diff -r 000000000000 -r a61af66fc99e src/cpu/x86/vm/assembler_x86_32.cpp --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/cpu/x86/vm/assembler_x86_32.cpp Sat Dec 01 00:00:00 2007 +0000 @@ -0,0 +1,4979 @@ +/* + * Copyright 1997-2007 Sun Microsystems, Inc. All Rights Reserved. + * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. + * + * This code is free software; you can redistribute it and/or modify it + * under the terms of the GNU General Public License version 2 only, as + * published by the Free Software Foundation. + * + * This code is distributed in the hope that it will be useful, but WITHOUT + * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or + * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License + * version 2 for more details (a copy is included in the LICENSE file that + * accompanied this code). + * + * You should have received a copy of the GNU General Public License version + * 2 along with this work; if not, write to the Free Software Foundation, + * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. + * + * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, + * CA 95054 USA or visit www.sun.com if you need additional information or + * have any questions. + * + */ + +#include "incls/_precompiled.incl" +#include "incls/_assembler_x86_32.cpp.incl" + +// Implementation of AddressLiteral + +AddressLiteral::AddressLiteral(address target, relocInfo::relocType rtype) { + _is_lval = false; + _target = target; + switch (rtype) { + case relocInfo::oop_type: + // Oops are a special case. Normally they would be their own section + // but in cases like icBuffer they are literals in the code stream that + // we don't have a section for. We use none so that we get a literal address + // which is always patchable. + break; + case relocInfo::external_word_type: + _rspec = external_word_Relocation::spec(target); + break; + case relocInfo::internal_word_type: + _rspec = internal_word_Relocation::spec(target); + break; + case relocInfo::opt_virtual_call_type: + _rspec = opt_virtual_call_Relocation::spec(); + break; + case relocInfo::static_call_type: + _rspec = static_call_Relocation::spec(); + break; + case relocInfo::runtime_call_type: + _rspec = runtime_call_Relocation::spec(); + break; + case relocInfo::poll_type: + case relocInfo::poll_return_type: + _rspec = Relocation::spec_simple(rtype); + break; + case relocInfo::none: + break; + default: + ShouldNotReachHere(); + break; + } +} + +// Implementation of Address + +Address Address::make_array(ArrayAddress adr) { +#ifdef _LP64 + // Not implementable on 64bit machines + // Should have been handled higher up the call chain. + ShouldNotReachHere(); +#else + AddressLiteral base = adr.base(); + Address index = adr.index(); + assert(index._disp == 0, "must not have disp"); // maybe it can? + Address array(index._base, index._index, index._scale, (intptr_t) base.target()); + array._rspec = base._rspec; + return array; +#endif // _LP64 +} + +#ifndef _LP64 + +// exceedingly dangerous constructor +Address::Address(address loc, RelocationHolder spec) { + _base = noreg; + _index = noreg; + _scale = no_scale; + _disp = (intptr_t) loc; + _rspec = spec; +} +#endif // _LP64 + +// Convert the raw encoding form into the form expected by the constructor for +// Address. An index of 4 (rsp) corresponds to having no index, so convert +// that to noreg for the Address constructor. +Address Address::make_raw(int base, int index, int scale, int disp) { + bool valid_index = index != rsp->encoding(); + if (valid_index) { + Address madr(as_Register(base), as_Register(index), (Address::ScaleFactor)scale, in_ByteSize(disp)); + return madr; + } else { + Address madr(as_Register(base), noreg, Address::no_scale, in_ByteSize(disp)); + return madr; + } +} + +// Implementation of Assembler + +int AbstractAssembler::code_fill_byte() { + return (u_char)'\xF4'; // hlt +} + +// make this go away someday +void Assembler::emit_data(jint data, relocInfo::relocType rtype, int format) { + if (rtype == relocInfo::none) + emit_long(data); + else emit_data(data, Relocation::spec_simple(rtype), format); +} + + +void Assembler::emit_data(jint data, RelocationHolder const& rspec, int format) { + assert(imm32_operand == 0, "default format must be imm32 in this file"); + assert(inst_mark() != NULL, "must be inside InstructionMark"); + if (rspec.type() != relocInfo::none) { + #ifdef ASSERT + check_relocation(rspec, format); + #endif + // Do not use AbstractAssembler::relocate, which is not intended for + // embedded words. Instead, relocate to the enclosing instruction. + + // hack. call32 is too wide for mask so use disp32 + if (format == call32_operand) + code_section()->relocate(inst_mark(), rspec, disp32_operand); + else + code_section()->relocate(inst_mark(), rspec, format); + } + emit_long(data); +} + + +void Assembler::emit_arith_b(int op1, int op2, Register dst, int imm8) { + assert(dst->has_byte_register(), "must have byte register"); + assert(isByte(op1) && isByte(op2), "wrong opcode"); + assert(isByte(imm8), "not a byte"); + assert((op1 & 0x01) == 0, "should be 8bit operation"); + emit_byte(op1); + emit_byte(op2 | dst->encoding()); + emit_byte(imm8); +} + + +void Assembler::emit_arith(int op1, int op2, Register dst, int imm32) { + assert(isByte(op1) && isByte(op2), "wrong opcode"); + assert((op1 & 0x01) == 1, "should be 32bit operation"); + assert((op1 & 0x02) == 0, "sign-extension bit should not be set"); + if (is8bit(imm32)) { + emit_byte(op1 | 0x02); // set sign bit + emit_byte(op2 | dst->encoding()); + emit_byte(imm32 & 0xFF); + } else { + emit_byte(op1); + emit_byte(op2 | dst->encoding()); + emit_long(imm32); + } +} + +// immediate-to-memory forms +void Assembler::emit_arith_operand(int op1, Register rm, Address adr, int imm32) { + assert((op1 & 0x01) == 1, "should be 32bit operation"); + assert((op1 & 0x02) == 0, "sign-extension bit should not be set"); + if (is8bit(imm32)) { + emit_byte(op1 | 0x02); // set sign bit + emit_operand(rm,adr); + emit_byte(imm32 & 0xFF); + } else { + emit_byte(op1); + emit_operand(rm,adr); + emit_long(imm32); + } +} + +void Assembler::emit_arith(int op1, int op2, Register dst, jobject obj) { + assert(isByte(op1) && isByte(op2), "wrong opcode"); + assert((op1 & 0x01) == 1, "should be 32bit operation"); + assert((op1 & 0x02) == 0, "sign-extension bit should not be set"); + InstructionMark im(this); + emit_byte(op1); + emit_byte(op2 | dst->encoding()); + emit_data((int)obj, relocInfo::oop_type, 0); +} + + +void Assembler::emit_arith(int op1, int op2, Register dst, Register src) { + assert(isByte(op1) && isByte(op2), "wrong opcode"); + emit_byte(op1); + emit_byte(op2 | dst->encoding() << 3 | src->encoding()); +} + + +void Assembler::emit_operand(Register reg, + Register base, + Register index, + Address::ScaleFactor scale, + int disp, + RelocationHolder const& rspec) { + + relocInfo::relocType rtype = (relocInfo::relocType) rspec.type(); + if (base->is_valid()) { + if (index->is_valid()) { + assert(scale != Address::no_scale, "inconsistent address"); + // [base + index*scale + disp] + if (disp == 0 && rtype == relocInfo::none && base != rbp) { + // [base + index*scale] + // [00 reg 100][ss index base] + assert(index != rsp, "illegal addressing mode"); + emit_byte(0x04 | reg->encoding() << 3); + emit_byte(scale << 6 | index->encoding() << 3 | base->encoding()); + } else if (is8bit(disp) && rtype == relocInfo::none) { + // [base + index*scale + imm8] + // [01 reg 100][ss index base] imm8 + assert(index != rsp, "illegal addressing mode"); + emit_byte(0x44 | reg->encoding() << 3); + emit_byte(scale << 6 | index->encoding() << 3 | base->encoding()); + emit_byte(disp & 0xFF); + } else { + // [base + index*scale + imm32] + // [10 reg 100][ss index base] imm32 + assert(index != rsp, "illegal addressing mode"); + emit_byte(0x84 | reg->encoding() << 3); + emit_byte(scale << 6 | index->encoding() << 3 | base->encoding()); + emit_data(disp, rspec, disp32_operand); + } + } else if (base == rsp) { + // [esp + disp] + if (disp == 0 && rtype == relocInfo::none) { + // [esp] + // [00 reg 100][00 100 100] + emit_byte(0x04 | reg->encoding() << 3); + emit_byte(0x24); + } else if (is8bit(disp) && rtype == relocInfo::none) { + // [esp + imm8] + // [01 reg 100][00 100 100] imm8 + emit_byte(0x44 | reg->encoding() << 3); + emit_byte(0x24); + emit_byte(disp & 0xFF); + } else { + // [esp + imm32] + // [10 reg 100][00 100 100] imm32 + emit_byte(0x84 | reg->encoding() << 3); + emit_byte(0x24); + emit_data(disp, rspec, disp32_operand); + } + } else { + // [base + disp] + assert(base != rsp, "illegal addressing mode"); + if (disp == 0 && rtype == relocInfo::none && base != rbp) { + // [base] + // [00 reg base] + assert(base != rbp, "illegal addressing mode"); + emit_byte(0x00 | reg->encoding() << 3 | base->encoding()); + } else if (is8bit(disp) && rtype == relocInfo::none) { + // [base + imm8] + // [01 reg base] imm8 + emit_byte(0x40 | reg->encoding() << 3 | base->encoding()); + emit_byte(disp & 0xFF); + } else { + // [base + imm32] + // [10 reg base] imm32 + emit_byte(0x80 | reg->encoding() << 3 | base->encoding()); + emit_data(disp, rspec, disp32_operand); + } + } + } else { + if (index->is_valid()) { + assert(scale != Address::no_scale, "inconsistent address"); + // [index*scale + disp] + // [00 reg 100][ss index 101] imm32 + assert(index != rsp, "illegal addressing mode"); + emit_byte(0x04 | reg->encoding() << 3); + emit_byte(scale << 6 | index->encoding() << 3 | 0x05); + emit_data(disp, rspec, disp32_operand); + } else { + // [disp] + // [00 reg 101] imm32 + emit_byte(0x05 | reg->encoding() << 3); + emit_data(disp, rspec, disp32_operand); + } + } +} + +// Secret local extension to Assembler::WhichOperand: +#define end_pc_operand (_WhichOperand_limit) + +address Assembler::locate_operand(address inst, WhichOperand which) { + // Decode the given instruction, and return the address of + // an embedded 32-bit operand word. + + // If "which" is disp32_operand, selects the displacement portion + // of an effective address specifier. + // If "which" is imm32_operand, selects the trailing immediate constant. + // If "which" is call32_operand, selects the displacement of a call or jump. + // Caller is responsible for ensuring that there is such an operand, + // and that it is 32 bits wide. + + // If "which" is end_pc_operand, find the end of the instruction. + + address ip = inst; + + debug_only(bool has_imm32 = false); + int tail_size = 0; // other random bytes (#32, #16, etc.) at end of insn + + again_after_prefix: + switch (0xFF & *ip++) { + + // These convenience macros generate groups of "case" labels for the switch. + #define REP4(x) (x)+0: case (x)+1: case (x)+2: case (x)+3 + #define REP8(x) (x)+0: case (x)+1: case (x)+2: case (x)+3: \ + case (x)+4: case (x)+5: case (x)+6: case (x)+7 + #define REP16(x) REP8((x)+0): \ + case REP8((x)+8) + + case CS_segment: + case SS_segment: + case DS_segment: + case ES_segment: + case FS_segment: + case GS_segment: + assert(ip == inst+1, "only one prefix allowed"); + goto again_after_prefix; + + case 0xFF: // pushl a; decl a; incl a; call a; jmp a + case 0x88: // movb a, r + case 0x89: // movl a, r + case 0x8A: // movb r, a + case 0x8B: // movl r, a + case 0x8F: // popl a + break; + + case 0x68: // pushl #32(oop?) + if (which == end_pc_operand) return ip + 4; + assert(which == imm32_operand, "pushl has no disp32"); + return ip; // not produced by emit_operand + + case 0x66: // movw ... (size prefix) + switch (0xFF & *ip++) { + case 0x8B: // movw r, a + case 0x89: // movw a, r + break; + case 0xC7: // movw a, #16 + tail_size = 2; // the imm16 + break; + case 0x0F: // several SSE/SSE2 variants + ip--; // reparse the 0x0F + goto again_after_prefix; + default: + ShouldNotReachHere(); + } + break; + + case REP8(0xB8): // movl r, #32(oop?) + if (which == end_pc_operand) return ip + 4; + assert(which == imm32_operand || which == disp32_operand, ""); + return ip; + + case 0x69: // imul r, a, #32 + case 0xC7: // movl a, #32(oop?) + tail_size = 4; + debug_only(has_imm32 = true); // has both kinds of operands! + break; + + case 0x0F: // movx..., etc. + switch (0xFF & *ip++) { + case 0x12: // movlps + case 0x28: // movaps + case 0x2E: // ucomiss + case 0x2F: // comiss + case 0x54: // andps + case 0x55: // andnps + case 0x56: // orps + case 0x57: // xorps + case 0x6E: // movd + case 0x7E: // movd + case 0xAE: // ldmxcsr a + // amd side says it these have both operands but that doesn't + // appear to be true. + // debug_only(has_imm32 = true); // has both kinds of operands! + break; + + case 0xAD: // shrd r, a, %cl + case 0xAF: // imul r, a + case 0xBE: // movsxb r, a + case 0xBF: // movsxw r, a + case 0xB6: // movzxb r, a + case 0xB7: // movzxw r, a + case REP16(0x40): // cmovl cc, r, a + case 0xB0: // cmpxchgb + case 0xB1: // cmpxchg + case 0xC1: // xaddl + case 0xC7: // cmpxchg8 + case REP16(0x90): // setcc a + // fall out of the switch to decode the address + break; + case 0xAC: // shrd r, a, #8 + tail_size = 1; // the imm8 + break; + case REP16(0x80): // jcc rdisp32 + if (which == end_pc_operand) return ip + 4; + assert(which == call32_operand, "jcc has no disp32 or imm32"); + return ip; + default: + ShouldNotReachHere(); + } + break; + + case 0x81: // addl a, #32; addl r, #32 + // also: orl, adcl, sbbl, andl, subl, xorl, cmpl + // in the case of cmpl, the imm32 might be an oop + tail_size = 4; + debug_only(has_imm32 = true); // has both kinds of operands! + break; + + case 0x85: // test r/m, r + break; + + case 0x83: // addl a, #8; addl r, #8 + // also: orl, adcl, sbbl, andl, subl, xorl, cmpl + tail_size = 1; + break; + + case 0x9B: + switch (0xFF & *ip++) { + case 0xD9: // fnstcw a + break; + default: + ShouldNotReachHere(); + } + break; + + case REP4(0x00): // addb a, r; addl a, r; addb r, a; addl r, a + case REP4(0x10): // adc... + case REP4(0x20): // and... + case REP4(0x30): // xor... + case REP4(0x08): // or... + case REP4(0x18): // sbb... + case REP4(0x28): // sub... + case REP4(0x38): // cmp... + case 0xF7: // mull a + case 0x8D: // leal r, a + case 0x87: // xchg r, a + break; + + case 0xC1: // sal a, #8; sar a, #8; shl a, #8; shr a, #8 + case 0xC6: // movb a, #8 + case 0x80: // cmpb a, #8 + case 0x6B: // imul r, a, #8 + tail_size = 1; // the imm8 + break; + + case 0xE8: // call rdisp32 + case 0xE9: // jmp rdisp32 + if (which == end_pc_operand) return ip + 4; + assert(which == call32_operand, "call has no disp32 or imm32"); + return ip; + + case 0xD1: // sal a, 1; sar a, 1; shl a, 1; shr a, 1 + case 0xD3: // sal a, %cl; sar a, %cl; shl a, %cl; shr a, %cl + case 0xD9: // fld_s a; fst_s a; fstp_s a; fldcw a + case 0xDD: // fld_d a; fst_d a; fstp_d a + case 0xDB: // fild_s a; fistp_s a; fld_x a; fstp_x a + case 0xDF: // fild_d a; fistp_d a + case 0xD8: // fadd_s a; fsubr_s a; fmul_s a; fdivr_s a; fcomp_s a + case 0xDC: // fadd_d a; fsubr_d a; fmul_d a; fdivr_d a; fcomp_d a + case 0xDE: // faddp_d a; fsubrp_d a; fmulp_d a; fdivrp_d a; fcompp_d a + break; + + case 0xF3: // For SSE + case 0xF2: // For SSE2 + ip++; ip++; + break; + + default: + ShouldNotReachHere(); + + #undef REP8 + #undef REP16 + } + + assert(which != call32_operand, "instruction is not a call, jmp, or jcc"); + assert(which != imm32_operand || has_imm32, "instruction has no imm32 field"); + + // parse the output of emit_operand + int op2 = 0xFF & *ip++; + int base = op2 & 0x07; + int op3 = -1; + const int b100 = 4; + const int b101 = 5; + if (base == b100 && (op2 >> 6) != 3) { + op3 = 0xFF & *ip++; + base = op3 & 0x07; // refetch the base + } + // now ip points at the disp (if any) + + switch (op2 >> 6) { + case 0: + // [00 reg 100][ss index base] + // [00 reg 100][00 100 rsp] + // [00 reg base] + // [00 reg 100][ss index 101][disp32] + // [00 reg 101] [disp32] + + if (base == b101) { + if (which == disp32_operand) + return ip; // caller wants the disp32 + ip += 4; // skip the disp32 + } + break; + + case 1: + // [01 reg 100][ss index base][disp8] + // [01 reg 100][00 100 rsp][disp8] + // [01 reg base] [disp8] + ip += 1; // skip the disp8 + break; + + case 2: + // [10 reg 100][ss index base][disp32] + // [10 reg 100][00 100 rsp][disp32] + // [10 reg base] [disp32] + if (which == disp32_operand) + return ip; // caller wants the disp32 + ip += 