diff -r 000000000000 -r a61af66fc99e src/share/vm/c1/c1_LIRGenerator.cpp --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/share/vm/c1/c1_LIRGenerator.cpp Sat Dec 01 00:00:00 2007 +0000 @@ -0,0 +1,2534 @@ +/* + * Copyright 2005-2007 Sun Microsystems, Inc. All Rights Reserved. + * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. + * + * This code is free software; you can redistribute it and/or modify it + * under the terms of the GNU General Public License version 2 only, as + * published by the Free Software Foundation. + * + * This code is distributed in the hope that it will be useful, but WITHOUT + * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or + * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License + * version 2 for more details (a copy is included in the LICENSE file that + * accompanied this code). + * + * You should have received a copy of the GNU General Public License version + * 2 along with this work; if not, write to the Free Software Foundation, + * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. + * + * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, + * CA 95054 USA or visit www.sun.com if you need additional information or + * have any questions. + * + */ + +# include "incls/_precompiled.incl" +# include "incls/_c1_LIRGenerator.cpp.incl" + +#ifdef ASSERT +#define __ gen()->lir(__FILE__, __LINE__)-> +#else +#define __ gen()->lir()-> +#endif + + +void PhiResolverState::reset(int max_vregs) { + // Initialize array sizes + _virtual_operands.at_put_grow(max_vregs - 1, NULL, NULL); + _virtual_operands.trunc_to(0); + _other_operands.at_put_grow(max_vregs - 1, NULL, NULL); + _other_operands.trunc_to(0); + _vreg_table.at_put_grow(max_vregs - 1, NULL, NULL); + _vreg_table.trunc_to(0); +} + + + +//-------------------------------------------------------------- +// PhiResolver + +// Resolves cycles: +// +// r1 := r2 becomes temp := r1 +// r2 := r1 r1 := r2 +// r2 := temp +// and orders moves: +// +// r2 := r3 becomes r1 := r2 +// r1 := r2 r2 := r3 + +PhiResolver::PhiResolver(LIRGenerator* gen, int max_vregs) + : _gen(gen) + , _state(gen->resolver_state()) + , _temp(LIR_OprFact::illegalOpr) +{ + // reinitialize the shared state arrays + _state.reset(max_vregs); +} + + +void PhiResolver::emit_move(LIR_Opr src, LIR_Opr dest) { + assert(src->is_valid(), ""); + assert(dest->is_valid(), ""); + __ move(src, dest); +} + + +void PhiResolver::move_temp_to(LIR_Opr dest) { + assert(_temp->is_valid(), ""); + emit_move(_temp, dest); + NOT_PRODUCT(_temp = LIR_OprFact::illegalOpr); +} + + +void PhiResolver::move_to_temp(LIR_Opr src) { + assert(_temp->is_illegal(), ""); + _temp = _gen->new_register(src->type()); + emit_move(src, _temp); +} + + +// Traverse assignment graph in depth first order and generate moves in post order +// ie. two assignments: b := c, a := b start with node c: +// Call graph: move(NULL, c) -> move(c, b) -> move(b, a) +// Generates moves in this order: move b to a and move c to b +// ie. cycle a := b, b := a start with node a +// Call graph: move(NULL, a) -> move(a, b) -> move(b, a) +// Generates moves in this order: move b to temp, move a to b, move temp to a +void PhiResolver::move(ResolveNode* src, ResolveNode* dest) { + if (!dest->visited()) { + dest->set_visited(); + for (int i = dest->no_of_destinations()-1; i >= 0; i --) { + move(dest, dest->destination_at(i)); + } + } else if (!dest->start_node()) { + // cylce in graph detected + assert(_loop == NULL, "only one loop valid!"); + _loop = dest; + move_to_temp(src->operand()); + return; + } // else dest is a start node + + if (!dest->assigned()) { + if (_loop == dest) { + move_temp_to(dest->operand()); + dest->set_assigned(); + } else if (src != NULL) { + emit_move(src->operand(), dest->operand()); + dest->set_assigned(); + } + } +} + + +PhiResolver::~PhiResolver() { + int i; + // resolve any cycles in moves from and to virtual registers + for (i = virtual_operands().length() - 1; i >= 0; i --) { + ResolveNode* node = virtual_operands()[i]; + if (!node->visited()) { + _loop = NULL; + move(NULL, node); + node->set_start_node(); + assert(_temp->is_illegal(), "move_temp_to() call missing"); + } + } + + // generate move for move from non virtual register to abitrary destination + for (i = other_operands().length() - 1; i >= 0; i --) { + ResolveNode* node = other_operands()[i]; + for (int j = node->no_of_destinations() - 1; j >= 0; j --) { + emit_move(node->operand(), node->destination_at(j)->operand()); + } + } +} + + +ResolveNode* PhiResolver::create_node(LIR_Opr opr, bool source) { + ResolveNode* node; + if (opr->is_virtual()) { + int vreg_num = opr->vreg_number(); + node = vreg_table().at_grow(vreg_num, NULL); + assert(node == NULL || node->operand() == opr, ""); + if (node == NULL) { + node = new ResolveNode(opr); + vreg_table()[vreg_num] = node; + } + // Make sure that all virtual operands show up in the list when + // they are used as the source of a move. + if (source && !virtual_operands().contains(node)) { + virtual_operands().append(node); + } + } else { + assert(source, ""); + node = new ResolveNode(opr); + other_operands().append(node); + } + return node; +} + + +void PhiResolver::move(LIR_Opr src, LIR_Opr dest) { + assert(dest->is_virtual(), ""); + // tty->print("move "); src->print(); tty->print(" to "); dest->print(); tty->cr(); + assert(src->is_valid(), ""); + assert(dest->is_valid(), ""); + ResolveNode* source = source_node(src); + source->append(destination_node(dest)); +} + + +//-------------------------------------------------------------- +// LIRItem + +void LIRItem::set_result(LIR_Opr opr) { + assert(value()->operand()->is_illegal() || value()->operand()->is_constant(), "operand should never change"); + value()->set_operand(opr); + + if (opr->is_virtual()) { + _gen->_instruction_for_operand.at_put_grow(opr->vreg_number(), value(), NULL); + } + + _result = opr; +} + +void LIRItem::load_item() { + if (result()->is_illegal()) { + // update the items result + _result = value()->operand(); + } + if (!result()->is_register()) { + LIR_Opr reg = _gen->new_register(value()->type()); + __ move(result(), reg); + if (result()->is_constant()) { + _result = reg; + } else { + set_result(reg); + } + } +} + + +void LIRItem::load_for_store(BasicType type) { + if (_gen->can_store_as_constant(value(), type)) { + _result = value()->operand(); + if (!_result->is_constant()) { + _result = LIR_OprFact::value_type(value()->type()); + } + } else if (type == T_BYTE || type == T_BOOLEAN) { + load_byte_item(); + } else { + load_item(); + } +} + +void LIRItem::load_item_force(LIR_Opr reg) { + LIR_Opr r = result(); + if (r != reg) { + if (r->type() != reg->type()) { + // moves between different types need an intervening spill slot + LIR_Opr tmp = _gen->force_to_spill(r, reg->type()); + __ move(tmp, reg); + } else { + __ move(r, reg); + } + _result = reg; + } +} + +ciObject* LIRItem::get_jobject_constant() const { + ObjectType* oc = type()->as_ObjectType(); + if (oc) { + return oc->constant_value(); + } + return NULL; +} + + +jint LIRItem::get_jint_constant() const { + assert(is_constant() && value() != NULL, ""); + assert(type()->as_IntConstant() != NULL, "type check"); + return type()->as_IntConstant()->value(); +} + + +jint LIRItem::get_address_constant() const { + assert(is_constant() && value() != NULL, ""); + assert(type()->as_AddressConstant() != NULL, "type check"); + return type()->as_AddressConstant()->value(); +} + + +jfloat LIRItem::get_jfloat_constant() const { + assert(is_constant() && value() != NULL, ""); + assert(type()->as_FloatConstant() != NULL, "type check"); + return type()->as_FloatConstant()->value(); +} + + +jdouble LIRItem::get_jdouble_constant() const { + assert(is_constant() && value() != NULL, ""); + assert(type()->as_DoubleConstant() != NULL, "type check"); + return type()->as_DoubleConstant()->value(); +} + + +jlong LIRItem::get_jlong_constant() const { + assert(is_constant() && value() != NULL, ""); + assert(type()->as_LongConstant() != NULL, "type check"); + return type()->as_LongConstant()->value(); +} + + + +//-------------------------------------------------------------- + + +void LIRGenerator::init() { + BarrierSet* bs = Universe::heap()->barrier_set(); + assert(bs->kind() == BarrierSet::CardTableModRef, "Wrong barrier set kind"); + CardTableModRefBS* ct = (CardTableModRefBS*)bs; + assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust this code"); + +#ifdef _LP64 + _card_table_base = new LIR_Const((jlong)ct->byte_map_base); +#else + _card_table_base = new LIR_Const((jint)ct->byte_map_base); +#endif +} + + +void LIRGenerator::block_do_prolog(BlockBegin* block) { +#ifndef PRODUCT + if (PrintIRWithLIR) { + block->print(); + } +#endif + + // set up the list of LIR instructions + assert(block->lir() == NULL, "LIR list already computed for this block"); + _lir = new LIR_List(compilation(), block); + block->set_lir(_lir); + + __ branch_destination(block->label()); + + if (LIRTraceExecution && + Compilation::current_compilation()->hir()->start()->block_id() != block->block_id() && + !block->is_set(BlockBegin::exception_entry_flag)) { + assert(block->lir()->instructions_list()->length() == 1, "should come right after br_dst"); + trace_block_entry(block); + } +} + + +void LIRGenerator::block_do_epilog(BlockBegin* block) { +#ifndef PRODUCT + if (PrintIRWithLIR) { + tty->cr(); + } +#endif + + // LIR_Opr for unpinned constants shouldn't be referenced by other + // blocks so clear them out after processing the block. + for (int i = 0; i < _unpinned_constants.length(); i++) { + _unpinned_constants.at(i)->clear_operand(); + } + _unpinned_constants.trunc_to(0); + + // clear our any registers for other local constants + _constants.trunc_to(0); + _reg_for_constants.trunc_to(0); +} + + +void LIRGenerator::block_do(BlockBegin* block) { + CHECK_BAILOUT(); + + block_do_prolog(block); + set_block(block); + + for (Instruction* instr = block; instr != NULL; instr = instr->next()) { + if (instr->is_pinned()) do_root(instr); + } + + set_block(NULL); + block_do_epilog(block); +} + + +//-------------------------LIRGenerator----------------------------- + +// This is where the tree-walk starts; instr must be root; +void LIRGenerator::do_root(Value instr) { + CHECK_BAILOUT(); + + InstructionMark im(compilation(), instr); + + assert(instr->is_pinned(), "use only with roots"); + assert(instr->subst() == instr, "shouldn't have missed substitution"); + + instr->visit(this); + + assert(!instr->has_uses() || instr->operand()->is_valid() || + instr->as_Constant() != NULL || bailed_out(), "invalid item set"); +} + + +// This is called for each node in tree; the walk stops if a root is reached +void LIRGenerator::walk(Value instr) { + InstructionMark im(compilation(), instr); + //stop walk when encounter a root + if (instr->is_pinned() && instr->as_Phi() == NULL || instr->operand()->is_valid()) { + assert(instr->operand() != LIR_OprFact::illegalOpr || instr->as_Constant() != NULL, "this root has not yet been visited"); + } else { + assert(instr->subst() == instr, "shouldn't have missed substitution"); + instr->visit(this); + // assert(instr->use_count() > 0 || instr->as_Phi() != NULL, "leaf instruction must have a use"); + } +} + + +CodeEmitInfo* LIRGenerator::state_for(Instruction* x, ValueStack* state, bool ignore_xhandler) { + int index; + Value value; + for_each_stack_value(state, index, value) { + assert(value->subst() == value, "missed substition"); + if (!value->is_pinned() && value->as_Constant() == NULL && value->as_Local() == NULL) { + walk(value); + assert(value->operand()->is_valid(), "must be evaluated now"); + } + } + ValueStack* s = state; + int bci = x->bci(); + for_each_state(s) { + IRScope* scope = s->scope(); + ciMethod* method = scope->method(); + + MethodLivenessResult liveness = method->liveness_at_bci(bci); + if (bci == SynchronizationEntryBCI) { + if (x->as_ExceptionObject() || x->as_Throw()) { + // all locals are dead on exit from the synthetic unlocker + liveness.clear(); + } else { + assert(x->as_MonitorEnter(), "only other case is MonitorEnter"); + } + } + if (!liveness.is_valid()) { + // Degenerate or breakpointed method. + bailout("Degenerate or breakpointed method"); + } else { + assert((int)liveness.size() == s->locals_size(), "error in use of liveness"); + for_each_local_value(s, index, value) { + assert(value->subst() == value, "missed substition"); + if (liveness.at(index) && !value->type()->is_illegal()) { + if (!value->is_pinned() && value->as_Constant() == NULL && value->as_Local() == NULL) { + walk(value); + assert(value->operand()->is_valid(), "must be evaluated now"); + } + } else { + // NULL out this local so that linear scan can assume that all non-NULL values are live. + s->invalidate_local(index); + } + } + } + bci = scope->caller_bci(); + } + + return new CodeEmitInfo(x->bci(), state, ignore_xhandler ? NULL : x->exception_handlers()); +} + + +CodeEmitInfo* LIRGenerator::state_for(Instruction* x) { + return state_for(x, x->lock_stack()); +} + + +void LIRGenerator::jobject2reg_with_patching(LIR_Opr r, ciObject* obj, CodeEmitInfo* info) { + if (!obj->is_loaded() || PatchALot) { + assert(info != NULL, "info must be set if class is not loaded"); + __ oop2reg_patch(NULL, r, info); + } else { + // no patching needed + __ oop2reg(obj->encoding(), r); + } +} + + +void LIRGenerator::array_range_check(LIR_Opr array, LIR_Opr index, + CodeEmitInfo* null_check_info, CodeEmitInfo* range_check_info) { + CodeStub* stub = new RangeCheckStub(range_check_info, index); + if (index->is_constant()) { + cmp_mem_int(lir_cond_belowEqual, array, arrayOopDesc::length_offset_in_bytes(), + index->as_jint(), null_check_info); + __ branch(lir_cond_belowEqual, T_INT, stub); // forward branch + } else { + cmp_reg_mem(lir_cond_aboveEqual, index, array, + arrayOopDesc::length_offset_in_bytes(), T_INT, null_check_info); + __ branch(lir_cond_aboveEqual, T_INT, stub); // forward branch + } +} + + +void LIRGenerator::nio_range_check(LIR_Opr buffer, LIR_Opr index, LIR_Opr result, CodeEmitInfo* info) { + CodeStub* stub = new RangeCheckStub(info, index, true); + if (index->is_constant()) { + cmp_mem_int(lir_cond_belowEqual, buffer, java_nio_Buffer::limit_offset(), index->as_jint(), info); + __ branch(lir_cond_belowEqual, T_INT, stub); // forward branch + } else { + cmp_reg_mem(lir_cond_aboveEqual, index, buffer, + java_nio_Buffer::limit_offset(), T_INT, info); + __ branch(lir_cond_aboveEqual, T_INT, stub); // forward branch + } + __ move(index, result); +} + + +// increment a counter returning the incremented value +LIR_Opr LIRGenerator::increment_and_return_counter(LIR_Opr base, int offset, int increment) { + LIR_Address* counter = new LIR_Address(base, offset, T_INT); + LIR_Opr result = new_register(T_INT); + __ load(counter, result); + __ add(result, LIR_OprFact::intConst(increment), result); + __ store(result, counter); + return result; +} + + +void LIRGenerator::arithmetic_op(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, bool is_strictfp, LIR_Opr tmp_op, CodeEmitInfo* info) { + LIR_Opr result_op = result; + LIR_Opr left_op = left; + LIR_Opr right_op = right; + + if (TwoOperandLIRForm && left_op != result_op) { + assert(right_op != result_op, "malformed"); + __ move(left_op, result_op); + left_op = result_op; + } + + switch(code) { + case Bytecodes::_dadd: + case Bytecodes::_fadd: + case Bytecodes::_ladd: + case Bytecodes::_iadd: __ add(left_op, right_op, result_op); break; + case Bytecodes::_fmul: + case Bytecodes::_lmul: __ mul(left_op, right_op, result_op); break; + + case Bytecodes::_dmul: + { + if (is_strictfp) { + __ mul_strictfp(left_op, right_op, result_op, tmp_op); break; + } else { + __ mul(left_op, right_op, result_op); break; + } + } + break; + + case Bytecodes::_imul: + { + bool did_strength_reduce = false; + + if (right->is_constant()) { + int c = right->as_jint(); + if (is_power_of_2(c)) { + // do not need tmp here + __ shift_left(left_op, exact_log2(c), result_op); + did_strength_reduce = true; + } else { + did_strength_reduce = strength_reduce_multiply(left_op, c, result_op, tmp_op); + } + } + // we couldn't strength reduce so just emit the multiply + if (!did_strength_reduce) { + __ mul(left_op, right_op, result_op); + } + } + break; + + case Bytecodes::_dsub: + case Bytecodes::_fsub: + case Bytecodes::_lsub: + case Bytecodes::_isub: __ sub(left_op, right_op, result_op); break; + + case Bytecodes::_fdiv: __ div (left_op, right_op, result_op); break; + // ldiv and lrem are implemented with a direct runtime call + + case Bytecodes::_ddiv: + { + if (is_strictfp) { + __ div_strictfp (left_op, right_op, result_op, tmp_op); break; + } else { + __ div (left_op, right_op, result_op); break; + } + } + break; + + case Bytecodes::_drem: + case Bytecodes::_frem: __ rem (left_op, right_op, result_op); break; + + default: ShouldNotReachHere(); + } +} + + +void LIRGenerator::arithmetic_op_int(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, LIR_Opr tmp) { + arithmetic_op(code, result, left, right, false, tmp); +} + + +void LIRGenerator::arithmetic_op_long(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, CodeEmitInfo* info) { + arithmetic_op(code, result, left, right, false, LIR_OprFact::illegalOpr, info); +} + + +void LIRGenerator::arithmetic_op_fpu(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, bool is_strictfp, LIR_Opr tmp) { + arithmetic_op(code, result, left, right, is_strictfp, tmp); +} + + +void LIRGenerator::shift_op(Bytecodes::Code code, LIR_Opr result_op, LIR_Opr value, LIR_Opr count, LIR_Opr tmp) { + if (TwoOperandLIRForm && value != result_op) { + assert(count != result_op, "malformed"); + __ move(value, result_op); + value = result_op; + } + + assert(count->is_constant() || count->is_register(), "must be"); + switch(code) { + case Bytecodes::_ishl: + case Bytecodes::_lshl: __ shift_left(value, count, result_op, tmp); break; + case Bytecodes::_ishr: + case Bytecodes::_lshr: __ shift_right(value, count, result_op, tmp); break; + case Bytecodes::_iushr: + case Bytecodes::_lushr: __ unsigned_shift_right(value, count, result_op, tmp); break; + default: ShouldNotReachHere(); + } +} + + +void LIRGenerator::logic_op (Bytecodes::Code code, LIR_Opr result_op, LIR_Opr left_op, LIR_Opr right_op) { + if (TwoOperandLIRForm && left_op != result_op) { + assert(right_op != result_op, "malformed"); + __ move(left_op, result_op); + left_op = result_op; + } + + switch(code) { + case Bytecodes::_iand: + case Bytecodes::_land: __ logical_and(left_op, right_op, result_op); break; + + case Bytecodes::_ior: + case Bytecodes::_lor: __ logical_or(left_op, right_op, result_op); break; + + case Bytecodes::_ixor: + case Bytecodes::_lxor: __ logical_xor(left_op, right_op, result_op); break; + + default: ShouldNotReachHere(); + } +} + + +void LIRGenerator::monitor_enter(LIR_Opr object, LIR_Opr lock, LIR_Opr hdr, LIR_Opr scratch, int monitor_no, CodeEmitInfo* info_for_exception, CodeEmitInfo* info) { + if (!GenerateSynchronizationCode) return; + // for slow path, use debug info for state after successful locking + CodeStub* slow_path = new MonitorEnterStub(object, lock, info); + __ load_stack_address_monitor(monitor_no, lock); + // for handling NullPointerException, use debug info representing just the lock stack before this monitorenter + __ lock_object(hdr, object, lock, scratch, slow_path, info_for_exception); +} + + +void LIRGenerator::monitor_exit(LIR_Opr object, LIR_Opr lock, LIR_Opr new_hdr, int monitor_no) { + if (!GenerateSynchronizationCode) return; + // setup registers + LIR_Opr hdr = lock; + lock = new_hdr; + CodeStub* slow_path = new MonitorExitStub(lock, UseFastLocking, monitor_no); + __ load_stack_address_monitor(monitor_no, lock); + __ unlock_object(hdr, object, lock, slow_path); +} + + +void LIRGenerator::new_instance(LIR_Opr dst, ciInstanceKlass* klass, LIR_Opr scratch1, LIR_Opr scratch2, LIR_Opr scratch3, LIR_Opr scratch4, LIR_Opr klass_reg, CodeEmitInfo* info) { + jobject2reg_with_patching(klass_reg, klass, info); + // If