + m->as_Mach()->rematerialize() ) { + copy = m->clone(); + // Insert the copy in the predecessor basic block + pred->add_inst(copy); + // Copy any flags as well + _phc.clone_projs(pred, pred->end_idx(), m, copy, _phc._lrg_map); + } else { + const RegMask *rm = C->matcher()->idealreg2spillmask[m->ideal_reg()]; + copy = new (C) MachSpillCopyNode(m, *rm, *rm); + // Find a good place to insert. Kinda tricky, use a subroutine + insert_copy_with_overlap(pred,copy,phi_name,src_name); + } + // Insert the copy in the use-def chain + n->set_req(j, copy); + _phc._cfg.map_node_to_block(copy, pred); + // Extend ("register allocate") the names array for the copy. + _phc._lrg_map.extend(copy->_idx, phi_name); + } // End of if Phi names do not match + } // End of for all inputs to Phi + } else { // End of if Phi + + // Now check for 2-address instructions + uint idx; + if( n->is_Mach() && (idx=n->as_Mach()->two_adr()) ) { + // Get the chosen name for the Node + uint name = _phc._lrg_map.find(n); + assert (name, "no 2-address specials"); + // Check for name mis-match on the 2-address input + Node *m = n->in(idx); + if (_phc._lrg_map.find(m) != name) { + Node *copy; + assert(!m->is_Con() || m->is_Mach(), "all Con must be Mach"); + // At this point it is unsafe to extend live ranges (6550579). + // Rematerialize only constants as we do for Phi above. + if(m->is_Mach() && m->as_Mach()->is_Con() && + m->as_Mach()->rematerialize()) { + copy = m->clone(); + // Insert the copy in the basic block, just before us + b->insert_node(copy, l++); + l += _phc.clone_projs(b, l, m, copy, _phc._lrg_map); + } else { + const RegMask *rm = C->matcher()->idealreg2spillmask[m->ideal_reg()]; + copy = new (C) MachSpillCopyNode(m, *rm, *rm); + // Insert the copy in the basic block, just before us + b->insert_node(copy, l++); + } + // Insert the copy in the use-def chain + n->set_req(idx, copy); + // Extend ("register allocate") the names array for the copy. + _phc._lrg_map.extend(copy->_idx, name); + _phc._cfg.map_node_to_block(copy, b); + } + + } // End of is two-adr + + // Insert a copy at a debug use for a lrg which has high frequency + if (b->_freq < OPTO_DEBUG_SPLIT_FREQ || _phc._cfg.is_uncommon(b)) { + // Walk the debug inputs to the node and check for lrg freq + JVMState* jvms = n->jvms(); + uint debug_start = jvms ? jvms->debug_start() : 999999; + uint debug_end = jvms ? jvms->debug_end() : 999999; + for(uint inpidx = debug_start; inpidx < debug_end; inpidx++) { + // Do not split monitors; they are only needed for debug table + // entries and need no code. + if (jvms->is_monitor_use(inpidx)) { + continue; + } + Node *inp = n->in(inpidx); + uint nidx = _phc._lrg_map.live_range_id(inp); + LRG &lrg = lrgs(nidx); + + // If this lrg has a high frequency use/def + if( lrg._maxfreq >= _phc.high_frequency_lrg() ) { + // If the live range is also live out of this block (like it + // would be for a fast/slow idiom), the normal spill mechanism + // does an excellent job. If it is not live out of this block + // (like it would be for debug info to uncommon trap) splitting + // the live range now allows a better allocation in the high + // frequency blocks. + // Build_IFG_virtual has converted the live sets to + // live-IN info, not live-OUT info. + uint k; + for( k=0; k < b->_num_succs; k++ ) + if( _phc._live->live(b->_succs[k])->member( nidx ) ) + break; // Live in to some successor block? + if( k < b->_num_succs ) + continue; // Live out; do not pre-split + // Split the lrg at this use + const RegMask *rm = C->matcher()->idealreg2spillmask[inp->ideal_reg()]; + Node *copy = new (C) MachSpillCopyNode( inp, *rm, *rm ); + // Insert the copy in the use-def chain + n->set_req(inpidx, copy ); + // Insert