4; // skip the disp32 + break; + + case 3: + // [11 reg base] (not a memory addressing mode) + break; + } + + if (which == end_pc_operand) { + return ip + tail_size; + } + + assert(which == imm32_operand, "instruction has only an imm32 field"); + return ip; +} + +address Assembler::locate_next_instruction(address inst) { + // Secretly share code with locate_operand: + return locate_operand(inst, end_pc_operand); +} + + +#ifdef ASSERT +void Assembler::check_relocation(RelocationHolder const& rspec, int format) { + address inst = inst_mark(); + assert(inst != NULL && inst < pc(), "must point to beginning of instruction"); + address opnd; + + Relocation* r = rspec.reloc(); + if (r->type() == relocInfo::none) { + return; + } else if (r->is_call() || format == call32_operand) { + // assert(format == imm32_operand, "cannot specify a nonzero format"); + opnd = locate_operand(inst, call32_operand); + } else if (r->is_data()) { + assert(format == imm32_operand || format == disp32_operand, "format ok"); + opnd = locate_operand(inst, (WhichOperand)format); + } else { + assert(format == imm32_operand, "cannot specify a format"); + return; + } + assert(opnd == pc(), "must put operand where relocs can find it"); +} +#endif + + + +void Assembler::emit_operand(Register reg, Address adr) { + emit_operand(reg, adr._base, adr._index, adr._scale, adr._disp, adr._rspec); +} + + +void Assembler::emit_farith(int b1, int b2, int i) { + assert(isByte(b1) && isByte(b2), "wrong opcode"); + assert(0 <= i && i < 8, "illegal stack offset"); + emit_byte(b1); + emit_byte(b2 + i); +} + + +void Assembler::pushad() { + emit_byte(0x60); +} + +void Assembler::popad() { + emit_byte(0x61); +} + +void Assembler::pushfd() { + emit_byte(0x9C); +} + +void Assembler::popfd() { + emit_byte(0x9D); +} + +void Assembler::pushl(int imm32) { + emit_byte(0x68); + emit_long(imm32); +} + +#ifndef _LP64 +void Assembler::push_literal32(int32_t imm32, RelocationHolder const& rspec) { + InstructionMark im(this); + emit_byte(0x68); + emit_data(imm32, rspec, 0); +} +#endif // _LP64 + +void Assembler::pushl(Register src) { + emit_byte(0x50 | src->encoding()); +} + + +void Assembler::pushl(Address src) { + InstructionMark im(this); + emit_byte(0xFF); + emit_operand(rsi, src); +} + +void Assembler::popl(Register dst) { + emit_byte(0x58 | dst->encoding()); +} + + +void Assembler::popl(Address dst) { + InstructionMark im(this); + emit_byte(0x8F); + emit_operand(rax, dst); +} + + +void Assembler::prefix(Prefix p) { + a_byte(p); +} + + +void Assembler::movb(Register dst, Address src) { + assert(dst->has_byte_register(), "must have byte register"); + InstructionMark im(this); + emit_byte(0x8A); + emit_operand(dst, src); +} + + +void Assembler::movb(Address dst, int imm8) { + InstructionMark im(this); + emit_byte(0xC6); + emit_operand(rax, dst); + emit_byte(imm8); +} + + +void Assembler::movb(Address dst, Register src) { + assert(src->has_byte_register(), "must have byte register"); + InstructionMark im(this); + emit_byte(0x88); + emit_operand(src, dst); +} + + +void Assembler::movw(Address dst, int imm16) { + InstructionMark im(this); + + emit_byte(0x66); // switch to 16-bit mode + emit_byte(0xC7); + emit_operand(rax, dst); + emit_word(imm16); +} + + +void Assembler::movw(Register dst, Address src) { + InstructionMark im(this); + emit_byte(0x66); + emit_byte(0x8B); + emit_operand(dst, src); +} + + +void Assembler::movw(Address dst, Register src) { + InstructionMark im(this); + emit_byte(0x66); + emit_byte(0x89); + emit_operand(src, dst); +} + + +void Assembler::movl(Register dst, int imm32) { + emit_byte(0xB8 | dst->encoding()); + emit_long(imm32); +} + +#ifndef _LP64 +void Assembler::mov_literal32(Register dst, int32_t imm32, RelocationHolder const& rspec) { + + InstructionMark im(this); + emit_byte(0xB8 | dst->encoding()); + emit_data((int)imm32, rspec, 0); +} +#endif // _LP64 + +void Assembler::movl(Register dst, Register src) { + emit_byte(0x8B); + emit_byte(0xC0 | (dst->encoding() << 3) | src->encoding()); +} + + +void Assembler::movl(Register dst, Address src) { + InstructionMark im(this); + emit_byte(0x8B); + emit_operand(dst, src); +} + + +void Assembler::movl(Address dst, int imm32) { + InstructionMark im(this); + emit_byte(0xC7); + emit_operand(rax, dst); + emit_long(imm32); +} + +#ifndef _LP64 +void Assembler::mov_literal32(Address dst, int32_t imm32, RelocationHolder const& rspec) { + InstructionMark im(this); + emit_byte(0xC7); + emit_operand(rax, dst); + emit_data((int)imm32, rspec, 0); +} +#endif // _LP64 + +void Assembler::movl(Address dst, Register src) { + InstructionMark im(this); + emit_byte(0x89); + emit_operand(src, dst); +} + +void Assembler::movsxb(Register dst, Address src) { + InstructionMark im(this); + emit_byte(0x0F); + emit_byte(0xBE); + emit_operand(dst, src); +} + +void Assembler::movsxb(Register dst, Register src) { + assert(src->has_byte_register(), "must have byte register"); + emit_byte(0x0F); + emit_byte(0xBE); + emit_byte(0xC0 | (dst->encoding() << 3) | src->encoding()); +} + + +void Assembler::movsxw(Register dst, Address src) { + InstructionMark im(this); + emit_byte(0x0F); + emit_byte(0xBF); + emit_operand(dst, src); +} + + +void Assembler::movsxw(Register dst, Register src) { + emit_byte(0x0F); + emit_byte(0xBF); + emit_byte(0xC0 | (dst->encoding() << 3) | src->encoding()); +} + + +void Assembler::movzxb(Register dst, Address src) { + InstructionMark im(this); + emit_byte(0x0F); + emit_byte(0xB6); + emit_operand(dst, src); +} + + +void Assembler::movzxb(Register dst, Register src) { + assert(src->has_byte_register(), "must have byte register"); + emit_byte(0x0F); + emit_byte(0xB6); + emit_byte(0xC0 | (dst->encoding() << 3) | src->encoding()); +} + + +void Assembler::movzxw(Register dst, Address src) { + InstructionMark im(this); + emit_byte(0x0F); + emit_byte(0xB7); + emit_operand(dst, src); +} + + +void Assembler::movzxw(Register dst, Register src) { + emit_byte(0x0F); + emit_byte(0xB7); + emit_byte(0xC0 | (dst->encoding() << 3) | src->encoding()); +} + + +void Assembler::cmovl(Condition cc, Register dst, Register src) { + guarantee(VM_Version::supports_cmov(), "illegal instruction"); + emit_byte(0x0F); + emit_byte(0x40 | cc); + emit_byte(0xC0 | (dst->encoding() << 3) | src->encoding()); +} + + +void Assembler::cmovl(Condition cc, Register dst, Address src) { + guarantee(VM_Version::supports_cmov(), "illegal instruction"); + // The code below seems to be wrong - however the manual is inconclusive + // do not use for now (remember to enable all callers when fixing this) + Unimplemented(); + // wrong bytes? + InstructionMark im(this); + emit_byte(0x0F); + emit_byte(0x40 | cc); + emit_operand(dst, src); +} + + +void Assembler::prefetcht0(Address src) { + assert(VM_Version::supports_sse(), "must support"); + InstructionMark im(this); + emit_byte(0x0F); + emit_byte(0x18); + emit_operand(rcx, src); // 1, src +} + + +void Assembler::prefetcht1(Address src) { + assert(VM_Version::supports_sse(), "must support"); + InstructionMark im(this); + emit_byte(0x0F); + emit_byte(0x18); + emit_operand(rdx, src); // 2, src +} + + +void Assembler::prefetcht2(Address src) { + assert(VM_Version::supports_sse(), "must support"); + InstructionMark im(this); + emit_byte(0x0F); + emit_byte(0x18); + emit_operand(rbx, src); // 3, src +} + + +void Assembler::prefetchnta(Address src) { + assert(VM_Version::supports_sse2(), "must support"); + InstructionMark im(this); + emit_byte(0x0F); + emit_byte(0x18); + emit_operand(rax, src); // 0, src +} + + +void Assembler::prefetchw(Address src) { + assert(VM_Version::supports_3dnow(), "must support"); + InstructionMark im(this); + emit_byte(0x0F); + emit_byte(0x0D); + emit_operand(rcx, src); // 1, src +} + + +void Assembler::prefetchr(Address src) { + assert(VM_Version::supports_3dnow(), "must support"); + InstructionMark im(this); + emit_byte(0x0F); + emit_byte(0x0D); + emit_operand(rax, src); // 0, src +} + + +void Assembler::adcl(Register dst, int imm32) { + emit_arith(0x81, 0xD0, dst, imm32); +} + + +void Assembler::adcl(Register dst, Address src) { + InstructionMark im(this); + emit_byte(0x13); + emit_operand(dst, src); +} + + +void Assembler::adcl(Register dst, Register src) { + emit_arith(0x13, 0xC0, dst, src); +} + + +void Assembler::addl(Address dst, int imm32) { + InstructionMark im(this); + emit_arith_operand(0x81,rax,dst,imm32); +} + + +void Assembler::addl(Address dst, Register src) { + InstructionMark im(this); + emit_byte(0x01); + emit_operand(src, dst); +} + + +void Assembler::addl(Register dst, int imm32) { + emit_arith(0x81, 0xC0, dst, imm32); +} + + +void Assembler::addl(Register dst, Address src) { + InstructionMark im(this); + emit_byte(0x03); + emit_operand(dst, src); +} + + +void Assembler::addl(Register dst, Register src) { + emit_arith(0x03, 0xC0, dst, src); +} + + +void Assembler::andl(Register dst, int imm32) { + emit_arith(0x81, 0xE0, dst, imm32); +} + + +void Assembler::andl(Register dst, Address src) { + InstructionMark im(this); + emit_byte(0x23); + emit_operand(dst, src); +} + + +void Assembler::andl(Register dst, Register src) { + emit_arith(0x23, 0xC0, dst, src); +} + + +void Assembler::cmpb(Address dst, int imm8) { + InstructionMark im(this); + emit_byte(0x80); + emit_operand(rdi, dst); + emit_byte(imm8); +} + +void Assembler::cmpw(Address dst, int imm16) { + InstructionMark im(this); + emit_byte(0x66); + emit_byte(0x81); + emit_operand(rdi, dst); + emit_word(imm16); +} + +void Assembler::cmpl(Address dst, int imm32) { + InstructionMark im(this); + emit_byte(0x81); + emit_operand(rdi, dst); + emit_long(imm32); +} + +#ifndef _LP64 +void Assembler::cmp_literal32(Register src1, int32_t imm32, RelocationHolder const& rspec) { + InstructionMark im(this); + emit_byte(0x81); + emit_byte(0xF8 | src1->encoding()); + emit_data(imm32, rspec, 0); +} + +void Assembler::cmp_literal32(Address src1, int32_t imm32, RelocationHolder const& rspec) { + InstructionMark im(this); + emit_byte(0x81); + emit_operand(rdi, src1); + emit_data(imm32, rspec, 0); +} +#endif // _LP64 + + +void Assembler::cmpl(Register dst, int imm32) { + emit_arith(0x81, 0xF8, dst, imm32); +} + + +void Assembler::cmpl(Register dst, Register src) { + emit_arith(0x3B, 0xC0, dst, src); +} + + +void Assembler::cmpl(Register dst, Address src) { + InstructionMark im(this); + emit_byte(0x3B); + emit_operand(dst, src); +} + + +void Assembler::decl(Register dst) { + // Don't use it directly. Use MacroAssembler::decrement() instead. + emit_byte(0x48 | dst->encoding()); +} + + +void Assembler::decl(Address dst) { + // Don't use it directly. Use MacroAssembler::decrement() instead. + InstructionMark im(this); + emit_byte(0xFF); + emit_operand(rcx, dst); +} + + +void Assembler::idivl(Register src) { + emit_byte(0xF7); + emit_byte(0xF8 | src->encoding()); +} + + +void Assembler::cdql() { + emit_byte(0x99); +} + + +void Assembler::imull(Register dst, Register src) { + emit_byte(0x0F); + emit_byte(0xAF); + emit_byte(0xC0 | dst->encoding() << 3 | src->encoding()); +} + + +void Assembler::imull(Register dst, Register src, int value) { + if (is8bit(value)) { + emit_byte(0x6B); + emit_byte(0xC0 | dst->encoding() << 3 | src->encoding()); + emit_byte(value); + } else { + emit_byte(0x69); + emit_byte(0xC0 | dst->encoding() << 3 | src->encoding()); + emit_long(value); + } +} + + +void Assembler::incl(Register dst) { + // Don't use it directly. Use MacroAssembler::increment() instead. + emit_byte(0x40 | dst->encoding()); +} + + +void Assembler::incl(Address dst) { + // Don't use it directly. Use MacroAssembler::increment() instead. + InstructionMark im(this); + emit_byte(0xFF); + emit_operand(rax, dst); +} + + +void Assembler::leal(Register dst, Address src) { + InstructionMark im(this); + emit_byte(0x8D); + emit_operand(dst, src); +} + +void Assembler::mull(Address src) { + InstructionMark im(this); + emit_byte(0xF7); + emit_operand(rsp, src); +} + + +void Assembler::mull(Register src) { + emit_byte(0xF7); + emit_byte(0xE0 | src->encoding()); +} + + +void Assembler::negl(Register dst) { + emit_byte(0xF7); + emit_byte(0xD8 | dst->encoding()); +} + + +void Assembler::notl(Register dst) { + emit_byte(0xF7); + emit_byte(0xD0 | dst->encoding()); +} + + +void Assembler::orl(Address dst, int imm32) { + InstructionMark im(this); + emit_byte(0x81); + emit_operand(rcx, dst); + emit_long(imm32); +} + +void Assembler::orl(Register dst, int imm32) { + emit_arith(0x81, 0xC8, dst, imm32); +} + + +void Assembler::orl(Register dst, Address src) { + InstructionMark im(this); + emit_byte(0x0B); + emit_operand(dst, src); +} + + +void Assembler::orl(Register dst, Register src) { + emit_arith(0x0B, 0xC0, dst, src); +} + + +void Assembler::rcll(Register dst, int imm8) { + assert(isShiftCount(imm8), "illegal shift count"); + if (imm8 == 1) { + emit_byte(0xD1); + emit_byte(0xD0 | dst->encoding()); + } else { + emit_byte(0xC1); + emit_byte(0xD0 | dst->encoding()); + emit_byte(imm8); + } +} + + +void Assembler::sarl(Register dst, int imm8) { + assert(isShiftCount(imm8), "illegal shift count"); + if (imm8 == 1) { + emit_byte(0xD1); + emit_byte(0xF8 | dst->encoding()); + } else { + emit_byte(0xC1); + emit_byte(0xF8 | dst->encoding()); + emit_byte(imm8); + } +} + + +void Assembler::sarl(Register dst) { + emit_byte(0xD3); + emit_byte(0xF8 | dst->encoding()); +} + + +void Assembler::sbbl(Address dst, int imm32) { + InstructionMark im(this); + emit_arith_operand(0x81,rbx,dst,imm32); +} + + +void Assembler::sbbl(Register dst, int imm32) { + emit_arith(0x81, 0xD8, dst, imm32); +} + + +void Assembler::sbbl(Register dst, Address src) { + InstructionMark im(this); + emit_byte(0x1B); + emit_operand(dst, src); +} + + +void Assembler::sbbl(Register dst, Register src) { + emit_arith(0x1B, 0xC0, dst, src); +} + + +void Assembler::shldl(Register dst, Register src) { + emit_byte(0x0F); + emit_byte(0xA5); + emit_byte(0xC0 | src->encoding() << 3 | dst->encoding()); +} + + +void Assembler::shll(Register dst, int imm8) { + assert(isShiftCount(imm8), "illegal shift count"); + if (imm8 == 1 ) { + emit_byte(0xD1); + emit_byte(0xE0 | dst->encoding()); + } else { + emit_byte(0xC1); + emit_byte(0xE0 | dst->encoding()); + emit_byte(imm8); + } +} + + +void Assembler::shll(Register dst) { + emit_byte(0xD3); + emit_byte(0xE0 | dst->encoding()); +} + + +void Assembler::shrdl(Register dst, Register src) { + emit_byte(0x0F); + emit_byte(0xAD); + emit_byte(0xC0 | src->encoding() << 3 | dst->encoding()); +} + + +void Assembler::shrl(Register dst, int imm8) { + assert(isShiftCount(imm8), "illegal shift count"); + emit_byte(0xC1); + emit_byte(0xE8 | dst->encoding()); + emit_byte(imm8); +} + + +void Assembler::shrl(Register dst) { + emit_byte(0xD3); + emit_byte(0xE8 | dst->encoding()); +} + + +void Assembler::subl(Address dst, int imm32) { + if (is8bit(imm32)) { + InstructionMark im(this); + emit_byte(0x83); + emit_operand(rbp, dst); + emit_byte(imm32 & 0xFF); + } else { + InstructionMark im(this); + emit_byte(0x81); + emit_operand(rbp, dst); + emit_long(imm32); + } +} + + +void Assembler::subl(Register dst, int imm32) { + emit_arith(0x81, 0xE8, dst, imm32); +} + + +void Assembler::subl(Address dst, Register src) { + InstructionMark im(this); + emit_byte(0x29); + emit_operand(src, dst); +} + + +void Assembler::subl(Register dst, Address src) { + InstructionMark im(this); + emit_byte(0x2B); + emit_operand(dst, src); +} + + +void Assembler::subl(Register dst, Register src) { + emit_arith(0x2B, 0xC0, dst, src); +} + + +void Assembler::testb(Register dst, int imm8) { + assert(dst->has_byte_register(), "must have byte register"); + emit_arith_b(0xF6, 0xC0, dst, imm8); +} + + +void Assembler::testl(Register dst, int imm32) { + // not using emit_arith because test + // doesn't support sign-extension of + // 8bit operands + if (dst->encoding() == 0) { + emit_byte(0xA9); + } else { + emit_byte(0xF7); + emit_byte(0xC0 | dst->encoding()); + } + emit_long(imm32); +} + + +void Assembler::testl(Register dst, Register src) { + emit_arith(0x85, 0xC0, dst, src); +} + +void Assembler::testl(Register dst, Address src) { + InstructionMark im(this); + emit_byte(0x85); + emit_operand(dst, src); +} + +void Assembler::xaddl(Address dst, Register src) { + InstructionMark im(this); + emit_byte(0x0F); + emit_byte(0xC1); + emit_operand(src, dst); +} + +void