klass is not loaded we do not know if the klass has finalizers: + if (UseFastNewInstance && klass->is_loaded() + && !Klass::layout_helper_needs_slow_path(klass->layout_helper())) { + + Runtime1::StubID stub_id = klass->is_initialized() ? Runtime1::fast_new_instance_id : Runtime1::fast_new_instance_init_check_id; + + CodeStub* slow_path = new NewInstanceStub(klass_reg, dst, klass, info, stub_id); + + assert(klass->is_loaded(), "must be loaded"); + // allocate space for instance + assert(klass->size_helper() >= 0, "illegal instance size"); + const int instance_size = align_object_size(klass->size_helper()); + __ allocate_object(dst, scratch1, scratch2, scratch3, scratch4, + oopDesc::header_size(), instance_size, klass_reg, !klass->is_initialized(), slow_path); + } else { + CodeStub* slow_path = new NewInstanceStub(klass_reg, dst, klass, info, Runtime1::new_instance_id); + __ branch(lir_cond_always, T_ILLEGAL, slow_path); + __ branch_destination(slow_path->continuation()); + } +} + + +static bool is_constant_zero(Instruction* inst) { + IntConstant* c = inst->type()->as_IntConstant(); + if (c) { + return (c->value() == 0); + } + return false; +} + + +static bool positive_constant(Instruction* inst) { + IntConstant* c = inst->type()->as_IntConstant(); + if (c) { + return (c->value() >= 0); + } + return false; +} + + +static ciArrayKlass* as_array_klass(ciType* type) { + if (type != NULL && type->is_array_klass() && type->is_loaded()) { + return (ciArrayKlass*)type; + } else { + return NULL; + } +} + +void LIRGenerator::arraycopy_helper(Intrinsic* x, int* flagsp, ciArrayKlass** expected_typep) { + Instruction* src = x->argument_at(0); + Instruction* src_pos = x->argument_at(1); + Instruction* dst = x->argument_at(2); + Instruction* dst_pos = x->argument_at(3); + Instruction* length = x->argument_at(4); + + // first try to identify the likely type of the arrays involved + ciArrayKlass* expected_type = NULL; + bool is_exact = false; + { + ciArrayKlass* src_exact_type = as_array_klass(src->exact_type()); + ciArrayKlass* src_declared_type = as_array_klass(src->declared_type()); + ciArrayKlass* dst_exact_type = as_array_klass(dst->exact_type()); + ciArrayKlass* dst_declared_type = as_array_klass(dst->declared_type()); + if (src_exact_type != NULL && src_exact_type == dst_exact_type) { + // the types exactly match so the type is fully known + is_exact = true; + expected_type = src_exact_type; + } else if (dst_exact_type != NULL && dst_exact_type->is_obj_array_klass()) { + ciArrayKlass* dst_type = (ciArrayKlass*) dst_exact_type; + ciArrayKlass* src_type = NULL; + if (src_exact_type != NULL && src_exact_type->is_obj_array_klass()) { + src_type = (ciArrayKlass*) src_exact_type; + } else if (src_declared_type != NULL && src_declared_type->is_obj_array_klass()) { + src_type = (ciArrayKlass*) src_declared_type; + } + if (src_type != NULL) { + if (src_type->element_type()->is_subtype_of(dst_type->element_type())) { + is_exact = true; + expected_type = dst_type; + } + } + } + // at least pass along a good guess + if (expected_type == NULL) expected_type = dst_exact_type; + if (expected_type == NULL) expected_type = src_declared_type; + if (expected_type == NULL) expected_type = dst_declared_type; + } + + // if a probable array type has been identified, figure out if any + // of the required checks for a fast case can be elided. + int flags = LIR_OpArrayCopy::all_flags; + if (expected_type != NULL) { + // try to skip null checks + if (src->as_NewArray() != NULL) + flags &= ~LIR_OpArrayCopy::src_null_check; + if (dst->as_NewArray() != NULL) + flags &= ~LIR_OpArrayCopy::dst_null_check; + + // check from incoming constant values + if (positive_constant(src_pos)) + flags &= ~LIR_OpArrayCopy::src_pos_positive_check; + if (positive_constant(dst_pos)) + flags &= ~LIR_OpArrayCopy::dst_pos_positive_check; + if (positive_constant(length)) + flags &= ~LIR_OpArrayCopy::length_positive_check; + + // see if the range check can be elided, which might also imply + // that src or dst is non-null. + ArrayLength* al = length->as_ArrayLength(); + if (al != NULL) { + if (al->array() == src) { + // it's the length of the source array + flags &= ~LIR_OpArrayCopy::length_positive_check; + flags &= ~LIR_OpArrayCopy::src_null_check; + if (is_constant_zero(src_pos)) + flags &= ~LIR_OpArrayCopy::src_range_check; + } + if (al->array() == dst) { + // it's the length of the destination array + flags &= ~LIR_OpArrayCopy::length_positive_check; + flags &= ~LIR_OpArrayCopy::dst_null_check; + if (is_constant_zero(dst_pos)) + flags &= ~LIR_OpArrayCopy::dst_range_check; + } + } + if (is_exact) { + flags &= ~LIR_OpArrayCopy::type_check; + } + } + + if (src == dst) { + // moving within a single array so no type checks are needed + if (flags & LIR_OpArrayCopy::type_check) { + flags &= ~LIR_OpArrayCopy::type_check; + } + } + *flagsp = flags; + *expected_typep = (ciArrayKlass*)expected_type; +} + + +LIR_Opr LIRGenerator::round_item(LIR_Opr opr) { + assert(opr->is_register(), "why spill if item is not register?"); + + if (RoundFPResults && UseSSE < 1 && opr->is_single_fpu()) { + LIR_Opr result = new_register(T_FLOAT); + set_vreg_flag(result, must_start_in_memory); + assert(opr->is_register(), "only a register can be spilled"); + assert(opr->value_type()->is_float(), "rounding only for floats available"); + __ roundfp(opr, LIR_OprFact::illegalOpr, result); + return result; + } + return opr; +} + + +LIR_Opr LIRGenerator::force_to_spill(LIR_Opr value, BasicType t) { + assert(type2size[t] == type2size[value->type()], "size mismatch"); + if (!value->is_register()) { + // force into a register + LIR_Opr r = new_register(value->type()); + __ move(value, r); + value = r; + } + + // create a spill location + LIR_Opr tmp = new_register(t); + set_vreg_flag(tmp, LIRGenerator::must_start_in_memory); + + // move from register to spill + __ move(value, tmp); + return tmp; +} + + +void LIRGenerator::profile_branch(If* if_instr, If::Condition cond) { + if (if_instr->should_profile()) { + ciMethod* method = if_instr->profiled_method(); + assert(method != NULL, "method should be set if branch is profiled"); + ciMethodData* md = method->method_data(); + if (md == NULL) { + bailout("out of memory building methodDataOop"); + return; + } + ciProfileData* data = md->bci_to_data(if_instr->profiled_bci()); + assert(data != NULL, "must have profiling data"); + assert(data->is_BranchData(), "need BranchData for two-way branches"); + int taken_count_offset = md->byte_offset_of_slot(data, BranchData::taken_offset()); + int not_taken_count_offset = md->byte_offset_of_slot(data, BranchData::not_taken_offset()); + LIR_Opr md_reg = new_register(T_OBJECT); + __ move(LIR_OprFact::oopConst(md->encoding()), md_reg); + LIR_Opr data_offset_reg = new_register(T_INT); + __ cmove(lir_cond(cond), + LIR_OprFact::intConst(taken_count_offset), + LIR_OprFact::intConst(not_taken_count_offset), + data_offset_reg); + LIR_Opr data_reg = new_register(T_INT); + LIR_Address* data_addr = new LIR_Address(md_reg, data_offset_reg, T_INT); + __ move(LIR_OprFact::address(data_addr), data_reg); + LIR_Address* fake_incr_value = new LIR_Address(data_reg, DataLayout::counter_increment, T_INT); + // Use leal instead of add to avoid destroying condition codes on x86 + __ leal(LIR_OprFact::address(fake_incr_value), data_reg); + __ move(data_reg, LIR_OprFact::address(data_addr)); + } +} + + +// Phi technique: +// This is about passing live values from one basic block to the other. +// In code generated with Java it is rather rare that more than one +// value is on the stack from one basic block to the other. +// We optimize our technique for efficient passing of one value +// (of type long, int, double..) but it can be extended. +// When entering or leaving a basic block, all registers and all spill +// slots are release and empty. We use the released registers +// and spill slots to pass the live values from one block +// to the other. The topmost value, i.e., the value on TOS of expression +// stack is passed in registers. All other values are stored in spilling +// area. Every Phi has an index which designates its spill slot +// At exit of a basic block, we fill the register(s) and spill slots. +// At entry of a basic block, the block_prolog sets up the content of phi nodes +// and locks necessary registers and spilling slots. + + +// move current value to referenced phi function +void LIRGenerator::move_to_phi(PhiResolver* resolver, Value cur_val, Value sux_val) { + Phi* phi = sux_val->as_Phi(); + // cur_val can be null without phi being null in conjunction with inlining + if (phi != NULL && cur_val != NULL && cur_val != phi && !phi->is_illegal()) { + LIR_Opr operand = cur_val->operand(); + if (cur_val->operand()->is_illegal()) { + assert(cur_val->as_Constant() != NULL || cur_val->as_Local() != NULL, + "these can be produced lazily"); + operand = operand_for_instruction(cur_val); + } + resolver->move(operand, operand_for_instruction(phi)); + } +} + + +// Moves all stack values into their PHI position +void LIRGenerator::move_to_phi(ValueStack* cur_state) { + BlockBegin* bb = block(); + if (bb->number_of_sux() == 1) { + BlockBegin* sux = bb->sux_at(0); + assert(sux->number_of_preds() > 0, "invalid CFG"); + + // a block with only one predecessor never has phi functions + if (sux->number_of_preds() > 1) { + int max_phis = cur_state->stack_size() + cur_state->locals_size(); + PhiResolver resolver(this, _virtual_register_number + max_phis * 2); + + ValueStack* sux_state = sux->state(); + Value sux_value; + int index; + + for_each_stack_value(sux_state, index, sux_value) { + move_to_phi(&resolver, cur_state->stack_at(index), sux_value); + } + + // Inlining may cause the local state not to match up, so walk up + // the caller state until we get to the same scope as the + // successor and then start processing from there. + while (cur_state->scope() != sux_state->scope()) { + cur_state = cur_state->caller_state(); + assert(cur_state != NULL, "scopes