duke@435: /* kvn@2557: * Copyright (c) 1997, 2011, Oracle and/or its affiliates. All rights reserved. duke@435: * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. duke@435: * duke@435: * This code is free software; you can redistribute it and/or modify it duke@435: * under the terms of the GNU General Public License version 2 only, as duke@435: * published by the Free Software Foundation. duke@435: * duke@435: * This code is distributed in the hope that it will be useful, but WITHOUT duke@435: * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or duke@435: * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License duke@435: * version 2 for more details (a copy is included in the LICENSE file that duke@435: * accompanied this code). duke@435: * duke@435: * You should have received a copy of the GNU General Public License version duke@435: * 2 along with this work; if not, write to the Free Software Foundation, duke@435: * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. duke@435: * trims@1907: * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA trims@1907: * or visit www.oracle.com if you need additional information or have any trims@1907: * questions. duke@435: * duke@435: */ duke@435: stefank@2314: #include "precompiled.hpp" stefank@2314: #include "classfile/classLoader.hpp" stefank@2314: #include "classfile/javaClasses.hpp" stefank@2314: #include "classfile/systemDictionary.hpp" stefank@2314: #include "classfile/vmSymbols.hpp" stefank@2314: #include "code/icBuffer.hpp" stefank@2314: #include "code/vtableStubs.hpp" stefank@2314: #include "gc_implementation/shared/vmGCOperations.hpp" stefank@2314: #include "interpreter/interpreter.hpp" stefank@2314: #include "memory/allocation.inline.hpp" stefank@2314: #include "oops/oop.inline.hpp" stefank@2314: #include "prims/jvm.h" stefank@2314: #include "prims/jvm_misc.hpp" stefank@2314: #include "prims/privilegedStack.hpp" stefank@2314: #include "runtime/arguments.hpp" stefank@2314: #include "runtime/frame.inline.hpp" stefank@2314: #include "runtime/interfaceSupport.hpp" stefank@2314: #include "runtime/java.hpp" stefank@2314: #include "runtime/javaCalls.hpp" stefank@2314: #include "runtime/mutexLocker.hpp" stefank@2314: #include "runtime/os.hpp" stefank@2314: #include "runtime/stubRoutines.hpp" stefank@2314: #include "services/attachListener.hpp" stefank@2314: #include "services/threadService.hpp" stefank@2314: #include "utilities/defaultStream.hpp" stefank@2314: #include "utilities/events.hpp" stefank@2314: #ifdef TARGET_OS_FAMILY_linux stefank@2314: # include "os_linux.inline.hpp" stefank@2314: # include "thread_linux.inline.hpp" stefank@2314: #endif stefank@2314: #ifdef TARGET_OS_FAMILY_solaris stefank@2314: # include "os_solaris.inline.hpp" stefank@2314: # include "thread_solaris.inline.hpp" stefank@2314: #endif stefank@2314: #ifdef TARGET_OS_FAMILY_windows stefank@2314: # include "os_windows.inline.hpp" stefank@2314: # include "thread_windows.inline.hpp" stefank@2314: #endif duke@435: duke@435: # include duke@435: duke@435: OSThread* os::_starting_thread = NULL; duke@435: address os::_polling_page = NULL; duke@435: volatile int32_t* os::_mem_serialize_page = NULL; duke@435: uintptr_t os::_serialize_page_mask = 0; duke@435: long os::_rand_seed = 1; duke@435: int os::_processor_count = 0; duke@435: size_t os::_page_sizes[os::page_sizes_max]; duke@435: duke@435: #ifndef PRODUCT kvn@2557: julong os::num_mallocs = 0; // # of calls to malloc/realloc kvn@2557: julong os::alloc_bytes = 0; // # of bytes allocated kvn@2557: julong os::num_frees = 0; // # of calls to free kvn@2557: julong os::free_bytes = 0; // # of bytes freed duke@435: #endif duke@435: duke@435: // Fill in buffer with current local time as an ISO-8601 string. duke@435: // E.g., yyyy-mm-ddThh:mm:ss-zzzz. duke@435: // Returns buffer, or NULL if it failed. duke@435: // This would mostly be a call to duke@435: // strftime(...., "%Y-%m-%d" "T" "%H:%M:%S" "%z", ....) duke@435: // except that on Windows the %z behaves badly, so we do it ourselves. duke@435: // Also, people wanted milliseconds on there, duke@435: // and strftime doesn't do milliseconds. duke@435: char* os::iso8601_time(char* buffer, size_t buffer_length) { duke@435: // Output will be of the form "YYYY-MM-DDThh:mm:ss.mmm+zzzz\0" duke@435: // 1 2 duke@435: // 12345678901234567890123456789 duke@435: static const char* iso8601_format = duke@435: "%04d-%02d-%02dT%02d:%02d:%02d.%03d%c%02d%02d"; duke@435: static const size_t needed_buffer = 29; duke@435: duke@435: // Sanity check the arguments duke@435: if (buffer == NULL) { duke@435: assert(false, "NULL buffer"); duke@435: return NULL; duke@435: } duke@435: if (buffer_length < needed_buffer) { duke@435: assert(false, "buffer_length too small"); duke@435: return NULL; duke@435: } duke@435: // Get the current time sbohne@496: jlong milliseconds_since_19700101 = javaTimeMillis(); duke@435: const int milliseconds_per_microsecond = 1000; duke@435: const time_t seconds_since_19700101 = duke@435: milliseconds_since_19700101 / milliseconds_per_microsecond; duke@435: const int milliseconds_after_second = duke@435: milliseconds_since_19700101 % milliseconds_per_microsecond; duke@435: // Convert the time value to a tm and timezone variable ysr@983: struct tm time_struct; ysr@983: if (localtime_pd(&seconds_since_19700101, &time_struct) == NULL) { ysr@983: assert(false, "Failed localtime_pd"); duke@435: return NULL; duke@435: } duke@435: const time_t zone = timezone; duke@435: duke@435: // If daylight savings time is in effect, duke@435: // we are 1 hour East of our time zone duke@435: const time_t seconds_per_minute = 60; duke@435: const time_t minutes_per_hour = 60; duke@435: const time_t seconds_per_hour = seconds_per_minute * minutes_per_hour; duke@435: time_t UTC_to_local = zone; duke@435: if (time_struct.tm_isdst > 0) { duke@435: UTC_to_local = UTC_to_local - seconds_per_hour; duke@435: } duke@435: // Compute the time zone offset. ysr@983: // localtime_pd() sets timezone to the difference (in seconds) duke@435: // between UTC and and local time. duke@435: // ISO 8601 says we need the difference between local time and UTC, ysr@983: // we change the sign of the localtime_pd() result. duke@435: const time_t local_to_UTC = -(UTC_to_local); duke@435: // Then we have to figure out if if we are ahead (+) or behind (-) UTC. duke@435: char sign_local_to_UTC = '+'; duke@435: time_t abs_local_to_UTC = local_to_UTC; duke@435: if (local_to_UTC < 0) { duke@435: sign_local_to_UTC = '-'; duke@435: abs_local_to_UTC = -(abs_local_to_UTC); duke@435: } duke@435: // Convert time zone offset seconds to hours and minutes. duke@435: const time_t zone_hours = (abs_local_to_UTC / seconds_per_hour); duke@435: const time_t zone_min = duke@435: ((abs_local_to_UTC % seconds_per_hour) / seconds_per_minute); duke@435: duke@435: // Print an ISO 8601 date and time stamp into the buffer duke@435: const int year = 1900 + time_struct.tm_year; duke@435: const int month = 1 + time_struct.tm_mon; duke@435: const int printed = jio_snprintf(buffer, buffer_length, iso8601_format, duke@435: year, duke@435: month, duke@435: time_struct.tm_mday, duke@435: time_struct.tm_hour, duke@435: time_struct.tm_min, duke@435: time_struct.tm_sec, duke@435: milliseconds_after_second, duke@435: sign_local_to_UTC, duke@435: zone_hours, duke@435: zone_min); duke@435: if (printed == 0) { duke@435: assert(false, "Failed jio_printf"); duke@435: return NULL; duke@435: } duke@435: return buffer; duke@435: } duke@435: duke@435: OSReturn os::set_priority(Thread* thread, ThreadPriority p) { duke@435: #ifdef ASSERT duke@435: if (!(!thread->is_Java_thread() || duke@435: Thread::current() == thread || duke@435: Threads_lock->owned_by_self() duke@435: || thread->is_Compiler_thread() duke@435: )) { duke@435: assert(false, "possibility of dangling Thread pointer"); duke@435: } duke@435: #endif duke@435: duke@435: if (p >= MinPriority && p <= MaxPriority) { duke@435: int priority = java_to_os_priority[p]; duke@435: return set_native_priority(thread, priority); duke@435: } else { duke@435: assert(false, "Should not happen"); duke@435: return OS_ERR; duke@435: } duke@435: } duke@435: duke@435: duke@435: OSReturn os::get_priority(const Thread* const thread, ThreadPriority& priority) { duke@435: int p; duke@435: int os_prio; duke@435: OSReturn ret = get_native_priority(thread, &os_prio); duke@435: if (ret != OS_OK) return ret; duke@435: duke@435: for (p = MaxPriority; p > MinPriority && java_to_os_priority[p] > os_prio; p--) ; duke@435: priority = (ThreadPriority)p; duke@435: return OS_OK; duke@435: } duke@435: duke@435: duke@435: // --------------------- sun.misc.Signal (optional) --------------------- duke@435: duke@435: duke@435: // SIGBREAK is sent by the keyboard to query the VM state duke@435: #ifndef SIGBREAK duke@435: #define SIGBREAK SIGQUIT duke@435: #endif duke@435: duke@435: // sigexitnum_pd is a platform-specific special signal used for terminating the Signal thread. duke@435: duke@435: duke@435: static void signal_thread_entry(JavaThread* thread, TRAPS) { duke@435: os::set_priority(thread, NearMaxPriority); duke@435: while (true) { duke@435: int sig; duke@435: { duke@435: // FIXME : Currently we have not decieded what should be the status duke@435: // for this java thread blocked here. Once we decide about duke@435: // that we should fix this. duke@435: sig = os::signal_wait(); duke@435: } duke@435: if (sig == os::sigexitnum_pd()) { duke@435: // Terminate the signal thread duke@435: return; duke@435: } duke@435: duke@435: switch (sig) { duke@435: case SIGBREAK: { duke@435: // Check if the signal is a trigger to start the Attach Listener - in that duke@435: // case don't print stack traces. duke@435: if (!DisableAttachMechanism && AttachListener::is_init_trigger()) { duke@435: continue; duke@435: } duke@435: // Print stack traces duke@435: // Any SIGBREAK operations added here should make sure to flush duke@435: // the output stream (e.g. tty->flush()) after output. See 4803766. duke@435: // Each module also prints an extra carriage return after its output. duke@435: VM_PrintThreads op; duke@435: VMThread::execute(&op); duke@435: VM_PrintJNI jni_op; duke@435: VMThread::execute(&jni_op); duke@435: VM_FindDeadlocks op1(tty); duke@435: VMThread::execute(&op1); duke@435: Universe::print_heap_at_SIGBREAK(); duke@435: if (PrintClassHistogram) { ysr@1050: VM_GC_HeapInspection op1(gclog_or_tty, true /* force full GC before heap inspection */, ysr@1050: true /* need_prologue */); duke@435: VMThread::execute(&op1); duke@435: } duke@435: if (JvmtiExport::should_post_data_dump()) { duke@435: JvmtiExport::post_data_dump(); duke@435: } duke@435: break; duke@435: } duke@435: default: { duke@435: // Dispatch the signal to java duke@435: HandleMark hm(THREAD); coleenp@2497: klassOop k = SystemDictionary::resolve_or_null(vmSymbols::sun_misc_Signal(), THREAD); duke@435: KlassHandle klass (THREAD, k); duke@435: if (klass.not_null()) { duke@435: JavaValue result(T_VOID); duke@435: JavaCallArguments args; duke@435: args.push_int(sig); duke@435: JavaCalls::call_static( duke@435: &result, duke@435: klass, coleenp@2497: vmSymbols::dispatch_name(), coleenp@2497: vmSymbols::int_void_signature(), duke@435: &args, duke@435: THREAD duke@435: ); duke@435: } duke@435: if (HAS_PENDING_EXCEPTION) { duke@435: // tty is initialized early so we don't expect it to be null, but duke@435: // if it is we can't risk doing an initialization that might duke@435: // trigger additional out-of-memory conditions duke@435: if (tty != NULL) { duke@435: char klass_name[256]; duke@435: char tmp_sig_name[16]; duke@435: const char* sig_name = "UNKNOWN"; duke@435: instanceKlass::cast(PENDING_EXCEPTION->klass())-> duke@435: name()->as_klass_external_name(klass_name, 256); duke@435: if (os::exception_name(sig, tmp_sig_name, 16) != NULL) duke@435: sig_name = tmp_sig_name; duke@435: warning("Exception %s occurred dispatching signal %s to handler" duke@435: "- the VM may need to be forcibly terminated", duke@435: klass_name, sig_name ); duke@435: } duke@435: CLEAR_PENDING_EXCEPTION; duke@435: } duke@435: } duke@435: } duke@435: } duke@435: } duke@435: duke@435: duke@435: void os::signal_init() { duke@435: if (!ReduceSignalUsage) { duke@435: // Setup JavaThread for processing signals duke@435: EXCEPTION_MARK; coleenp@2497: klassOop k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_Thread(), true, CHECK); duke@435: instanceKlassHandle klass (THREAD, k); duke@435: instanceHandle thread_oop = klass->allocate_instance_handle(CHECK); duke@435: duke@435: const char thread_name[] = "Signal Dispatcher"; duke@435: Handle string = java_lang_String::create_from_str(thread_name, CHECK); duke@435: duke@435: // Initialize thread_oop to put it into the system threadGroup duke@435: Handle thread_group (THREAD, Universe::system_thread_group()); duke@435: JavaValue result(T_VOID); duke@435: JavaCalls::call_special(&result, thread_oop, duke@435: klass, coleenp@2497: vmSymbols::object_initializer_name(), coleenp@2497: vmSymbols::threadgroup_string_void_signature(), duke@435: thread_group, duke@435: string, duke@435: CHECK); duke@435: never@1577: KlassHandle group(THREAD, SystemDictionary::ThreadGroup_klass()); duke@435: JavaCalls::call_special(&result, duke@435: thread_group, duke@435: group, coleenp@2497: vmSymbols::add_method_name(), coleenp@2497: vmSymbols::thread_void_signature(), duke@435: thread_oop, // ARG 1 duke@435: CHECK); duke@435: duke@435: os::signal_init_pd(); duke@435: duke@435: { MutexLocker mu(Threads_lock); duke@435: JavaThread* signal_thread = new JavaThread(&signal_thread_entry); duke@435: duke@435: // At this point it may be possible that no osthread was created for the duke@435: // JavaThread due to lack of memory. We would have to throw an exception duke@435: // in that case. However, since this must work and we do not allow duke@435: // exceptions anyway, check and abort if this fails. duke@435: if (signal_thread == NULL || signal_thread->osthread() == NULL) { duke@435: vm_exit_during_initialization("java.lang.OutOfMemoryError", duke@435: "unable to create new native thread"); duke@435: } duke@435: duke@435: java_lang_Thread::set_thread(thread_oop(), signal_thread); duke@435: java_lang_Thread::set_priority(thread_oop(), NearMaxPriority); duke@435: java_lang_Thread::set_daemon(thread_oop()); duke@435: duke@435: signal_thread->set_threadObj(thread_oop()); duke@435: Threads::add(signal_thread); duke@435: Thread::start(signal_thread); duke@435: } duke@435: // Handle ^BREAK duke@435: os::signal(SIGBREAK, os::user_handler()); duke@435: } duke@435: } duke@435: duke@435: duke@435: void os::terminate_signal_thread() { duke@435: if (!ReduceSignalUsage) duke@435: signal_notify(sigexitnum_pd()); duke@435: } duke@435: duke@435: duke@435: // --------------------- loading libraries --------------------- duke@435: duke@435: typedef jint (JNICALL *JNI_OnLoad_t)(JavaVM *, void *); duke@435: extern struct JavaVM_ main_vm; duke@435: duke@435: static void* _native_java_library = NULL; duke@435: duke@435: void* os::native_java_library() { duke@435: if (_native_java_library == NULL) { duke@435: char buffer[JVM_MAXPATHLEN]; duke@435: char ebuf[1024]; duke@435: kamg@677: // Try to load verify dll first. In 1.3 java dll depends on it and is not kamg@677: // always able to find it when the loading executable is outside the JDK. duke@435: // In order to keep working with 1.2 we ignore any loading errors. kamg@677: dll_build_name(buffer, sizeof(buffer), Arguments::get_dll_dir(), "verify"); kamg@677: dll_load(buffer, ebuf, sizeof(ebuf)); duke@435: duke@435: // Load java dll kamg@677: dll_build_name(buffer, sizeof(buffer), Arguments::get_dll_dir(), "java"); kamg@677: _native_java_library = dll_load(buffer, ebuf, sizeof(ebuf)); duke@435: if (_native_java_library == NULL) { duke@435: vm_exit_during_initialization("Unable to load native library", ebuf); duke@435: } kamg@677: } kamg@677: static jboolean onLoaded = JNI_FALSE; kamg@677: if (onLoaded) { kamg@677: // We may have to wait to fire OnLoad until TLS is initialized. kamg@677: if (ThreadLocalStorage::is_initialized()) { kamg@677: // The JNI_OnLoad handling is normally done by method load in kamg@677: // java.lang.ClassLoader$NativeLibrary, but the VM loads the base library kamg@677: // explicitly so we have to check for JNI_OnLoad as well kamg@677: const char *onLoadSymbols[] = JNI_ONLOAD_SYMBOLS; kamg@677: JNI_OnLoad_t JNI_OnLoad = CAST_TO_FN_PTR( kamg@677: JNI_OnLoad_t, dll_lookup(_native_java_library, onLoadSymbols[0])); kamg@677: if (JNI_OnLoad != NULL) { kamg@677: JavaThread* thread = JavaThread::current(); kamg@677: ThreadToNativeFromVM ttn(thread); kamg@677: HandleMark hm(thread); kamg@677: jint ver = (*JNI_OnLoad)(&main_vm, NULL); kamg@677: onLoaded = JNI_TRUE; kamg@677: if (!Threads::is_supported_jni_version_including_1_1(ver)) { kamg@677: vm_exit_during_initialization("Unsupported JNI version"); kamg@677: } duke@435: } duke@435: } duke@435: } duke@435: return _native_java_library; duke@435: } duke@435: duke@435: // --------------------- heap allocation utilities --------------------- duke@435: duke@435: char *os::strdup(const char *str) { duke@435: size_t size = strlen(str); duke@435: char *dup_str = (char *)malloc(size + 1); duke@435: if (dup_str == NULL) return NULL; duke@435: strcpy(dup_str, str); duke@435: return dup_str; duke@435: } duke@435: duke@435: duke@435: duke@435: #ifdef ASSERT duke@435: #define space_before (MallocCushion + sizeof(double)) duke@435: #define space_after MallocCushion duke@435: #define size_addr_from_base(p) (size_t*)(p + space_before - sizeof(size_t)) duke@435: #define size_addr_from_obj(p) ((size_t*)p - 1) duke@435: // MallocCushion: size of extra cushion allocated around objects with +UseMallocOnly duke@435: // NB: cannot be debug variable, because these aren't set from the command line until duke@435: // *after* the first few allocs already happened duke@435: #define MallocCushion 16 duke@435: #else duke@435: #define space_before 0 duke@435: #define space_after 0 duke@435: #define size_addr_from_base(p) should not use w/o ASSERT duke@435: #define size_addr_from_obj(p) should not use w/o ASSERT duke@435: #define MallocCushion 0 duke@435: #endif duke@435: #define paranoid 0 /* only set to 1 if you suspect checking code has bug */ duke@435: duke@435: #ifdef ASSERT duke@435: inline size_t get_size(void* obj) { duke@435: size_t size = *size_addr_from_obj(obj); jcoomes@1845: if (size < 0) { jcoomes@1845: fatal(err_msg("free: size field of object #" PTR_FORMAT " was overwritten (" jcoomes@1845: SIZE_FORMAT ")", obj, size)); jcoomes@1845: } duke@435: return size; duke@435: } duke@435: duke@435: u_char* find_cushion_backwards(u_char* start) { duke@435: u_char* p = start; duke@435: while (p[ 0] != badResourceValue || p[-1] != badResourceValue || duke@435: p[-2] != badResourceValue || p[-3] != badResourceValue) p--; duke@435: // ok, we have four consecutive marker bytes; find start duke@435: u_char* q = p - 4; duke@435: while (*q == badResourceValue) q--; duke@435: return q + 1; duke@435: } duke@435: duke@435: u_char* find_cushion_forwards(u_char* start) { duke@435: u_char* p = start; duke@435: while (p[0] != badResourceValue || p[1] != badResourceValue || duke@435: p[2] != badResourceValue || p[3] != badResourceValue) p++; duke@435: // ok, we have four consecutive marker bytes; find end of cushion duke@435: u_char* q = p + 4; duke@435: while (*q == badResourceValue) q++; duke@435: return q - MallocCushion; duke@435: } duke@435: duke@435: void print_neighbor_blocks(void* ptr) { duke@435: // find block allocated before ptr (not entirely crash-proof) duke@435: if (MallocCushion < 4) { duke@435: tty->print_cr("### cannot find previous block (MallocCushion < 4)"); duke@435: return; duke@435: } duke@435: u_char* start_of_this_block = (u_char*)ptr - space_before; duke@435: u_char* end_of_prev_block_data = start_of_this_block - space_after -1; duke@435: // look for cushion in front of prev. block duke@435: u_char* start_of_prev_block = find_cushion_backwards(end_of_prev_block_data); duke@435: ptrdiff_t size = *size_addr_from_base(start_of_prev_block); duke@435: u_char* obj = start_of_prev_block + space_before; duke@435: if (size <= 0 ) { duke@435: // start is bad; mayhave been confused by OS data inbetween objects duke@435: // search one more backwards duke@435: start_of_prev_block = find_cushion_backwards(start_of_prev_block); duke@435: size = *size_addr_from_base(start_of_prev_block); duke@435: obj = start_of_prev_block + space_before; duke@435: } duke@435: duke@435: if (start_of_prev_block + space_before + size + space_after == start_of_this_block) { kvn@2557: tty->print_cr("### previous object: " PTR_FORMAT " (" SSIZE_FORMAT " bytes)", obj, size); duke@435: } else { kvn@2557: tty->print_cr("### previous object (not sure if correct): " PTR_FORMAT " (" SSIZE_FORMAT " bytes)", obj, size); duke@435: } duke@435: duke@435: // now find successor block duke@435: u_char* start_of_next_block = (u_char*)ptr + *size_addr_from_obj(ptr) + space_after; duke@435: start_of_next_block = find_cushion_forwards(start_of_next_block); duke@435: u_char* next_obj = start_of_next_block + space_before; duke@435: ptrdiff_t next_size = *size_addr_from_base(start_of_next_block); duke@435: if (start_of_next_block[0] == badResourceValue && duke@435: start_of_next_block[1] == badResourceValue && duke@435: start_of_next_block[2] == badResourceValue && duke@435: start_of_next_block[3] == badResourceValue) { kvn@2557: tty->print_cr("### next object: " PTR_FORMAT " (" SSIZE_FORMAT " bytes)", next_obj, next_size); duke@435: } else { kvn@2557: tty->print_cr("### next object (not sure if correct): " PTR_FORMAT " (" SSIZE_FORMAT " bytes)", next_obj, next_size); duke@435: } duke@435: } duke@435: duke@435: duke@435: void report_heap_error(void* memblock, void* bad, const