diff -r 000000000000 -r a61af66fc99e src/cpu/sparc/vm/c1_MacroAssembler_sparc.cpp --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/cpu/sparc/vm/c1_MacroAssembler_sparc.cpp Sat Dec 01 00:00:00 2007 +0000 @@ -0,0 +1,409 @@ +/* + * Copyright 1999-2007 Sun Microsystems, Inc. All Rights Reserved. + * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. + * + * This code is free software; you can redistribute it and/or modify it + * under the terms of the GNU General Public License version 2 only, as + * published by the Free Software Foundation. + * + * This code is distributed in the hope that it will be useful, but WITHOUT + * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or + * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License + * version 2 for more details (a copy is included in the LICENSE file that + * accompanied this code). + * + * You should have received a copy of the GNU General Public License version + * 2 along with this work; if not, write to the Free Software Foundation, + * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. + * + * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, + * CA 95054 USA or visit www.sun.com if you need additional information or + * have any questions. + * + */ + +#include "incls/_precompiled.incl" +#include "incls/_c1_MacroAssembler_sparc.cpp.incl" + +void C1_MacroAssembler::inline_cache_check(Register receiver, Register iCache) { + Label L; + const Register temp_reg = G3_scratch; + // Note: needs more testing of out-of-line vs. inline slow case + Address ic_miss(temp_reg, SharedRuntime::get_ic_miss_stub()); + verify_oop(receiver); + ld_ptr(receiver, oopDesc::klass_offset_in_bytes(), temp_reg); + cmp(temp_reg, iCache); + brx(Assembler::equal, true, Assembler::pt, L); + delayed()->nop(); + jump_to(ic_miss, 0); + delayed()->nop(); + align(CodeEntryAlignment); + bind(L); +} + + +void C1_MacroAssembler::method_exit(bool restore_frame) { + // this code must be structured this way so that the return + // instruction can be a safepoint. + if (restore_frame) { + restore(); + } + retl(); + delayed()->nop(); +} + + +void C1_MacroAssembler::explicit_null_check(Register base) { + Unimplemented(); +} + + +void C1_MacroAssembler::build_frame(int frame_size_in_bytes) { + + generate_stack_overflow_check(frame_size_in_bytes); + // Create the frame. + save_frame_c1(frame_size_in_bytes); +} + + +void C1_MacroAssembler::unverified_entry(Register receiver, Register ic_klass) { + if (C1Breakpoint) breakpoint_trap(); + inline_cache_check(receiver, ic_klass); +} + + +void C1_MacroAssembler::verified_entry() { + if (C1Breakpoint) breakpoint_trap(); + // build frame + verify_FPU(0, "method_entry"); +} + + +void C1_MacroAssembler::lock_object(Register Rmark, Register Roop, Register Rbox, Register Rscratch, Label& slow_case) { + assert_different_registers(Rmark, Roop, Rbox, Rscratch); + + Label done; + + Address mark_addr(Roop, 0, oopDesc::mark_offset_in_bytes()); + + // The following move must be the first instruction of emitted since debug + // information may be generated for it. + // Load object header + ld_ptr(mark_addr, Rmark); + + verify_oop(Roop); + + // save object being locked into the BasicObjectLock + st_ptr(Roop, Rbox, BasicObjectLock::obj_offset_in_bytes()); + + if (UseBiasedLocking) { + biased_locking_enter(Roop, Rmark, Rscratch, done, &slow_case); + } + + // Save Rbox in Rscratch to be used for the cas operation + mov(Rbox, Rscratch); + + // and mark it unlocked + or3(Rmark, markOopDesc::unlocked_value, Rmark); + + // save unlocked object header into the displaced header location on the stack + st_ptr(Rmark, Rbox, BasicLock::displaced_header_offset_in_bytes()); + + // compare object markOop with Rmark and if equal exchange Rscratch with object markOop + assert(mark_addr.disp() == 0, "cas must take a zero displacement"); + casx_under_lock(mark_addr.base(), Rmark, Rscratch, (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr()); + // if compare/exchange succeeded we found an unlocked object and we now have locked it + // hence we are done + cmp(Rmark, Rscratch); + brx(Assembler::equal, false, Assembler::pt, done); + delayed()->sub(Rscratch, SP, Rscratch); //pull next instruction into delay slot + // we did not find an unlocked object so see if this is a recursive case + // sub(Rscratch, SP, Rscratch); + assert(os::vm_page_size() > 0xfff, "page size too small - change the constant"); + andcc(Rscratch, 0xfffff003, Rscratch); + brx(Assembler::notZero, false, Assembler::pn, slow_case); + delayed()->st_ptr(Rscratch, Rbox, BasicLock::displaced_header_offset_in_bytes()); + bind(done); +} + + +void C1_MacroAssembler::unlock_object(Register Rmark, Register Roop, Register