diff -r 000000000000 -r f90c822e73f8 src/share/vm/memory/space.hpp --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/share/vm/memory/space.hpp Wed Apr 27 01:25:04 2016 +0800 @@ -0,0 +1,1122 @@ +/* + * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved. + * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. + * + * This code is free software; you can redistribute it and/or modify it + * under the terms of the GNU General Public License version 2 only, as + * published by the Free Software Foundation. + * + * This code is distributed in the hope that it will be useful, but WITHOUT + * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or + * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License + * version 2 for more details (a copy is included in the LICENSE file that + * accompanied this code). + * + * You should have received a copy of the GNU General Public License version + * 2 along with this work; if not, write to the Free Software Foundation, + * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. + * + * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA + * or visit www.oracle.com if you need additional information or have any + * questions. + * + */ + +#ifndef SHARE_VM_MEMORY_SPACE_HPP +#define SHARE_VM_MEMORY_SPACE_HPP + +#include "memory/allocation.hpp" +#include "memory/blockOffsetTable.hpp" +#include "memory/cardTableModRefBS.hpp" +#include "memory/iterator.hpp" +#include "memory/memRegion.hpp" +#include "memory/watermark.hpp" +#include "oops/markOop.hpp" +#include "runtime/mutexLocker.hpp" +#include "runtime/prefetch.hpp" +#include "utilities/macros.hpp" +#include "utilities/workgroup.hpp" +#ifdef TARGET_OS_FAMILY_linux +# include "os_linux.inline.hpp" +#endif +#ifdef TARGET_OS_FAMILY_solaris +# include "os_solaris.inline.hpp" +#endif +#ifdef TARGET_OS_FAMILY_windows +# include "os_windows.inline.hpp" +#endif +#ifdef TARGET_OS_FAMILY_aix +# include "os_aix.inline.hpp" +#endif +#ifdef TARGET_OS_FAMILY_bsd +# include "os_bsd.inline.hpp" +#endif + +// A space is an abstraction for the "storage units" backing +// up the generation abstraction. It includes specific +// implementations for keeping track of free and used space, +// for iterating over objects and free blocks, etc. + +// Here's the Space hierarchy: +// +// - Space -- an asbtract base class describing a heap area +// - CompactibleSpace -- a space supporting compaction +// - CompactibleFreeListSpace -- (used for CMS generation) +// - ContiguousSpace -- a compactible space in which all free space +// is contiguous +// - EdenSpace -- contiguous space used as nursery +// - ConcEdenSpace -- contiguous space with a 'soft end safe' allocation +// - OffsetTableContigSpace -- contiguous space with a block offset array +// that allows "fast" block_start calls +// - TenuredSpace -- (used for TenuredGeneration) + +// Forward decls. +class Space; +class BlockOffsetArray; +class BlockOffsetArrayContigSpace; +class Generation; +class CompactibleSpace; +class BlockOffsetTable; +class GenRemSet; +class CardTableRS; +class DirtyCardToOopClosure; + +// An oop closure that is circumscribed by a filtering memory region. +class SpaceMemRegionOopsIterClosure: public ExtendedOopClosure { + private: + ExtendedOopClosure* _cl; + MemRegion _mr; + protected: + template void do_oop_work(T* p) { + if (_mr.contains(p)) { + _cl->do_oop(p); + } + } + public: + SpaceMemRegionOopsIterClosure(ExtendedOopClosure* cl, MemRegion mr): + _cl(cl), _mr(mr) {} + virtual void do_oop(oop* p); + virtual void do_oop(narrowOop* p); + virtual bool do_metadata() { + // _cl is of type ExtendedOopClosure instead of OopClosure, so that we can check this. + assert(!_cl->do_metadata(), "I've checked all call paths, this shouldn't happen."); + return false; + } + virtual void do_klass(Klass* k) { ShouldNotReachHere(); } + virtual void do_class_loader_data(ClassLoaderData* cld) { ShouldNotReachHere(); } +}; + +// A Space describes a heap area. Class Space is an abstract +// base class. +// +// Space supports allocation, size computation and GC support is provided. +// +// Invariant: bottom() and end() are on page_size boundaries and +// bottom() <= top() <= end() +// top() is inclusive and end() is exclusive. + +class Space: public CHeapObj { + friend class VMStructs; + protected: + HeapWord* _bottom; + HeapWord* _end; + + // Used in support of save_marks() + HeapWord* _saved_mark_word; + + MemRegionClosure* _preconsumptionDirtyCardClosure; + + // A sequential tasks done structure. This supports + // parallel GC, where we have threads dynamically + // claiming sub-tasks from a larger parallel task. + SequentialSubTasksDone _par_seq_tasks; + + Space(): + _bottom(NULL), _end(NULL), _preconsumptionDirtyCardClosure(NULL) { } + + public: + // Accessors + HeapWord* bottom() const { return _bottom; } + HeapWord* end() const { return _end; } + virtual void set_bottom(HeapWord* value) { _bottom = value; } + virtual void set_end(HeapWord* value) { _end = value; } + + virtual HeapWord* saved_mark_word() const { return _saved_mark_word; } + + void set_saved_mark_word(HeapWord* p) { _saved_mark_word = p; } + + MemRegionClosure* preconsumptionDirtyCardClosure() const { + return _preconsumptionDirtyCardClosure; + } + void setPreconsumptionDirtyCardClosure(MemRegionClosure* cl) { + _preconsumptionDirtyCardClosure = cl; + } + + // Returns a subregion of the space containing all the objects in + // the space. + virtual MemRegion used_region() const { return MemRegion(bottom(), end()); } + + // Returns a region that is guaranteed to contain (at least) all objects + // allocated at the time of the last call to "save_marks". If the space + // initializes its DirtyCardToOopClosure's specifying the "contig" option + // (that is, if the space is contiguous), then this region must contain only + // such objects: the memregion will be from the bottom of the region to the + // saved mark. Otherwise, the "obj_allocated_since_save_marks" method of + // the space must distiguish between objects in the region allocated before + // and after the call to save marks. + virtual MemRegion used_region_at_save_marks() const { + return MemRegion(bottom(), saved_mark_word()); + } + + // Initialization. + // "initialize" should be called once on a space, before it is used for + // any purpose. The "mr" arguments gives the bounds of the space, and + // the "clear_space" argument should be true unless the memory in "mr" is + // known to be zeroed. + virtual void initialize(MemRegion mr, bool clear_space, bool mangle_space); + + // The "clear" method must be called on a region that may have + // had allocation performed in it, but is now to be considered empty. + virtual void clear(bool mangle_space); + + // For detecting GC bugs. Should only be called at GC boundaries, since + // some unused space may be used as scratch space during GC's. + // Default implementation does nothing. We also call this when expanding + // a space to satisfy an allocation request. See bug #4668531 + virtual void mangle_unused_area() {} + virtual void mangle_unused_area_complete() {} + virtual void mangle_region(MemRegion mr) {} + + // Testers + bool is_empty() const { return used() == 0; } + bool not_empty() const { return used() > 0; } + + // Returns true iff the given the space contains the + // given address as part of an allocated object. For + // ceratin kinds of spaces, this might be a potentially + // expensive operation. To prevent performance problems + // on account of its inadvertent use in product jvm's, + // we restrict its use to assertion checks only. + virtual bool is_in(const void* p) const = 0; + + // Returns true iff the given reserved memory of the space contains the + // given address. + bool is_in_reserved(const void* p) const { return _bottom <= p && p < _end; } + + // Returns true iff the given block is not allocated. + virtual bool is_free_block(const HeapWord* p) const = 0; + + // Test whether p is double-aligned + static bool is_aligned(void* p) { + return ((intptr_t)p & (sizeof(double)-1)) == 0; + } + + // Size computations. Sizes are in bytes. + size_t capacity() const { return byte_size(bottom(), end()); } + virtual size_t used() const = 0; + virtual size_t free() const = 0; + + // Iterate over all the ref-containing fields of all objects in the + // space, calling "cl.do_oop" on each. Fields in objects allocated by + // applications of the closure are not included in the iteration. + virtual void oop_iterate(ExtendedOopClosure* cl); + + // Same as above, restricted to the intersection of a memory region and + // the space. Fields in objects allocated by applications of the closure + // are not included in the iteration. + virtual void oop_iterate(MemRegion mr, ExtendedOopClosure* cl) = 0; + + // Iterate over all objects in the space, calling "cl.do_object" on + // each. Objects allocated by applications of the closure are not + // included in the iteration. + virtual void object_iterate(ObjectClosure* blk) = 0; + // Similar to object_iterate() except only iterates over + // objects whose internal references point to objects in the space. + virtual void safe_object_iterate(ObjectClosure* blk) = 0; + + // Iterate over all objects that intersect with mr, calling "cl->do_object" + // on each. There is an exception to this: if this closure has already + // been invoked on an object, it may skip such objects in some cases. This is + // Most likely to happen in an "upwards" (ascending address) iteration of + // MemRegions. + virtual void object_iterate_mem(MemRegion mr, UpwardsObjectClosure* cl); + + // Iterate over as many initialized objects in the space as possible, + // calling "cl.do_object_careful" on each. Return NULL if all objects + // in the space (at the start of the iteration) were iterated over. + // Return an address indicating the extent of the iteration in the + // event that the iteration had to return because of finding an + // uninitialized object in the space, or if the closure "cl" + // signalled early termination. + virtual HeapWord* object_iterate_careful(ObjectClosureCareful* cl); + virtual HeapWord* object_iterate_careful_m(MemRegion mr, + ObjectClosureCareful* cl); + + // Create and return a new dirty card to oop closure. Can be + // overriden to return the appropriate type of closure + // depending on the type of space in which the closure will + // operate. ResourceArea