char* where) { kvn@2557: tty->print_cr("## nof_mallocs = " UINT64_FORMAT ", nof_frees = " UINT64_FORMAT, os::num_mallocs, os::num_frees); kvn@2557: tty->print_cr("## memory stomp: byte at " PTR_FORMAT " %s object " PTR_FORMAT, bad, where, memblock); duke@435: print_neighbor_blocks(memblock); duke@435: fatal("memory stomping error"); duke@435: } duke@435: duke@435: void verify_block(void* memblock) { duke@435: size_t size = get_size(memblock); duke@435: if (MallocCushion) { duke@435: u_char* ptr = (u_char*)memblock - space_before; duke@435: for (int i = 0; i < MallocCushion; i++) { duke@435: if (ptr[i] != badResourceValue) { duke@435: report_heap_error(memblock, ptr+i, "in front of"); duke@435: } duke@435: } duke@435: u_char* end = (u_char*)memblock + size + space_after; duke@435: for (int j = -MallocCushion; j < 0; j++) { duke@435: if (end[j] != badResourceValue) { duke@435: report_heap_error(memblock, end+j, "after"); duke@435: } duke@435: } duke@435: } duke@435: } duke@435: #endif duke@435: duke@435: void* os::malloc(size_t size) { kvn@2557: NOT_PRODUCT(inc_stat_counter(&num_mallocs, 1)); kvn@2557: NOT_PRODUCT(inc_stat_counter(&alloc_bytes, size)); duke@435: duke@435: if (size == 0) { duke@435: // return a valid pointer if size is zero duke@435: // if NULL is returned the calling functions assume out of memory. duke@435: size = 1; duke@435: } duke@435: duke@435: NOT_PRODUCT(if (MallocVerifyInterval > 0) check_heap()); duke@435: u_char* ptr = (u_char*)::malloc(size + space_before + space_after); duke@435: #ifdef ASSERT duke@435: if (ptr == NULL) return NULL; duke@435: if (MallocCushion) { duke@435: for (u_char* p = ptr; p < ptr + MallocCushion; p++) *p = (u_char)badResourceValue; duke@435: u_char* end = ptr + space_before + size; duke@435: for (u_char* pq = ptr+MallocCushion; pq < end; pq++) *pq = (u_char)uninitBlockPad; duke@435: for (u_char* q = end; q < end + MallocCushion; q++) *q = (u_char)badResourceValue; duke@435: } duke@435: // put size just before data duke@435: *size_addr_from_base(ptr) = size; duke@435: #endif duke@435: u_char* memblock = ptr + space_before; duke@435: if ((intptr_t)memblock == (intptr_t)MallocCatchPtr) { kvn@2557: tty->print_cr("os::malloc caught, " SIZE_FORMAT " bytes --> " PTR_FORMAT, size, memblock); duke@435: breakpoint(); duke@435: } duke@435: debug_only(if (paranoid) verify_block(memblock)); kvn@2557: if (PrintMalloc && tty != NULL) tty->print_cr("os::malloc " SIZE_FORMAT " bytes --> " PTR_FORMAT, size, memblock); duke@435: return memblock; duke@435: } duke@435: duke@435: duke@435: void* os::realloc(void *memblock, size_t size) { duke@435: #ifndef ASSERT kvn@2557: NOT_PRODUCT(inc_stat_counter(&num_mallocs, 1)); kvn@2557: NOT_PRODUCT(inc_stat_counter(&alloc_bytes, size)); duke@435: return ::realloc(memblock, size); duke@435: #else duke@435: if (memblock == NULL) { kvn@2557: return malloc(size); duke@435: } duke@435: if ((intptr_t)memblock == (intptr_t)MallocCatchPtr) { kvn@2557: tty->print_cr("os::realloc caught " PTR_FORMAT, memblock); duke@435: breakpoint(); duke@435: } duke@435: verify_block(memblock); duke@435: NOT_PRODUCT(if (MallocVerifyInterval > 0) check_heap()); duke@435: if (size == 0) return NULL; duke@435: // always move the block duke@435: void* ptr = malloc(size); kvn@2557: if (PrintMalloc) tty->print_cr("os::remalloc " SIZE_FORMAT " bytes, " PTR_FORMAT " --> " PTR_FORMAT, size, memblock, ptr); duke@435: // Copy to new memory if malloc didn't fail duke@435: if ( ptr != NULL ) { duke@435: memcpy(ptr, memblock, MIN2(size, get_size(memblock))); duke@435: if (paranoid) verify_block(ptr); duke@435: if ((intptr_t)ptr == (intptr_t)MallocCatchPtr) { kvn@2557: tty->print_cr("os::realloc caught, " SIZE_FORMAT " bytes --> " PTR_FORMAT, size, ptr); duke@435: breakpoint(); duke@435: } duke@435: free(memblock); duke@435: } duke@435: return ptr; duke@435: #endif duke@435: } duke@435: duke@435: duke@435: void os::free(void *memblock) { kvn@2557: NOT_PRODUCT(inc_stat_counter(&num_frees, 1)); duke@435: #ifdef ASSERT duke@435: if (memblock == NULL) return; duke@435: if ((intptr_t)memblock == (intptr_t)MallocCatchPtr) { kvn@2557: if (tty != NULL) tty->print_cr("os::free caught " PTR_FORMAT, memblock); duke@435: breakpoint(); duke@435: } duke@435: verify_block(memblock); duke@435: NOT_PRODUCT(if (MallocVerifyInterval > 0) check_heap()); duke@435: // Added by detlefs. duke@435: if (MallocCushion) { duke@435: u_char* ptr = (u_char*)memblock - space_before; duke@435: for (u_char* p = ptr; p < ptr + MallocCushion; p++) { duke@435: guarantee(*p == badResourceValue, duke@435: "Thing freed should be malloc result."); duke@435: *p = (u_char)freeBlockPad; duke@435: } duke@435: size_t size = get_size(memblock); kvn@2557: inc_stat_counter(&free_bytes, size); duke@435: u_char* end = ptr + space_before + size; duke@435: for (u_char* q = end; q < end + MallocCushion; q++) { duke@435: guarantee(*q == badResourceValue, duke@435: "Thing freed should be malloc result."); duke@435: *q = (u_char)freeBlockPad; duke@435: } kvn@2557: if (PrintMalloc && tty != NULL) coleenp@2615: fprintf(stderr, "os::free " SIZE_FORMAT " bytes --> " PTR_FORMAT "\n", size, (uintptr_t)memblock); kvn@2557: } else if (PrintMalloc && tty != NULL) { kvn@2557: // tty->print_cr("os::free %p", memblock); coleenp@2615: fprintf(stderr, "os::free " PTR_FORMAT "\n", (uintptr_t)memblock); duke@435: } duke@435: #endif duke@435: ::free((char*)memblock - space_before); duke@435: } duke@435: duke@435: void os::init_random(long initval) { duke@435: _rand_seed = initval; duke@435: } duke@435: duke@435: duke@435: long os::random() { duke@435: /* standard, well-known linear congruential random generator with duke@435: * next_rand = (16807*seed) mod (2**31-1) duke@435: * see duke@435: * (1) "Random Number Generators: Good Ones Are Hard to Find", duke@435: * S.K. Park and K.W. Miller, Communications of the ACM 31:10 (Oct 1988), duke@435: * (2) "Two Fast Implementations of the 'Minimal Standard' Random duke@435: * Number Generator", David G. Carta, Comm. ACM 33, 1 (Jan 1990), pp. 87-88. duke@435: */ duke@435: const long a = 16807; duke@435: const unsigned long m = 2147483647; duke@435: const long q = m / a; assert(q == 127773, "weird math"); duke@435: const long r = m % a; assert(r == 2836, "weird math"); duke@435: duke@435: // compute az=2^31p+q duke@435: unsigned long lo = a * (long)(_rand_seed & 0xFFFF); duke@435: unsigned long hi = a * (long)((unsigned long)_rand_seed >> 16); duke@435: lo += (hi & 0x7FFF) << 16; duke@435: duke@435: // if q overflowed, ignore the overflow and increment q duke@435: if (lo > m) { duke@435: lo &= m; duke@435: ++lo; duke@435: } duke@435: lo += hi >> 15; duke@435: duke@435: // if (p+q) overflowed, ignore the overflow and increment (p+q) duke@435: if (lo > m) { duke@435: lo &= m; duke@435: ++lo; duke@435: } duke@435: return (_rand_seed = lo); duke@435: } duke@435: duke@435: // The INITIALIZED state is distinguished from the SUSPENDED state because the duke@435: // conditions in which a thread is first started are different from those in which duke@435: // a suspension is resumed. These differences make it hard for us to apply the duke@435: // tougher checks when starting threads that we want to do when resuming them. duke@435: // However, when start_thread is called as a result of Thread.start, on a Java duke@435: // thread, the operation is synchronized on the Java Thread object. So there duke@435: // cannot be a race to start the thread and hence for the thread to exit while duke@435: // we are working on it. Non-Java threads that start Java threads either have duke@435: // to do so in a context in which races are impossible, or should do appropriate duke@435: // locking. duke@435: duke@435: void os::start_thread(Thread* thread) { duke@435: // guard suspend/resume duke@435: MutexLockerEx ml(thread->SR_lock(), Mutex::_no_safepoint_check_flag); duke@435: OSThread* osthread = thread->osthread(); duke@435: osthread->set_state(RUNNABLE); duke@435: pd_start_thread(thread); duke@435: } duke@435: duke@435: //--------------------------------------------------------------------------- duke@435: // Helper functions for fatal error handler duke@435: duke@435: void os::print_hex_dump(outputStream* st, address start, address end, int unitsize) { duke@435: assert(unitsize == 1 || unitsize == 2 || unitsize == 4 || unitsize == 8, "just checking"); duke@435: duke@435: int cols = 0; duke@435: int cols_per_line = 0; duke@435: switch (unitsize) { duke@435: case 1: cols_per_line = 16; break; duke@435: case 2: cols_per_line = 8; break; duke@435: case 4: cols_per_line = 4; break; duke@435: case 8: cols_per_line = 2; break; duke@435: default: return; duke@435: } duke@435: duke@435: address p = start; duke@435: st->print(PTR_FORMAT ": ", start); duke@435: while (p < end) { duke@435: switch (unitsize) { duke@435: case 1: st->print("%02x", *(u1*)p); break; duke@435: case 2: st->print("%04x", *(u2*)p); break; duke@435: case 4: st->print("%08x", *(u4*)p); break; duke@435: case 8: st->print("%016" FORMAT64_MODIFIER "x", *(u8*)p); break; duke@435: } duke@435: p += unitsize; duke@435: cols++; duke@435: if (cols >= cols_per_line && p < end) { duke@435: cols = 0; duke@435: st->cr(); duke@435: st->print(PTR_FORMAT ": ", p); duke@435: } else { duke@435: st->print(" "); duke@435: } duke@435: } duke@435: st->cr(); duke@435: } duke@435: duke@435: void os::print_environment_variables(outputStream* st, const char** env_list, duke@435: char* buffer, int len) { duke@435: if (env_list) { duke@435: st->print_cr("Environment Variables:"); duke@435: duke@435: for (int i = 0; env_list[i] != NULL; i++) { duke@435: if (getenv(env_list[i], buffer, len)) { duke@435: st->print(env_list[i]); duke@435: st->print("="); duke@435: st->print_cr(buffer); duke@435: } duke@435: } duke@435: } duke@435: } duke@435: duke@435: void os::print_cpu_info(outputStream* st) { duke@435: // cpu duke@435: st->print("CPU:"); duke@435: st->print("total %d", os::processor_count()); duke@435: // It's not safe to query number of active processors after crash duke@435: // st->print("(active %d)", os::active_processor_count()); duke@435: st->print(" %s", VM_Version::cpu_features()); duke@435: st->cr(); duke@435: } duke@435: duke@435: void os::print_date_and_time(outputStream *st) { duke@435: time_t tloc; duke@435: (void)time(&tloc); duke@435: st->print("time: %s", ctime(&tloc)); // ctime adds newline. duke@435: duke@435: double t = os::elapsedTime(); duke@435: // NOTE: It tends to crash after a SEGV if we want to printf("%f",...) in duke@435: // Linux. Must be a bug in glibc ? Workaround is to round "t" to int duke@435: // before printf. We lost some precision, but who cares? duke@435: st->print_cr("elapsed time: %d seconds", (int)t); duke@435: } duke@435: bobv@2036: // moved from debug.cpp (used to be find()) but still called from there never@2262: // The verbose parameter is only set by the debug