Assembler::xorl(Register dst, int imm32) { + emit_arith(0x81, 0xF0, dst, imm32); +} + + +void Assembler::xorl(Register dst, Address src) { + InstructionMark im(this); + emit_byte(0x33); + emit_operand(dst, src); +} + + +void Assembler::xorl(Register dst, Register src) { + emit_arith(0x33, 0xC0, dst, src); +} + + +void Assembler::bswap(Register reg) { + emit_byte(0x0F); + emit_byte(0xC8 | reg->encoding()); +} + + +void Assembler::lock() { + if (Atomics & 1) { + // Emit either nothing, a NOP, or a NOP: prefix + emit_byte(0x90) ; + } else { + emit_byte(0xF0); + } +} + + +void Assembler::xchg(Register reg, Address adr) { + InstructionMark im(this); + emit_byte(0x87); + emit_operand(reg, adr); +} + + +void Assembler::xchgl(Register dst, Register src) { + emit_byte(0x87); + emit_byte(0xc0 | dst->encoding() << 3 | src->encoding()); +} + + +// The 32-bit cmpxchg compares the value at adr with the contents of rax, +// and stores reg into adr if so; otherwise, the value at adr is loaded into rax,. +// The ZF is set if the compared values were equal, and cleared otherwise. +void Assembler::cmpxchg(Register reg, Address adr) { + if (Atomics & 2) { + // caveat: no instructionmark, so this isn't relocatable. + // Emit a synthetic, non-atomic, CAS equivalent. + // Beware. The synthetic form sets all ICCs, not just ZF. + // cmpxchg r,[m] is equivalent to rax, = CAS (m, rax, r) + cmpl (rax, adr) ; + movl (rax, adr) ; + if (reg != rax) { + Label L ; + jcc (Assembler::notEqual, L) ; + movl (adr, reg) ; + bind (L) ; + } + } else { + InstructionMark im(this); + emit_byte(0x0F); + emit_byte(0xB1); + emit_operand(reg, adr); + } +} + +// The 64-bit cmpxchg compares the value at adr with the contents of rdx:rax, +// and stores rcx:rbx into adr if so; otherwise, the value at adr is loaded +// into rdx:rax. The ZF is set if the compared values were equal, and cleared otherwise. +void Assembler::cmpxchg8(Address adr) { + InstructionMark im(this); + emit_byte(0x0F); + emit_byte(0xc7); + emit_operand(rcx, adr); +} + +void Assembler::hlt() { + emit_byte(0xF4); +} + + +void Assembler::addr_nop_4() { + // 4 bytes: NOP DWORD PTR [EAX+0] + emit_byte(0x0F); + emit_byte(0x1F); + emit_byte(0x40); // emit_rm(cbuf, 0x1, EAX_enc, EAX_enc); + emit_byte(0); // 8-bits offset (1 byte) +} + +void Assembler::addr_nop_5() { + // 5 bytes: NOP DWORD PTR [EAX+EAX*0+0] 8-bits offset + emit_byte(0x0F); + emit_byte(0x1F); + emit_byte(0x44); // emit_rm(cbuf, 0x1, EAX_enc, 0x4); + emit_byte(0x00); // emit_rm(cbuf, 0x0, EAX_enc, EAX_enc); + emit_byte(0); // 8-bits offset (1 byte) +} + +void Assembler::addr_nop_7() { + // 7 bytes: NOP DWORD PTR [EAX+0] 32-bits offset + emit_byte(0x0F); + emit_byte(0x1F); + emit_byte(0x80); // emit_rm(cbuf, 0x2, EAX_enc, EAX_enc); + emit_long(0); // 32-bits offset (4 bytes) +} + +void Assembler::addr_nop_8() { + // 8 bytes: NOP DWORD PTR [EAX+EAX*0+0] 32-bits offset + emit_byte(0x0F); + emit_byte(0x1F); + emit_byte(0x84); // emit_rm(cbuf, 0x2, EAX_enc, 0x4); + emit_byte(0x00); // emit_rm(cbuf, 0x0, EAX_enc, EAX_enc); + emit_long(0); // 32-bits offset (4 bytes) +} + +void Assembler::nop(int i) { + assert(i > 0, " "); + if (UseAddressNop && VM_Version::is_intel()) { + // + // Using multi-bytes nops "0x0F 0x1F [address]" for Intel + // 1: 0x90 + // 2: 0x66 0x90 + // 3: 0x66 0x66 0x90 (don't use "0x0F 0x1F 0x00" - need patching safe padding) + // 4: 0x0F 0x1F 0x40 0x00 + // 5: 0x0F 0x1F 0x44 0x00 0x00 + // 6: 0x66 0x0F 0x1F 0x44 0x00 0x00 + // 7: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00 + // 8: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 + // 9: 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 + // 10: 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 + // 11: 0x66 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 + + // The rest coding is Intel specific - don't use consecutive address nops + + // 12: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90 + // 13: 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90 + // 14: 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90 + // 15: 0x66 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90 + + while(i >= 15) { + // For Intel don't generate consecutive addess nops (mix with regular nops) + i -= 15; + emit_byte(0x66); // size prefix + emit_byte(0x66); // size prefix + emit_byte(0x66); // size prefix + addr_nop_8(); + emit_byte(0x66); // size prefix + emit_byte(0x66); // size prefix + emit_byte(0x66); // size prefix + emit_byte(0x90); // nop + } + switch (i) { + case 14: + emit_byte(0x66); // size prefix + case 13: + emit_byte(0x66); // size prefix + case 12: + addr_nop_8(); + emit_byte(0x66); // size prefix + emit_byte(0x66); // size prefix + emit_byte(0x66); // size prefix + emit_byte(0x90); // nop + break; + case 11: + emit_byte(0x66); // size prefix + case 10: + emit_byte(0x66); // size prefix + case 9: + emit_byte(0x66); // size prefix + case 8: + addr_nop_8(); + break; + case 7: + addr_nop_7(); + break; + case 6: + emit_byte(0x66); // size prefix + case 5: + addr_nop_5(); + break; + case 4: + addr_nop_4(); + break; + case 3: + // Don't use "0x0F 0x1F 0x00" - need patching safe padding + emit_byte(0x66); // size prefix + case 2: + emit_byte(0x66); // size prefix + case 1: + emit_byte(0x90); // nop + break; + default: + assert(i == 0, " "); + } + return; + } + if (UseAddressNop && VM_Version::is_amd()) { + // + // Using multi-bytes nops "0x0F 0x1F [address]" for AMD. + // 1: 0x90 + // 2: 0x66 0x90 + // 3: 0x66 0x66 0x90 (don't use "0x0F 0x1F 0x00" - need patching safe padding) + // 4: 0x0F 0x1F 0x40 0x00 + // 5: 0x0F 0x1F 0x44 0x00 0x00 + // 6: 0x66 0x0F 0x1F 0x44 0x00 0x00 + // 7: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00 + // 8: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 + // 9: 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 + // 10: 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 + // 11: 0x66 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 + + // The rest coding is AMD specific - use consecutive address nops + + // 12: 0x66 0x0F 0x1F 0x44 0x00 0x00 0x66 0x0F 0x1F 0x44 0x00 0x00 + // 13: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00 0x66 0x0F 0x1F 0x44 0x00 0x00 + // 14: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00 + // 15: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00 + // 16: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 + // Size prefixes (0x66) are added for larger sizes + + while(i >= 22) { + i -= 11; + emit_byte(0x66); // size prefix + emit_byte(0x66); // size prefix + emit_byte(0x66); // size prefix + addr_nop_8(); + } + // Generate first nop for size between 21-12 + switch (i) { + case 21: + i -= 1; + emit_byte(0x66); // size prefix + case 20: + case 19: + i -= 1; + emit_byte(0x66); // size prefix + case 18: + case 17: + i -= 1; + emit_byte(0x66); // size prefix + case 16: + case 15: + i -= 8; + addr_nop_8(); + break; + case 14: + case 13: + i -= 7; + addr_nop_7(); + break; + case 12: + i -= 6; + emit_byte(0x66); // size prefix + addr_nop_5(); + break; + default: + assert(i < 12, " "); + } + + // Generate second nop for size between 11-1 + switch (i) { + case 11: + emit_byte(0x66); // size prefix + case 10: + emit_byte(0x66); // size prefix + case 9: + emit_byte(0x66); // size prefix + case 8: + addr_nop_8(); + break; + case 7: + addr_nop_7(); + break; + case 6: + emit_byte(0x66); // size prefix + case 5: + addr_nop_5(); + break; + case 4: + addr_nop_4(); + break; + case 3: + // Don't use "0x0F 0x1F 0x00" - need patching safe padding + emit_byte(0x66); // size prefix + case 2: + emit_byte(0x66); // size prefix + case 1: + emit_byte(0x90); // nop + break; + default: + assert(i == 0, " "); + } + return; + } + + // Using nops with size prefixes "0x66 0x90". + // From AMD Optimization Guide: + // 1: 0x90 + // 2: 0x66 0x90 + // 3: 0x66 0x66 0x90 + // 4: 0x66 0x66 0x66 0x90 + // 5: 0x66 0x66 0x90 0x66 0x90 + // 6: 0x66 0x66 0x90 0x66 0x66 0x90 + // 7: 0x66 0x66 0x66 0x90 0x66 0x66 0x90 + // 8: 0x66 0x66 0x66 0x90 0x66 0x66 0x66 0x90 + // 9: 0x66 0x66 0x90 0x66 0x66 0x90 0x66 0x66 0x90 + // 10: 0x66 0x66 0x66 0x90 0x66 0x66 0x90 0x66 0x66 0x90 + // + while(i > 12) { + i -= 4; + emit_byte(0x66); // size prefix + emit_byte(0x66); + emit_byte(0x66); + emit_byte(0x90); // nop + } + // 1 - 12 nops + if(i > 8) { + if(i > 9) { + i -= 1; + emit_byte(0x66); + } + i -= 3; + emit_byte(0x66); + emit_byte(0x66); + emit_byte(0x90); + } + // 1 - 8 nops + if(i > 4) { + if(i > 6) { + i -= 1; + emit_byte(0x66); + } + i -= 3; + emit_byte(0x66); + emit_byte(0x66); + emit_byte(0x90); + } + switch (i) { + case 4: + emit_byte(0x66); + case 3: + emit_byte(0x66); + case 2: + emit_byte(0x66); + case 1: + emit_byte(0x90); + break; + default: + assert(i == 0, " "); + } +} + +void Assembler::ret(int imm16) { + if (imm16 == 0) { + emit_byte(0xC3); + } else { + emit_byte(0xC2); + emit_word(imm16); + } +} + + +void Assembler::set_byte_if_not_zero(Register dst) { + emit_byte(0x0F); + emit_byte(0x95); + emit_byte(0xE0 | dst->encoding()); +} + + +// copies a single word from [esi] to [edi] +void Assembler::smovl() { + emit_byte(0xA5); +} + +// copies data from [esi] to [edi] using rcx double words (m32) +void Assembler::rep_movl() { + emit_byte(0xF3); + emit_byte(0xA5); +} + + +// sets rcx double words (m32) with rax, value at [edi] +void Assembler::rep_set() { + emit_byte(0xF3); + emit_byte(0xAB); +} + +// scans rcx double words (m32) at [edi] for occurance of rax, +void Assembler::repne_scan() { + emit_byte(0xF2); + emit_byte(0xAF); +} + + +void Assembler::setb(Condition cc, Register dst) { + assert(0 <= cc && cc < 16, "illegal cc"); + emit_byte(0x0F); + emit_byte(0x90 | cc); + emit_byte(0xC0 | dst->encoding()); +} + +void Assembler::cld() { + emit_byte(0xfc); +} + +void Assembler::std() { + emit_byte(0xfd); +} + +void Assembler::emit_raw (unsigned char b) { + emit_byte (b) ; +} + +// Serializes memory. +void Assembler::membar() { + // Memory barriers are only needed on multiprocessors + if (os::is_MP()) { + if( VM_Version::supports_sse2() ) { + emit_byte( 0x0F ); // MFENCE; faster blows no regs + emit_byte( 0xAE ); + emit_byte( 0xF0 ); + } else { + // All usable chips support "locked" instructions which suffice + // as barriers, and are much faster than the alternative of + // using cpuid instruction. We use here a locked add [esp],0. + // This is conveniently otherwise a no-op except for blowing + // flags (which we save and restore.) + pushfd(); // Save eflags register + lock(); + addl(Address(rsp, 0), 0);// Assert the lock# signal here + popfd(); // Restore eflags register + } + } +} + +// Identify processor type and features +void Assembler::cpuid() { + // Note: we can't assert VM_Version::supports_cpuid() here + // because this instruction is used in the processor + // identification code. + emit_byte( 0x0F ); + emit_byte( 0xA2 ); +} + +void Assembler::call(Label& L, relocInfo::relocType rtype) { + if (L.is_bound()) { + const int long_size = 5; + int offs = target(L) - pc(); + assert(offs <= 0, "assembler error"); + InstructionMark im(this); + // 1110 1000 #32-bit disp + emit_byte(0xE8); + emit_data(offs - long_size, rtype, 0); + } else { + InstructionMark im(this); + // 1110 1000 #32-bit disp + L.add_patch_at(code(), locator()); + emit_byte(0xE8); + emit_data(int(0), rtype, 0); + } +} + +void Assembler::call(Register dst) { + emit_byte(0xFF); + emit_byte(0xD0 | dst->encoding()); +} + + +void Assembler::call(Address adr) { + InstructionMark im(this); + relocInfo::relocType rtype = adr.reloc(); + if (rtype != relocInfo::runtime_call_type) { + emit_byte(0xFF); + emit_operand(rdx, adr); + } else { + assert(false, "ack"); + } + +} + +void Assembler::call_literal(address dest, RelocationHolder const& rspec) { + InstructionMark im(this); + emit_byte(0xE8); + intptr_t disp = dest - (_code_pos + sizeof(int32_t)); + assert(dest != NULL, "must have a target"); + emit_data(disp, rspec, call32_operand); + +} + +void Assembler::jmp(Register entry) { + emit_byte(0xFF); + emit_byte(0xE0 | entry->encoding()); +} + + +void Assembler::jmp(Address adr) { + InstructionMark im(this); + emit_byte(0xFF); + emit_operand(rsp, adr); +} + +void Assembler::jmp_literal(address dest, RelocationHolder const& rspec) { + InstructionMark im(this); + emit_byte(0xE9); + assert(dest != NULL, "must have a target"); + intptr_t disp = dest - (_code_pos + sizeof(int32_t)); + emit_data(disp, rspec.reloc(), call32_operand); +} + +void Assembler::jmp(Label& L, relocInfo::relocType rtype) { + if (L.is_bound()) { + address entry = target(L); + assert(entry != NULL, "jmp most probably wrong"); + InstructionMark im(this); + const int short_size = 2; + const int long_size = 5; + intptr_t offs = entry - _code_pos; + if (rtype == relocInfo::none && is8bit(offs - short_size)) { + emit_byte(0xEB); + emit_byte((offs - short_size) & 0xFF); + } else { + emit_byte(0xE9); + emit_long(offs - long_size); + } + } else { + // By default, forward jumps are always 32-bit displacements, since + // we can't yet know where the label will be bound. If you're sure that + // the forward jump will not run beyond 256 bytes, use jmpb to + // force an 8-bit displacement. + InstructionMark im(this); + relocate(rtype); + L.add_patch_at(code(), locator()); + emit_byte(0xE9); + emit_long(0); + } +} + +void Assembler::jmpb(Label& L) { + if (L.is_bound()) { + const int short_size = 2; + address entry = target(L); + assert(is8bit((entry - _code_pos) + short_size), + "Dispacement too large for a short jmp"); + assert(entry != NULL, "jmp most probably wrong"); + intptr_t offs = entry - _code_pos; + emit_byte(0xEB); + emit_byte((offs - short_size) & 0xFF); + } else { + InstructionMark im(this); + L.add_patch_at(code(), locator()); + emit_byte(0xEB); + emit_byte(0); + } +} + +void Assembler::jcc(Condition cc, Label& L, relocInfo::relocType rtype) { + InstructionMark im(this); + relocate(rtype); + assert((0 <= cc) && (cc < 16), "illegal cc"); + if (L.is_bound()) { + address dst = target(L); + assert(dst != NULL, "jcc most probably wrong"); + + const int short_size = 2; + const int long_size = 6; + int offs = (int)dst - ((int)_code_pos); + if (rtype == relocInfo::none && is8bit(offs - short_size)) { + // 0111 tttn #8-bit disp + emit_byte(0x70 | cc); + emit_byte((offs - short_size) & 0xFF); + } else { + // 0000 1111 1000 tttn #32-bit disp + emit_byte(0x0F); + emit_byte(0x80 | cc); + emit_long(offs - long_size); + } + } else { + // Note: could eliminate cond. jumps to this jump if condition + // is the same however, seems to be rather unlikely case. + // Note: use jccb() if label to be bound is very close to get + // an 8-bit displacement + L.add_patch_at(code(), locator()); + emit_byte(0x0F); + emit_byte(0x80 | cc); + emit_long(0); + } +} + +void Assembler::jccb(Condition cc, Label& L) { + if (L.is_bound()) { + const int short_size = 2; + address entry = target(L); + assert(is8bit((intptr_t)entry - ((intptr_t)_code_pos + short_size)), + "Dispacement too large for a short jmp"); + intptr_t offs = (intptr_t)entry - (intptr_t)_code_pos; + // 0111 tttn #8-bit disp + emit_byte(0x70 | cc); + emit_byte((offs - short_size) & 0xFF); + jcc(cc, L); + } else { + InstructionMark im(this); + L.add_patch_at(code(), locator()); + emit_byte(0x70 | cc); + emit_byte(0); + } +} + +// FPU instructions + +void Assembler::fld1() { + emit_byte(0xD9); + emit_byte(0xE8); +} + + +void Assembler::fldz() { + emit_byte(0xD9); + emit_byte(0xEE); +} + + +void Assembler::fld_s(Address adr) { + InstructionMark im(this); + emit_byte(0xD9); + emit_operand(rax, adr); +} + + +void Assembler::fld_s (int index) { + emit_farith(0xD9, 0xC0, index); +} + + +void Assembler::fld_d(Address adr) { + InstructionMark im(this); + emit_byte(0xDD); + emit_operand(rax, adr); +} + + +void Assembler::fld_x(Address adr) { + InstructionMark im(this); + emit_byte(0xDB); + emit_operand(rbp, adr); +} + + +void Assembler::fst_s(Address adr) { + InstructionMark im(this); + emit_byte(0xD9); + emit_operand(rdx, adr); +} + + +void Assembler::fst_d(Address adr) { + InstructionMark im(this); + emit_byte(0xDD); + emit_operand(rdx, adr); +} + + +void Assembler::fstp_s(Address adr) { + InstructionMark im(this); + emit_byte(0xD9); + emit_operand(rbx, adr); +} + + +void Assembler::fstp_d(Address