allocated. + virtual DirtyCardToOopClosure* new_dcto_cl(ExtendedOopClosure* cl, + CardTableModRefBS::PrecisionStyle precision, + HeapWord* boundary = NULL); + + // If "p" is in the space, returns the address of the start of the + // "block" that contains "p". We say "block" instead of "object" since + // some heaps may not pack objects densely; a chunk may either be an + // object or a non-object. If "p" is not in the space, return NULL. + virtual HeapWord* block_start_const(const void* p) const = 0; + + // The non-const version may have benevolent side effects on the data + // structure supporting these calls, possibly speeding up future calls. + // The default implementation, however, is simply to call the const + // version. + inline virtual HeapWord* block_start(const void* p); + + // Requires "addr" to be the start of a chunk, and returns its size. + // "addr + size" is required to be the start of a new chunk, or the end + // of the active area of the heap. + virtual size_t block_size(const HeapWord* addr) const = 0; + + // Requires "addr" to be the start of a block, and returns "TRUE" iff + // the block is an object. + virtual bool block_is_obj(const HeapWord* addr) const = 0; + + // Requires "addr" to be the start of a block, and returns "TRUE" iff + // the block is an object and the object is alive. + virtual bool obj_is_alive(const HeapWord* addr) const; + + // Allocation (return NULL if full). Assumes the caller has established + // mutually exclusive access to the space. + virtual HeapWord* allocate(size_t word_size) = 0; + + // Allocation (return NULL if full). Enforces mutual exclusion internally. + virtual HeapWord* par_allocate(size_t word_size) = 0; + + // Returns true if this object has been allocated since a + // generation's "save_marks" call. + virtual bool obj_allocated_since_save_marks(const oop obj) const = 0; + + // Mark-sweep-compact support: all spaces can update pointers to objects + // moving as a part of compaction. + virtual void adjust_pointers(); + + // PrintHeapAtGC support + virtual void print() const; + virtual void print_on(outputStream* st) const; + virtual void print_short() const; + virtual void print_short_on(outputStream* st) const; + + + // Accessor for parallel sequential tasks. + SequentialSubTasksDone* par_seq_tasks() { return &_par_seq_tasks; } + + // IF "this" is a ContiguousSpace, return it, else return NULL. + virtual ContiguousSpace* toContiguousSpace() { + return NULL; + } + + // Debugging + virtual void verify() const = 0; +}; + +// A MemRegionClosure (ResourceObj) whose "do_MemRegion" function applies an +// OopClosure to (the addresses of) all the ref-containing fields that could +// be modified by virtue of the given MemRegion being dirty. (Note that +// because of the imprecise nature of the write barrier, this may iterate +// over oops beyond the region.) +// This base type for dirty card to oop closures handles memory regions +// in non-contiguous spaces with no boundaries, and should be sub-classed +// to support other space types. See ContiguousDCTOC for a sub-class +// that works with ContiguousSpaces. + +class DirtyCardToOopClosure: public MemRegionClosureRO { +protected: + ExtendedOopClosure* _cl; + Space* _sp; + CardTableModRefBS::PrecisionStyle _precision; + HeapWord* _boundary; // If non-NULL, process only non-NULL oops + // pointing below boundary. + HeapWord* _min_done; // ObjHeadPreciseArray precision requires + // a downwards traversal; this is the + // lowest location already done (or, + // alternatively, the lowest address that + // shouldn't be done again. NULL means infinity.) + NOT_PRODUCT(HeapWord* _last_bottom;) + NOT_PRODUCT(HeapWord* _last_explicit_min_done;) + + // Get the actual top of the area on which the closure will + // operate, given where the top is assumed to be (the end of the + // memory region passed to do_MemRegion) and where the object + // at the top is assumed to start. For example, an object may + // start at the top but actually extend past the assumed top, + // in which case the top becomes the end of the object. + virtual HeapWord* get_actual_top(HeapWord* top, HeapWord* top_obj); + + // Walk the given memory region from bottom to (actual) top + // looking for objects and applying the oop closure (_cl) to + // them. The base implementation of this treats the area as + // blocks, where a block may or may not be an object. Sub- + // classes should override this to provide more accurate + // or possibly more efficient walking. + virtual void walk_mem_region(MemRegion mr, HeapWord* bottom, HeapWord* top); + +public: + DirtyCardToOopClosure(Space* sp, ExtendedOopClosure* cl, + CardTableModRefBS::PrecisionStyle precision, + HeapWord* boundary) : + _sp(sp), _cl(cl), _precision(precision), _boundary(boundary), + _min_done(NULL) { + NOT_PRODUCT(_last_bottom = NULL); + NOT_PRODUCT(_last_explicit_min_done = NULL); + } + + void do_MemRegion(MemRegion mr); + + void set_min_done(HeapWord* min_done) { + _min_done = min_done; + NOT_PRODUCT(_last_explicit_min_done = _min_done); + } +#ifndef PRODUCT + void set_last_bottom(HeapWord* last_bottom) { + _last_bottom = last_bottom; + } +#endif +}; + +// A structure to represent a point at