don't match up"); + } + + for_each_local_value(sux_state, index, sux_value) { + move_to_phi(&resolver, cur_state->local_at(index), sux_value); + } + + assert(cur_state->caller_state() == sux_state->caller_state(), "caller states must be equal"); + } + } +} + + +LIR_Opr LIRGenerator::new_register(BasicType type) { + int vreg = _virtual_register_number; + // add a little fudge factor for the bailout, since the bailout is + // only checked periodically. This gives a few extra registers to + // hand out before we really run out, which helps us keep from + // tripping over assertions. + if (vreg + 20 >= LIR_OprDesc::vreg_max) { + bailout("out of virtual registers"); + if (vreg + 2 >= LIR_OprDesc::vreg_max) { + // wrap it around + _virtual_register_number = LIR_OprDesc::vreg_base; + } + } + _virtual_register_number += 1; + if (type == T_ADDRESS) type = T_INT; + return LIR_OprFact::virtual_register(vreg, type); +} + + +// Try to lock using register in hint +LIR_Opr LIRGenerator::rlock(Value instr) { + return new_register(instr->type()); +} + + +// does an rlock and sets result +LIR_Opr LIRGenerator::rlock_result(Value x) { + LIR_Opr reg = rlock(x); + set_result(x, reg); + return reg; +} + + +// does an rlock and sets result +LIR_Opr LIRGenerator::rlock_result(Value x, BasicType type) { + LIR_Opr reg; + switch (type) { + case T_BYTE: + case T_BOOLEAN: + reg = rlock_byte(type); + break; + default: + reg = rlock(x); + break; + } + + set_result(x, reg); + return reg; +} + + +//--------------------------------------------------------------------- +ciObject* LIRGenerator::get_jobject_constant(Value value) { + ObjectType* oc = value->type()->as_ObjectType(); + if (oc) { + return oc->constant_value(); + } + return NULL; +} + + +void LIRGenerator::do_ExceptionObject(ExceptionObject* x) { + assert(block()->is_set(BlockBegin::exception_entry_flag), "ExceptionObject only allowed in exception handler block"); + assert(block()->next() == x, "ExceptionObject must be first instruction of block"); + + // no moves are created for phi functions at the begin of exception + // handlers, so assign operands manually here + for_each_phi_fun(block(), phi, + operand_for_instruction(phi)); + + LIR_Opr thread_reg = getThreadPointer(); + __ move(new LIR_Address(thread_reg, in_bytes(JavaThread::exception_oop_offset()), T_OBJECT), + exceptionOopOpr()); + __ move(LIR_OprFact::oopConst(NULL), + new LIR_Address(thread_reg, in_bytes(JavaThread::exception_oop_offset()), T_OBJECT)); + __ move(LIR_OprFact::oopConst(NULL), + new LIR_Address(thread_reg, in_bytes(JavaThread::exception_pc_offset()), T_OBJECT)); + + LIR_Opr result = new_register(T_OBJECT); + __ move(exceptionOopOpr(), result); + set_result(x, result); +} + + +//---------------------------------------------------------------------- +//---------------------------------------------------------------------- +//---------------------------------------------------------------------- +//---------------------------------------------------------------------- +// visitor functions +//---------------------------------------------------------------------- +//---------------------------------------------------------------------- +//---------------------------------------------------------------------- +//---------------------------------------------------------------------- + +void LIRGenerator::do_Phi(Phi* x) { + // phi functions are never visited directly + ShouldNotReachHere(); +} + + +// Code for a constant is generated lazily unless the constant is frequently used and can't be inlined. +void LIRGenerator::do_Constant(Constant* x) { + if (x->state() != NULL) { + // Any constant with a ValueStack requires patching so emit the patch here + LIR_Opr reg = rlock_result(x); + CodeEmitInfo* info = state_for(x, x->state()); + __ oop2reg_patch(NULL, reg, info); + } else if (x->use_count() > 1 && !can_inline_as_constant(x)) { + if (!x->is_pinned()) { + // unpinned constants are handled specially so that they can be + // put into registers when they are used multiple times within a + // block. After the block completes their operand will be + // cleared so that other blocks can't refer to that register. + set_result(x, load_constant(x)); + } else { + LIR_Opr res = x->operand(); + if (!res->is_valid()) { + res = LIR_OprFact::value_type(x->type()); + } + if (res->is_constant()) { + LIR_Opr reg = rlock_result(x); + __ move(res, reg); + } else { + set_result(x, res); + } + } + } else { + set_result(x, LIR_OprFact::value_type(x->type())); + } +} + + +void LIRGenerator::do_Local(Local* x) { + // operand_for_instruction has the side effect of setting the result + // so there's no need to do it here. + operand_for_instruction(x); +} + + +void LIRGenerator::do_IfInstanceOf(IfInstanceOf* x) { + Unimplemented(); +} + + +void LIRGenerator::do_Return(Return* x) { + if (DTraceMethodProbes) { + BasicTypeList signature; + signature.append(T_INT); // thread + signature.append(T_OBJECT); // methodOop + LIR_OprList* args = new LIR_OprList(); + args->append(getThreadPointer()); + LIR_Opr meth = new_register(T_OBJECT); + __ oop2reg(method()->encoding(), meth); + args->append(meth); + call_runtime(&signature, args, CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit), voidType, NULL); + } + + if (x->type()->is_void()) { + __ return_op(LIR_OprFact::illegalOpr); + } else { + LIR_Opr reg = result_register_for(x->type(), /*callee=*/true); + LIRItem result(x->result(), this); + + result.load_item_force(reg); + __ return_op(result.result()); + } + set_no_result(x); +} + + +// Example: object.getClass () +void LIRGenerator::do_getClass(Intrinsic* x) { + assert(x->number_of_arguments() == 1, "wrong type"); + + LIRItem rcvr(x->argument_at(0), this); + rcvr.load_item(); + LIR_Opr result = rlock_result(x); + + // need to perform the null check on the rcvr + CodeEmitInfo* info = NULL; + if (x->needs_null_check()) { + info = state_for(x, x->state()->copy_locks()); + } + __ move(new LIR_Address(rcvr.result(), oopDesc::klass_offset_in_bytes(), T_OBJECT), result, info); + __ move(new LIR_Address(result, Klass::java_mirror_offset_in_bytes() + + klassOopDesc::klass_part_offset_in_bytes(), T_OBJECT), result); +} + + +// Example: Thread.currentThread() +void LIRGenerator::do_currentThread(Intrinsic* x) { + assert(x->number_of_arguments() == 0, "wrong type"); + LIR_Opr reg = rlock_result(x); + __ load(new LIR_Address(getThreadPointer(), in_bytes(JavaThread::threadObj_offset()), T_OBJECT), reg); +} + + +void LIRGenerator::do_RegisterFinalizer(Intrinsic* x) { + assert(x->number_of_arguments() == 1, "wrong type"); + LIRItem receiver(x->argument_at(0), this); + + receiver.load_item(); + BasicTypeList signature; + signature.append(T_OBJECT); // receiver + LIR_OprList* args = new LIR_OprList(); + args->append(receiver.result()); + CodeEmitInfo* info = state_for(x, x->state()); + call_runtime(&signature, args, + CAST_FROM_FN_PTR(address, Runtime1::entry_for(Runtime1::register_finalizer_id)), + voidType, info); + + set_no_result(x); +} + + +//------------------------local access-------------------------------------- + +LIR_Opr LIRGenerator::operand_for_instruction(Instruction* x) { + if (x->operand()->is_illegal()) { + Constant* c = x->as_Constant(); + if (c != NULL) { + x->set_operand(LIR_OprFact::value_type(c->type())); + } else { + assert(x->as_Phi() || x->as_Local() != NULL, "only for Phi and Local"); + // allocate a virtual register for this local or phi + x->set_operand(rlock(x)); + _instruction_for_operand.at_put_grow(x->operand()->vreg_number(), x, NULL); + } + } + return x->operand(); +} + + +Instruction* LIRGenerator::instruction_for_opr(LIR_Opr opr) { + if (opr->is_virtual()) { + return instruction_for_vreg(opr->vreg_number()); + } + return NULL; +} + + +Instruction* LIRGenerator::instruction_for_vreg(int reg_num) { + if (reg_num < _instruction_for_operand.length()) { + return _instruction_for_operand.at(reg_num); + } + return NULL; +} + + +void LIRGenerator::set_vreg_flag(int vreg_num, VregFlag f) { + if (_vreg_flags.size_in_bits() == 0) { + BitMap2D temp(100, num_vreg_flags); + temp.clear(); + _vreg_flags = temp; + } + _vreg_flags.at_put_grow(vreg_num, f, true); +} + +bool LIRGenerator::is_vreg_flag_set(int vreg_num, VregFlag f) { + if (!_vreg_flags.is_valid_index(vreg_num, f)) { + return false; + } + return _vreg_flags.at(vreg_num, f); +} + + +// Block local constant handling. This code is useful for keeping +// unpinned constants and constants which aren't exposed in the IR in +// registers. Unpinned Constant instructions have their operands +// cleared when the block is finished so that other blocks can't end +// up referring to their registers. + +LIR_Opr LIRGenerator::load_constant(Constant* x) { + assert(!x->is_pinned(), "only for unpinned constants"); + _unpinned_constants.append(x); + return load_constant(LIR_OprFact::value_type(x->type())->as_constant_ptr()); +} + + +LIR_Opr LIRGenerator::load_constant(LIR_Const* c) { + BasicType t = c->type(); + for (int i = 0; i < _constants.length(); i++) { + LIR_Const* other = _constants.at(i); + if (t == other->type()) { + switch (t) { + case T_INT: + case T_FLOAT: + if (c->as_jint_bits() != other->as_jint_bits()) continue; + break; + case T_LONG: + case T_DOUBLE: + if (c->as_jint_hi_bits() != other->as_jint_lo_bits()) continue; + if (c->as_jint_lo_bits() != other->as_jint_hi_bits()) continue; + break; + case T_OBJECT: + if (c->as_jobject() != other->as_jobject()) continue; + break; + } + return _reg_for_constants.at(i); + } + } + + LIR_Opr result = new_register(t); + __ move((LIR_Opr)c, result); + _constants.append(c); + _reg_for_constants.append(result); + return result; +} + +// Various barriers + +void LIRGenerator::post_barrier(LIR_OprDesc* addr, LIR_OprDesc* new_val) { + switch (Universe::heap()->barrier_set()->kind()) { + case BarrierSet::CardTableModRef: + case BarrierSet::CardTableExtension: + CardTableModRef_post_barrier(addr, new_val); + break; + case BarrierSet::ModRef: + case BarrierSet::Other: + // No