the copy in the basic block, just before us + b->insert_node(copy, l++); + // Extend ("register allocate") the names array for the copy. + uint max_lrg_id = _phc._lrg_map.max_lrg_id(); + _phc.new_lrg(copy, max_lrg_id); + _phc._lrg_map.set_max_lrg_id(max_lrg_id + 1); + _phc._cfg.map_node_to_block(copy, b); + //tty->print_cr("Split a debug use in Aggressive Coalesce"); + } // End of if high frequency use/def + } // End of for all debug inputs + } // End of if low frequency safepoint + + } // End of if Phi + + } // End of for all instructions + } // End of for all blocks +} + + +// Aggressive (but pessimistic) copy coalescing of a single block + +// The following coalesce pass represents a single round of aggressive +// pessimistic coalesce. "Aggressive" means no attempt to preserve +// colorability when coalescing. This occasionally means more spills, but +// it also means fewer rounds of coalescing for better code - and that means +// faster compiles. + +// "Pessimistic" means we do not hit the fixed point in one pass (and we are +// reaching for the least fixed point to boot). This is typically solved +// with a few more rounds of coalescing, but the compiler must run fast. We +// could optimistically coalescing everything touching PhiNodes together +// into one big live range, then check for self-interference. Everywhere +// the live range interferes with self it would have to be split. Finding +// the right split points can be done with some heuristics (based on +// expected frequency of edges in the live range). In short, it's a real +// research problem and the timeline is too short to allow such research. +// Further thoughts: (1) build the LR in a pass, (2) find self-interference +// in another pass, (3) per each self-conflict, split, (4) split by finding +// the low-cost cut (min-cut) of the LR, (5) edges in the LR are weighted +// according to the GCM algorithm (or just exec freq on CFG edges). + +void PhaseAggressiveCoalesce::coalesce( Block *b ) { + // Copies are still "virtual" - meaning we have not made them explicitly + // copies. Instead, Phi functions of successor blocks have mis-matched + // live-ranges. If I fail to coalesce, I'll have to insert a copy to line + // up the live-ranges. Check for Phis in successor blocks. + uint i; + for( i=0; i_num_succs; i++ ) { + Block *bs = b->_succs[i]; + // Find index of 'b' in 'bs' predecessors + uint j=1; + while (_phc._cfg.get_block_for_node(bs->pred(j)) != b) { + j++; + } + + // Visit all the Phis in successor block + for( uint k = 1; knumber_of_nodes(); k++ ) { + Node *n = bs->get_node(k); + if( !n->is_Phi() ) break; + combine_these_two( n, n->in(j) ); + } + } // End of for all successor blocks + + + // Check _this_ block for 2-address instructions and copies. + uint cnt = b->end_idx(); + for( i = 1; iget_node(i); + uint idx; + // 2-address instructions have a virtual Copy matching their input + // to their output + if (n->is_Mach() && (idx = n->as_Mach()->two_adr())) { + MachNode *mach = n->as_Mach(); + combine_these_two(mach, mach->in(idx)); + } + } // End of for all instructions in block +} + +PhaseConservativeCoalesce::PhaseConservativeCoalesce(PhaseChaitin &chaitin) : PhaseCoalesce(chaitin) { + _ulr.initialize(_phc._lrg_map.max_lrg_id()); +} + +void PhaseConservativeCoalesce::verify() { +#ifdef ASSERT + _phc.set_was_low(); +#endif +} + +void PhaseConservativeCoalesce::union_helper( Node *lr1_node, Node *lr2_node, uint lr1, uint lr2, Node *src_def, Node *dst_copy, Node *src_copy, Block *b, uint bindex ) { + // Join live ranges. Merge larger into smaller. Union lr2 into lr1 in the + // union-find tree + _phc.Union( lr1_node, lr2_node ); + + // Single-def live range ONLY if both live