which objects are being copied +// during compaction. +class CompactPoint : public StackObj { +public: + Generation* gen; + CompactibleSpace* space; + HeapWord* threshold; + CompactPoint(Generation* _gen, CompactibleSpace* _space, + HeapWord* _threshold) : + gen(_gen), space(_space), threshold(_threshold) {} +}; + + +// A space that supports compaction operations. This is usually, but not +// necessarily, a space that is normally contiguous. But, for example, a +// free-list-based space whose normal collection is a mark-sweep without +// compaction could still support compaction in full GC's. + +class CompactibleSpace: public Space { + friend class VMStructs; + friend class CompactibleFreeListSpace; +private: + HeapWord* _compaction_top; + CompactibleSpace* _next_compaction_space; + +public: + CompactibleSpace() : + _compaction_top(NULL), _next_compaction_space(NULL) {} + + virtual void initialize(MemRegion mr, bool clear_space, bool mangle_space); + virtual void clear(bool mangle_space); + + // Used temporarily during a compaction phase to hold the value + // top should have when compaction is complete. + HeapWord* compaction_top() const { return _compaction_top; } + + void set_compaction_top(HeapWord* value) { + assert(value == NULL || (value >= bottom() && value <= end()), + "should point inside space"); + _compaction_top = value; + } + + // Perform operations on the space needed after a compaction + // has been performed. + virtual void reset_after_compaction() {} + + // Returns the next space (in the current generation) to be compacted in + // the global compaction order. Also is used to select the next + // space into which to compact. + + virtual CompactibleSpace* next_compaction_space() const { + return _next_compaction_space; + } + + void set_next_compaction_space(CompactibleSpace* csp) { + _next_compaction_space = csp; + } + + // MarkSweep support phase2 + + // Start the process of compaction of the current space: compute + // post-compaction addresses, and insert forwarding pointers. The fields + // "cp->gen" and "cp->compaction_space" are the generation and space into + // which we are currently compacting. This call updates "cp" as necessary, + // and leaves the "compaction_top" of the final value of + // "cp->compaction_space" up-to-date. Offset tables may be updated in + // this phase as if the final copy had occurred; if so, "cp->threshold" + // indicates when the next such action should be taken. + virtual void prepare_for_compaction(CompactPoint* cp); + // MarkSweep support phase3 + virtual void adjust_pointers(); + // MarkSweep support phase4 + virtual void compact(); + + // The maximum percentage of objects that can be dead in the compacted + // live part of a compacted space ("deadwood" support.) + virtual size_t allowed_dead_ratio() const { return 0; }; + + // Some contiguous spaces may maintain some data structures that should + // be updated whenever an allocation crosses a boundary. This function + // returns the first such boundary. + // (The default implementation returns the end of the space, so the + // boundary is never crossed.) + virtual HeapWord* initialize_threshold() { return end(); } + + // "q" is an object of the given "size" that should be forwarded; + // "cp" names the generation ("gen") and containing "this" (which must + // also equal "cp->space"). "compact_top" is where in "this" the + // next object should be forwarded to. If there is room in "this" for + // the object, insert an appropriate forwarding pointer in "q". + // If not, go to the next compaction space (there must + // be one, since compaction must succeed -- we go to the first space of + // the previous generation if necessary, updating "cp"), reset compact_top + // and then forward. In either case, returns the new value of "compact_top". + // If the forwarding crosses "cp->threshold", invokes the "cross_threhold" + // function of the then-current compaction space, and updates "cp->threshold + // accordingly". + virtual HeapWord* forward(oop q, size_t size, CompactPoint* cp, + HeapWord* compact_top); + + // Return a size with adjusments as required of the space. + virtual size_t adjust_object_size_v(size_t size) const { return size; } + +protected: + // Used during compaction. + HeapWord* _first_dead; + HeapWord* _end_of_live; + + // Minimum size of a free block. + virtual size_t minimum_free_block_size() const = 0; + + // This the function is invoked when an allocation of an object covering + // "start" to "end occurs crosses the threshold; returns the next + // threshold. (The default implementation does nothing.) + virtual HeapWord* cross_threshold(HeapWord* start, HeapWord* the_end) { + return end(); + } + + // Requires "allowed_deadspace_words > 0", that "q" is the start of a + // free block of the given "word_len", and that "q", were it an object, + // would not move if forwared. If the size allows, fill the free + // block with an object, to prevent excessive compaction. Returns "true" + // iff the free region was made deadspace, and modifies + // "allowed_deadspace_words" to reflect the number of available deadspace + // words remaining after this operation. + bool