code in one case never@2262: void os::print_location(outputStream* st, intptr_t x, bool verbose) { bobv@2036: address addr = (address)x; bobv@2036: CodeBlob* b = CodeCache::find_blob_unsafe(addr); bobv@2036: if (b != NULL) { bobv@2036: if (b->is_buffer_blob()) { bobv@2036: // the interpreter is generated into a buffer blob bobv@2036: InterpreterCodelet* i = Interpreter::codelet_containing(addr); bobv@2036: if (i != NULL) { never@2262: st->print_cr(INTPTR_FORMAT " is an Interpreter codelet", addr); bobv@2036: i->print_on(st); bobv@2036: return; bobv@2036: } bobv@2036: if (Interpreter::contains(addr)) { bobv@2036: st->print_cr(INTPTR_FORMAT " is pointing into interpreter code" bobv@2036: " (not bytecode specific)", addr); bobv@2036: return; bobv@2036: } bobv@2036: // bobv@2036: if (AdapterHandlerLibrary::contains(b)) { never@2262: st->print_cr(INTPTR_FORMAT " is an AdapterHandler", addr); bobv@2036: AdapterHandlerLibrary::print_handler_on(st, b); bobv@2036: } bobv@2036: // the stubroutines are generated into a buffer blob bobv@2036: StubCodeDesc* d = StubCodeDesc::desc_for(addr); bobv@2036: if (d != NULL) { bobv@2036: d->print_on(st); never@2262: if (verbose) st->cr(); bobv@2036: return; bobv@2036: } bobv@2036: if (StubRoutines::contains(addr)) { bobv@2036: st->print_cr(INTPTR_FORMAT " is pointing to an (unnamed) " bobv@2036: "stub routine", addr); bobv@2036: return; bobv@2036: } bobv@2036: // the InlineCacheBuffer is using stubs generated into a buffer blob bobv@2036: if (InlineCacheBuffer::contains(addr)) { bobv@2036: st->print_cr(INTPTR_FORMAT " is pointing into InlineCacheBuffer", addr); bobv@2036: return; bobv@2036: } bobv@2036: VtableStub* v = VtableStubs::stub_containing(addr); bobv@2036: if (v != NULL) { bobv@2036: v->print_on(st); bobv@2036: return; bobv@2036: } bobv@2036: } never@2262: if (verbose && b->is_nmethod()) { bobv@2036: ResourceMark rm; bobv@2036: st->print("%#p: Compiled ", addr); bobv@2036: ((nmethod*)b)->method()->print_value_on(st); bobv@2036: st->print(" = (CodeBlob*)" INTPTR_FORMAT, b); bobv@2036: st->cr(); bobv@2036: return; bobv@2036: } never@2262: st->print(INTPTR_FORMAT " ", b); bobv@2036: if ( b->is_nmethod()) { bobv@2036: if (b->is_zombie()) { never@2262: st->print_cr("is zombie nmethod"); bobv@2036: } else if (b->is_not_entrant()) { never@2262: st->print_cr("is non-entrant nmethod"); bobv@2036: } bobv@2036: } bobv@2036: b->print_on(st); bobv@2036: return; bobv@2036: } bobv@2036: bobv@2036: if (Universe::heap()->is_in(addr)) { bobv@2036: HeapWord* p = Universe::heap()->block_start(addr); bobv@2036: bool print = false; bobv@2036: // If we couldn't find it it just may mean that heap wasn't parseable bobv@2036: // See if we were just given an oop directly bobv@2036: if (p != NULL && Universe::heap()->block_is_obj(p)) { bobv@2036: print = true; bobv@2036: } else if (p == NULL && ((oopDesc*)addr)->is_oop()) { bobv@2036: p = (HeapWord*) addr; bobv@2036: print = true; bobv@2036: } bobv@2036: if (print) { never@2262: st->print_cr(INTPTR_FORMAT " is an oop", addr); bobv@2036: oop(p)->print_on(st); bobv@2036: if (p != (HeapWord*)x && oop(p)->is_constMethod() && bobv@2036: constMethodOop(p)->contains(addr)) { bobv@2036: Thread *thread = Thread::current(); bobv@2036: HandleMark hm(thread); bobv@2036: methodHandle mh (thread, constMethodOop(p)->method()); bobv@2036: if (!mh->is_native()) { bobv@2036: st->print_cr("bci_from(%p) = %d; print_codes():", bobv@2036: addr, mh->bci_from(address(x))); bobv@2036: mh->print_codes_on(st); bobv@2036: } bobv@2036: } bobv@2036: return; bobv@2036: } bobv@2036: } else { bobv@2036: if (Universe::heap()->is_in_reserved(addr)) { bobv@2036: st->print_cr(INTPTR_FORMAT " is an unallocated location " bobv@2036: "in the heap", addr); bobv@2036: return; bobv@2036: } bobv@2036: } bobv@2036: if (JNIHandles::is_global_handle((jobject) addr)) { bobv@2036: st->print_cr(INTPTR_FORMAT " is a global jni handle", addr); bobv@2036: return; bobv@2036: } bobv@2036: if (JNIHandles::is_weak_global_handle((jobject) addr)) { bobv@2036: st->print_cr(INTPTR_FORMAT " is a weak global jni handle", addr); bobv@2036: return; bobv@2036: } bobv@2036: #ifndef PRODUCT bobv@2036: // we don't keep the block list in product mode bobv@2036: if (JNIHandleBlock::any_contains((jobject) addr)) { bobv@2036: st->print_cr(INTPTR_FORMAT " is a local jni handle", addr); bobv@2036: return; bobv@2036: } bobv@2036: #endif bobv@2036: bobv@2036: for(JavaThread *thread = Threads::first(); thread; thread = thread->next()) { bobv@2036: // Check for privilege stack bobv@2036: if (thread->privileged_stack_top() != NULL && bobv@2036: thread->privileged_stack_top()->contains(addr)) { bobv@2036: st->print_cr(INTPTR_FORMAT " is pointing into the privilege stack " bobv@2036: "for thread: " INTPTR_FORMAT, addr, thread); never@2262: if (verbose) thread->print_on(st); bobv@2036: return; bobv@2036: } bobv@2036: // If the addr is a java thread print information about that. bobv@2036: if (addr == (address)thread) { never@2262: if (verbose) { never@2262: thread->print_on(st); never@2262: } else { never@2262: st->print_cr(INTPTR_FORMAT " is a thread", addr); never@2262: } bobv@2036: return; bobv@2036: } bobv@2036: // If the addr is in the stack region for this thread then report that bobv@2036: // and print thread info bobv@2036: if (thread->stack_base() >= addr && bobv@2036: addr > (thread->stack_base() - thread->stack_size())) { bobv@2036: st->print_cr(INTPTR_FORMAT " is pointing into