adr) { + InstructionMark im(this); + emit_byte(0xDD); + emit_operand(rbx, adr); +} + + +void Assembler::fstp_x(Address adr) { + InstructionMark im(this); + emit_byte(0xDB); + emit_operand(rdi, adr); +} + + +void Assembler::fstp_d(int index) { + emit_farith(0xDD, 0xD8, index); +} + + +void Assembler::fild_s(Address adr) { + InstructionMark im(this); + emit_byte(0xDB); + emit_operand(rax, adr); +} + + +void Assembler::fild_d(Address adr) { + InstructionMark im(this); + emit_byte(0xDF); + emit_operand(rbp, adr); +} + + +void Assembler::fistp_s(Address adr) { + InstructionMark im(this); + emit_byte(0xDB); + emit_operand(rbx, adr); +} + + +void Assembler::fistp_d(Address adr) { + InstructionMark im(this); + emit_byte(0xDF); + emit_operand(rdi, adr); +} + + +void Assembler::fist_s(Address adr) { + InstructionMark im(this); + emit_byte(0xDB); + emit_operand(rdx, adr); +} + + +void Assembler::fabs() { + emit_byte(0xD9); + emit_byte(0xE1); +} + + +void Assembler::fldln2() { + emit_byte(0xD9); + emit_byte(0xED); +} + +void Assembler::fyl2x() { + emit_byte(0xD9); + emit_byte(0xF1); +} + + +void Assembler::fldlg2() { + emit_byte(0xD9); + emit_byte(0xEC); +} + + +void Assembler::flog() { + fldln2(); + fxch(); + fyl2x(); +} + + +void Assembler::flog10() { + fldlg2(); + fxch(); + fyl2x(); +} + + +void Assembler::fsin() { + emit_byte(0xD9); + emit_byte(0xFE); +} + + +void Assembler::fcos() { + emit_byte(0xD9); + emit_byte(0xFF); +} + +void Assembler::ftan() { + emit_byte(0xD9); + emit_byte(0xF2); + emit_byte(0xDD); + emit_byte(0xD8); +} + +void Assembler::fsqrt() { + emit_byte(0xD9); + emit_byte(0xFA); +} + + +void Assembler::fchs() { + emit_byte(0xD9); + emit_byte(0xE0); +} + + +void Assembler::fadd_s(Address src) { + InstructionMark im(this); + emit_byte(0xD8); + emit_operand(rax, src); +} + + +void Assembler::fadd_d(Address src) { + InstructionMark im(this); + emit_byte(0xDC); + emit_operand(rax, src); +} + + +void Assembler::fadd(int i) { + emit_farith(0xD8, 0xC0, i); +} + + +void Assembler::fadda(int i) { + emit_farith(0xDC, 0xC0, i); +} + + +void Assembler::fsub_d(Address src) { + InstructionMark im(this); + emit_byte(0xDC); + emit_operand(rsp, src); +} + + +void Assembler::fsub_s(Address src) { + InstructionMark im(this); + emit_byte(0xD8); + emit_operand(rsp, src); +} + + +void Assembler::fsubr_s(Address src) { + InstructionMark im(this); + emit_byte(0xD8); + emit_operand(rbp, src); +} + + +void Assembler::fsubr_d(Address src) { + InstructionMark im(this); + emit_byte(0xDC); + emit_operand(rbp, src); +} + + +void Assembler::fmul_s(Address src) { + InstructionMark im(this); + emit_byte(0xD8); + emit_operand(rcx, src); +} + + +void Assembler::fmul_d(Address src) { + InstructionMark im(this); + emit_byte(0xDC); + emit_operand(rcx, src); +} + + +void Assembler::fmul(int i) { + emit_farith(0xD8, 0xC8, i); +} + + +void Assembler::fmula(int i) { + emit_farith(0xDC, 0xC8, i); +} + + +void Assembler::fdiv_s(Address src) { + InstructionMark im(this); + emit_byte(0xD8); + emit_operand(rsi, src); +} + + +void Assembler::fdiv_d(Address src) { + InstructionMark im(this); + emit_byte(0xDC); + emit_operand(rsi, src); +} + + +void Assembler::fdivr_s(Address src) { + InstructionMark im(this); + emit_byte(0xD8); + emit_operand(rdi, src); +} + + +void Assembler::fdivr_d(Address src) { + InstructionMark im(this); + emit_byte(0xDC); + emit_operand(rdi, src); +} + + +void Assembler::fsub(int i) { + emit_farith(0xD8, 0xE0, i); +} + + +void Assembler::fsuba(int i) { + emit_farith(0xDC, 0xE8, i); +} + + +void Assembler::fsubr(int i) { + emit_farith(0xD8, 0xE8, i); +} + + +void Assembler::fsubra(int i) { + emit_farith(0xDC, 0xE0, i); +} + + +void Assembler::fdiv(int i) { + emit_farith(0xD8, 0xF0, i); +} + + +void Assembler::fdiva(int i) { + emit_farith(0xDC, 0xF8, i); +} + + +void Assembler::fdivr(int i) { + emit_farith(0xD8, 0xF8, i); +} + + +void Assembler::fdivra(int i) { + emit_farith(0xDC, 0xF0, i); +} + + +// Note: The Intel manual (Pentium Processor User's Manual, Vol.3, 1994) +// is erroneous for some of the floating-point instructions below. + +void Assembler::fdivp(int i) { + emit_farith(0xDE, 0xF8, i); // ST(0) <- ST(0) / ST(1) and pop (Intel manual wrong) +} + + +void Assembler::fdivrp(int i) { + emit_farith(0xDE, 0xF0, i); // ST(0) <- ST(1) / ST(0) and pop (Intel manual wrong) +} + + +void Assembler::fsubp(int i) { + emit_farith(0xDE, 0xE8, i); // ST(0) <- ST(0) - ST(1) and pop (Intel manual wrong) +} + + +void Assembler::fsubrp(int i) { + emit_farith(0xDE, 0xE0, i); // ST(0) <- ST(1) - ST(0) and pop (Intel manual wrong) +} + + +void Assembler::faddp(int i) { + emit_farith(0xDE, 0xC0, i); +} + + +void Assembler::fmulp(int i) { + emit_farith(0xDE, 0xC8, i); +} + + +void Assembler::fprem() { + emit_byte(0xD9); + emit_byte(0xF8); +} + + +void Assembler::fprem1() { + emit_byte(0xD9); + emit_byte(0xF5); +} + + +void Assembler::fxch(int i) { + emit_farith(0xD9, 0xC8, i); +} + + +void Assembler::fincstp() { + emit_byte(0xD9); + emit_byte(0xF7); +} + + +void Assembler::fdecstp() { + emit_byte(0xD9); + emit_byte(0xF6); +} + + +void Assembler::ffree(int i) { + emit_farith(0xDD, 0xC0, i); +} + + +void Assembler::fcomp_s(Address src) { + InstructionMark im(this); + emit_byte(0xD8); + emit_operand(rbx, src); +} + + +void Assembler::fcomp_d(Address src) { + InstructionMark im(this); + emit_byte(0xDC); + emit_operand(rbx, src); +} + + +void Assembler::fcom(int i) { + emit_farith(0xD8, 0xD0, i); +} + + +void Assembler::fcomp(int i) { + emit_farith(0xD8, 0xD8, i); +} + + +void Assembler::fcompp() { + emit_byte(0xDE); + emit_byte(0xD9); +} + + +void Assembler::fucomi(int i) { + // make sure the instruction is supported (introduced for P6, together with cmov) + guarantee(VM_Version::supports_cmov(), "illegal instruction"); + emit_farith(0xDB, 0xE8, i); +} + + +void Assembler::fucomip(int i) { + // make sure the instruction is supported (introduced for P6, together with cmov) + guarantee(VM_Version::supports_cmov(), "illegal instruction"); + emit_farith(0xDF, 0xE8, i); +} + + +void Assembler::ftst() { + emit_byte(0xD9); + emit_byte(0xE4); +} + + +void Assembler::fnstsw_ax() { + emit_byte(0xdF); + emit_byte(0xE0); +} + + +void Assembler::fwait() { + emit_byte(0x9B); +} + + +void Assembler::finit() { + emit_byte(0x9B); + emit_byte(0xDB); + emit_byte(0xE3); +} + + +void Assembler::fldcw(Address src) { + InstructionMark im(this); + emit_byte(0xd9); + emit_operand(rbp, src); +} + + +void Assembler::fnstcw(Address src) { + InstructionMark im(this); + emit_byte(0x9B); + emit_byte(0xD9); + emit_operand(rdi, src); +} + +void Assembler::fnsave(Address dst) { + InstructionMark im(this); + emit_byte(0xDD); + emit_operand(rsi, dst); +} + + +void Assembler::frstor(Address src) { + InstructionMark im(this); + emit_byte(0xDD); + emit_operand(rsp, src); +} + + +void Assembler::fldenv(Address src) { + InstructionMark im(this); + emit_byte(0xD9); + emit_operand(rsp, src); +} + + +void Assembler::sahf() { + emit_byte(0x9E); +} + +// MMX operations +void Assembler::emit_operand(MMXRegister reg, Address adr) { + emit_operand((Register)reg, adr._base, adr._index, adr._scale, adr._disp, adr._rspec); +} + +void Assembler::movq( MMXRegister dst, Address src ) { + assert( VM_Version::supports_mmx(), "" ); + emit_byte(0x0F); + emit_byte(0x6F); + emit_operand(dst,src); +} + +void Assembler::movq( Address dst, MMXRegister src ) { + assert( VM_Version::supports_mmx(), "" ); + emit_byte(0x0F); + emit_byte(0x7F); + emit_operand(src,dst); +} + +void Assembler::emms() { + emit_byte(0x0F); + emit_byte(0x77); +} + + + + +// SSE and SSE2 instructions +inline void Assembler::emit_sse_operand(XMMRegister reg, Address adr) { + assert(((Register)reg)->encoding() == reg->encoding(), "otherwise typecast is invalid"); + emit_operand((Register)reg, adr._base, adr._index, adr._scale, adr._disp, adr._rspec); +} +inline void Assembler::emit_sse_operand(Register reg, Address adr) { + emit_operand(reg, adr._base, adr._index, adr._scale, adr._disp, adr._rspec); +} + +inline void Assembler::emit_sse_operand(XMMRegister dst, XMMRegister src) { + emit_byte(0xC0 | dst->encoding() << 3 | src->encoding()); +} +inline void Assembler::emit_sse_operand(XMMRegister dst, Register src) { + emit_byte(0xC0 | dst->encoding() << 3 | src->encoding()); +} +inline void Assembler::emit_sse_operand(Register dst, XMMRegister src) { + emit_byte(0xC0 | dst->encoding() << 3 | src->encoding()); +} + + +// Macro for creation of SSE2 instructions +// The SSE2 instricution set is highly regular, so this macro saves +// a lot of cut&paste +// Each macro expansion creates two methods (same name with different +// parameter list) +// +// Macro parameters: +// * name: name of the created methods +// * sse_version: either sse or sse2 for the assertion if instruction supported by processor +// * prefix: first opcode byte of the instruction (or 0 if no prefix byte) +// * opcode: last opcode byte of the instruction +// * conversion instruction have parameters of type Register instead of XMMRegister, +// so this can also configured with macro parameters +#define emit_sse_instruction(name, sse_version, prefix, opcode, dst_register_type, src_register_type) \ + \ + void Assembler:: name (dst_register_type dst, Address src) { \ + assert(VM_Version::supports_##sse_version(), ""); \ + \ + InstructionMark im(this); \ + if (prefix != 0) emit_byte(prefix); \ + emit_byte(0x0F); \ + emit_byte(opcode); \ + emit_sse_operand(dst, src); \ + } \ + \ + void Assembler:: name (dst_register_type dst, src_register_type src) { \ + assert(VM_Version::supports_##sse_version(), ""); \ + \ + if (prefix != 0) emit_byte(prefix); \ + emit_byte(0x0F); \ + emit_byte(opcode); \ + emit_sse_operand(dst, src); \ + } \ + +emit_sse_instruction(addss, sse, 0xF3, 0x58, XMMRegister, XMMRegister); +emit_sse_instruction(addsd, sse2, 0xF2, 0x58, XMMRegister, XMMRegister) +emit_sse_instruction(subss, sse, 0xF3, 0x5C, XMMRegister, XMMRegister) +emit_sse_instruction(subsd, sse2, 0xF2, 0x5C, XMMRegister, XMMRegister) +emit_sse_instruction(mulss, sse, 0xF3, 0x59, XMMRegister, XMMRegister) +emit_sse_instruction(mulsd, sse2, 0xF2, 0x59, XMMRegister, XMMRegister) +emit_sse_instruction(divss, sse, 0xF3, 0x5E, XMMRegister, XMMRegister) +emit_sse_instruction(divsd, sse2, 0xF2, 0x5E, XMMRegister, XMMRegister) +emit_sse_instruction(sqrtss, sse, 0xF3, 0x51, XMMRegister, XMMRegister) +emit_sse_instruction(sqrtsd, sse2, 0xF2, 0x51, XMMRegister, XMMRegister) + +emit_sse_instruction(pxor, sse2, 0x66, 0xEF, XMMRegister, XMMRegister) + +emit_sse_instruction(comiss, sse, 0, 0x2F, XMMRegister, XMMRegister) +emit_sse_instruction(comisd, sse2, 0x66, 0x2F, XMMRegister, XMMRegister) +emit_sse_instruction(ucomiss, sse, 0, 0x2E, XMMRegister, XMMRegister) +emit_sse_instruction(ucomisd, sse2, 0x66, 0x2E, XMMRegister, XMMRegister) + +emit_sse_instruction(cvtss2sd, sse2, 0xF3, 0x5A, XMMRegister, XMMRegister); +emit_sse_instruction(cvtsd2ss, sse2, 0xF2, 0x5A, XMMRegister, XMMRegister) +emit_sse_instruction(cvtsi2ss, sse, 0xF3, 0x2A, XMMRegister, Register); +emit_sse_instruction(cvtsi2sd, sse2, 0xF2, 0x2A, XMMRegister, Register) +emit_sse_instruction(cvtss2si, sse, 0xF3, 0x2D, Register, XMMRegister); +emit_sse_instruction(cvtsd2si, sse2, 0xF2, 0x2D, Register, XMMRegister) +emit_sse_instruction(cvttss2si, sse, 0xF3, 0x2C, Register, XMMRegister); +emit_sse_instruction(cvttsd2si, sse2, 0xF2, 0x2C, Register, XMMRegister) + +emit_sse_instruction(movss, sse, 0xF3, 0x10, XMMRegister, XMMRegister) +emit_sse_instruction(movsd, sse2, 0xF2, 0x10, XMMRegister, XMMRegister) + +emit_sse_instruction(movq, sse2, 0xF3, 0x7E, XMMRegister, XMMRegister); +emit_sse_instruction(movd, sse2, 0x66, 0x6E, XMMRegister, Register); +emit_sse_instruction(movdqa, sse2, 0x66, 0x6F, XMMRegister, XMMRegister); + +emit_sse_instruction(punpcklbw, sse2, 0x66, 0x60, XMMRegister, XMMRegister); + + +// Instruction not covered by macro +void Assembler::movq(Address dst, XMMRegister src) { + assert(VM_Version::supports_sse2(), ""); + + InstructionMark im(this); + emit_byte(0x66); + emit_byte(0x0F); + emit_byte(0xD6); + emit_sse_operand(src, dst); +} + +void Assembler::movd(Address dst, XMMRegister src) { + assert(VM_Version::supports_sse2(), ""); + + InstructionMark im(this); + emit_byte(0x66); + emit_byte(0x0F); + emit_byte(0x7E); + emit_sse_operand(src, dst); +} + +void Assembler::movd(Register dst, XMMRegister src) { + assert(VM_Version::supports_sse2(), ""); + + emit_byte(0x66); + emit_byte(0x0F); + emit_byte(0x7E); + emit_sse_operand(src, dst); +} + +void Assembler::movdqa(Address dst, XMMRegister src) { + assert(VM_Version::supports_sse2(), ""); + + InstructionMark im(this); + emit_byte(0x66); + emit_byte(0x0F); + emit_byte(0x7F); + emit_sse_operand(src, dst); +} + +void Assembler::pshufd(XMMRegister dst, XMMRegister src, int mode) { + assert(isByte(mode), "invalid value"); + assert(VM_Version::supports_sse2(), ""); + + emit_byte(0x66); + emit_byte(0x0F); + emit_byte(0x70); + emit_sse_operand(dst, src); + emit_byte(mode & 0xFF); +} + +void Assembler::pshufd(XMMRegister dst, Address src, int mode) { + assert(isByte(mode), "invalid value"); + assert(VM_Version::supports_sse2(), ""); + + InstructionMark im(this); + emit_byte(0x66); + emit_byte(0x0F); + emit_byte(0x70); + emit_sse_operand(dst, src); + emit_byte(mode & 0xFF); +} + +void Assembler::pshuflw(XMMRegister dst, XMMRegister src, int mode) { + assert(isByte(mode), "invalid value"); + assert(VM_Version::supports_sse2(), ""); + + emit_byte(0xF2); + emit_byte(0x0F); + emit_byte(0x70); + emit_sse_operand(dst, src); + emit_byte(mode & 0xFF); +} + +void Assembler::pshuflw(XMMRegister dst, Address src, int mode) { + assert(isByte(mode), "invalid value"); + assert(VM_Version::supports_sse2(), ""); + + InstructionMark im(this); + emit_byte(0xF2); + emit_byte(0x0F); + emit_byte(0x70); + emit_sse_operand(dst, src); + emit_byte(mode & 0xFF); +} + +void Assembler::psrlq(XMMRegister dst, int shift) { + assert(VM_Version::supports_sse2(), ""); + + emit_byte(0x66); + emit_byte(0x0F); + emit_byte(0x73); + emit_sse_operand(xmm2, dst); + emit_byte(shift); +} + +void Assembler::movss( Address dst, XMMRegister src ) { + assert(VM_Version::supports_sse(), ""); + + InstructionMark im(this); + emit_byte(0xF3); // single + emit_byte(0x0F); + emit_byte(0x11); // store + emit_sse_operand(src, dst); +} + +void Assembler::movsd( Address dst, XMMRegister src ) { + assert(VM_Version::supports_sse2(), ""); + + InstructionMark im(this); + emit_byte(0xF2); // double + emit_byte(0x0F); + emit_byte(0x11); // store + emit_sse_operand(src,dst); +} + +// New cpus require to use movaps and movapd to avoid partial register stall +// when moving between registers. +void Assembler::movaps(XMMRegister dst, XMMRegister src) { + assert(VM_Version::supports_sse(), ""); + + emit_byte(0x0F); + emit_byte(0x28); + emit_sse_operand(dst, src); +} +void Assembler::movapd(XMMRegister dst, XMMRegister src) { + assert(VM_Version::supports_sse2(), ""); + + emit_byte(0x66); + emit_byte(0x0F); + emit_byte(0x28); + emit_sse_operand(dst, src); +} + +// New cpus require to use movsd and movss to avoid partial register stall +// when loading from memory. But for old Opteron use movlpd instead of movsd. +// The selection is done in MacroAssembler::movdbl() and movflt(). +void Assembler::movlpd(XMMRegister dst, Address src) { + assert(VM_Version::supports_sse(), ""); + + InstructionMark im(this); + emit_byte(0x66); + emit_byte(0x0F); + emit_byte(0x12); + emit_sse_operand(dst, src); +} + + +emit_sse_instruction(andps, sse, 0, 0x54, XMMRegister, XMMRegister); +emit_sse_instruction(andpd, sse2, 0x66, 0x54, XMMRegister, XMMRegister); +emit_sse_instruction(andnps, sse, 0, 0x55, XMMRegister, XMMRegister); +emit_sse_instruction(andnpd, sse2, 0x66, 0x55, XMMRegister, XMMRegister); +emit_sse_instruction(orps, sse, 0, 0x56, XMMRegister, XMMRegister); +emit_sse_instruction(orpd, sse2, 0x66, 0x56, XMMRegister, XMMRegister); +emit_sse_instruction(xorps, sse, 0, 0x57, XMMRegister, XMMRegister); +emit_sse_instruction(xorpd, sse2, 0x66, 0x57, XMMRegister, XMMRegister); + + +void Assembler::ldmxcsr( Address src) { + InstructionMark im(this); + emit_byte(0x0F); + emit_byte(0xAE); + emit_operand(rdx /* 2 */, src); +} + +void Assembler::stmxcsr( Address