insert_deadspace(size_t& allowed_deadspace_words, HeapWord* q, + size_t word_len); +}; + +#define SCAN_AND_FORWARD(cp,scan_limit,block_is_obj,block_size) { \ + /* Compute the new addresses for the live objects and store it in the mark \ + * Used by universe::mark_sweep_phase2() \ + */ \ + HeapWord* compact_top; /* This is where we are currently compacting to. */ \ + \ + /* We're sure to be here before any objects are compacted into this \ + * space, so this is a good time to initialize this: \ + */ \ + set_compaction_top(bottom()); \ + \ + if (cp->space == NULL) { \ + assert(cp->gen != NULL, "need a generation"); \ + assert(cp->threshold == NULL, "just checking"); \ + assert(cp->gen->first_compaction_space() == this, "just checking"); \ + cp->space = cp->gen->first_compaction_space(); \ + compact_top = cp->space->bottom(); \ + cp->space->set_compaction_top(compact_top); \ + cp->threshold = cp->space->initialize_threshold(); \ + } else { \ + compact_top = cp->space->compaction_top(); \ + } \ + \ + /* We allow some amount of garbage towards the bottom of the space, so \ + * we don't start compacting before there is a significant gain to be made.\ + * Occasionally, we want to ensure a full compaction, which is determined \ + * by the MarkSweepAlwaysCompactCount parameter. \ + */ \ + uint invocations = MarkSweep::total_invocations(); \ + bool skip_dead = ((invocations % MarkSweepAlwaysCompactCount) != 0); \ + \ + size_t allowed_deadspace = 0; \ + if (skip_dead) { \ + const size_t ratio = allowed_dead_ratio(); \ + allowed_deadspace = (capacity() * ratio / 100) / HeapWordSize; \ + } \ + \ + HeapWord* q = bottom(); \ + HeapWord* t = scan_limit(); \ + \ + HeapWord* end_of_live= q; /* One byte beyond the last byte of the last \ + live object. */ \ + HeapWord* first_dead = end();/* The first dead object. */ \ + LiveRange* liveRange = NULL; /* The current live range, recorded in the \ + first header of preceding free area. */ \ + _first_dead = first_dead; \ + \ + const intx interval = PrefetchScanIntervalInBytes; \ + \ + while (q < t) { \ + assert(!block_is_obj(q) || \ + oop(q)->mark()->is_marked() || oop(q)->mark()->is_unlocked() || \ + oop(q)->mark()->has_bias_pattern(), \ + "these are the only valid states during a mark sweep"); \ + if (block_is_obj(q) && oop(q)->is_gc_marked()) { \ + /* prefetch beyond q */ \ + Prefetch::write(q, interval); \ + size_t size = block_size(q); \ + compact_top = cp->space->forward(oop(q), size, cp, compact_top); \ + q += size; \ + end_of_live = q; \ + } else { \ + /* run over all the contiguous dead objects */ \ + HeapWord* end = q; \ + do { \ + /* prefetch beyond end */ \ + Prefetch::write(end, interval); \ + end += block_size(end); \ + } while (end < t && (!block_is_obj(end) || !oop(end)->is_gc_marked()));\ + \ + /* see if we might want to pretend this object is alive so that \ + * we don't have to compact quite as often. \ + */ \ + if (allowed_deadspace > 0 && q == compact_top) { \ + size_t sz = pointer_delta(end, q); \ + if (insert_deadspace(allowed_deadspace, q, sz)) { \ + compact_top = cp->space->forward(oop(q), sz, cp, compact_top); \ + q = end; \ + end_of_live = end; \ + continue; \ + } \ + } \ + \ + /* otherwise, it really is a free region. */ \ + \ + /* for the previous LiveRange, record the end of the live objects. */ \ + if (liveRange) { \ + liveRange->set_end(q); \ + } \ + \ + /* record the current LiveRange object. \ + * liveRange->start() is overlaid on the mark word. \ + */ \ + liveRange = (LiveRange*)q; \ + liveRange->set_start(end); \ + liveRange->set_end(end); \ + \ + /* see if this is the first dead region. */ \ + if (q < first_dead) { \ + first_dead = q; \ + } \ + \ + /* move on to the next object */ \ + q = end; \ + } \ + } \ + \ + assert(q == t, "just checking"); \ + if (liveRange != NULL) { \ + liveRange->set_end(q); \ + } \ + _end_of_live = end_of_live; \ + if (end_of_live < first_dead) { \ + first_dead = end_of_live; \ + } \ + _first_dead = first_dead; \ + \ + /* save the compaction_top of the compaction space. */ \ + cp->space->set_compaction_top(compact_top); \ +} + +#define SCAN_AND_ADJUST_POINTERS(adjust_obj_size) { \ + /* adjust all the interior pointers to point at the new locations of objects \ + * Used by MarkSweep::mark_sweep_phase3() */ \ + \ + HeapWord* q = bottom(); \ + HeapWord* t = _end_of_live; /* Established by "prepare_for_compaction". */ \ + \ + assert(_first_dead <= _end_of_live, "Stands to reason, no?"); \ + \ + if (q < t && _first_dead > q && \ + !oop(q)->is_gc_marked()) { \ + /* we have a chunk of the space which hasn't moved and we've \ + * reinitialized the mark word during the previous pass, so we can't \ + * use is_gc_marked for the traversal. */ \ + HeapWord* end = _first_dead; \ + \ + while (q < end) { \ + /* I originally tried to conjoin "block_start(q) == q" to the \ + * assertion below, but that doesn't work, because you can't \ + * accurately traverse previous objects to get to the current one \ + * after their pointers have been \ + * updated, until the actual compaction is done. dld, 4/00 */ \ + assert(block_is_obj(q), \ + "should be at block boundaries, and should be looking at objs"); \ + \ + /* point all the oops to the new location */ \ + size_t size = oop(q)->adjust_pointers(); \ + size = adjust_obj_size(size); \ + \ + q += size; \ + } \ + \ + if (_first_dead == t) { \ + q = t; \ + } else { \ + /* $$$ This is funky. Using this to read the previously written \ + * LiveRange. See also use below. */ \ + q = (HeapWord*)oop(_first_dead)->mark()->decode_pointer(); \ + } \ + } \ + \ + const intx interval = PrefetchScanIntervalInBytes; \ + \ + debug_only(HeapWord* prev_q = NULL); \ + while (q < t) { \ + /* prefetch beyond q */ \ + Prefetch::write(q, interval); \ + if (oop(q)->is_gc_marked()) { \ + /* q is alive */ \ + /* point all the oops to the new location */ \ + size_t size = oop(q)->adjust_pointers(); \ + size = adjust_obj_size(size); \ + debug_only(prev_q = q); \ + q += size; \ + } else { \ + /* q is not a live object, so its mark should point at the next \ + * live object */ \ + debug_only(prev_q = q); \ + q = (HeapWord*) oop(q)->mark()->decode_pointer(); \ + assert(q > prev_q, "we should be moving forward through memory"); \ + } \ + } \ + \ + assert(q == t, "just checking"); \ +} + +#define SCAN_AND_COMPACT(obj_size) { \ + /* Copy all live objects to their new location \ + * Used by MarkSweep::mark_sweep_phase4() */ \ + \ + HeapWord* q = bottom(); \ + HeapWord* const t = _end_of_live; \ + debug_only(HeapWord* prev_q = NULL); \ + \ + if (q < t && _first_dead > q && \ + !oop(q)->is_gc_marked()) { \ + debug_only( \ + /* we have a chunk of the space which hasn't moved and we've reinitialized \ + * the mark word during the previous pass, so we can't use is_gc_marked for \ + * the traversal. */ \ + HeapWord* const end = _first_dead; \ + \ + while (q < end) { \ + size_t size = obj_size(q); \ + assert(!oop(q)->is_gc_marked(), \ + "should be unmarked (special dense prefix handling)"); \ + debug_only(prev_q = q); \ + q += size; \ + } \ + ) /* debug_only */ \ + \ + if (_first_dead == t) { \ + q = t; \ + } else { \ + /* $$$ Funky */ \ + q = (HeapWord*) oop(_first_dead)->mark()->decode_pointer(); \ + } \ + } \ + \ + const intx scan_interval = PrefetchScanIntervalInBytes; \ + const intx copy_interval = PrefetchCopyIntervalInBytes; \ + while (q < t) { \ + if (!oop(q)->is_gc_marked()) { \ + /* mark is pointer to next marked oop */ \ + debug_only(prev_q = q); \ + q = (HeapWord*) oop(q)->mark()->decode_pointer(); \ + assert(q > prev_q, "we should be moving forward through memory"); \ + } else { \ + /* prefetch beyond q */ \ + Prefetch::read(q, scan_interval); \ + \ + /* size and destination */ \ + size_t size = obj_size(q); \ + HeapWord* compaction_top = (HeapWord*)oop(q)->forwardee(); \ + \ + /* prefetch beyond compaction_top */ \ + Prefetch::write(compaction_top, copy_interval); \ + \ + /* copy object and reinit its mark */ \ + assert(q != compaction_top, "everything in this pass should be moving"); \ + Copy::aligned_conjoint_words(q, compaction_top, size); \ + oop(compaction_top)->init_mark(); \ + assert(oop(compaction_top)->klass() != NULL, "should have a class"); \ + \ + debug_only(prev_q = q); \ + q += size; \ + } \ + } \ + \ + /* Let's remember if we were empty before we did the compaction. */ \ + bool was_empty = used_region().is_empty(); \ + /* Reset space after compaction is complete */ \ + reset_after_compaction(); \ + /* We do this clear, below, since it has overloaded meanings for some */ \ + /* space subtypes. For example, OffsetTableContigSpace's that were */ \ + /* compacted into will have had their offset table thresholds updated */ \ + /* continuously, but those that weren't need to have their thresholds */ \ + /* re-initialized. Also mangles unused area for debugging. */ \ + if (used_region().is_empty()) { \ + if (!was_empty) clear(SpaceDecorator::Mangle); \ + } else { \ + if (ZapUnusedHeapArea) mangle_unused_area(); \ + } \ +} + +class GenSpaceMangler; + +// A space in which the free area is contiguous. It therefore supports +// faster allocation, and compaction. +class ContiguousSpace: public CompactibleSpace { + friend class OneContigSpaceCardGeneration; + friend class VMStructs; + protected: + HeapWord* _top; + HeapWord* _concurrent_iteration_safe_limit; + // A helper for mangling the unused area of the space in debug builds. + GenSpaceMangler* _mangler; + + GenSpaceMangler* mangler() { return _mangler; } + + // Allocation helpers (return NULL if full). + inline HeapWord* allocate_impl(size_t word_size, HeapWord* end_value); + inline HeapWord* par_allocate_impl(size_t word_size, HeapWord* end_value); + + public: + ContiguousSpace(); + ~ContiguousSpace(); + + virtual void initialize(MemRegion mr, bool clear_space, bool mangle_space); + virtual void clear(bool mangle_space); + + // Accessors + HeapWord* top() const { return _top; } + void set_top(HeapWord* value) { _top = value; } + + virtual void set_saved_mark() { _saved_mark_word = top(); } + void reset_saved_mark() { _saved_mark_word = bottom(); } + + WaterMark bottom_mark() { return WaterMark(this, bottom()); } + WaterMark top_mark() { return WaterMark(this, top()); } + WaterMark saved_mark() { return WaterMark(this, saved_mark_word()); } + bool saved_mark_at_top() const { return saved_mark_word() == top(); } + + // In debug mode mangle (write it with a particular bit + // pattern) the unused