ranges are single-def. + // If both are single def, then src_def powers one live range + // and def_copy powers the other. After merging, src_def powers + // the combined live range. + lrgs(lr1)._def = (lrgs(lr1).is_multidef() || + lrgs(lr2).is_multidef() ) + ? NodeSentinel : src_def; + lrgs(lr2)._def = NULL; // No def for lrg 2 + lrgs(lr2).Clear(); // Force empty mask for LRG 2 + //lrgs(lr2)._size = 0; // Live-range 2 goes dead + lrgs(lr1)._is_oop |= lrgs(lr2)._is_oop; + lrgs(lr2)._is_oop = 0; // In particular, not an oop for GC info + + if (lrgs(lr1)._maxfreq < lrgs(lr2)._maxfreq) + lrgs(lr1)._maxfreq = lrgs(lr2)._maxfreq; + + // Copy original value instead. Intermediate copies go dead, and + // the dst_copy becomes useless. + int didx = dst_copy->is_Copy(); + dst_copy->set_req( didx, src_def ); + // Add copy to free list + // _phc.free_spillcopy(b->_nodes[bindex]); + assert( b->get_node(bindex) == dst_copy, "" ); + dst_copy->replace_by( dst_copy->in(didx) ); + dst_copy->set_req( didx, NULL); + b->remove_node(bindex); + if( bindex < b->_ihrp_index ) b->_ihrp_index--; + if( bindex < b->_fhrp_index ) b->_fhrp_index--; + + // Stretched lr1; add it to liveness of intermediate blocks + Block *b2 = _phc._cfg.get_block_for_node(src_copy); + while( b != b2 ) { + b = _phc._cfg.get_block_for_node(b->pred(1)); + _phc._live->live(b)->insert(lr1); + } +} + +// Factored code from copy_copy that computes extra interferences from +// lengthening a live range by double-coalescing. +uint PhaseConservativeCoalesce::compute_separating_interferences(Node *dst_copy, Node *src_copy, Block *b, uint bindex, RegMask &rm, uint reg_degree, uint rm_size, uint lr1, uint lr2 ) { + + assert(!lrgs(lr1)._fat_proj, "cannot coalesce fat_proj"); + assert(!lrgs(lr2)._fat_proj, "cannot coalesce fat_proj"); + Node *prev_copy = dst_copy->in(dst_copy->is_Copy()); + Block *b2 = b; + uint bindex2 = bindex; + while( 1 ) { + // Find previous instruction + bindex2--; // Chain backwards 1 instruction + while( bindex2 == 0 ) { // At block start, find prior block + assert( b2->num_preds() == 2, "cannot double coalesce across c-flow" ); + b2 = _phc._cfg.get_block_for_node(b2->pred(1)); + bindex2 = b2->end_idx()-1; + } + // Get prior instruction + assert(bindex2 < b2->number_of_nodes(), "index out of bounds"); + Node *x = b2->get_node(bindex2); + if( x == prev_copy ) { // Previous copy in copy chain? + if( prev_copy == src_copy)// Found end of chain and all interferences + break; // So break out of loop + // Else work back one in copy chain + prev_copy = prev_copy->in(prev_copy->is_Copy()); + } else { // Else collect interferences + uint lidx = _phc._lrg_map.find(x); + // Found another def of live-range being stretched? + if(lidx == lr1) { + return max_juint; + } + if(lidx == lr2) { + return max_juint; + } + + // If we attempt to coalesce across a bound def + if( lrgs(lidx).is_bound() ) { + // Do not let the coalesced LRG expect to get the bound color + rm.SUBTRACT( lrgs(lidx).mask() ); + // Recompute rm_size + rm_size = rm.Size(); + //if( rm._flags ) rm_size += 1000000; + if( reg_degree >= rm_size ) return max_juint; + } + if( rm.overlap(lrgs(lidx).mask()) ) { + // Insert lidx into union LRG; returns TRUE if actually inserted + if( _ulr.insert(lidx) ) { + // Infinite-stack neighbors do not alter colorability, as they + // can always color to some other color. + if( !lrgs(lidx).mask().is_AllStack() ) { + // If this coalesce will make any new neighbor uncolorable, + // do not coalesce. + if( lrgs(lidx).just_lo_degree() ) + return max_juint; + // Bump our degree + if( ++reg_degree >= rm_size ) + return max_juint; + } // End of if not infinite-stack neighbor + } // End of if actually inserted + } // End of if live range overlaps + } // End of else collect interferences for 1 node + } // End of while forever, scan back for interferences + return reg_degree; +} + +void PhaseConservativeCoalesce::update_ifg(uint lr1, uint lr2, IndexSet *n_lr1, IndexSet *n_lr2) { + // Some original neighbors of lr1 might have gone away + // because the constrained register mask prevented them. + // Remove lr1 from such neighbors. + IndexSetIterator one(n_lr1); + uint neighbor; + LRG &lrg1 = lrgs(lr1); + while ((neighbor = one.next()) != 0) + if( !