dst) { + InstructionMark im(this); + emit_byte(0x0F); + emit_byte(0xAE); + emit_operand(rbx /* 3 */, dst); +} + +// Implementation of MacroAssembler + +Address MacroAssembler::as_Address(AddressLiteral adr) { + // amd64 always does this as a pc-rel + // we can be absolute or disp based on the instruction type + // jmp/call are displacements others are absolute + assert(!adr.is_lval(), "must be rval"); + + return Address(adr.target(), adr.rspec()); +} + +Address MacroAssembler::as_Address(ArrayAddress adr) { + return Address::make_array(adr); +} + +void MacroAssembler::fat_nop() { + // A 5 byte nop that is safe for patching (see patch_verified_entry) + emit_byte(0x26); // es: + emit_byte(0x2e); // cs: + emit_byte(0x64); // fs: + emit_byte(0x65); // gs: + emit_byte(0x90); +} + +// 32bit can do a case table jump in one instruction but we no longer allow the base +// to be installed in the Address class +void MacroAssembler::jump(ArrayAddress entry) { + jmp(as_Address(entry)); +} + +void MacroAssembler::jump(AddressLiteral dst) { + jmp_literal(dst.target(), dst.rspec()); +} + +void MacroAssembler::jump_cc(Condition cc, AddressLiteral dst) { + assert((0 <= cc) && (cc < 16), "illegal cc"); + + InstructionMark im(this); + + relocInfo::relocType rtype = dst.reloc(); + relocate(rtype); + const int short_size = 2; + const int long_size = 6; + int offs = (int)dst.target() - ((int)_code_pos); + if (rtype == relocInfo::none && is8bit(offs - short_size)) { + // 0111 tttn #8-bit disp + emit_byte(0x70 | cc); + emit_byte((offs - short_size) & 0xFF); + } else { + // 0000 1111 1000 tttn #32-bit disp + emit_byte(0x0F); + emit_byte(0x80 | cc); + emit_long(offs - long_size); + } +} + +// Calls +void MacroAssembler::call(Label& L, relocInfo::relocType rtype) { + Assembler::call(L, rtype); +} + +void MacroAssembler::call(Register entry) { + Assembler::call(entry); +} + +void MacroAssembler::call(AddressLiteral entry) { + Assembler::call_literal(entry.target(), entry.rspec()); +} + + +void MacroAssembler::cmp8(AddressLiteral src1, int8_t imm) { + Assembler::cmpb(as_Address(src1), imm); +} + +void MacroAssembler::cmp32(AddressLiteral src1, int32_t imm) { + Assembler::cmpl(as_Address(src1), imm); +} + +void MacroAssembler::cmp32(Register src1, AddressLiteral src2) { + if (src2.is_lval()) { + cmp_literal32(src1, (int32_t) src2.target(), src2.rspec()); + } else { + Assembler::cmpl(src1, as_Address(src2)); + } +} + +void MacroAssembler::cmp32(Register src1, int32_t imm) { + Assembler::cmpl(src1, imm); +} + +void MacroAssembler::cmp32(Register src1, Address src2) { + Assembler::cmpl(src1, src2); +} + +void MacroAssembler::cmpoop(Address src1, jobject obj) { + cmp_literal32(src1, (int32_t)obj, oop_Relocation::spec_for_immediate()); +} + +void MacroAssembler::cmpoop(Register src1, jobject obj) { + cmp_literal32(src1, (int32_t)obj, oop_Relocation::spec_for_immediate()); +} + +void MacroAssembler::cmpptr(Register src1, AddressLiteral src2) { + if (src2.is_lval()) { + // compare the effect address of src2 to src1 + cmp_literal32(src1, (int32_t)src2.target(), src2.rspec()); + } else { + Assembler::cmpl(src1, as_Address(src2)); + } +} + +void MacroAssembler::cmpptr(Address src1, AddressLiteral src2) { + assert(src2.is_lval(), "not a mem-mem compare"); + cmp_literal32(src1, (int32_t) src2.target(), src2.rspec()); +} + + +void MacroAssembler::cmpxchgptr(Register reg, AddressLiteral adr) { + cmpxchg(reg, as_Address(adr)); +} + +void MacroAssembler::increment(AddressLiteral dst) { + increment(as_Address(dst)); +} + +void MacroAssembler::increment(ArrayAddress dst) { + increment(as_Address(dst)); +} + +void MacroAssembler::lea(Register dst, AddressLiteral adr) { + // leal(dst, as_Address(adr)); + // see note in movl as to why we musr use a move + mov_literal32(dst, (int32_t) adr.target(), adr.rspec()); +} + +void MacroAssembler::lea(Address dst, AddressLiteral adr) { + // leal(dst, as_Address(adr)); + // see note in movl as to why we musr use a move + mov_literal32(dst, (int32_t) adr.target(), adr.rspec()); +} + +void MacroAssembler::mov32(AddressLiteral dst, Register src) { + Assembler::movl(as_Address(dst), src); +} + +void MacroAssembler::mov32(Register dst, AddressLiteral src) { + Assembler::movl(dst, as_Address(src)); +} + +void MacroAssembler::movbyte(ArrayAddress dst, int src) { + movb(as_Address(dst), src); +} + +void MacroAssembler::movoop(Address dst, jobject obj) { + mov_literal32(dst, (int32_t)obj, oop_Relocation::spec_for_immediate()); +} + +void MacroAssembler::movoop(Register dst, jobject obj) { + mov_literal32(dst, (int32_t)obj, oop_Relocation::spec_for_immediate()); +} + +void MacroAssembler::movptr(Register dst, AddressLiteral src) { + if (src.is_lval()) { + // essentially an lea + mov_literal32(dst, (int32_t) src.target(), src.rspec()); + } else { + // mov 32bits from an absolute address + movl(dst, as_Address(src)); + } +} + +void MacroAssembler::movptr(ArrayAddress dst, Register src) { + movl(as_Address(dst), src); +} + +void MacroAssembler::movptr(Register dst, ArrayAddress src) { + movl(dst, as_Address(src)); +} + +void MacroAssembler::movflt(XMMRegister dst, AddressLiteral src) { + movss(dst, as_Address(src)); +} + +void MacroAssembler::movdbl(XMMRegister dst, AddressLiteral src) { + if (UseXmmLoadAndClearUpper) { movsd (dst, as_Address(src)); return; } + else { movlpd(dst, as_Address(src)); return; } +} + +void Assembler::pushoop(jobject obj) { + push_literal32((int32_t)obj, oop_Relocation::spec_for_immediate()); +} + + +void MacroAssembler::pushptr(AddressLiteral src) { + if (src.is_lval()) { + push_literal32((int32_t)src.target(), src.rspec()); + } else { + pushl(as_Address(src)); + } +} + +void MacroAssembler::test32(Register src1, AddressLiteral src2) { + // src2 must be rval + testl(src1, as_Address(src2)); +} + +// FPU + +void MacroAssembler::fld_x(AddressLiteral src) { + Assembler::fld_x(as_Address(src)); +} + +void MacroAssembler::fld_d(AddressLiteral src) { + fld_d(as_Address(src)); +} + +void MacroAssembler::fld_s(AddressLiteral src) { + fld_s(as_Address(src)); +} + +void MacroAssembler::fldcw(AddressLiteral src) { + Assembler::fldcw(as_Address(src)); +} + +void MacroAssembler::ldmxcsr(AddressLiteral src) { + Assembler::ldmxcsr(as_Address(src)); +} + +// SSE + +void MacroAssembler::andpd(XMMRegister dst, AddressLiteral src) { + andpd(dst, as_Address(src)); +} + +void MacroAssembler::comisd(XMMRegister dst, AddressLiteral src) { + comisd(dst, as_Address(src)); +} + +void MacroAssembler::comiss(XMMRegister dst, AddressLiteral src) { + comiss(dst, as_Address(src)); +} + +void MacroAssembler::movsd(XMMRegister dst, AddressLiteral src) { + movsd(dst, as_Address(src)); +} + +void MacroAssembler::movss(XMMRegister dst, AddressLiteral src) { + movss(dst, as_Address(src)); +} + +void MacroAssembler::xorpd(XMMRegister dst, AddressLiteral src) { + xorpd(dst, as_Address(src)); +} + +void MacroAssembler::xorps(XMMRegister dst, AddressLiteral src) { + xorps(dst, as_Address(src)); +} + +void MacroAssembler::ucomisd(XMMRegister dst, AddressLiteral src) { + ucomisd(dst, as_Address(src)); +} + +void MacroAssembler::ucomiss(XMMRegister dst, AddressLiteral src) { + ucomiss(dst, as_Address(src)); +} + +void MacroAssembler::null_check(Register reg, int offset) { + if (needs_explicit_null_check(offset)) { + // provoke OS NULL exception if reg = NULL by + // accessing M[reg] w/o changing any (non-CC) registers + cmpl(rax, Address(reg, 0)); + // Note: should probably use testl(rax, Address(reg, 0)); + // may be shorter code (however, this version of + // testl needs to be implemented first) + } else { + // nothing to do, (later) access of M[reg + offset] + // will provoke OS NULL exception if reg = NULL + } +} + + +int MacroAssembler::load_unsigned_byte(Register dst, Address src) { + // According to Intel Doc. AP-526, "Zero-Extension of Short", p.16, + // and "3.9 Partial Register Penalties", p. 22). + int off; + if (VM_Version::is_P6() || src.uses(dst)) { + off = offset(); + movzxb(dst, src); + } else { + xorl(dst, dst); + off = offset(); + movb(dst, src); + } + return off; +} + + +int MacroAssembler::load_unsigned_word(Register dst, Address src) { + // According to Intel Doc. AP-526, "Zero-Extension of Short", p.16, + // and "3.9 Partial Register Penalties", p. 22). + int off; + if (VM_Version::is_P6() || src.uses(dst)) { + off = offset(); + movzxw(dst, src); + } else { + xorl(dst, dst); + off = offset(); + movw(dst, src); + } + return off; +} + + +int MacroAssembler::load_signed_byte(Register dst, Address src) { + int off; + if (VM_Version::is_P6()) { + off = offset(); + movsxb(dst, src); + } else { + off = load_unsigned_byte(dst, src); + shll(dst, 24); + sarl(dst, 24); + } + return off; +} + + +int MacroAssembler::load_signed_word(Register dst, Address src) { + int off; + if (VM_Version::is_P6()) { + off = offset(); + movsxw(dst, src); + } else { + off = load_unsigned_word(dst, src); + shll(dst, 16); + sarl(dst, 16); + } + return off; +} + + +void MacroAssembler::extend_sign(Register hi, Register lo) { + // According to Intel Doc. AP-526, "Integer Divide", p.18. + if (VM_Version::is_P6() && hi == rdx && lo == rax) { + cdql(); + } else { + movl(hi, lo); + sarl(hi, 31); + } +} + + +void MacroAssembler::increment(Register reg, int value) { + if (value == min_jint) {addl(reg, value); return; } + if (value < 0) { decrement(reg, -value); return; } + if (value == 0) { ; return; } + if (value == 1 && UseIncDec) { incl(reg); return; } + /* else */ { addl(reg, value) ; return; } +} + +void MacroAssembler::increment(Address dst, int value) { + if (value == min_jint) {addl(dst, value); return; } + if (value < 0) { decrement(dst, -value); return; } + if (value == 0) { ; return; } + if (value == 1 && UseIncDec) { incl(dst); return; } + /* else */ { addl(dst, value) ; return; } +} + +void MacroAssembler::decrement(Register reg, int value) { + if (value == min_jint) {subl(reg, value); return; } + if (value < 0) { increment(reg, -value); return; } + if (value == 0) { ; return; } + if (value == 1 && UseIncDec) { decl(reg); return; } + /* else */ { subl(reg, value) ; return; } +} + +void MacroAssembler::decrement(Address dst, int value) { + if (value == min_jint) {subl(dst, value); return; } + if (value < 0) { increment(dst, -value); return; } + if (value == 0) { ; return; } + if (value == 1 && UseIncDec) { decl(dst); return; } + /* else */ { subl(dst, value) ; return; } +} + +void MacroAssembler::align(int modulus) { + if (offset() % modulus != 0) nop(modulus - (offset() % modulus)); +} + + +void MacroAssembler::enter() { + pushl(rbp); + movl(rbp, rsp); +} + + +void MacroAssembler::leave() { + movl(rsp, rbp); + popl(rbp); +} + +void MacroAssembler::set_last_Java_frame(Register java_thread, + Register last_java_sp, + Register last_java_fp, + address last_java_pc) { + // determine java_thread register + if (!java_thread->is_valid()) { + java_thread = rdi; + get_thread(java_thread); + } + // determine last_java_sp register + if (!last_java_sp->is_valid()) { + last_java_sp = rsp; + } + + // last_java_fp is optional + + if (last_java_fp->is_valid()) { + movl(Address(java_thread, JavaThread::last_Java_fp_offset()), last_java_fp); + } + + // last_java_pc is optional + + if (last_java_pc != NULL) { + lea(Address(java_thread, + JavaThread::frame_anchor_offset() + JavaFrameAnchor::last_Java_pc_offset()), + InternalAddress(last_java_pc)); + + } + movl(Address(java_thread, JavaThread::last_Java_sp_offset()), last_java_sp); +} + +void MacroAssembler::reset_last_Java_frame(Register java_thread, bool clear_fp, bool clear_pc) { + // determine java_thread register + if (!java_thread->is_valid()) { + java_thread = rdi; + get_thread(java_thread); + } + // we must set sp to zero to clear frame + movl(Address(java_thread, JavaThread::last_Java_sp_offset()), 0); + if (clear_fp) { + movl(Address(java_thread, JavaThread::last_Java_fp_offset()), 0); + } + + if (clear_pc) + movl(Address(java_thread, JavaThread::last_Java_pc_offset()), 0); + +} + + + +// Implementation of call_VM versions + +void MacroAssembler::call_VM_leaf_base( + address entry_point, + int number_of_arguments +) { + call(RuntimeAddress(entry_point)); + increment(rsp, number_of_arguments * wordSize); +} + + +void MacroAssembler::call_VM_base( + Register oop_result, + Register java_thread, + Register last_java_sp, + address entry_point, + int number_of_arguments, + bool check_exceptions +) { + // determine java_thread register + if (!java_thread->is_valid()) { + java_thread = rdi; + get_thread(java_thread); + } + // determine last_java_sp register + if (!last_java_sp->is_valid()) { + last_java_sp = rsp; + } + // debugging support + assert(number_of_arguments >= 0 , "cannot have negative number of arguments"); + assert(java_thread != oop_result , "cannot use the same register for java_thread & oop_result"); + assert(java_thread != last_java_sp, "cannot use the same register for java_thread & last_java_sp"); + // push java thread (becomes first argument of C function) + pushl(java_thread); + // set last Java frame before call + assert(last_java_sp != rbp, "this code doesn't work for last_java_sp == rbp, which currently can't portably work anyway since C2 doesn't save rbp,"); + // Only interpreter should have to set fp + set_last_Java_frame(java_thread, last_java_sp, rbp, NULL); + // do the call + call(RuntimeAddress(entry_point)); + // restore the thread (cannot use the pushed argument since arguments + // may be overwritten by C code generated by an optimizing compiler); + // however can use the register value directly if it is callee saved. + if (java_thread == rdi || java_thread == rsi) { + // rdi & rsi are callee saved -> nothing to do +#ifdef ASSERT + guarantee(java_thread != rax, "change this code"); + pushl(rax); + { Label L; + get_thread(rax); + cmpl(java_thread, rax); + jcc(Assembler::equal, L); + stop("MacroAssembler::call_VM_base: rdi not callee saved?"); + bind(L); + } + popl(rax); +#endif + } else { + get_thread(java_thread); + } + // reset last Java frame + // Only interpreter should have to clear fp + reset_last_Java_frame(java_thread, true, false); + // discard thread and arguments + addl(rsp, (1 + number_of_arguments)*wordSize); + +#ifndef CC_INTERP + // C++ interp handles this in the interpreter + check_and_handle_popframe(java_thread); + check_and_handle_earlyret(java_thread); +#endif /* CC_INTERP */ + + if (check_exceptions) { + // check for pending exceptions (java_thread is set upon return) + cmpl(Address(java_thread, Thread::pending_exception_offset()), NULL_WORD); + jump_cc(Assembler::notEqual, + RuntimeAddress(StubRoutines::forward_exception_entry())); + } + + // get oop result if there is one and reset the value in the thread + if (oop_result->is_valid()) { + movl(oop_result, Address(java_thread, JavaThread::vm_result_offset())); + movl(Address(java_thread, JavaThread::vm_result_offset()), NULL_WORD); + verify_oop(oop_result); + } +} + + +void MacroAssembler::check_and_handle_popframe(Register java_thread) { +} + +void MacroAssembler::check_and_handle_earlyret(Register java_thread) { +} + +void MacroAssembler::call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions) { + leal(rax, Address(rsp, (1 + number_of_arguments) * wordSize)); + call_VM_base(oop_result, noreg, rax, entry_point, number_of_arguments, check_exceptions); +} + + +void MacroAssembler::call_VM(Register oop_result, address entry_point, bool check_exceptions) { + Label C, E; + call(C, relocInfo::none); + jmp(E); + + bind(C); + call_VM_helper(oop_result, entry_point, 0, check_exceptions); + ret(0); + + bind(E); +} + + +void MacroAssembler::call_VM(Register oop_result, address entry_point, Register arg_1, bool check_exceptions) { + Label C, E; + call(C, relocInfo::none); + jmp(E); + + bind(C); + pushl(arg_1); + call_VM_helper(oop_result, entry_point, 1, check_exceptions); + ret(0); + + bind(E); +} + + +void MacroAssembler::call_VM(Register oop_result, address entry_point, Register arg_1, Register arg_2, bool check_exceptions) { + Label C, E; + call(C, relocInfo::none); + jmp(E); + + bind(C); + pushl(arg_2); + pushl(arg_1); + call_VM_helper(oop_result, entry_point, 2, check_exceptions); + ret(0); + + bind(E); +} + + +void MacroAssembler::call_VM(Register