part of a space. + + // Used to save the an address in a space for later use during mangling. + void set_top_for_allocations(HeapWord* v) PRODUCT_RETURN; + // Used to save the space's current top for later use during mangling. + void set_top_for_allocations() PRODUCT_RETURN; + + // Mangle regions in the space from the current top up to the + // previously mangled part of the space. + void mangle_unused_area() PRODUCT_RETURN; + // Mangle [top, end) + void mangle_unused_area_complete() PRODUCT_RETURN; + // Mangle the given MemRegion. + void mangle_region(MemRegion mr) PRODUCT_RETURN; + + // Do some sparse checking on the area that should have been mangled. + void check_mangled_unused_area(HeapWord* limit) PRODUCT_RETURN; + // Check the complete area that should have been mangled. + // This code may be NULL depending on the macro DEBUG_MANGLING. + void check_mangled_unused_area_complete() PRODUCT_RETURN; + + // Size computations: sizes in bytes. + size_t capacity() const { return byte_size(bottom(), end()); } + size_t used() const { return byte_size(bottom(), top()); } + size_t free() const { return byte_size(top(), end()); } + + // Override from space. + bool is_in(const void* p) const; + + virtual bool is_free_block(const HeapWord* p) const; + + // In a contiguous space we have a more obvious bound on what parts + // contain objects. + MemRegion used_region() const { return MemRegion(bottom(), top()); } + + MemRegion used_region_at_save_marks() const { + return MemRegion(bottom(), saved_mark_word()); + } + + // Allocation (return NULL if full) + virtual HeapWord* allocate(size_t word_size); + virtual HeapWord* par_allocate(size_t word_size); + + virtual bool obj_allocated_since_save_marks(const oop obj) const { + return (HeapWord*)obj >= saved_mark_word(); + } + + // Iteration + void oop_iterate(ExtendedOopClosure* cl); + void oop_iterate(MemRegion mr, ExtendedOopClosure* cl); + void object_iterate(ObjectClosure* blk); + // For contiguous spaces this method will iterate safely over objects + // in the space (i.e., between bottom and top) when at a safepoint. + void safe_object_iterate(ObjectClosure* blk); + void object_iterate_mem(MemRegion mr, UpwardsObjectClosure* cl); + // iterates on objects up to the safe limit + HeapWord* object_iterate_careful(ObjectClosureCareful* cl); + HeapWord* concurrent_iteration_safe_limit() { + assert(_concurrent_iteration_safe_limit <= top(), + "_concurrent_iteration_safe_limit update missed"); + return _concurrent_iteration_safe_limit; + } + // changes the safe limit, all objects from bottom() to the new + // limit should be properly initialized + void set_concurrent_iteration_safe_limit(HeapWord* new_limit) { + assert(new_limit <= top(), "uninitialized objects in the safe range"); + _concurrent_iteration_safe_limit = new_limit; + } + + +#if INCLUDE_ALL_GCS + // In support of parallel oop_iterate. + #define ContigSpace_PAR_OOP_ITERATE_DECL(OopClosureType, nv_suffix) \ + void par_oop_iterate(MemRegion mr, OopClosureType* blk); + + ALL_PAR_OOP_ITERATE_CLOSURES(ContigSpace_PAR_OOP_ITERATE_DECL) + #undef ContigSpace_PAR_OOP_ITERATE_DECL +#endif // INCLUDE_ALL_GCS + + // Compaction support + virtual void reset_after_compaction() { + assert(compaction_top() >= bottom() && compaction_top() <= end(), "should point inside space"); + set_top(compaction_top()); + // set new iteration safe limit + set_concurrent_iteration_safe_limit(compaction_top()); + } + virtual size_t minimum_free_block_size() const { return 0; } + + // Override. + DirtyCardToOopClosure* new_dcto_cl(ExtendedOopClosure* cl, + CardTableModRefBS::PrecisionStyle precision, + HeapWord* boundary = NULL); + + // Apply "blk->do_oop" to the addresses of all reference fields in objects + // starting with the _saved_mark_word, which was noted during a generation's + // save_marks and is required to denote the head of an object. + // Fields in objects allocated by applications of the closure + // *are* included in the iteration. + // Updates _saved_mark_word to point to just after the last object + // iterated over. +#define ContigSpace_OOP_SINCE_SAVE_MARKS_DECL(OopClosureType, nv_suffix) \ + void oop_since_save_marks_iterate##nv_suffix(OopClosureType* blk); + + ALL_SINCE_SAVE_MARKS_CLOSURES(ContigSpace_OOP_SINCE_SAVE_MARKS_DECL) +#undef ContigSpace_OOP_SINCE_SAVE_MARKS_DECL + + // Same as object_iterate, but starting from "mark", which is required + // to denote the start of an object. Objects allocated by + // applications of the closure *are* included in the iteration. + virtual void object_iterate_from(WaterMark mark, ObjectClosure* blk); + + // Very inefficient implementation. + virtual HeapWord* block_start_const(const void* p) const; + size_t block_size(const HeapWord* p) const; + // If a block is in the allocated area, it is an object. + bool block_is_obj(const HeapWord* p) const { return p < top(); } + + // Addresses for inlined allocation + HeapWord** top_addr() { return &_top; } + HeapWord** end_addr() { return &_end; } + + // Overrides for more efficient compaction support. + void prepare_for_compaction(CompactPoint* cp); + + // PrintHeapAtGC support. + virtual void print_on(outputStream* st) const; + + // Checked