diff -r 3df2fe7c4451 -r 850fdf70db2b src/share/vm/gc_implementation/parallelScavenge/psParallelCompact.hpp --- a/src/share/vm/gc_implementation/parallelScavenge/psParallelCompact.hpp Fri Jul 25 11:29:03 2008 -0700 +++ b/src/share/vm/gc_implementation/parallelScavenge/psParallelCompact.hpp Mon Jul 28 15:30:23 2008 -0700 @@ -716,6 +716,99 @@ virtual IterationStatus do_addr(HeapWord* addr, size_t words); }; +// The UseParallelOldGC collector is a stop-the-world garbage +// collector that does parts of the collection using parallel threads. +// The collection includes the tenured generation and the young +// generation. The permanent generation is collected at the same +// time as the other two generations but the permanent generation +// is collect by a single GC thread. The permanent generation is +// collected serially because of the requirement that during the +// processing of a klass AAA, any objects reference by AAA must +// already have been processed. This requirement is enforced by +// a left (lower address) to right (higher address) sliding compaction. +// +// There are four phases of the collection. +// +// - marking phase +// - summary phase +// - compacting phase +// - clean up phase +// +// Roughly speaking these phases correspond, respectively, to +// - mark all the live objects +// - calculate the destination of each object at the end of the collection +// - move the objects to their destination +// - update some references and reinitialize some variables +// +// These three phases are invoked in PSParallelCompact::invoke_no_policy(). +// The marking phase is implemented in PSParallelCompact::marking_phase() +// and does a complete marking of the heap. +// The summary phase is implemented in PSParallelCompact::summary_phase(). +// The move and update phase is implemented in PSParallelCompact::compact(). +// +// A space that is being collected is divided into chunks and with +// each chunk is associated an object of type ParallelCompactData. +// Each chunk is of a fixed size and typically will contain more than +// 1 object and may have parts of objects at the front and back of the +// chunk. +// +// chunk -----+---------------------+---------- +// objects covered [ AAA )[ BBB )[ CCC )[ DDD ) +// +// The marking phase does a complete marking of all live objects in the +// heap. The marking also compiles the size of the data for +// all live objects covered by the chunk. This size includes the +// part of any live object spanning onto the chunk (part of AAA +// if it is live) from the front, all live objects contained in the chunk +// (BBB and/or CCC if they are live), and the part of any live objects +// covered by the chunk that extends off the chunk (part of DDD if it is +// live). The marking phase uses multiple GC threads and marking is +// done in a bit array of type ParMarkBitMap. The marking of the +// bit map is done atomically as is the accumulation of the size of the +// live objects covered by a chunk. +// +// The summary phase calculates the total live data to the left of +// each chunk XXX. Based on that total and the bottom of the space, +// it can calculate the starting location of the live data in XXX. +// The summary phase calculates for each chunk XXX quantites such as +// +// - the amount of live data at the beginning of a chunk from an object +// entering the chunk. +// - the location of the first live data on the chunk +// - a count of the number of chunks receiving live data from XXX. +// +// See ParallelCompactData for precise details. The summary phase also +// calculates the dense prefix for the compaction. The dense prefix +// is a portion at the beginning of the space that is not moved. The +// objects in the dense prefix do need to have their object references +// updated. See method summarize_dense_prefix(). +// +// The summary phase is done using 1 GC thread. +// +// The compaction phase moves objects to their new location and updates +// all references in the object. +// +// A current exception is that objects that cross a chunk boundary +// are moved but do not have their references updated. References are +// not updated because it cannot easily be determined if the klass +// pointer KKK for the object AAA has been updated. KKK likely resides +// in a chunk to the left of the chunk containing AAA. These AAA's +// have there references updated at the end in a clean up phase. +// See the method PSParallelCompact::update_deferred_objects(). An +// alternate strategy is being investigated for this deferral of updating. +// +// Compaction is done on a chunk basis. A chunk that is ready to be +// filled is put on a ready list and GC threads take chunk off the list +// and fill them. A chunk is ready to be filled if it +// empty of live objects. Such a chunk may have been initially +// empty (only contained +// dead objects) or may have had all its live objects copied out already. +// A chunk that compacts into itself is also ready for filling. The +// ready list is initially filled with empty chunks and chunks compacting +// into themselves. There is always at least 1 chunk that can be put on +// the ready list. The chunks are atomically added and removed from +// the ready list. +// class PSParallelCompact : AllStatic { public: // Convenient access to type names.