Rbox, Label& slow_case) { + assert_different_registers(Rmark, Roop, Rbox); + + Label done; + + Address mark_addr(Roop, 0, oopDesc::mark_offset_in_bytes()); + assert(mark_addr.disp() == 0, "cas must take a zero displacement"); + + if (UseBiasedLocking) { + // load the object out of the BasicObjectLock + ld_ptr(Rbox, BasicObjectLock::obj_offset_in_bytes(), Roop); + verify_oop(Roop); + biased_locking_exit(mark_addr, Rmark, done); + } + // Test first it it is a fast recursive unlock + ld_ptr(Rbox, BasicLock::displaced_header_offset_in_bytes(), Rmark); + br_null(Rmark, false, Assembler::pt, done); + delayed()->nop(); + if (!UseBiasedLocking) { + // load object + ld_ptr(Rbox, BasicObjectLock::obj_offset_in_bytes(), Roop); + verify_oop(Roop); + } + + // Check if it is still a light weight lock, this is is true if we see + // the stack address of the basicLock in the markOop of the object + casx_under_lock(mark_addr.base(), Rbox, Rmark, (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr()); + cmp(Rbox, Rmark); + + brx(Assembler::notEqual, false, Assembler::pn, slow_case); + delayed()->nop(); + // Done + bind(done); +} + + +void C1_MacroAssembler::try_allocate( + Register obj, // result: pointer to object after successful allocation + Register var_size_in_bytes, // object size in bytes if unknown at compile time; invalid otherwise + int con_size_in_bytes, // object size in bytes if known at compile time + Register t1, // temp register + Register t2, // temp register + Label& slow_case // continuation point if fast allocation fails +) { + if (UseTLAB) { + tlab_allocate(obj, var_size_in_bytes, con_size_in_bytes, t1, slow_case); + } else { + eden_allocate(obj, var_size_in_bytes, con_size_in_bytes, t1, t2, slow_case); + } +} + + +void C1_MacroAssembler::initialize_header(Register obj, Register klass, Register len, Register t1, Register t2) { + assert_different_registers(obj, klass, len, t1, t2); + if (UseBiasedLocking && !len->is_valid()) { + ld_ptr(klass, Klass::prototype_header_offset_in_bytes() + klassOopDesc::klass_part_offset_in_bytes(), t1); + } else { + set((intx)markOopDesc::prototype(), t1); + } + st_ptr(t1 , obj, oopDesc::mark_offset_in_bytes ()); + st_ptr(klass, obj, oopDesc::klass_offset_in_bytes ()); + if (len->is_valid()) st(len , obj, arrayOopDesc::length_offset_in_bytes()); +} + + +void C1_MacroAssembler::initialize_body(Register base, Register index) { + assert_different_registers(base, index); + Label loop; + bind(loop); + subcc(index, HeapWordSize, index); + brx(Assembler::greaterEqual, true, Assembler::pt, loop); + delayed()->st_ptr(G0, base, index); +} + + +void C1_MacroAssembler::allocate_object( + Register obj, // result: pointer to object after successful allocation + Register t1, // temp register + Register t2, // temp register + Register t3, // temp register + int hdr_size, // object header size in words + int obj_size, // object size in words + Register klass, // object klass + Label& slow_case // continuation point if fast allocation fails +) { + assert_different_registers(obj, t1, t2, t3, klass); + assert(klass == G5, "must be G5"); + + // allocate space & initialize header + if (!is_simm13(obj_size * wordSize)) { + // would need to use extra register to load + // object size => go the slow case for now + br(Assembler::always, false, Assembler::pt, slow_case); + delayed()->nop(); + return; + } + try_allocate(obj, noreg, obj_size * wordSize, t2, t3, slow_case); + + initialize_object(obj, klass, noreg, obj_size * HeapWordSize, t1, t2); +} + +void C1_MacroAssembler::initialize_object( + Register obj, // result: pointer to object after successful allocation + Register klass, // object klass + Register var_size_in_bytes, // object size in bytes if unknown at compile time; invalid otherwise + int con_size_in_bytes, // object size in bytes if known at compile time + Register t1, // temp register + Register t2 // temp register + ) { + const int hdr_size_in_bytes = oopDesc::header_size_in_bytes(); + + initialize_header(obj, klass, noreg, t1, t2); + +#ifdef ASSERT + { + Label ok; + ld(klass, klassOopDesc::header_size() * HeapWordSize + Klass::layout_helper_offset_in_bytes(), t1); + if (var_size_in_bytes != noreg) { + cmp(t1, var_size_in_bytes); + } else { + cmp(t1, con_size_in_bytes); + } + brx(Assembler::equal, false, Assembler::pt, ok); + delayed()->nop(); + stop("bad size in initialize_object"); + should_not_reach_here(); + + bind(ok); + } + +#endif + + // initialize body + const int threshold = 5 * HeapWordSize; // approximate break even point for code size + if (var_size_in_bytes != noreg) { + // use a loop + add(obj, hdr_size_in_bytes, t1); // compute address of first element + sub(var_size_in_bytes, hdr_size_in_bytes, t2); // compute size of body + initialize_body(t1, t2); +#ifndef _LP64 + } else if (VM_Version::v9_instructions_work() && con_size_in_bytes < threshold * 2) { + // on v9 we can do double word stores to fill twice as much space. + assert(hdr_size_in_bytes % 8 == 0, "double word aligned"); + assert(con_size_in_bytes % 8 == 0, "double word aligned"); + for (int i = hdr_size_in_bytes; i < con_size_in_bytes; i += 2 * HeapWordSize) stx(G0, obj, i); +#endif + } else if (con_size_in_bytes <= threshold) { + // use explicit NULL stores + for (int i = hdr_size_in_bytes; i < con_size_in_bytes; i += HeapWordSize) st_ptr(G0, obj, i); + } else if (con_size_in_bytes > hdr_size_in_bytes) { + // use a loop + const Register base = t1; + const Register index = t2; + add(obj, hdr_size_in_bytes, base); // compute address of first element + // compute index = number of words to clear + set(con_size_in_bytes - hdr_size_in_bytes, index); + initialize_body(base, index); + } + + if (DTraceAllocProbes) { + assert(obj == O0, "must be"); + call(CAST_FROM_FN_PTR(address, Runtime1::entry_for(Runtime1::dtrace_object_alloc_id)), + relocInfo::runtime_call_type); + delayed()->nop(); + } + + verify_oop(obj); +} + + +void C1_MacroAssembler::allocate_array( + Register obj, // result: pointer to array after successful allocation + Register len, // array length + Register t1, // temp register + Register t2, // temp register + Register t3, // temp register + int hdr_size, // object header size in words + int elt_size, // element size in bytes + Register klass, // object klass + Label& slow_case // continuation point if fast allocation fails +) { + assert_different_registers(obj, len, t1, t2, t3, klass); + assert(klass == G5, "must be G5"); + assert(t1 == G1, "must be G1"); + + // determine alignment mask + assert(!(BytesPerWord & 1), "must be a multiple of 2 for masking code to work"); + + // check for negative or excessive length + // note: the maximum length allowed is chosen so that arrays of any + // element size with this length are always smaller or equal + // to the largest integer (i.e., array size computation will + // not overflow) + set(max_array_allocation_length, t1); + cmp(len, t1); + br(Assembler::greaterUnsigned, false, Assembler::pn, slow_case); + + // compute array size + // note: if 0 <= len <= max_length, len*elt_size + header + alignment is + // smaller or equal to the largest integer; also, since top is always + // aligned, we can do the alignment here instead of at the end address + // computation + const Register arr_size = t1; + switch (elt_size) { + case 1: delayed()->mov(len, arr_size); break; + case 2: delayed()->sll(len, 1, arr_size); break; + case 4: delayed()->sll(len, 2, arr_size); break; + case 8: delayed()->sll(len, 3, arr_size); break; + default: ShouldNotReachHere(); + } + add(arr_size, hdr_size * wordSize + MinObjAlignmentInBytesMask, arr_size); // add space for header & alignment + and3(arr_size, ~MinObjAlignmentInBytesMask, arr_size); // align array size + + // allocate space & initialize header + if (UseTLAB) { + tlab_allocate(obj, arr_size, 0, t2, slow_case); + } else { + eden_allocate(obj, arr_size, 0, t2, t3, slow_case); + } + initialize_header(obj, klass, len, t2, t3); + + // initialize body + const Register base = t2; + const Register index = t3; + add(obj, hdr_size * wordSize, base); // compute address of first element + sub(arr_size, hdr_size * wordSize, index); // compute index = number of words to clear + initialize_body(base, index); + + if (DTraceAllocProbes) { + assert(obj == O0, "must be"); + call(CAST_FROM_FN_PTR(address, Runtime1::entry_for(Runtime1::dtrace_object_alloc_id)), + relocInfo::runtime_call_type); + delayed()->nop(); + } + + verify_oop(obj); +} + + +#ifndef PRODUCT + +void C1_MacroAssembler::verify_stack_oop(int stack_offset) { + if (!VerifyOops) return; + verify_oop_addr(Address(SP, 0, stack_offset + STACK_BIAS)); +} + +void C1_MacroAssembler::verify_not_null_oop(Register r) { + Label not_null; + br_zero(Assembler::notEqual, false, Assembler::pt, r, not_null); + delayed()->nop(); + stop("non-null oop required"); + bind(not_null); + if (!VerifyOops) return; + verify_oop(r); +} + +void C1_MacroAssembler::invalidate_registers(bool iregisters, bool lregisters, bool oregisters, + Register preserve1, Register preserve2) { + if (iregisters) { + for (int i = 0; i < 6; i++) { + Register r = as_iRegister(i); + if (r != preserve1 && r != preserve2) set(0xdead, r); + } + } + if (oregisters) { + for (int i = 0; i < 6; i++) { + Register r = as_oRegister(i); + if (r != preserve1 && r != preserve2) set(0xdead, r); + } + } + if (lregisters) { + for (int i = 0; i < 8; i++) { + Register r = as_lRegister(i); + if (r != preserve1 && r != preserve2) set(0xdead, r); + } + } +} + + +#endif