oop_result, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions) { + Label C, E; + call(C, relocInfo::none); + jmp(E); + + bind(C); + pushl(arg_3); + pushl(arg_2); + pushl(arg_1); + call_VM_helper(oop_result, entry_point, 3, check_exceptions); + ret(0); + + bind(E); +} + + +void MacroAssembler::call_VM(Register oop_result, Register last_java_sp, address entry_point, int number_of_arguments, bool check_exceptions) { + call_VM_base(oop_result, noreg, last_java_sp, entry_point, number_of_arguments, check_exceptions); +} + + +void MacroAssembler::call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, bool check_exceptions) { + pushl(arg_1); + call_VM(oop_result, last_java_sp, entry_point, 1, check_exceptions); +} + + +void MacroAssembler::call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, bool check_exceptions) { + pushl(arg_2); + pushl(arg_1); + call_VM(oop_result, last_java_sp, entry_point, 2, check_exceptions); +} + + +void MacroAssembler::call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions) { + pushl(arg_3); + pushl(arg_2); + pushl(arg_1); + call_VM(oop_result, last_java_sp, entry_point, 3, check_exceptions); +} + + +void MacroAssembler::call_VM_leaf(address entry_point, int number_of_arguments) { + call_VM_leaf_base(entry_point, number_of_arguments); +} + + +void MacroAssembler::call_VM_leaf(address entry_point, Register arg_1) { + pushl(arg_1); + call_VM_leaf(entry_point, 1); +} + + +void MacroAssembler::call_VM_leaf(address entry_point, Register arg_1, Register arg_2) { + pushl(arg_2); + pushl(arg_1); + call_VM_leaf(entry_point, 2); +} + + +void MacroAssembler::call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3) { + pushl(arg_3); + pushl(arg_2); + pushl(arg_1); + call_VM_leaf(entry_point, 3); +} + + +// Calls to C land +// +// When entering C land, the rbp, & rsp of the last Java frame have to be recorded +// in the (thread-local) JavaThread object. When leaving C land, the last Java fp +// has to be reset to 0. This is required to allow proper stack traversal. + +void MacroAssembler::store_check(Register obj) { + // Does a store check for the oop in register obj. The content of + // register obj is destroyed afterwards. + store_check_part_1(obj); + store_check_part_2(obj); +} + + +void MacroAssembler::store_check(Register obj, Address dst) { + store_check(obj); +} + + +// split the store check operation so that other instructions can be scheduled inbetween +void MacroAssembler::store_check_part_1(Register obj) { + BarrierSet* bs = Universe::heap()->barrier_set(); + assert(bs->kind() == BarrierSet::CardTableModRef, "Wrong barrier set kind"); + shrl(obj, CardTableModRefBS::card_shift); +} + + +void MacroAssembler::store_check_part_2(Register obj) { + BarrierSet* bs = Universe::heap()->barrier_set(); + assert(bs->kind() == BarrierSet::CardTableModRef, "Wrong barrier set kind"); + CardTableModRefBS* ct = (CardTableModRefBS*)bs; + assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust this code"); + ExternalAddress cardtable((address)ct->byte_map_base); + Address index(noreg, obj, Address::times_1); + + movb(as_Address(ArrayAddress(cardtable, index)), 0); +} + + +void MacroAssembler::c2bool(Register x) { + // implements x == 0 ? 0 : 1 + // note: must only look at least-significant byte of x + // since C-style booleans are stored in one byte + // only! (was bug) + andl(x, 0xFF); + setb(Assembler::notZero, x); +} + + +int MacroAssembler::corrected_idivl(Register reg) { + // Full implementation of Java idiv and irem; checks for + // special case as described in JVM spec., p.243 & p.271. + // The function returns the (pc) offset of the idivl + // instruction - may be needed for implicit exceptions. + // + // normal case special case + // + // input : rax,: dividend min_int + // reg: divisor (may not be rax,/rdx) -1 + // + // output: rax,: quotient (= rax, idiv reg) min_int + // rdx: remainder (= rax, irem reg) 0 + assert(reg != rax && reg != rdx, "reg cannot be rax, or rdx register"); + const int min_int = 0x80000000; + Label normal_case, special_case; + + // check for special case + cmpl(rax, min_int); + jcc(Assembler::notEqual, normal_case); + xorl(rdx, rdx); // prepare rdx for possible special case (where remainder = 0) + cmpl(reg, -1); + jcc(Assembler::equal, special_case); + + // handle normal case + bind(normal_case); + cdql(); + int idivl_offset = offset(); + idivl(reg); + + // normal and special case exit + bind(special_case); + + return idivl_offset; +} + + +void MacroAssembler::lneg(Register hi, Register lo) { + negl(lo); + adcl(hi, 0); + negl(hi); +} + + +void MacroAssembler::lmul(int x_rsp_offset, int y_rsp_offset) { + // Multiplication of two Java long values stored on the stack + // as illustrated below. Result is in rdx:rax. + // + // rsp ---> [ ?? ] \ \ + // .... | y_rsp_offset | + // [ y_lo ] / (in bytes) | x_rsp_offset + // [ y_hi ] | (in bytes) + // .... | + // [ x_lo ] / + // [ x_hi ] + // .... + // + // Basic idea: lo(result) = lo(x_lo * y_lo) + // hi(result) = hi(x_lo * y_lo) + lo(x_hi * y_lo) + lo(x_lo * y_hi) + Address x_hi(rsp, x_rsp_offset + wordSize); Address x_lo(rsp, x_rsp_offset); + Address y_hi(rsp, y_rsp_offset + wordSize); Address y_lo(rsp, y_rsp_offset); + Label quick; + // load x_hi, y_hi and check if quick + // multiplication is possible + movl(rbx, x_hi); + movl(rcx, y_hi); + movl(rax, rbx); + orl(rbx, rcx); // rbx, = 0 <=> x_hi = 0 and y_hi = 0 + jcc(Assembler::zero, quick); // if rbx, = 0 do quick multiply + // do full multiplication + // 1st step + mull(y_lo); // x_hi * y_lo + movl(rbx, rax); // save lo(x_hi * y_lo) in rbx, + // 2nd step + movl(rax, x_lo); + mull(rcx); // x_lo * y_hi + addl(rbx, rax); // add lo(x_lo * y_hi) to rbx, + // 3rd step + bind(quick); // note: rbx, = 0 if quick multiply! + movl(rax, x_lo); + mull(y_lo); // x_lo * y_lo + addl(rdx, rbx); // correct hi(x_lo * y_lo) +} + + +void MacroAssembler::lshl(Register hi, Register lo) { + // Java shift left long support (semantics as described in JVM spec., p.305) + // (basic idea for shift counts s >= n: x << s == (x << n) << (s - n)) + // shift value is in rcx ! + assert(hi != rcx, "must not use rcx"); + assert(lo != rcx, "must not use rcx"); + const Register s = rcx; // shift count + const int n = BitsPerWord; + Label L; + andl(s, 0x3f); // s := s & 0x3f (s < 0x40) + cmpl(s, n); // if (s < n) + jcc(Assembler::less, L); // else (s >= n) + movl(hi, lo); // x := x << n + xorl(lo, lo); + // Note: subl(s, n) is not needed since the Intel shift instructions work rcx mod n! + bind(L); // s (mod n) < n + shldl(hi, lo); // x := x << s + shll(lo); +} + + +void MacroAssembler::lshr(Register hi, Register lo, bool sign_extension) { + // Java shift right long support (semantics as described in JVM spec., p.306 & p.310) + // (basic idea for shift counts s >= n: x >> s == (x >> n) >> (s - n)) + assert(hi != rcx, "must not use rcx"); + assert(lo != rcx, "must not use rcx"); + const Register s = rcx; // shift count + const int n = BitsPerWord; + Label L; + andl(s, 0x3f); // s := s & 0x3f (s < 0x40) + cmpl(s, n); // if (s < n) + jcc(Assembler::less, L); // else (s >= n) + movl(lo, hi); // x := x >> n + if (sign_extension) sarl(hi, 31); + else xorl(hi, hi); + // Note: subl(s, n) is not needed since the Intel shift instructions work rcx mod n! + bind(L); // s (mod n) < n + shrdl(lo, hi); // x := x >> s + if (sign_extension) sarl(hi); + else shrl(hi); +} + + +// Note: y_lo will be destroyed +void MacroAssembler::lcmp2int(Register x_hi, Register x_lo, Register y_hi, Register y_lo) { + // Long compare for Java (semantics as described in JVM spec.) + Label high, low, done; + + cmpl(x_hi, y_hi); + jcc(Assembler::less, low); + jcc(Assembler::greater, high); + // x_hi is the return register + xorl(x_hi, x_hi); + cmpl(x_lo, y_lo); + jcc(Assembler::below, low); + jcc(Assembler::equal, done); + + bind(high); + xorl(x_hi, x_hi); + increment(x_hi); + jmp(done); + + bind(low); + xorl(x_hi, x_hi); + decrement(x_hi); + + bind(done); +} + + +void MacroAssembler::save_rax(Register tmp) { + if (tmp == noreg) pushl(rax); + else if (tmp != rax) movl(tmp, rax); +} + + +void MacroAssembler::restore_rax(Register tmp) { + if (tmp == noreg) popl(rax); + else if (tmp != rax) movl(rax, tmp); +} + + +void MacroAssembler::fremr(Register tmp) { + save_rax(tmp); + { Label L; + bind(L); + fprem(); + fwait(); fnstsw_ax(); + sahf(); + jcc(Assembler::parity, L); + } + restore_rax(tmp); + // Result is in ST0. + // Note: fxch & fpop to get rid of ST1 + // (otherwise FPU stack could overflow eventually) + fxch(1); + fpop(); +} + + +static const double pi_4 = 0.7853981633974483; + +void MacroAssembler::trigfunc(char trig, int num_fpu_regs_in_use) { + // A hand-coded argument reduction for values in fabs(pi/4, pi/2) + // was attempted in this code; unfortunately it appears that the + // switch to 80-bit precision and back causes this to be + // unprofitable compared with simply performing a runtime call if + // the argument is out of the (-pi/4, pi/4) range. + + Register tmp = noreg; + if (!VM_Version::supports_cmov()) { + // fcmp needs a temporary so preserve rbx, + tmp = rbx; + pushl(tmp); + } + + Label slow_case, done; + + // x ?<= pi/4 + fld_d(ExternalAddress((address)&pi_4)); + fld_s(1); // Stack: X PI/4 X + fabs(); // Stack: |X| PI/4 X + fcmp(tmp); + jcc(Assembler::above, slow_case); + + // fastest case: -pi/4 <= x <= pi/4 + switch(trig) { + case 's': + fsin(); + break; + case 'c': + fcos(); + break; + case 't': + ftan(); + break; + default: + assert(false, "bad intrinsic"); + break; + } + jmp(done); + + // slow case: runtime call + bind(slow_case); + // Preserve registers across runtime call + pushad(); + int incoming_argument_and_return_value_offset = -1; + if (num_fpu_regs_in_use > 1) { + // Must preserve all other FPU regs (could alternatively convert + // SharedRuntime::dsin and dcos into assembly routines known not to trash + // FPU state, but can not trust C compiler) + NEEDS_CLEANUP; + // NOTE that in this case we also push the incoming argument to + // the stack and restore it later; we also use this stack slot to + // hold the return value from dsin or dcos. + for (int i = 0; i < num_fpu_regs_in_use; i++) { + subl(rsp, wordSize*2); + fstp_d(Address(rsp, 0)); + } + incoming_argument_and_return_value_offset = 2*wordSize*(num_fpu_regs_in_use-1); + fld_d(Address(rsp, incoming_argument_and_return_value_offset)); + } + subl(rsp, wordSize*2); + fstp_d(Address(rsp, 0)); + // NOTE: we must not use call_VM_leaf here because that requires a + // complete interpreter frame in debug mode -- same bug as 4387334 + NEEDS_CLEANUP; + // Need to add stack banging before this runtime call if it needs to + // be taken; however, there is no generic stack banging routine at + // the MacroAssembler level + switch(trig) { + case 's': + { + call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::dsin))); + } + break; + case 'c': + { + call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::dcos))); + } + break; + case 't': + { + call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::dtan))); + } + break; + default: + assert(false, "bad intrinsic"); + break; + } + addl(rsp, wordSize * 2); + if (num_fpu_regs_in_use > 1) { + // Must save return value to stack and then restore entire FPU stack + fstp_d(Address(rsp, incoming_argument_and_return_value_offset)); + for (int i = 0; i < num_fpu_regs_in_use; i++) { + fld_d(Address(rsp, 0)); + addl(rsp, wordSize*2); + } + } + popad(); + + // Come here with result in F-TOS + bind(done); + + if (tmp != noreg) { + popl(tmp); + } +} + +void MacroAssembler::jC2(Register tmp, Label& L) { + // set parity bit if FPU flag C2 is set (via rax) + save_rax(tmp); + fwait(); fnstsw_ax(); + sahf(); + restore_rax(tmp); + // branch + jcc(Assembler::parity, L); +} + + +void MacroAssembler::jnC2(Register tmp, Label& L) { + // set parity bit if FPU flag C2 is set (via rax) + save_rax(tmp); + fwait(); fnstsw_ax(); + sahf(); + restore_rax(tmp); + // branch + jcc(Assembler::noParity, L); +} + + +void MacroAssembler::fcmp(Register tmp) { + fcmp(tmp, 1, true, true); +} + + +void MacroAssembler::fcmp(Register tmp, int index, bool pop_left, bool pop_right) { + assert(!pop_right || pop_left, "usage error"); + if (VM_Version::supports_cmov()) { + assert(tmp == noreg, "unneeded temp"); + if (pop_left) { + fucomip(index); + } else { + fucomi(index); + } + if (pop_right) { + fpop(); + } + } else { + assert(tmp != noreg, "need temp"); + if (pop_left) { + if (pop_right) { + fcompp(); + } else { + fcomp(index); + } + } else { + fcom(index); + } + // convert FPU condition into eflags condition via rax, + save_rax(tmp); + fwait(); fnstsw_ax(); + sahf(); + restore_rax(tmp); + } + // condition codes set as follows: + // + // CF (corresponds to C0) if x < y + // PF (corresponds to C2) if unordered + // ZF (corresponds to C3) if x = y +} + + +void MacroAssembler::fcmp2int(Register dst, bool unordered_is_less) { + fcmp2int(dst, unordered_is_less, 1, true, true); +} + + +void MacroAssembler::fcmp2int(Register dst, bool unordered_is_less, int index, bool pop_left, bool pop_right) { + fcmp(VM_Version::supports_cmov() ? noreg : dst, index, pop_left, pop_right); + Label L; + if (unordered_is_less) { + movl(dst, -1); + jcc(Assembler::parity, L); + jcc(Assembler::below , L); + movl(dst, 0); + jcc(Assembler::equal , L); + increment(dst); + } else { // unordered is greater + movl(dst, 1); + jcc(Assembler::parity, L); + jcc(Assembler::above , L); + movl(dst, 0); + jcc(Assembler::equal , L); + decrement(dst); + } + bind(L); +} + +void MacroAssembler::cmpss2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less) { + ucomiss(opr1, opr2); + + Label L; + if (unordered_is_less) { + movl(dst, -1); + jcc(Assembler::parity, L); + jcc(Assembler::below , L); + movl(dst, 0); + jcc(Assembler::equal , L); + increment(dst); + } else { // unordered is greater + movl(dst, 1); + jcc(Assembler::parity, L); + jcc(Assembler::above , L); + movl(dst, 0); + jcc(Assembler::equal , L); + decrement(dst); + } + bind(L); +} + +void MacroAssembler::cmpsd2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less) { + ucomisd(opr1, opr2); + + Label L; + if (unordered_is_less) { + movl(dst, -1); + jcc(Assembler::parity, L); + jcc(Assembler::below , L); + movl(dst, 0); + jcc(Assembler::equal , L); + increment(dst); + } else { // unordered is greater + movl(dst, 1); + jcc(Assembler::parity, L); + jcc(Assembler::above , L); + movl(dst, 0); + jcc(Assembler::equal , L); + decrement(dst); + } + bind(L); +} + + + +void MacroAssembler::fpop() { + ffree(); + fincstp(); +} + + +void MacroAssembler::sign_extend_short(Register reg) { + if (VM_Version::is_P6()) { + movsxw(reg, reg); + } else { + shll(reg, 16); + sarl(reg, 16); + } +} + + +void MacroAssembler::sign_extend_byte(Register reg) { + if (VM_Version::is_P6() && reg->has_byte_register()) { + movsxb(reg, reg); + } else { + shll(reg, 24); + sarl(reg, 24); + } +} + + +void MacroAssembler::division_with_shift (Register reg, int shift_value) { + assert (shift_value > 0, "illegal shift value"); + Label _is_positive; + testl (reg, reg); + jcc (Assembler::positive, _is_positive); + int offset = (1 << shift_value) - 1 ; + + increment(reg, offset); + + bind (_is_positive); + sarl(reg, shift_value); +} + + +void MacroAssembler::round_to(Register reg, int modulus) { + addl(reg, modulus - 1); + andl(reg, -modulus); +} + +// C++ bool manipulation + +void MacroAssembler::movbool(Register dst, Address src) { + if(sizeof(bool) == 1) + movb(dst, src); + else if(sizeof(bool) == 2) + movw(dst, src); + else if(sizeof(bool) == 4) + movl(dst, src); + else + // unsupported + ShouldNotReachHere(); +} + +void MacroAssembler::movbool(Address dst, bool boolconst) { + if(sizeof(bool) == 1) + movb(dst, (int) boolconst); + else if(sizeof(bool) == 2) + movw(dst, (int) boolconst); + else if(sizeof(bool) == 4) + movl(dst, (int) boolconst); + else + // unsupported + ShouldNotReachHere(); +} + +void MacroAssembler::movbool(Address dst, Register src) { + if(sizeof(bool) == 1) + movb(dst, src); + else if(sizeof(bool) == 2) + movw(dst, src); + else if(sizeof(bool) == 4) + movl(dst, src); + else + // unsupported + ShouldNotReachHere(); +} + +void MacroAssembler::testbool(Register dst) { + if(sizeof(bool) == 1) + testb(dst, (int) 0xff); + else if(sizeof(bool) == 2) { + // testw