post barriers + break; + default : + ShouldNotReachHere(); + } +} + +void LIRGenerator::CardTableModRef_post_barrier(LIR_OprDesc* addr, LIR_OprDesc* new_val) { + + BarrierSet* bs = Universe::heap()->barrier_set(); + assert(sizeof(*((CardTableModRefBS*)bs)->byte_map_base) == sizeof(jbyte), "adjust this code"); + LIR_Const* card_table_base = new LIR_Const(((CardTableModRefBS*)bs)->byte_map_base); + if (addr->is_address()) { + LIR_Address* address = addr->as_address_ptr(); + LIR_Opr ptr = new_register(T_OBJECT); + if (!address->index()->is_valid() && address->disp() == 0) { + __ move(address->base(), ptr); + } else { + assert(address->disp() != max_jint, "lea doesn't support patched addresses!"); + __ leal(addr, ptr); + } + addr = ptr; + } + assert(addr->is_register(), "must be a register at this point"); + + LIR_Opr tmp = new_pointer_register(); + if (TwoOperandLIRForm) { + __ move(addr, tmp); + __ unsigned_shift_right(tmp, CardTableModRefBS::card_shift, tmp); + } else { + __ unsigned_shift_right(addr, CardTableModRefBS::card_shift, tmp); + } + if (can_inline_as_constant(card_table_base)) { + __ move(LIR_OprFact::intConst(0), + new LIR_Address(tmp, card_table_base->as_jint(), T_BYTE)); + } else { + __ move(LIR_OprFact::intConst(0), + new LIR_Address(tmp, load_constant(card_table_base), + T_BYTE)); + } +} + + +//------------------------field access-------------------------------------- + +// Comment copied form templateTable_i486.cpp +// ---------------------------------------------------------------------------- +// Volatile variables demand their effects be made known to all CPU's in +// order. Store buffers on most chips allow reads & writes to reorder; the +// JMM's ReadAfterWrite.java test fails in -Xint mode without some kind of +// memory barrier (i.e., it's not sufficient that the interpreter does not +// reorder volatile references, the hardware also must not reorder them). +// +// According to the new Java Memory Model (JMM): +// (1) All volatiles are serialized wrt to each other. +// ALSO reads & writes act as aquire & release, so: +// (2) A read cannot let unrelated NON-volatile memory refs that happen after +// the read float up to before the read. It's OK for non-volatile memory refs +// that happen before the volatile read to float down below it. +// (3) Similar a volatile write cannot let unrelated NON-volatile memory refs +// that happen BEFORE the write float down to after the write. It's OK for +// non-volatile memory refs that happen after the volatile write to float up +// before it. +// +// We only put in barriers around volatile refs (they are expensive), not +// _between_ memory refs (that would require us to track the flavor of the +// previous memory refs). Requirements (2) and (3) require some barriers +// before volatile stores and after volatile loads. These nearly cover +// requirement (1) but miss the volatile-store-volatile-load case. This final +// case is placed after volatile-stores although it could just as well go +// before volatile-loads. + + +void LIRGenerator::do_StoreField(StoreField* x) { + bool needs_patching = x->needs_patching(); + bool is_volatile = x->field()->is_volatile(); + BasicType field_type = x->field_type(); + bool is_oop = (field_type == T_ARRAY || field_type == T_OBJECT); + + CodeEmitInfo* info = NULL; + if (needs_patching) { + assert(x->explicit_null_check() == NULL, "can't fold null check into patching field access"); + info = state_for(x, x->state_before()); + } else if (x->needs_null_check()) { + NullCheck* nc = x->explicit_null_check(); + if (nc == NULL) { + info = state_for(x, x->lock_stack()); + } else { + info = state_for(nc); + } + } + + + LIRItem object(x->obj(), this); + LIRItem value(x->value(), this); + + object.load_item(); + + if (is_volatile || needs_patching) { + // load item if field is volatile (fewer special cases for volatiles) + // load item if field not initialized + // load item if field not constant + // because of code patching we cannot inline constants + if (field_type == T_BYTE || field_type == T_BOOLEAN) { + value.load_byte_item(); + } else { + value.load_item(); + } + } else { + value.load_for_store(field_type); + } + + set_no_result(x); + + if (PrintNotLoaded && needs_patching) { + tty->print_cr(" ###class not loaded at store_%s bci %d", + x->is_static() ? "static" : "field", x->bci()); + } + + if (x->needs_null_check() && + (needs_patching || + MacroAssembler::needs_explicit_null_check(x->offset()))) { + // emit an explicit null check because the offset is too large + __ null_check(object.result(), new CodeEmitInfo(info)); + } + + LIR_Address* address; + if (needs_patching) { + // we need to patch the offset in the instruction so don't allow + // generate_address to try to be smart about emitting the -1. + // Otherwise the patching code won't know how to find the + // instruction to patch. + address = new LIR_Address(object.result(), max_jint, field_type); + } else { + address = generate_address(object.result(), x->offset(), field_type); + } + + if (is_volatile && os::is_MP()) { + __ membar_release(); + } + + if (is_volatile) { + assert(!needs_patching && x->is_loaded(), + "how do we know it's volatile if it's not loaded"); + volatile_field_store(value.result(), address, info); + } else { + LIR_PatchCode patch_code = needs_patching ? lir_patch_normal : lir_patch_none; + __ store(value.result(), address, info, patch_code); + } + + if (is_oop) { + post_barrier(object.result(), value.result()); + } + + if (is_volatile && os::is_MP()) { + __ membar(); + } +} + + +void LIRGenerator::do_LoadField(LoadField* x) { + bool needs_patching = x->needs_patching(); + bool is_volatile = x->field()->is_volatile(); + BasicType field_type = x->field_type(); + + CodeEmitInfo* info = NULL; + if (needs_patching) { + assert(x->explicit_null_check() == NULL, "can't fold null check into patching field access"); + info = state_for(x, x->state_before()); + } else if (x->needs_null_check()) { + NullCheck* nc = x->explicit_null_check(); + if (nc == NULL) { + info = state_for(x, x->lock_stack()); + } else { + info = state_for(nc); + } + } + + LIRItem object(x->obj(), this); + + object.load_item(); + + if (PrintNotLoaded && needs_patching) { + tty->print_cr(" ###class not loaded at load_%s bci %d", + x->is_static() ? "static" : "field", x->bci()); + } + + if (x->needs_null_check() && + (needs_patching || + MacroAssembler::needs_explicit_null_check(x->offset()))) { + // emit an explicit null check because the offset is too large + __ null_check(object.result(), new CodeEmitInfo(info)); + } + + LIR_Opr reg = rlock_result(x, field_type); + LIR_Address* address; + if (needs_patching) { + // we need to patch the offset in the instruction so don't allow + // generate_address to try to be smart about emitting the -1. + // Otherwise the patching code won't know how to find the + // instruction to patch. + address = new LIR_Address(object.result(), max_jint, field_type); + } else { + address = generate_address(object.result(), x->offset(), field_type); + } + + if (is_volatile) { + assert(!needs_patching && x->is_loaded(), + "how do we know it's volatile if it's not loaded"); + volatile_field_load(address, reg, info); + } else { + LIR_PatchCode patch_code = needs_patching ? lir_patch_normal : lir_patch_none; + __ load(address, reg, info, patch_code); + } + + if (is_volatile && os::is_MP()) { + __ membar_acquire(); + } +} + + +//------------------------java.nio.Buffer.checkIndex------------------------ + +// int java.nio.Buffer.checkIndex(int) +void LIRGenerator::do_NIOCheckIndex(Intrinsic* x) { + // NOTE: by the time we are in checkIndex() we are guaranteed that + // the buffer is non-null (because checkIndex is package-private and + // only called from within other methods in the buffer). + assert(x->number_of_arguments() == 2, "wrong type"); + LIRItem buf (x->argument_at(0), this); + LIRItem index(x->argument_at(1), this); + buf.load_item(); + index.load_item(); + + LIR_Opr result = rlock_result(x); + if (GenerateRangeChecks) { + CodeEmitInfo* info = state_for(x); + CodeStub* stub = new RangeCheckStub(info, index.result(), true); + if (index.result()->is_constant()) { + cmp_mem_int(lir_cond_belowEqual, buf.result(), java_nio_Buffer::limit_offset(), index.result()->as_jint(), info); + __ branch(lir_cond_belowEqual, T_INT, stub); + } else { + cmp_reg_mem(lir_cond_aboveEqual, index.result(), buf.result(), + java_nio_Buffer::limit_offset(), T_INT, info); + __ branch(lir_cond_aboveEqual, T_INT, stub); + } + __ move(index.result(), result); + } else { + // Just load the index into the result register + __ move(index.result(), result); + } +} + + +//------------------------array access-------------------------------------- + + +void LIRGenerator::do_ArrayLength(ArrayLength* x) { + LIRItem array(x->array(), this); + array.load_item(); + LIR_Opr reg = rlock_result(x); + + CodeEmitInfo* info = NULL; + if (x->needs_null_check()) { + NullCheck* nc = x->explicit_null_check(); + if (nc == NULL) { + info = state_for(x); + } else { + info = state_for(nc); + } + } + __ load(new LIR_Address(array.result(), arrayOopDesc::length_offset_in_bytes(), T_INT), reg, info, lir_patch_none); +} + + +void LIRGenerator::do_LoadIndexed(LoadIndexed* x) { + bool use_length = x->length() != NULL; + LIRItem array(x->array(), this); + LIRItem index(x->index(), this); + LIRItem length(this); + bool needs_range_check = true; + + if (use_length) { + needs_range_check = x->compute_needs_range_check(); + if (needs_range_check) { + length.set_instruction(x->length()); + length.load_item(); + } + } + + array.load_item(); + if (index.is_constant() && can_inline_as_constant(x->index())) { + // let it be a constant + index.dont_load_item(); + } else { + index.load_item(); + } + + CodeEmitInfo* range_check_info = state_for(x); + CodeEmitInfo* null_check_info = NULL; + if (x->needs_null_check()) { + NullCheck* nc = x->explicit_null_check(); + if (nc != NULL) { + null_check_info = state_for(nc); + } else { + null_check_info = range_check_info; + } + } + + // emit array address setup early so it schedules better + LIR_Address* array_addr = emit_array_address(array.result(), index.result(), x->elt_type(), false); + + if (GenerateRangeChecks && needs_range_check) { + if (use_length) { + // TODO: use a (modified) version of array_range_check that does not require a + // constant length to be loaded to a register + __ cmp(lir_cond_belowEqual, length.result(), index.result()); + __ branch(lir_cond_belowEqual, T_INT, new RangeCheckStub(range_check_info, index.result())); + } else { + array_range_check(array.result(), index.result(), null_check_info, range_check_info); + // The range check performs the null check, so clear it out for the load + null_check_info = NULL; + } + } + + __ move(array_addr, rlock_result(x, x->elt_type()), null_check_info); +} + + +void LIRGenerator::do_NullCheck(NullCheck* x) { + if (x->can_trap()) { + LIRItem value(x->obj(), this); + value.load_item(); + CodeEmitInfo* info = state_for(x); + __ null_check(value.result(), info); + } +} + + +void LIRGenerator::do_Throw(Throw* x) { + LIRItem exception(x->exception(), this); + exception.load_item(); + set_no_result(x); + LIR_Opr exception_opr = exception.result(); + CodeEmitInfo* info = state_for(x, x->state()); + +#ifndef PRODUCT + if (PrintC1Statistics) { + increment_counter(Runtime1::throw_count_address()); + } +#endif + + // check if the instruction has an xhandler in any of the nested scopes + bool unwind = false; + if (info->exception_handlers()->length() == 0) { + // this throw is not inside an xhandler + unwind = true; + } else { + // get some idea of the throw type + bool type_is_exact = true; + ciType* throw_type = x->exception()->exact_type(); + if (throw_type == NULL) { + type_is_exact = false; + throw_type = x->exception()->declared_type(); + } + if (throw_type != NULL && throw_type->is_instance_klass()) { + ciInstanceKlass* throw_klass = (ciInstanceKlass*)throw_type; + unwind = !x->exception_handlers()->could_catch(throw_klass, type_is_exact); + } + } + + // do null check before moving exception oop into fixed register + // to avoid a fixed interval with an oop during the null check. + // Use a copy of the CodeEmitInfo because debug information is + // different for null_check and throw. + if (GenerateCompilerNullChecks && + (x->exception()->as_NewInstance() == NULL && x->exception()->as_ExceptionObject() == NULL)) { + // if the exception object wasn't created using new then it might be null. + __ null_check(exception_opr, new CodeEmitInfo(info, true)); + } + + if (JvmtiExport::can_post_exceptions() && + !block()->is_set(BlockBegin::default_exception_handler_flag)) { + // we need to go through the exception lookup path to get JVMTI + // notification done + unwind = false; + } + + assert(!block()->is_set(BlockBegin::default_exception_handler_flag) || unwind, + "should be no more handlers to dispatch to"); + + if (DTraceMethodProbes && + block()->is_set(BlockBegin::default_exception_handler_flag)) { + // notify that this frame is unwinding + BasicTypeList signature; + signature.append(T_INT); // thread + signature.append(T_OBJECT); // methodOop + LIR_OprList* args = new LIR_OprList(); + args->append(getThreadPointer()); + LIR_Opr meth = new_register(T_OBJECT); + __ oop2reg(method()->encoding(), meth); + args->append(meth); + call_runtime(&signature, args, CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit), voidType, NULL); + } + + // move exception oop into fixed register + __ move(exception_opr, exceptionOopOpr()); + + if (unwind) { + __ unwind_exception(LIR_OprFact::illegalOpr, exceptionOopOpr(), info); + } else { + __ throw_exception(exceptionPcOpr(), exceptionOopOpr(), info); + } +} + + +void LIRGenerator::do_RoundFP(RoundFP* x) { + LIRItem input(x->input(), this); + input.load_item(); + LIR_Opr input_opr = input.result(); + assert(input_opr->is_register(), "why round if value is not in a register?"); + assert(input_opr->is_single_fpu() || input_opr->is_double_fpu(), "input should be floating-point value"); + if (input_opr->is_single_fpu()) { + set_result(x, round_item(input_opr)); // This code path not currently taken + } else { + LIR_Opr result = new_register(T_DOUBLE); + set_vreg_flag(result, must_start_in_memory); + __ roundfp(input_opr, LIR_OprFact::illegalOpr, result); + set_result(x, result); + } +} + +void LIRGenerator::do_UnsafeGetRaw(UnsafeGetRaw* x) { + LIRItem base(x->base(), this); + LIRItem idx(this); + + base.load_item(); + if (x->has_index()) { + idx.set_instruction(x->index()); + idx.load_nonconstant(); + } + + LIR_Opr reg = rlock_result(x, x->basic_type()); + + int log2_scale = 0; + if (x->has_index()) { + assert(x->index()->type()->tag() == intTag, "should not find non-int index"); + log2_scale = x->log2_scale(); + } + + assert(!x->has_index() || idx.value() == x->index(), "should match"); + + LIR_Opr base_op = base.result(); +#ifndef _LP64 + if (x->base()->type()->tag() == longTag) { + base_op = new_register(T_INT); + __ convert(Bytecodes::_l2i, base.result(), base_op); + } else { + assert(x->base()->type()->tag() == intTag, "must be"); + } +#endif + + BasicType dst_type = x->basic_type(); + LIR_Opr index_op = idx.result(); + + LIR_Address* addr; + if (index_op->is_constant()) { + assert(log2_scale == 0, "must not have a scale"); + addr = new LIR_Address(base_op, index_op->as_jint(), dst_type); + } else { +#ifdef IA32 + addr = new LIR_Address(base_op, index_op, LIR_Address::Scale(log2_scale), 0, dst_type); +#else + if (index_op->is_illegal() || log2_scale == 0) { + addr = new LIR_Address(base_op, index_op, dst_type); + } else { + LIR_Opr tmp = new_register(T_INT); + __ shift_left(index_op, log2_scale, tmp); + addr = new LIR_Address(base_op, tmp, dst_type); + } +#endif + } + + if (x->may_be_unaligned() && (dst_type == T_LONG || dst_type == T_DOUBLE)) { + __ unaligned_move(addr, reg); + } else { + __ move(addr, reg); + } +} + + +void LIRGenerator::do_UnsafePutRaw(UnsafePutRaw* x) { + int log2_scale = 0; + BasicType type = x->basic_type(); + + if (x->has_index()) { + assert(x->index()->type()->tag() == intTag, "should not find non-int index"); + log2_scale = x->log2_scale(); + } + + LIRItem base(x->base(), this); + LIRItem value(x->value(), this); + LIRItem idx(this); + + base.load_item(); + if (x->has_index()) { + idx.set_instruction(x->index()); + idx.load_item(); + } + + if (type == T_BYTE || type == T_BOOLEAN) { + value.load_byte_item(); + } else { + value.load_item(); + } + + set_no_result(x); + + LIR_Opr base_op = base.result(); +#ifndef _LP64 + if (x->base()->type()->tag() == longTag) { + base_op = new_register(T_INT); + __ convert(Bytecodes::_l2i, base.result(), base_op); + } else { + assert(x->base()->type()->tag() == intTag, "must be"); + } +#endif + + LIR_Opr index_op = idx.result(); + if (log2_scale != 0) { + // temporary fix (platform dependent code without shift on Intel would be better) + index_op = new_register(T_INT); + __ move(idx.result(), index_op); + __ shift_left(index_op, log2_scale, index_op); + } + + LIR_Address* addr = new LIR_Address(base_op, index_op, x->basic_type()); + __ move(value.result(), addr); +} + + +void LIRGenerator::do_UnsafeGetObject(UnsafeGetObject* x) { + BasicType type = x->basic_type(); + LIRItem src(x->object(), this); + LIRItem off(x->offset(), this); + + off.load_item(); + src.load_item(); + + LIR_Opr reg = reg = rlock_result(x, x->basic_type()); + + if (x->is_volatile() && os::is_MP()) __ membar_acquire(); + get_Object_unsafe(reg, src.result(), off.result(), type, x->is_volatile()); + if (x->is_volatile() && os::is_MP()) __ membar(); +} + + +void LIRGenerator::do_UnsafePutObject(UnsafePutObject* x) { + BasicType type = x->basic_type(); + LIRItem src(x->object(), this); + LIRItem off(x->offset(), this); + LIRItem data(x->value(), this); + + src.load_item(); + if (type == T_BOOLEAN || type == T_BYTE) { + data.load_byte_item(); + } else { + data.load_item(); + } + off.load_item(); + + set_no_result(x); + + if (x->is_volatile() && os::is_MP()) __ membar_release(); + put_Object_unsafe(src.result(), off.result(), data.result(), type, x->is_volatile()); +} + + +void LIRGenerator::do_UnsafePrefetch(UnsafePrefetch* x, bool is_store) { + LIRItem src(x->object(), this); + LIRItem off(x->offset(), this); + + src.load_item(); + if (off.is_constant() && can_inline_as_constant(x->offset())) { + // let it be a constant + off.dont_load_item(); + } else { + off.load_item(); + } + + set_no_result(x); + + LIR_Address* addr = generate_address(src.result(), off.result(), 0, 0, T_BYTE); + __ prefetch(addr, is_store); +} + + +void LIRGenerator::do_UnsafePrefetchRead(UnsafePrefetchRead* x) { + do_UnsafePrefetch(x, false); +} + + +void LIRGenerator::do_UnsafePrefetchWrite(UnsafePrefetchWrite* x) { + do_UnsafePrefetch(x, true); +} + + +void LIRGenerator::do_SwitchRanges(SwitchRangeArray* x, LIR_Opr value, BlockBegin* default_sux) { + int lng = x->length(); + + for (int i = 0; i < lng; i++) { + SwitchRange* one_range = x->at(i); + int low_key = one_range->low_key(); + int high_key = one_range->high_key(); + BlockBegin* dest = one_range->sux(); + if (low_key == high_key) { + __ cmp(lir_cond_equal, value, low_key); + __ branch(lir_cond_equal, T_INT, dest); + } else if (high_key - low_key == 1) { + __ cmp(lir_cond_equal, value, low_key); + __ branch(lir_cond_equal, T_INT, dest); + __ cmp(lir_cond_equal, value, high_key); + __ branch(lir_cond_equal, T_INT, dest); + } else { + LabelObj* L = new LabelObj(); + __ cmp(lir_cond_less, value, low_key); + __ branch(lir_cond_less, L->label()); + __ cmp(lir_cond_lessEqual, value, high_key); + __ branch(lir_cond_lessEqual, T_INT, dest); + __ branch_destination(L->label()); + } + } + __ jump(default_sux); +} + + +SwitchRangeArray* LIRGenerator::create_lookup_ranges(TableSwitch* x) { + SwitchRangeList* res = new SwitchRangeList(); + int len = x->length(); + if (len > 0) { + BlockBegin* sux = x->sux_at(0); + int key = x->lo_key(); + BlockBegin* default_sux = x->default_sux(); + SwitchRange* range = new SwitchRange(key, sux); + for (int i = 0; i < len; i++, key++) { + BlockBegin* new_sux = x->sux_at(i); + if (sux == new_sux) { + // still in same range + range->set_high_key(key); + } else { + // skip tests which explicitly dispatch to the default + if (sux != default_sux) { + res->append(range); + } + range = new SwitchRange(key, new_sux); + } + sux = new_sux; + } + if (res->length() == 0 || res->last() != range) res->append(range); + } + return res; +} + + +// we expect the keys to be sorted by increasing value +SwitchRangeArray* LIRGenerator::create_lookup_ranges(LookupSwitch* x) { + SwitchRangeList* res = new SwitchRangeList(); + int len = x->length(); + if (len > 0) { + BlockBegin* default_sux = x->default_sux(); + int key = x->key_at(0); + BlockBegin* sux = x->sux_at(0); + SwitchRange* range = new SwitchRange(key, sux); + for (int i = 1; i < len; i++) { + int new_key = x->key_at(i); + BlockBegin* new_sux = x->sux_at(i); + if (key+1 == new_key && sux == new_sux) { + // still in same range + range->set_high_key(new_key); + } else { + // skip tests which explicitly dispatch to the default + if (range->sux() != default_sux) { + res->append(range); + } + range = new SwitchRange(new_key, new_sux); + } + key = new_key; + sux = new_sux; + } + if (res->length() == 0 || res->last() != range) res->append(range); + } + return res; +} + + +void LIRGenerator::do_TableSwitch(TableSwitch* x) { + LIRItem tag(x->tag(), this); + tag.load_item(); + set_no_result(x); + + if (x->is_safepoint()) { + __ safepoint(safepoint_poll_register(), state_for(x, x->state_before())); + } + + // move values into phi locations + move_to_phi(x->state()); + + int lo_key = x->lo_key(); + int hi_key = x->hi_key(); + int len = x->length(); + CodeEmitInfo* info = state_for(x, x->state()); + LIR_Opr value = tag.result(); + if (UseTableRanges) { + do_SwitchRanges(create_lookup_ranges(x), value, x->default_sux()); + } else { + for (int i = 0; i < len; i++) { + __ cmp(lir_cond_equal, value, i + lo_key); + __ branch(lir_cond_equal, T_INT, x->sux_at(i)); + } + __ jump(x->default_sux()); + } +} + + +void LIRGenerator::do_LookupSwitch(LookupSwitch* x) { + LIRItem tag(x->tag(), this); + tag.load_item(); + set_no_result(x); + + if (x->is_safepoint()) { + __ safepoint(safepoint_poll_register(), state_for(x, x->state_before())); + } + + // move values into phi locations + move_to_phi(x->state()); + + LIR_Opr value = tag.result(); + if (UseTableRanges) { + do_SwitchRanges(create_lookup_ranges(x), value, x->default_sux()); + } else { + int len = x->length(); + for (int i = 0; i < len; i++) { + __ cmp(lir_cond_equal, value, x->key_at(i)); + __ branch(lir_cond_equal, T_INT, x->sux_at(i)); + } + __ jump(x->default_sux()); + } +} + + +void LIRGenerator::do_Goto(Goto* x) { + set_no_result(x); + + if (block()->next()->as_OsrEntry()) { + // need to free up storage used for OSR entry point + LIR_Opr osrBuffer = block()->next()->operand(); + BasicTypeList signature; + signature.append(T_INT); + CallingConvention* cc = frame_map()->c_calling_convention(&signature); + __ move(osrBuffer, cc->args()->at(0)); + __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_end), + getThreadTemp(), LIR_OprFact::illegalOpr, cc->args()); + } + + if (x->is_safepoint()) { + ValueStack* state = x->state_before() ? x->state_before() : x->state(); + + // increment backedge counter if needed + increment_backedge_counter(state_for(x, state)); + + CodeEmitInfo* safepoint_info = state_for(x, state); + __ safepoint(safepoint_poll_register(), safepoint_info); + } + + // emit phi-instruction move after safepoint since this simplifies + // describing the state as the safepoint. + move_to_phi(x->state()); + + __ jump(x->default_sux()); +} + + +void LIRGenerator::do_Base(Base* x) { + __ std_entry(LIR_OprFact::illegalOpr); + // Emit moves from physical registers / stack slots to virtual registers + CallingConvention* args = compilation()->frame_map()->incoming_arguments(); + IRScope* irScope = compilation()->hir()->top_scope(); + int java_index = 0; + for (int i = 0; i < args->length(); i++) { + LIR_Opr src = args->at(i); + assert(!src->is_illegal(), "check"); + BasicType t = src->type(); + + // Types which are smaller than int are passed as int, so + // correct the type which passed. + switch (t) { + case T_BYTE: + case T_BOOLEAN: + case T_SHORT: + case T_CHAR: + t = T_INT; + break; + } + + LIR_Opr dest = new_register(t); + __ move(src, dest); + + // Assign new location to Local instruction for this local + Local* local = x->state()->local_at(java_index)->as_Local(); + assert(local != NULL, "Locals for incoming arguments must have been created"); + assert(as_ValueType(t)->tag() == local->type()->tag(), "check"); + local->set_operand(dest); + _instruction_for_operand.at_put_grow(dest->vreg_number(), local, NULL); + java_index += type2size[t]; + } + + if (DTraceMethodProbes) { + BasicTypeList signature; + signature.append(T_INT); // thread + signature.append(T_OBJECT); // methodOop + LIR_OprList* args = new LIR_OprList(); + args->append(getThreadPointer()); + LIR_Opr meth = new_register(T_OBJECT); + __ oop2reg(method()->encoding(), meth); + args->append(meth); + call_runtime(&signature, args, CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry), voidType, NULL); + } + + if (method()->is_synchronized()) { + LIR_Opr obj; + if (method()->is_static()) { + obj = new_register(T_OBJECT); + __ oop2reg(method()->holder()->java_mirror()->encoding(), obj); + } else { + Local* receiver = x->state()->local_at(0)->as_Local(); + assert(receiver != NULL, "must already exist"); + obj = receiver->operand(); + } + assert(obj->is_valid(), "must be valid"); + + if (method()->is_synchronized() && GenerateSynchronizationCode) { + LIR_Opr lock = new_register(T_INT); + __ load_stack_address_monitor(0, lock); + + CodeEmitInfo* info = new CodeEmitInfo(SynchronizationEntryBCI, scope()->start()->state(), NULL); + CodeStub* slow_path = new MonitorEnterStub(obj, lock, info); + + // receiver is guaranteed non-NULL so don't need CodeEmitInfo + __ lock_object(syncTempOpr(), obj, lock, new_register(T_OBJECT), slow_path, NULL); + } + } + + // increment invocation counters if needed + increment_invocation_counter(new CodeEmitInfo(0, scope()->start()->state(), NULL)); + + // all blocks with a successor must end with an unconditional jump + // to the successor even if they are consecutive + __ jump(x->default_sux()); +} + + +void LIRGenerator::do_OsrEntry(OsrEntry* x) { + // construct our frame and model the production of incoming pointer + // to the OSR buffer. + __ osr_entry(LIR_Assembler::osrBufferPointer()); + LIR_Opr result = rlock_result(x); + __ move(LIR_Assembler::osrBufferPointer(), result); +} + + +void LIRGenerator::invoke_load_arguments(Invoke* x, LIRItemList* args, const LIR_OprList* arg_list) { + int i = x->has_receiver() ? 1 : 0; + for (; i < args->length(); i++) { + LIRItem* param = args->at(i); + LIR_Opr loc = arg_list->at(i); + if (loc->is_register()) { + param->load_item_force(loc); + } else { + LIR_Address* addr = loc->as_address_ptr(); + param->load_for_store(addr->type()); + if (addr->type() == T_LONG || addr->type() == T_DOUBLE) { + __ unaligned_move(param->result(), addr); + } else { + __ move(param->result(), addr); + } + } + } + + if (x->has_receiver()) { + LIRItem* receiver = args->at(0); + LIR_Opr loc = arg_list->at(0); + if (loc->is_register()) { + receiver->load_item_force(loc); + } else { + assert(loc->is_address(), "just checking"); + receiver->load_for_store(T_OBJECT); + __ move(receiver->result(), loc); + } + } +} + + +// Visits all arguments, returns appropriate items without loading them +LIRItemList* LIRGenerator::invoke_visit_arguments(Invoke* x) { + LIRItemList* argument_items = new LIRItemList(); + if (x->has_receiver()) { + LIRItem* receiver = new LIRItem(x->receiver(), this); + argument_items->append(receiver); + } + int idx = x->has_receiver() ? 1 : 0; + for (int i = 0; i < x->number_of_arguments(); i++) { + LIRItem* param = new LIRItem(x->argument_at(i), this); + argument_items->append(param); + idx += (param->type()->is_double_word() ? 2 : 1); + } + return argument_items; +} + + +// The invoke with receiver has following phases: +// a) traverse and load/lock receiver; +// b) traverse all arguments -> item-array (invoke_visit_argument) +// c) push receiver on stack +// d) load each of the items and push on stack +// e) unlock receiver +// f) move receiver into receiver-register %o0 +// g) lock result registers and emit call operation +// +// Before issuing a call, we must spill-save all values on stack +// that are in caller-save register. "spill-save" moves thos registers +// either in a free callee-save register or spills them if no free +// callee save register is available. +// +// The problem is where to invoke spill-save. +// - if invoked between e) and f), we may lock callee save +// register in "spill-save" that destroys the receiver register +// before f) is executed +// - if we rearange the f) to be earlier, by loading %o0, it +// may destroy a value on the stack that is currently in %o0 +// and is waiting to be spilled +// - if we keep the receiver locked while doing spill-save, +// we cannot spill it as it is spill-locked +// +void LIRGenerator::do_Invoke(Invoke* x) { + CallingConvention* cc = frame_map()->java_calling_convention(x->signature(), true); + + LIR_OprList* arg_list = cc->args(); + LIRItemList* args = invoke_visit_arguments(x); + LIR_Opr receiver = LIR_OprFact::illegalOpr; + + // setup result register + LIR_Opr result_register = LIR_OprFact::illegalOpr; + if (x->type() != voidType) { + result_register = result_register_for(x->type()); + } + + CodeEmitInfo* info = state_for(x, x->state()); + + invoke_load_arguments(x, args, arg_list); + + if (x->has_receiver()) { + args->at(0)->load_item_force(LIR_Assembler::receiverOpr()); + receiver = args->at(0)->result(); + } + + // emit invoke code + bool optimized = x->target_is_loaded() && x->target_is_final(); + assert(receiver->is_illegal() || receiver->is_equal(LIR_Assembler::receiverOpr()), "must match"); + + switch (x->code()) { + case Bytecodes::_invokestatic: + __ call_static(x->target(), result_register, + SharedRuntime::get_resolve_static_call_stub(), + arg_list, info); + break; + case Bytecodes::_invokespecial: + case Bytecodes::_invokevirtual: + case Bytecodes::_invokeinterface: + // for final target we still produce an inline cache, in order + // to be able to call mixed mode + if (x->code() == Bytecodes::_invokespecial || optimized) { + __ call_opt_virtual(x->target(), receiver, result_register, + SharedRuntime::get_resolve_opt_virtual_call_stub(), + arg_list, info); + } else if (x->vtable_index() < 0) { + __ call_icvirtual(x->target(), receiver, result_register, + SharedRuntime::get_resolve_virtual_call_stub(), + arg_list, info); + } else { + int entry_offset = instanceKlass::vtable_start_offset() + x->vtable_index() * vtableEntry::size(); + int vtable_offset = entry_offset * wordSize + vtableEntry::method_offset_in_bytes(); + __ call_virtual(x->target(), receiver, result_register, vtable_offset, arg_list, info); + } + break; + default: + ShouldNotReachHere(); + break; + } + + if (x->type()->is_float() || x->type()->is_double()) { + // Force rounding of results from non-strictfp when in strictfp + // scope (or when we don't know the strictness of the callee, to + // be safe.) + if (method()->is_strict()) { + if (!x->target_is_loaded() || !x->target_is_strictfp()) { + result_register = round_item(result_register); + } + } + } + + if (result_register->is_valid()) { + LIR_Opr result = rlock_result(x); + __ move(result_register, result); + } +} + + +void LIRGenerator::do_FPIntrinsics(Intrinsic* x) { + assert(x->number_of_arguments() == 1, "wrong type"); + LIRItem value (x->argument_at(0), this); + LIR_Opr reg = rlock_result(x); + value.load_item(); + LIR_Opr tmp = force_to_spill(value.result(), as_BasicType(x->type())); + __ move(tmp, reg); +} + + + +// Code for : x->x() {x->cond()} x->y() ? x->tval() : x->fval() +void LIRGenerator::do_IfOp(IfOp* x) { +#ifdef ASSERT + { + ValueTag xtag = x->x()->type()->tag(); + ValueTag ttag = x->tval()->type()->tag(); + assert(xtag == intTag || xtag == objectTag, "cannot handle others"); + assert(ttag == addressTag || ttag == intTag || ttag == objectTag || ttag == longTag, "cannot handle others"); + assert(ttag == x->fval()->type()->tag(), "cannot handle others"); + } +#endif + + LIRItem left(x->x(), this); + LIRItem right(x->y(), this); + left.load_item(); + if (can_inline_as_constant(right.value())) { + right.dont_load_item(); + } else { + right.load_item(); + } + + LIRItem t_val(x->tval(), this); + LIRItem f_val(x->fval(), this); + t_val.dont_load_item(); + f_val.dont_load_item(); + LIR_Opr reg = rlock_result(x); + + __ cmp(lir_cond(x->cond()), left.result(), right.result()); + __ cmove(lir_cond(x->cond()), t_val.result(), f_val.result(), reg); +} + + +void LIRGenerator::do_Intrinsic(Intrinsic* x) { + switch (x->id()) { + case vmIntrinsics::_intBitsToFloat : + case vmIntrinsics::_doubleToRawLongBits : + case vmIntrinsics::_longBitsToDouble : + case vmIntrinsics::_floatToRawIntBits : { + do_FPIntrinsics(x); + break; + } + + case vmIntrinsics::_currentTimeMillis: { + assert(x->number_of_arguments() == 0, "wrong type"); + LIR_Opr reg = result_register_for(x->type()); + __ call_runtime_leaf(CAST_FROM_FN_PTR(address, os::javaTimeMillis), getThreadTemp(), + reg, new LIR_OprList()); + LIR_Opr result = rlock_result(x); + __ move(reg, result); + break; + } + + case vmIntrinsics::_nanoTime: { + assert(x->number_of_arguments() == 0, "wrong type"); + LIR_Opr reg = result_register_for(x->type()); + __ call_runtime_leaf(CAST_FROM_FN_PTR(address, os::javaTimeNanos), getThreadTemp(), + reg, new LIR_OprList()); + LIR_Opr result = rlock_result(x); + __ move(reg, result); + break; + } + + case vmIntrinsics::_Object_init: do_RegisterFinalizer(x); break; + case vmIntrinsics::_getClass: do_getClass(x); break; + case vmIntrinsics::_currentThread: do_currentThread(x); break; + + case vmIntrinsics::_dlog: // fall through + case vmIntrinsics::_dlog10: // fall through + case vmIntrinsics::_dabs: // fall through + case vmIntrinsics::_dsqrt: // fall through + case vmIntrinsics::_dtan: // fall through + case vmIntrinsics::_dsin : // fall through + case vmIntrinsics::_dcos : do_MathIntrinsic(x); break; + case vmIntrinsics::_arraycopy: do_ArrayCopy(x); break; + + // java.nio.Buffer.checkIndex + case vmIntrinsics::_checkIndex: do_NIOCheckIndex(x); break; + + case vmIntrinsics::_compareAndSwapObject: + do_CompareAndSwap(x, objectType); + break; + case vmIntrinsics::_compareAndSwapInt: + do_CompareAndSwap(x, intType); + break; + case vmIntrinsics::_compareAndSwapLong: + do_CompareAndSwap(x, longType); + break; + + // sun.misc.AtomicLongCSImpl.attemptUpdate + case vmIntrinsics::_attemptUpdate: + do_AttemptUpdate(x); + break; + + default: ShouldNotReachHere(); break; + } +} + + +void LIRGenerator::do_ProfileCall(ProfileCall* x) { + // Need recv in a temporary register so it interferes with the other temporaries + LIR_Opr recv = LIR_OprFact::illegalOpr; + LIR_Opr mdo = new_register(T_OBJECT); + LIR_Opr tmp = new_register(T_INT); + if (x->recv() != NULL) { + LIRItem value(x->recv(), this); + value.load_item(); + recv = new_register(T_OBJECT); + __ move(value.result(), recv); + } + __ profile_call(x->method(), x->bci_of_invoke(), mdo, recv, tmp, x->known_holder()); +} + + +void LIRGenerator::do_ProfileCounter(ProfileCounter* x) { + LIRItem mdo(x->mdo(), this); + mdo.load_item(); + + increment_counter(new LIR_Address(mdo.result(), x->offset(), T_INT), x->increment()); +} + + +LIR_Opr LIRGenerator::call_runtime(Value arg1, address entry, ValueType* result_type, CodeEmitInfo* info) { + LIRItemList args(1); + LIRItem value(arg1, this); + args.append(&value); + BasicTypeList signature; + signature.append(as_BasicType(arg1->type())); + + return call_runtime(&signature, &args, entry, result_type, info); +} + + +LIR_Opr LIRGenerator::call_runtime(Value arg1, Value arg2, address entry, ValueType* result_type, CodeEmitInfo* info) { + LIRItemList args(2); + LIRItem value1(arg1, this); + LIRItem value2(arg2, this); + args.append(&value1); + args.append(&value2); + BasicTypeList signature; + signature.append(as_BasicType(arg1->type())); + signature.append(as_BasicType(arg2->type())); + + return call_runtime(&signature, &args, entry, result_type, info); +} + + +LIR_Opr LIRGenerator::call_runtime(BasicTypeArray* signature, LIR_OprList* args, + address entry, ValueType* result_type, CodeEmitInfo* info) { + // get a result register + LIR_Opr phys_reg = LIR_OprFact::illegalOpr; + LIR_Opr result = LIR_OprFact::illegalOpr; + if (result_type->tag() != voidTag) { + result = new_register(result_type); + phys_reg = result_register_for(result_type); + } + + // move the arguments into the correct location + CallingConvention* cc = frame_map()->c_calling_convention(signature); + assert(cc->length() == args->length(), "argument mismatch"); + for (int i = 0; i < args->length(); i++) { + LIR_Opr arg = args->at(i); + LIR_Opr loc = cc->at(i); + if (loc->is_register()) { + __ move(arg, loc); + } else { + LIR_Address* addr = loc->as_address_ptr(); +// if (!can_store_as_constant(arg)) { +// LIR_Opr tmp = new_register(arg->type()); +// __ move(arg, tmp); +// arg = tmp; +// } + if (addr->type() == T_LONG || addr->type() == T_DOUBLE) { + __ unaligned_move(arg, addr); + } else { + __ move(arg, addr); + } + } + } + + if (info) { + __ call_runtime(entry, getThreadTemp(), phys_reg, cc->args(), info); + } else { + __ call_runtime_leaf(entry, getThreadTemp(), phys_reg, cc->args()); + } + if (result->is_valid()) { + __ move(phys_reg, result); + } + return result; +} + + +LIR_Opr LIRGenerator::call_runtime(BasicTypeArray* signature, LIRItemList* args, + address entry, ValueType* result_type, CodeEmitInfo* info) { + // get a result register + LIR_Opr phys_reg = LIR_OprFact::illegalOpr; + LIR_Opr result = LIR_OprFact::illegalOpr; + if (result_type->tag() != voidTag) { + result = new_register(result_type); + phys_reg = result_register_for(result_type); + } + + // move the arguments into the correct location + CallingConvention* cc = frame_map()->c_calling_convention(signature); + + assert(cc->length() == args->length(), "argument mismatch"); + for (int i = 0; i < args->length(); i++) { + LIRItem* arg = args->at(i); + LIR_Opr loc = cc->at(i); + if (loc->is_register()) { + arg->load_item_force(loc); + } else { + LIR_Address* addr = loc->as_address_ptr(); + arg->load_for_store(addr->type()); + if (addr->type() == T_LONG || addr->type() == T_DOUBLE) { + __ unaligned_move(arg->result(), addr); + } else { + __ move(arg->result(), addr); + } + } + } + + if (info) { + __ call_runtime(entry, getThreadTemp(), phys_reg, cc->args(), info); + } else { + __ call_runtime_leaf(entry, getThreadTemp(), phys_reg, cc->args()); + } + if (result->is_valid()) { + __ move(phys_reg, result); + } + return result; +} + + + +void LIRGenerator::increment_invocation_counter(CodeEmitInfo* info, bool backedge) { +#ifdef TIERED + if (_compilation->env()->comp_level() == CompLevel_fast_compile && + (method()->code_size() >= Tier1BytecodeLimit || backedge)) { + int limit = InvocationCounter::Tier1InvocationLimit; + int offset = in_bytes(methodOopDesc::invocation_counter_offset() + + InvocationCounter::counter_offset()); + if (backedge) { + limit = InvocationCounter::Tier1BackEdgeLimit; + offset = in_bytes(methodOopDesc::backedge_counter_offset() + + InvocationCounter::counter_offset()); + } + + LIR_Opr meth = new_register(T_OBJECT); + __ oop2reg(method()->encoding(), meth); + LIR_Opr result = increment_and_return_counter(meth, offset, InvocationCounter::count_increment); + __ cmp(lir_cond_aboveEqual, result, LIR_OprFact::intConst(limit)); + CodeStub* overflow = new CounterOverflowStub(info, info->bci()); + __ branch(lir_cond_aboveEqual, T_INT, overflow); + __ branch_destination(overflow->continuation()); + } +#endif +}