dynamic downcasts. + virtual ContiguousSpace* toContiguousSpace() { + return this; + } + + // Debugging + virtual void verify() const; + + // Used to increase collection frequency. "factor" of 0 means entire + // space. + void allocate_temporary_filler(int factor); + +}; + + +// A dirty card to oop closure that does filtering. +// It knows how to filter out objects that are outside of the _boundary. +class Filtering_DCTOC : public DirtyCardToOopClosure { +protected: + // Override. + void walk_mem_region(MemRegion mr, + HeapWord* bottom, HeapWord* top); + + // Walk the given memory region, from bottom to top, applying + // the given oop closure to (possibly) all objects found. The + // given oop closure may or may not be the same as the oop + // closure with which this closure was created, as it may + // be a filtering closure which makes use of the _boundary. + // We offer two signatures, so the FilteringClosure static type is + // apparent. + virtual void walk_mem_region_with_cl(MemRegion mr, + HeapWord* bottom, HeapWord* top, + ExtendedOopClosure* cl) = 0; + virtual void walk_mem_region_with_cl(MemRegion mr, + HeapWord* bottom, HeapWord* top, + FilteringClosure* cl) = 0; + +public: + Filtering_DCTOC(Space* sp, ExtendedOopClosure* cl, + CardTableModRefBS::PrecisionStyle precision, + HeapWord* boundary) : + DirtyCardToOopClosure(sp, cl, precision, boundary) {} +}; + +// A dirty card to oop closure for contiguous spaces +// (ContiguousSpace and sub-classes). +// It is a FilteringClosure, as defined above, and it knows: +// +// 1. That the actual top of any area in a memory region +// contained by the space is bounded by the end of the contiguous +// region of the space. +// 2. That the space is really made up of objects and not just +// blocks. + +class ContiguousSpaceDCTOC : public Filtering_DCTOC { +protected: + // Overrides. + HeapWord* get_actual_top(HeapWord* top, HeapWord* top_obj); + + virtual void walk_mem_region_with_cl(MemRegion mr, + HeapWord* bottom, HeapWord* top, + ExtendedOopClosure* cl); + virtual void walk_mem_region_with_cl(MemRegion mr, + HeapWord* bottom, HeapWord* top, + FilteringClosure* cl); + +public: + ContiguousSpaceDCTOC(ContiguousSpace* sp, ExtendedOopClosure* cl, + CardTableModRefBS::PrecisionStyle precision, + HeapWord* boundary) : + Filtering_DCTOC(sp, cl, precision, boundary) + {} +}; + + +// Class EdenSpace describes eden-space in new generation. + +class DefNewGeneration; + +class EdenSpace : public ContiguousSpace { + friend class VMStructs; + private: + DefNewGeneration* _gen; + + // _soft_end is used as a soft limit on allocation. As soft limits are + // reached, the slow-path allocation code can invoke other actions and then + // adjust _soft_end up to a new soft limit or to end(). + HeapWord* _soft_end; + + public: + EdenSpace(DefNewGeneration* gen) : + _gen(gen), _soft_end(NULL) {} + + // Get/set just the 'soft' limit. + HeapWord* soft_end() { return _soft_end; } + HeapWord** soft_end_addr() { return &_soft_end; } + void set_soft_end(HeapWord* value) { _soft_end = value; } + + // Override. + void clear(bool mangle_space); + + // Set both the 'hard' and 'soft' limits (_end and _soft_end). + void set_end(HeapWord* value) { + set_soft_end(value); + ContiguousSpace::set_end(value); + } + + // Allocation (return NULL if full) + HeapWord* allocate(size_t word_size); + HeapWord* par_allocate(size_t word_size); +}; + +// Class ConcEdenSpace extends EdenSpace for the sake of safe +// allocation while soft-end is being modified concurrently + +class ConcEdenSpace : public EdenSpace { + public: + ConcEdenSpace(DefNewGeneration* gen) : EdenSpace(gen) { } + + // Allocation (return NULL if full) + HeapWord* par_allocate(size_t word_size); +}; + + +// A ContigSpace that Supports an efficient "block_start" operation via +// a BlockOffsetArray (whose BlockOffsetSharedArray may be shared with +// other spaces.) This is the abstract base class for old generation +// (tenured) spaces. + +class OffsetTableContigSpace: public ContiguousSpace { + friend class VMStructs; + protected: + BlockOffsetArrayContigSpace _offsets; + Mutex _par_alloc_lock; + + public: + // Constructor + OffsetTableContigSpace(BlockOffsetSharedArray* sharedOffsetArray, + MemRegion mr); + + void set_bottom(HeapWord* value); + void set_end(HeapWord* value); + + void clear(bool mangle_space); + + inline HeapWord* block_start_const(const void* p) const; + + // Add offset table update. + virtual inline HeapWord* allocate(size_t word_size); + inline HeapWord* par_allocate(size_t word_size); + + // MarkSweep support phase3 + virtual HeapWord* initialize_threshold(); + virtual HeapWord* cross_threshold(HeapWord* start, HeapWord* end); + + virtual void print_on(outputStream* st) const; + + // Debugging + void verify() const; +}; + + +// Class TenuredSpace is used by TenuredGeneration + +class TenuredSpace: public OffsetTableContigSpace { + friend class VMStructs; + protected: + // Mark sweep support + size_t allowed_dead_ratio() const; + public: + // Constructor + TenuredSpace(BlockOffsetSharedArray* sharedOffsetArray, + MemRegion mr) : + OffsetTableContigSpace(sharedOffsetArray, mr) {} +}; +#endif // SHARE_VM_MEMORY_SPACE_HPP