implementation needed for two byte bools + ShouldNotReachHere(); + } else if(sizeof(bool) == 4) + testl(dst, dst); + else + // unsupported + ShouldNotReachHere(); +} + +void MacroAssembler::verify_oop(Register reg, const char* s) { + if (!VerifyOops) return; + // Pass register number to verify_oop_subroutine + char* b = new char[strlen(s) + 50]; + sprintf(b, "verify_oop: %s: %s", reg->name(), s); + pushl(rax); // save rax, + pushl(reg); // pass register argument + ExternalAddress buffer((address) b); + pushptr(buffer.addr()); + // call indirectly to solve generation ordering problem + movptr(rax, ExternalAddress(StubRoutines::verify_oop_subroutine_entry_address())); + call(rax); +} + + +void MacroAssembler::verify_oop_addr(Address addr, const char* s) { + if (!VerifyOops) return; + // QQQ fix this + // Address adjust(addr.base(), addr.index(), addr.scale(), addr.disp() + BytesPerWord); + // Pass register number to verify_oop_subroutine + char* b = new char[strlen(s) + 50]; + sprintf(b, "verify_oop_addr: %s", s); + pushl(rax); // save rax, + // addr may contain rsp so we will have to adjust it based on the push + // we just did + if (addr.uses(rsp)) { + leal(rax, addr); + pushl(Address(rax, BytesPerWord)); + } else { + pushl(addr); + } + ExternalAddress buffer((address) b); + // pass msg argument + pushptr(buffer.addr()); + // call indirectly to solve generation ordering problem + movptr(rax, ExternalAddress(StubRoutines::verify_oop_subroutine_entry_address())); + call(rax); + // Caller pops the arguments and restores rax, from the stack +} + + +void MacroAssembler::stop(const char* msg) { + ExternalAddress message((address)msg); + // push address of message + pushptr(message.addr()); + { Label L; call(L, relocInfo::none); bind(L); } // push eip + pushad(); // push registers + call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::debug))); + hlt(); +} + + +void MacroAssembler::warn(const char* msg) { + push_CPU_state(); + + ExternalAddress message((address) msg); + // push address of message + pushptr(message.addr()); + + call(RuntimeAddress(CAST_FROM_FN_PTR(address, warning))); + addl(rsp, wordSize); // discard argument + pop_CPU_state(); +} + + +void MacroAssembler::debug(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip, char* msg) { + // In order to get locks to work, we need to fake a in_VM state + JavaThread* thread = JavaThread::current(); + JavaThreadState saved_state = thread->thread_state(); + thread->set_thread_state(_thread_in_vm); + if (ShowMessageBoxOnError) { + JavaThread* thread = JavaThread::current(); + JavaThreadState saved_state = thread->thread_state(); + thread->set_thread_state(_thread_in_vm); + ttyLocker ttyl; + if (CountBytecodes || TraceBytecodes || StopInterpreterAt) { + BytecodeCounter::print(); + } + // To see where a verify_oop failed, get $ebx+40/X for this frame. + // This is the value of eip which points to where verify_oop will return. + if (os::message_box(msg, "Execution stopped, print registers?")) { + tty->print_cr("eip = 0x%08x", eip); + tty->print_cr("rax, = 0x%08x", rax); + tty->print_cr("rbx, = 0x%08x", rbx); + tty->print_cr("rcx = 0x%08x", rcx); + tty->print_cr("rdx = 0x%08x", rdx); + tty->print_cr("rdi = 0x%08x", rdi); + tty->print_cr("rsi = 0x%08x", rsi); + tty->print_cr("rbp, = 0x%08x", rbp); + tty->print_cr("rsp = 0x%08x", rsp); + BREAKPOINT; + } + } else { + ::tty->print_cr("=============== DEBUG MESSAGE: %s ================\n", msg); + assert(false, "DEBUG MESSAGE"); + } + ThreadStateTransition::transition(thread, _thread_in_vm, saved_state); +} + + + +void MacroAssembler::os_breakpoint() { + // instead of directly emitting a breakpoint, call os:breakpoint for better debugability + // (e.g., MSVC can't call ps() otherwise) + call(RuntimeAddress(CAST_FROM_FN_PTR(address, os::breakpoint))); +} + + +void MacroAssembler::push_fTOS() { + subl(rsp, 2 * wordSize); + fstp_d(Address(rsp, 0)); +} + + +void MacroAssembler::pop_fTOS() { + fld_d(Address(rsp, 0)); + addl(rsp, 2 * wordSize); +} + + +void MacroAssembler::empty_FPU_stack() { + if (VM_Version::supports_mmx()) { + emms(); + } else { + for (int i = 8; i-- > 0; ) ffree(i); + } +} + + +class ControlWord { + public: + int32_t _value; + + int rounding_control() const { return (_value >> 10) & 3 ; } + int precision_control() const { return (_value >> 8) & 3 ; } + bool precision() const { return ((_value >> 5) & 1) != 0; } + bool underflow() const { return ((_value >> 4) & 1) != 0; } + bool overflow() const { return ((_value >> 3) & 1) != 0; } + bool zero_divide() const { return ((_value >> 2) & 1) != 0; } + bool denormalized() const { return ((_value >> 1) & 1) != 0; } + bool invalid() const { return ((_value >> 0) & 1) != 0; } + + void print() const { + // rounding control + const char* rc; + switch (rounding_control()) { + case 0: rc = "round near"; break; + case 1: rc = "round down"; break; + case 2: rc = "round up "; break; + case 3: rc = "chop "; break; + }; + // precision control + const char* pc; + switch (precision_control()) { + case 0: pc = "24 bits "; break; + case 1: pc = "reserved"; break; + case 2: pc = "53 bits "; break; + case 3: pc = "64 bits "; break; + }; + // flags + char f[9]; + f[0] = ' '; + f[1] = ' '; + f[2] = (precision ()) ? 'P' : 'p'; + f[3] = (underflow ()) ? 'U' : 'u'; + f[4] = (overflow ()) ? 'O' : 'o'; + f[5] = (zero_divide ()) ? 'Z' : 'z'; + f[6] = (denormalized()) ? 'D' : 'd'; + f[7] = (invalid ()) ? 'I' : 'i'; + f[8] = '\x0'; + // output + printf("%04x masks = %s, %s, %s", _value & 0xFFFF, f, rc, pc); + } + +}; + + +class StatusWord { + public: + int32_t _value; + + bool busy() const { return ((_value >> 15) & 1) != 0; } + bool C3() const { return ((_value >> 14) & 1) != 0; } + bool C2() const { return ((_value >> 10) & 1) != 0; } + bool C1() const { return ((_value >> 9) & 1) != 0; } + bool C0() const { return ((_value >> 8) & 1) != 0; } + int top() const { return (_value >> 11) & 7 ; } + bool error_status() const { return ((_value >> 7) & 1) != 0; } + bool stack_fault() const { return ((_value >> 6) & 1) != 0; } + bool precision() const { return ((_value >> 5) & 1) != 0; } + bool underflow() const { return ((_value >> 4) & 1) != 0; } + bool overflow() const { return ((_value >> 3) & 1) != 0; } + bool zero_divide() const { return ((_value >> 2) & 1) != 0; } + bool denormalized() const { return ((_value >> 1) & 1) != 0; } + bool invalid() const { return ((_value >> 0) & 1) != 0; } + + void print() const { + // condition codes + char c[5]; + c[0] = (C3()) ? '3' : '-'; + c[1] = (C2()) ? '2' : '-'; + c[2] = (C1()) ? '1' : '-'; + c[3] = (C0()) ? '0' : '-'; + c[4] = '\x0'; + // flags + char f[9]; + f[0] = (error_status()) ? 'E' : '-'; + f[1] = (stack_fault ()) ? 'S' : '-'; + f[2] = (precision ()) ? 'P' : '-'; + f[3] = (underflow ()) ? 'U' : '-'; + f[4] = (overflow ()) ? 'O' : '-'; + f[5] = (zero_divide ()) ? 'Z' : '-'; + f[6] = (denormalized()) ? 'D' : '-'; + f[7] = (invalid ()) ? 'I' : '-'; + f[8] = '\x0'; + // output + printf("%04x flags = %s, cc = %s, top = %d", _value & 0xFFFF, f, c, top()); + } + +}; + + +class TagWord { + public: + int32_t _value; + + int tag_at(int i) const { return (_value >> (i*2)) & 3; } + + void print() const { + printf("%04x", _value & 0xFFFF); + } + +}; + + +class FPU_Register { + public: + int32_t _m0; + int32_t _m1; + int16_t _ex; + + bool is_indefinite() const { + return _ex == -1 && _m1 == (int32_t)0xC0000000 && _m0 == 0; + } + + void print() const { + char sign = (_ex < 0) ? '-' : '+'; + const char* kind = (_ex == 0x7FFF || _ex == (int16_t)-1) ? "NaN" : " "; + printf("%c%04hx.%08x%08x %s", sign, _ex, _m1, _m0, kind); + }; + +}; + + +class FPU_State { + public: + enum { + register_size = 10, + number_of_registers = 8, + register_mask = 7 + }; + + ControlWord _control_word; + StatusWord _status_word; + TagWord _tag_word; + int32_t _error_offset; + int32_t _error_selector; + int32_t _data_offset; + int32_t _data_selector; + int8_t _register[register_size * number_of_registers]; + + int tag_for_st(int i) const { return _tag_word.tag_at((_status_word.top() + i) & register_mask); } + FPU_Register* st(int i) const { return (FPU_Register*)&_register[register_size * i]; } + + const char* tag_as_string(int tag) const { + switch (tag) { + case 0: return "valid"; + case 1: return "zero"; + case 2: return "special"; + case 3: return "empty"; + } + ShouldNotReachHere() + return NULL; + } + + void print() const { + // print computation registers + { int t = _status_word.top(); + for (int i = 0; i < number_of_registers; i++) { + int j = (i - t) & register_mask; + printf("%c r%d = ST%d = ", (j == 0 ? '*' : ' '), i, j); + st(j)->print(); + printf(" %s\n", tag_as_string(_tag_word.tag_at(i))); + } + } + printf("\n"); + // print control registers + printf("ctrl = "); _control_word.print(); printf("\n"); + printf("stat = "); _status_word .print(); printf("\n"); + printf("tags = "); _tag_word .print(); printf("\n"); + } + +}; + + +class Flag_Register { + public: + int32_t _value; + + bool overflow() const { return ((_value >> 11) & 1) != 0; } + bool direction() const { return ((_value >> 10) & 1) != 0; } + bool sign() const { return ((_value >> 7) & 1) != 0; } + bool zero() const { return ((_value >> 6) & 1) != 0; } + bool auxiliary_carry() const { return ((_value >> 4) & 1) != 0; } + bool parity() const { return ((_value >> 2) & 1) != 0; } + bool carry() const { return ((_value >> 0) & 1) != 0; } + + void print() const { + // flags + char f[8]; + f[0] = (overflow ()) ? 'O' : '-'; + f[1] = (direction ()) ? 'D' : '-'; + f[2] = (sign ()) ? 'S' : '-'; + f[3] = (zero ()) ? 'Z' : '-'; + f[4] = (auxiliary_carry()) ? 'A' : '-'; + f[5] = (parity ()) ? 'P' : '-'; + f[6] = (carry ()) ? 'C' : '-'; + f[7] = '\x0'; + // output + printf("%08x flags = %s", _value, f); + } + +}; + + +class IU_Register { + public: + int32_t _value; + + void print() const { + printf("%08x %11d", _value, _value); + } + +}; + + +class IU_State { + public: + Flag_Register _eflags; + IU_Register _rdi; + IU_Register _rsi; + IU_Register _rbp; + IU_Register _rsp; + IU_Register _rbx; + IU_Register _rdx; + IU_Register _rcx; + IU_Register _rax; + + void print() const { + // computation registers + printf("rax, = "); _rax.print(); printf("\n"); + printf("rbx, = "); _rbx.print(); printf("\n"); + printf("rcx = "); _rcx.print(); printf("\n"); + printf("rdx = "); _rdx.print(); printf("\n"); + printf("rdi = "); _rdi.print(); printf("\n"); + printf("rsi = "); _rsi.print(); printf("\n"); + printf("rbp, = "); _rbp.print(); printf("\n"); + printf("rsp = "); _rsp.print(); printf("\n"); + printf("\n"); + // control registers + printf("flgs = "); _eflags.print(); printf("\n"); + } +}; + + +class CPU_State { + public: + FPU_State _fpu_state; + IU_State _iu_state; + + void print() const { + printf("--------------------------------------------------\n"); + _iu_state .print(); + printf("\n"); + _fpu_state.print(); + printf("--------------------------------------------------\n"); + } + +}; + + +static void _print_CPU_state(CPU_State* state) { + state->print(); +}; + + +void MacroAssembler::print_CPU_state() { + push_CPU_state(); + pushl(rsp); // pass CPU state + call(RuntimeAddress(CAST_FROM_FN_PTR(address, _print_CPU_state))); + addl(rsp, wordSize); // discard argument + pop_CPU_state(); +} + + +static bool _verify_FPU(int stack_depth, char* s, CPU_State* state) { + static int counter = 0; + FPU_State* fs = &state->_fpu_state; + counter++; + // For leaf calls, only verify that the top few elements remain empty. + // We only need 1 empty at the top for C2 code. + if( stack_depth < 0 ) { + if( fs->tag_for_st(7) != 3 ) { + printf("FPR7 not empty\n"); + state->print(); + assert(false, "error"); + return false; + } + return true; // All other stack states do not matter + } + + assert((fs->_control_word._value & 0xffff) == StubRoutines::_fpu_cntrl_wrd_std, + "bad FPU control word"); + + // compute stack depth + int i = 0; + while (i < FPU_State::number_of_registers && fs->tag_for_st(i) < 3) i++; + int d = i; + while (i < FPU_State::number_of_registers && fs->tag_for_st(i) == 3) i++; + // verify findings + if (i != FPU_State::number_of_registers) { + // stack not contiguous + printf("%s: stack not contiguous at ST%d\n", s, i); + state->print(); + assert(false, "error"); + return false; + } + // check if computed stack depth corresponds to expected stack depth + if (stack_depth < 0) { + // expected stack depth is -stack_depth or less + if (d > -stack_depth) { + // too many elements on the stack + printf("%s: <= %d stack elements expected but found %d\n", s, -stack_depth, d); + state->print(); + assert(false, "error"); + return false; + } + } else { + // expected stack depth is stack_depth + if (d != stack_depth) { + // wrong stack depth + printf("%s: %d stack elements expected but found %d\n", s, stack_depth, d); + state->print(); + assert(false, "error"); + return false; + } + } + // everything is cool + return true; +} + + +void MacroAssembler::verify_FPU(int stack_depth, const char* s) { + if (!VerifyFPU) return; + push_CPU_state(); + pushl(rsp); // pass CPU state + ExternalAddress msg((address) s); + // pass message string s + pushptr(msg.addr()); + pushl(stack_depth); // pass stack depth + call(RuntimeAddress(CAST_FROM_FN_PTR(address, _verify_FPU))); + addl(rsp, 3 * wordSize); // discard arguments + // check for error + { Label L; + testl(rax, rax); + jcc(Assembler::notZero, L); + int3(); // break if error condition + bind(L); + } + pop_CPU_state(); +} + + +void MacroAssembler::push_IU_state() { + pushad(); + pushfd(); +} + + +void MacroAssembler::pop_IU_state() { + popfd(); + popad(); +} + + +void MacroAssembler::push_FPU_state() { + subl(rsp, FPUStateSizeInWords * wordSize); + fnsave(Address(rsp, 0)); + fwait(); +} + + +void MacroAssembler::pop_FPU_state() { + frstor(Address(rsp, 0)); + addl(rsp, FPUStateSizeInWords * wordSize); +} + + +void MacroAssembler::push_CPU_state() { + push_IU_state(); + push_FPU_state(); +} + + +void MacroAssembler::pop_CPU_state() { + pop_FPU_state(); + pop_IU_state(); +} + + +void MacroAssembler::push_callee_saved_registers() { + pushl(rsi); + pushl(rdi); + pushl(rdx); + pushl(rcx); +} + + +void MacroAssembler::pop_callee_saved_registers() { + popl(rcx); + popl(rdx); + popl(rdi); + popl(rsi); +} + + +void MacroAssembler::set_word_if_not_zero(Register dst) { + xorl(dst, dst); + set_byte_if_not_zero(dst); +} + +// Write serialization page so VM thread can do a pseudo remote membar. +// We use the current thread pointer to calculate a thread specific +// offset to write to within the page. This minimizes bus traffic +// due to cache line collision. +void MacroAssembler::serialize_memory(Register thread, Register tmp) { + movl(tmp, thread); + shrl(tmp, os::get_serialize_page_shift_count()); + andl(tmp, (os::vm_page_size() - sizeof(int))); + + Address index(noreg, tmp, Address::times_1); + ExternalAddress page(os::get_memory_serialize_page()); + + movptr(ArrayAddress(page, index), tmp); +} + + +void MacroAssembler::verify_tlab() { +#ifdef ASSERT + if (UseTLAB && VerifyOops) { + Label next, ok; + Register t1 = rsi; + Register thread_reg = rbx; + + pushl(t1); + pushl(thread_reg); + get_thread(thread_reg); + + movl(t1, Address(thread_reg, in_bytes(JavaThread::tlab_top_offset()))); + cmpl(t1, Address(thread_reg, in_bytes(JavaThread::tlab_start_offset()))); + jcc(Assembler::aboveEqual, next); + stop("assert(top >= start)"); + should_not_reach_here(); + + bind(next); + movl(t1, Address(thread_reg, in_bytes(JavaThread::tlab_end_offset()))); + cmpl(t1, Address(thread_reg, in_bytes(JavaThread::tlab_top_offset()))); + jcc(Assembler::aboveEqual, ok); + stop("assert(top <= end)"); + should_not_reach_here(); + + bind(ok); + popl(thread_reg); + popl(t1); + } +#endif +} + + +// Defines obj, preserves var_size_in_bytes +void MacroAssembler::eden_allocate(Register obj, Register var_size_in_bytes, int con_size_in_bytes, + Register t1, Label& slow_case) { + assert(obj == rax, "obj must be in rax, for cmpxchg"); + assert_different_registers(obj, var_size_in_bytes, t1); + Register end = t1; + Label retry; + bind(retry); + ExternalAddress heap_top((address) Universe::heap()->top_addr()); + movptr(obj, heap_top); + if (var_size_in_bytes == noreg) { + leal(end, Address(obj, con_size_in_bytes)); + } else { + leal(end, Address(obj, var_size_in_bytes, Address::times_1)); + } + // if end < obj then we wrapped around => object too long => slow case + cmpl(end, obj); + jcc(Assembler::below, slow_case); + cmpptr(end, ExternalAddress((address) Universe::heap()->end_addr())); + jcc(Assembler::above, slow_case); + // Compare obj with the top addr, and if still equal, store the new top addr in + // end at the address of the top addr pointer. Sets ZF if was equal, and clears + // it otherwise. Use lock prefix for atomicity on MPs. + if (os::is_MP()) { + lock(); + } + cmpxchgptr(end, heap_top); + jcc(Assembler::notEqual, retry); +} + + +// Defines obj, preserves var_size_in_bytes, okay for t2 == var_size_in_bytes. +void MacroAssembler::tlab_allocate(Register obj, Register var_size_in_bytes, int con_size_in_bytes, + Register t1, Register t2, Label& slow_case) { + assert_different_registers(obj, t1, t2); + assert_different_registers(obj, var_size_in_bytes, t1); + Register end = t2; + Register thread = t1; + + verify_tlab(); + + get_thread(thread); + + movl(obj, Address(thread, JavaThread::tlab_top_offset())); + if (var_size_in_bytes == noreg) { + leal(end, Address(obj, con_size_in_bytes)); + } else { + leal(end, Address(obj, var_size_in_bytes, Address::times_1)); + } + cmpl(end, Address(thread, JavaThread::tlab_end_offset())); + jcc(Assembler::above, slow_case); + + // update the tlab top pointer + movl(Address(thread, JavaThread::tlab_top_offset()), end); + + // recover var_size_in_bytes if necessary + if (var_size_in_bytes == end) { + subl(var_size_in_bytes, obj); + } + verify_tlab(); +} + +// Preserves rbx, and rdx. +void MacroAssembler::tlab_refill(Label& retry, Label& try_eden, Label& slow_case) { + Register top = rax; + Register t1 = rcx; + Register t2 = rsi; + Register thread_reg = rdi; + assert_different_registers(top, thread_reg, t1, t2, /* preserve: */ rbx, rdx); + Label do_refill, discard_tlab; + + if (CMSIncrementalMode || !Universe::heap()->supports_inline_contig_alloc()) { + // No allocation in the shared eden. + jmp(slow_case); + } + + get_thread(thread_reg); + + movl(top, Address(thread_reg, in_bytes(JavaThread::tlab_top_offset()))); + movl(t1, Address(thread_reg, in_bytes(JavaThread::tlab_end_offset()))); + + // calculate amount of free space + subl(t1, top); + shrl(t1, LogHeapWordSize); + + // Retain tlab and allocate object in shared space if + // the amount free in the tlab is too large to discard. + cmpl(t1, Address(thread_reg, in_bytes(JavaThread::tlab_refill_waste_limit_offset()))); + jcc(Assembler::lessEqual, discard_tlab); + + // Retain + movl(t2, ThreadLocalAllocBuffer::refill_waste_limit_increment()); + addl(Address(thread_reg, in_bytes(JavaThread::tlab_refill_waste_limit_offset())), t2); + if (TLABStats) { + // increment number of slow_allocations + addl(Address(thread_reg, in_bytes(JavaThread::tlab_slow_allocations_offset())), 1); + } + jmp(try_eden); + + bind(discard_tlab); + if (TLABStats) { + // increment number of refills + addl(Address(thread_reg, in_bytes(JavaThread::tlab_number_of_refills_offset())), 1); + // accumulate wastage -- t1 is amount free in tlab + addl(Address(thread_reg, in_bytes(JavaThread::tlab_fast_refill_waste_offset())), t1); + } + + // if tlab is currently allocated (top or end != null) then + // fill [top, end + alignment_reserve) with array object + testl (top, top); + jcc(Assembler::zero, do_refill); + + // set up the mark word + movl(Address(top, oopDesc::mark_offset_in_bytes()), (int)markOopDesc::prototype()->copy_set_hash(0x2)); + // set the length to the remaining space + subl(t1, typeArrayOopDesc::header_size(T_INT)); + addl(t1, ThreadLocalAllocBuffer::alignment_reserve()); + shll(t1, log2_intptr(HeapWordSize/sizeof(jint))); + movl(Address(top, arrayOopDesc::length_offset_in_bytes()), t1); + // set klass to intArrayKlass + // dubious reloc why not an oop reloc? + movptr(t1, ExternalAddress((address) Universe::intArrayKlassObj_addr())); + movl(Address(top, oopDesc::klass_offset_in_bytes()), t1); + + // refill the tlab with an eden allocation + bind(do_refill); + movl(t1, Address(thread_reg, in_bytes(JavaThread::tlab_size_offset()))); + shll(t1, LogHeapWordSize); + // add object_size ?? + eden_allocate(top, t1, 0, t2, slow_case); + + // Check that t1 was preserved in eden_allocate. +#ifdef ASSERT + if (UseTLAB) { + Label ok; + Register tsize = rsi; + assert_different_registers(tsize, thread_reg, t1); + pushl(tsize); + movl(tsize, Address(thread_reg, in_bytes(JavaThread::tlab_size_offset()))); + shll(tsize, LogHeapWordSize); + cmpl(t1, tsize); + jcc(Assembler::equal, ok); + stop("assert(t1 != tlab size)"); + should_not_reach_here(); + + bind(ok); + popl(tsize); + } +#endif + movl(Address(thread_reg, in_bytes(JavaThread::tlab_start_offset())), top); + movl(Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())), top); + addl(top, t1); + subl(top, ThreadLocalAllocBuffer::alignment_reserve_in_bytes()); + movl(Address(thread_reg, in_bytes(JavaThread::tlab_end_offset())), top); + verify_tlab(); + jmp(retry); +} + + +int MacroAssembler::biased_locking_enter(Register lock_reg, Register obj_reg, Register swap_reg, Register tmp_reg, + bool swap_reg_contains_mark, + Label& done, Label* slow_case, + BiasedLockingCounters* counters) { + assert(UseBiasedLocking, "why call this otherwise?"); + assert(swap_reg == rax, "swap_reg must be rax, for cmpxchg"); + assert_different_registers(lock_reg, obj_reg, swap_reg); + + if (PrintBiasedLockingStatistics && counters == NULL) + counters = BiasedLocking::counters(); + + bool need_tmp_reg = false; + if (tmp_reg == noreg) { + need_tmp_reg = true; + tmp_reg = lock_reg; + } else { + assert_different_registers(lock_reg, obj_reg, swap_reg, tmp_reg); + } + assert(markOopDesc::age_shift == markOopDesc::lock_bits + markOopDesc::biased_lock_bits, "biased locking makes assumptions about bit layout"); + Address mark_addr (obj_reg, oopDesc::mark_offset_in_bytes()); + Address klass_addr (obj_reg, oopDesc::klass_offset_in_bytes()); + Address saved_mark_addr(lock_reg, 0); + + // Biased locking + // See whether the lock is currently biased toward our thread and + // whether the epoch is still valid + // Note that the runtime guarantees sufficient alignment of JavaThread + // pointers to allow age to be placed into low bits + // First check to see whether biasing is even enabled for this object + Label cas_label; + int null_check_offset = -1; + if (!swap_reg_contains_mark) { + null_check_offset = offset(); + movl(swap_reg, mark_addr); + } + if (need_tmp_reg) { + pushl(tmp_reg); + } + movl(tmp_reg, swap_reg); + andl(tmp_reg, markOopDesc::biased_lock_mask_in_place); + cmpl(tmp_reg, markOopDesc::biased_lock_pattern); + if (need_tmp_reg) { + popl(tmp_reg); + } + jcc(Assembler::notEqual, cas_label); + // The bias pattern is present in the object's header. Need to check + // whether the bias owner and the epoch are both still current. + // Note that because there is no current thread register on x86 we + // need to store off the mark word we read out of the object to + // avoid reloading it and needing to recheck invariants below. This + // store is unfortunate but it makes the overall code shorter and + // simpler. + movl(saved_mark_addr, swap_reg); + if (need_tmp_reg) { + pushl(tmp_reg); + } + get_thread(tmp_reg); + xorl(swap_reg, tmp_reg); + if (swap_reg_contains_mark) { + null_check_offset = offset(); + } + movl(tmp_reg, klass_addr); + xorl(swap_reg, Address(tmp_reg, Klass::prototype_header_offset_in_bytes() + klassOopDesc::klass_part_offset_in_bytes())); + andl(swap_reg, ~((int) markOopDesc::age_mask_in_place)); + if (need_tmp_reg) { + popl(tmp_reg); + } + if (counters != NULL) { + cond_inc32(Assembler::zero, + ExternalAddress((address)counters->biased_lock_entry_count_addr())); + } + jcc(Assembler::equal, done); + + Label try_revoke_bias; + Label try_rebias; + + // At this point we know that the header has the bias pattern and + // that we are not the bias owner in the current epoch. We need to + // figure out more details about the state of the header in order to + // know what operations can be legally performed on the object's + // header. + + // If the low three bits in the xor result aren't clear, that means + // the prototype header is no longer biased and we have to revoke + // the bias on this object. + testl(swap_reg, markOopDesc::biased_lock_mask_in_place); + jcc(Assembler::notZero, try_revoke_bias); + + // Biasing is still enabled for this data type. See whether the + // epoch of the current bias is still valid, meaning that the epoch + // bits of the mark word are equal to the epoch bits of the + // prototype header. (Note that the prototype header's epoch bits + // only change at a safepoint.) If not, attempt to rebias the object + // toward the current thread. Note that we must be absolutely sure + // that the current epoch is invalid in order to do this because + // otherwise the manipulations it performs on the mark word are + // illegal. + testl(swap_reg, markOopDesc::epoch_mask_in_place); + jcc(Assembler::notZero, try_rebias); + + // The epoch of the current bias is still valid but we know nothing + // about the owner; it might be set or it might be clear. Try to + // acquire the bias of the object using an atomic operation. If this + // fails we will go in to the runtime to revoke the object's bias. + // Note that we first construct the presumed unbiased header so we + // don't accidentally blow away another thread's valid bias. + movl(swap_reg, saved_mark_addr); + andl(swap_reg, + markOopDesc::biased_lock_mask_in_place | markOopDesc::age_mask_in_place | markOopDesc::epoch_mask_in_place); + if (need_tmp_reg) { + pushl(tmp_reg); + } + get_thread(tmp_reg); + orl(tmp_reg, swap_reg); + if (os::is_MP()) { + lock(); + } + cmpxchg(tmp_reg, Address(obj_reg, 0)); + if (need_tmp_reg) { + popl(tmp_reg); + } + // If the biasing toward our thread failed, this means that + // another thread succeeded in biasing it toward itself and we + // need to revoke that bias. The revocation will occur in the + // interpreter runtime in the slow case. + if (counters != NULL) { + cond_inc32(Assembler::zero, + ExternalAddress((address)counters->anonymously_biased_lock_entry_count_addr())); + } + if (slow_case != NULL) { + jcc(Assembler::notZero, *slow_case); + } + jmp(done); + + bind(try_rebias); + // At this point we know the epoch has expired, meaning that the + // current "bias owner", if any, is actually invalid. Under these + // circumstances _only_, we are allowed to use the current header's + // value as the comparison value when doing the cas to acquire the + // bias in the current epoch. In other words, we allow transfer of + // the bias from one thread to another directly in this situation. + // + // FIXME: due to a lack of registers we currently blow away the age + // bits in this situation. Should attempt to preserve them. + if (need_tmp_reg) { + pushl(tmp_reg); + } + get_thread(tmp_reg); + movl(swap_reg, klass_addr); + orl(tmp_reg, Address(swap_reg, Klass::prototype_header_offset_in_bytes() + klassOopDesc::klass_part_offset_in_bytes())); + movl(swap_reg, saved_mark_addr); + if (os::is_MP()) { + lock(); + } + cmpxchg(tmp_reg, Address(obj_reg, 0)); + if (need_tmp_reg) { + popl(tmp_reg); + } + // If the biasing toward our thread failed, then another thread + // succeeded in biasing it toward itself and we need to revoke that + // bias. The revocation will occur in the runtime in the slow case. + if (counters != NULL) { + cond_inc32(Assembler::zero, + ExternalAddress((address)counters->rebiased_lock_entry_count_addr())); + } + if (slow_case != NULL) { + jcc(Assembler::notZero, *slow_case); + } + jmp(done); + + bind(try_revoke_bias); + // The prototype mark in the klass doesn't have the bias bit set any + // more, indicating that objects of this data type are not supposed + // to be biased any more. We are going to try to reset the mark of + // this object to the prototype value and fall through to the + // CAS-based locking scheme. Note that if our CAS fails, it means + // that another thread raced us for the privilege of revoking the + // bias of this particular object, so it's okay to continue in the + // normal locking code. + // + // FIXME: due to a lack of registers we currently blow away the age + // bits in this situation. Should attempt to preserve them. + movl(swap_reg, saved_mark_addr); + if (need_tmp_reg) { + pushl(tmp_reg); + } + movl(tmp_reg, klass_addr); + movl(tmp_reg, Address(tmp_reg, Klass::prototype_header_offset_in_bytes() + klassOopDesc::klass_part_offset_in_bytes())); + if (os::is_MP()) { + lock(); + } + cmpxchg(tmp_reg, Address(obj_reg, 0)); + if (need_tmp_reg) { + popl(tmp_reg); + } + // Fall through to the normal CAS-based lock, because no matter what + // the result of the above CAS, some thread must have succeeded in + // removing the bias bit from the object's header. + if (counters != NULL) { + cond_inc32(Assembler::zero, + ExternalAddress((address)counters->revoked_lock_entry_count_addr())); + } + + bind(cas_label); + + return null_check_offset; +} + + +void MacroAssembler::biased_locking_exit(Register obj_reg, Register temp_reg, Label& done) { + assert(UseBiasedLocking, "why call this otherwise?"); + + // Check for biased locking unlock case, which is a no-op + // Note: we do not have to check the thread ID for two reasons. + // First, the interpreter checks for IllegalMonitorStateException at + // a higher level. Second, if the bias was revoked while we held the + // lock, the object could not be rebiased toward another thread, so + // the bias bit would be clear. + movl(temp_reg, Address(obj_reg, oopDesc::mark_offset_in_bytes())); + andl(temp_reg, markOopDesc::biased_lock_mask_in_place); + cmpl(temp_reg, markOopDesc::biased_lock_pattern); + jcc(Assembler::equal, done); +} + + +Assembler::Condition MacroAssembler::negate_condition(Assembler::Condition cond) { + switch (cond) { + // Note some conditions are synonyms for others + case Assembler::zero: return Assembler::notZero; + case Assembler::notZero: return Assembler::zero; + case Assembler::less: return Assembler::greaterEqual; + case Assembler::lessEqual: return Assembler::greater; + case Assembler::greater: return Assembler::lessEqual; + case Assembler::greaterEqual: return Assembler::less; + case Assembler::below: return Assembler::aboveEqual; + case Assembler::belowEqual: return Assembler::above; + case Assembler::above: return Assembler::belowEqual; + case Assembler::aboveEqual: return Assembler::below; + case Assembler::overflow: return Assembler::noOverflow; + case Assembler::noOverflow: return Assembler::overflow; + case Assembler::negative: return Assembler::positive; + case Assembler::positive: return Assembler::negative; + case Assembler::parity: return Assembler::noParity; + case Assembler::noParity: return Assembler::parity; + } + ShouldNotReachHere(); return Assembler::overflow; +} + + +void MacroAssembler::cond_inc32(Condition cond, AddressLiteral counter_addr) { + Condition negated_cond = negate_condition(cond); + Label L; + jcc(negated_cond, L); + atomic_incl(counter_addr); + bind(L); +} + +void MacroAssembler::atomic_incl(AddressLiteral counter_addr) { + pushfd(); + if (os::is_MP()) + lock(); + increment(counter_addr); + popfd(); +} + +SkipIfEqual::SkipIfEqual( + MacroAssembler* masm, const bool* flag_addr, bool value) { + _masm = masm; + _masm->cmp8(ExternalAddress((address)flag_addr), value); + _masm->jcc(Assembler::equal, _label); +} + +SkipIfEqual::~SkipIfEqual() { + _masm->bind(_label); +} + + +// Writes to stack successive pages until offset reached to check for +// stack overflow + shadow pages. This clobbers tmp. +void MacroAssembler::bang_stack_size(Register size, Register tmp) { + movl(tmp, rsp); + // Bang stack for total size given plus shadow page size. + // Bang one page at a time because large size can bang beyond yellow and + // red zones. + Label loop; + bind(loop); + movl(Address(tmp, (-os::vm_page_size())), size ); + subl(tmp, os::vm_page_size()); + subl(size, os::vm_page_size()); + jcc(Assembler::greater, loop); + + // Bang down shadow pages too. + // The -1 because we already subtracted 1 page. + for (int i = 0; i< StackShadowPages-1; i++) { + movl(Address(tmp, (-i*os::vm_page_size())), size ); + } +}