_ulr.member(neighbor) ) + if( _phc._ifg->neighbors(neighbor)->remove(lr1) ) + lrgs(neighbor).inc_degree( -lrg1.compute_degree(lrgs(neighbor)) ); + + + // lr2 is now called (coalesced into) lr1. + // Remove lr2 from the IFG. + IndexSetIterator two(n_lr2); + LRG &lrg2 = lrgs(lr2); + while ((neighbor = two.next()) != 0) + if( _phc._ifg->neighbors(neighbor)->remove(lr2) ) + lrgs(neighbor).inc_degree( -lrg2.compute_degree(lrgs(neighbor)) ); + + // Some neighbors of intermediate copies now interfere with the + // combined live range. + IndexSetIterator three(&_ulr); + while ((neighbor = three.next()) != 0) + if( _phc._ifg->neighbors(neighbor)->insert(lr1) ) + lrgs(neighbor).inc_degree( lrg1.compute_degree(lrgs(neighbor)) ); +} + +static void record_bias( const PhaseIFG *ifg, int lr1, int lr2 ) { + // Tag copy bias here + if( !ifg->lrgs(lr1)._copy_bias ) + ifg->lrgs(lr1)._copy_bias = lr2; + if( !ifg->lrgs(lr2)._copy_bias ) + ifg->lrgs(lr2)._copy_bias = lr1; +} + +// See if I can coalesce a series of multiple copies together. I need the +// final dest copy and the original src copy. They can be the same Node. +// Compute the compatible register masks. +bool PhaseConservativeCoalesce::copy_copy(Node *dst_copy, Node *src_copy, Block *b, uint bindex) { + + if (!dst_copy->is_SpillCopy()) { + return false; + } + if (!src_copy->is_SpillCopy()) { + return false; + } + Node *src_def = src_copy->in(src_copy->is_Copy()); + uint lr1 = _phc._lrg_map.find(dst_copy); + uint lr2 = _phc._lrg_map.find(src_def); + + // Same live ranges already? + if (lr1 == lr2) { + return false; + } + + // Interfere? + if (_phc._ifg->test_edge_sq(lr1, lr2)) { + return false; + } + + // Not an oop->int cast; oop->oop, int->int, AND int->oop are OK. + if (!lrgs(lr1)._is_oop && lrgs(lr2)._is_oop) { // not an oop->int cast + return false; + } + + // Coalescing between an aligned live range and a mis-aligned live range? + // No, no! Alignment changes how we count degree. + if (lrgs(lr1)._fat_proj != lrgs(lr2)._fat_proj) { + return false; + } + + // Sort; use smaller live-range number + Node *lr1_node = dst_copy; + Node *lr2_node = src_def; + if (lr1 > lr2) { + uint tmp = lr1; lr1 = lr2; lr2 = tmp; + lr1_node = src_def; lr2_node = dst_copy; + } + + // Check for compatibility of the 2 live ranges by + // intersecting their allowed register sets. + RegMask rm = lrgs(lr1).mask(); + rm.AND(lrgs(lr2).mask()); + // Number of bits free + uint rm_size = rm.Size(); + + if (UseFPUForSpilling && rm.is_AllStack() ) { + // Don't coalesce when frequency difference is large + Block *dst_b = _phc._cfg.get_block_for_node(dst_copy); + Block *src_def_b = _phc._cfg.get_block_for_node(src_def); + if (src_def_b->_freq > 10*dst_b->_freq ) + return false; + } + + // If we can use any stack slot, then effective size is infinite + if( rm.is_AllStack() ) rm_size += 1000000; + // Incompatible masks, no way to coalesce + if( rm_size == 0 ) return false; + + // Another early bail-out test is when we are double-coalescing and the + // 2 copies are separated by some control flow. + if( dst_copy != src_copy ) { + Block *src_b = _phc._cfg.get_block_for_node(src_copy); + Block *b2 = b; + while( b2 != src_b ) { + if( b2->num_preds() > 2 ){// Found merge-point + _phc._lost_opp_cflow_coalesce++; + // extra record_bias commented out because Chris believes it is not + // productive. Since we can record only 1 bias, we want to choose one + // that stands a chance of working and this one probably does not. + //record_bias( _phc._lrgs, lr1, lr2 ); + return false; // To hard to find all interferences + } + b2 = _phc._cfg.get_block_for_node(b2->pred(1)); + } + } + + // Union the two interference sets together into '_ulr' + uint reg_degree = _ulr.lrg_union( lr1, lr2, rm_size, _phc._ifg, rm ); + + if( reg_degree >= rm_size ) { + record_bias( _phc._ifg, lr1, lr2 ); + return false; + } + + // Now I need to compute all the interferences between dst_copy and + // src_copy. I'm not willing visit the entire interference graph, so + // I limit my search to things in dst_copy's block or in a straight + // line of previous blocks. I give up at merge points or when I get + // more interferences than my degree. I can stop when I find src_copy. + if( dst_copy != src_copy ) { + reg_degree = compute_separating_interferences(dst_copy, src_copy, b, bindex, rm, rm_size, reg_degree, lr1, lr2 ); + if( reg_degree == max_juint ) { + record_bias( _phc._ifg, lr1, lr2 ); + return false; + } + } // End of if dst_copy & src_copy are different + + + // ---- THE COMBINED LRG IS COLORABLE ---- + + // YEAH - Now coalesce this copy away + assert( lrgs(lr1).num_regs() == lrgs(lr2).num_regs(), "" ); + + IndexSet *n_lr1 = _phc._ifg->neighbors(lr1); + IndexSet *n_lr2 = _phc._ifg->neighbors(lr2); + + // Update the interference graph + update_ifg(lr1, lr2, n_lr1, n_lr2); + + _ulr.remove(lr1); + + // Uncomment the following code to trace Coalescing in great detail. + // + //if (false) { + // tty->cr(); + // tty->print_cr("#######################################"); + // tty->print_cr("union %d and %d", lr1, lr2); + // n_lr1->dump(); + // n_lr2->dump(); + // tty->print_cr("resulting set is"); + // _ulr.dump(); + //} + + // Replace n_lr1 with the new combined live range. _ulr will use + // n_lr1's old memory on the next iteration. n_lr2 is cleared to + // send its internal memory to the free list. + _ulr.swap(n_lr1); + _ulr.clear(); + n_lr2->clear(); + + lrgs(lr1).set_degree( _phc._ifg->effective_degree(lr1) ); + lrgs(lr2).set_degree( 0 ); + + // Join live ranges. Merge larger into smaller. Union lr2 into lr1 in the + // union-find tree + union_helper( lr1_node, lr2_node, lr1, lr2, src_def, dst_copy, src_copy, b, bindex ); + // Combine register restrictions + lrgs(lr1).set_mask(rm); + lrgs(lr1).compute_set_mask_size(); + lrgs(lr1)._cost += lrgs(lr2)._cost; + lrgs(lr1)._area += lrgs(lr2)._area; + + // While its uncommon to successfully coalesce live ranges that started out + // being not-lo-degree, it can happen. In any case the combined coalesced + // live range better Simplify nicely. + lrgs(lr1)._was_lo = 1; + + // kinda expensive to do all the time + //tty->print_cr("warning: slow verify happening"); + //_phc._ifg->verify( &_phc ); + return true; +} + +// Conservative (but pessimistic) copy coalescing of a single block +void PhaseConservativeCoalesce::coalesce( Block *b ) { + // Bail out on infrequent blocks + if (_phc._cfg.is_uncommon(b)) { + return; + } + // Check this block for copies. + for( uint i = 1; iend_idx(); i++ ) { + // Check for actual copies on inputs. Coalesce a copy into its + // input if use and copy's input are compatible. + Node *copy1 = b->get_node(i); + uint idx1 = copy1->is_Copy(); + if( !idx1 ) continue; // Not a copy + + if( copy_copy(copy1,copy1,b,i) ) { + i--; // Retry, same location in block + PhaseChaitin::_conserv_coalesce++; // Collect stats on success + continue; + } + } +}