the stack for thread: " bobv@2036: INTPTR_FORMAT, addr, thread); never@2262: if (verbose) thread->print_on(st); bobv@2036: return; bobv@2036: } bobv@2036: bobv@2036: } bobv@2036: // Try an OS specific find bobv@2036: if (os::find(addr, st)) { bobv@2036: return; bobv@2036: } bobv@2036: never@2262: st->print_cr(INTPTR_FORMAT " is an unknown value", addr); bobv@2036: } duke@435: duke@435: // Looks like all platforms except IA64 can use the same function to check duke@435: // if C stack is walkable beyond current frame. The check for fp() is not duke@435: // necessary on Sparc, but it's harmless. duke@435: bool os::is_first_C_frame(frame* fr) { duke@435: #ifdef IA64 duke@435: // In order to walk native frames on Itanium, we need to access the unwind duke@435: // table, which is inside ELF. We don't want to parse ELF after fatal error, duke@435: // so return true for IA64. If we need to support C stack walking on IA64, duke@435: // this function needs to be moved to CPU specific files, as fp() on IA64 duke@435: // is register stack, which grows towards higher memory address. duke@435: return true; duke@435: #endif duke@435: duke@435: // Load up sp, fp, sender sp and sender fp, check for reasonable values. duke@435: // Check usp first, because if that's bad the other accessors may fault duke@435: // on some architectures. Ditto ufp second, etc. duke@435: uintptr_t fp_align_mask = (uintptr_t)(sizeof(address)-1); duke@435: // sp on amd can be 32 bit aligned. duke@435: uintptr_t sp_align_mask = (uintptr_t)(sizeof(int)-1); duke@435: duke@435: uintptr_t usp = (uintptr_t)fr->sp(); duke@435: if ((usp & sp_align_mask) != 0) return true; duke@435: duke@435: uintptr_t ufp = (uintptr_t)fr->fp(); duke@435: if ((ufp & fp_align_mask) != 0) return true; duke@435: duke@435: uintptr_t old_sp = (uintptr_t)fr->sender_sp(); duke@435: if ((old_sp & sp_align_mask) != 0) return true; duke@435: if (old_sp == 0 || old_sp == (uintptr_t)-1) return true; duke@435: duke@435: uintptr_t old_fp = (uintptr_t)fr->link(); duke@435: if ((old_fp & fp_align_mask) != 0) return true; duke@435: if (old_fp == 0 || old_fp == (uintptr_t)-1 || old_fp == ufp) return true; duke@435: duke@435: // stack grows downwards; if old_fp is below current fp or if the stack duke@435: // frame is too large, either the stack is corrupted or fp is not saved duke@435: // on stack (i.e. on x86, ebp may be used as general register). The stack duke@435: // is not walkable beyond current frame. duke@435: if (old_fp < ufp) return true; duke@435: if (old_fp - ufp > 64 * K) return true; duke@435: duke@435: return false; duke@435: } duke@435: duke@435: #ifdef ASSERT duke@435: extern "C" void test_random() { duke@435: const double m = 2147483647; duke@435: double mean = 0.0, variance = 0.0, t; duke@435: long reps = 10000; duke@435: unsigned long seed = 1; duke@435: duke@435: tty->print_cr("seed %ld for %ld repeats...", seed, reps); duke@435: os::init_random(seed); duke@435: long num; duke@435: for (int k = 0; k < reps; k++) { duke@435: num = os::random(); duke@435: double u = (double)num / m; duke@435: assert(u >= 0.0 && u <= 1.0, "bad random number!"); duke@435: duke@435: // calculate mean and variance of the random sequence duke@435: mean += u; duke@435: variance += (u*u); duke@435: } duke@435: mean /= reps; duke@435: variance /= (reps - 1); duke@435: duke@435: assert(num == 1043618065, "bad seed"); duke@435: tty->print_cr("mean of the 1st 10000 numbers: %f", mean); duke@435: tty->print_cr("variance of the 1st 10000 numbers: %f", variance); duke@435: const double eps = 0.0001; duke@435: t = fabsd(mean - 0.5018); duke@435: assert(t < eps, "bad mean"); duke@435: t = (variance - 0.3355) < 0.0 ? -(variance - 0.3355) : variance - 0.3355; duke@435: assert(t < eps, "bad variance"); duke@435: } duke@435: #endif duke@435: duke@435: duke@435: // Set up the boot classpath. duke@435: duke@435: char* os::format_boot_path(const char* format_string, duke@435: const char* home, duke@435: int home_len, duke@435: char fileSep, duke@435: char pathSep) { duke@435: assert((fileSep == '/' && pathSep == ':') || duke@435: (fileSep == '\\' && pathSep == ';'), "unexpected seperator chars"); duke@435: duke@435: // Scan the format string to determine the length of the actual duke@435: // boot classpath, and handle platform dependencies as well. duke@435: int formatted_path_len = 0; duke@435: const char* p; duke@435: for (p = format_string; *p != 0; ++p) { duke@435: if (*p == '%') formatted_path_len += home_len - 1; duke@435: ++formatted_path_len; duke@435: } duke@435: duke@435: char* formatted_path = NEW_C_HEAP_ARRAY(char, formatted_path_len + 1); duke@435: if (formatted_path == NULL) { duke@435: return NULL; duke@435: } duke@435: duke@435: // Create boot classpath from format, substituting separator chars and duke@435: // java home directory. duke@435: char* q = formatted_path; duke@435: for (p = format_string; *p != 0; ++p) { duke@435: switch (*p) { duke@435: case '%': duke@435: strcpy(q, home); duke@435: q += home_len; duke@435: break; duke@435: case '/': duke@435: *q++ = fileSep; duke@435: break; duke@435: case ':': duke@435: *q++ = pathSep; duke@435: break; duke@435: default: duke@435: *q++ = *p; duke@435: } duke@435: } duke@435: *q = '\0'; duke@435: duke@435: assert((q - formatted_path) == formatted_path_len, "formatted_path size botched"); duke@435: return formatted_path; duke@435: } duke@435: duke@435: duke@435: bool os::set_boot_path(char fileSep, char pathSep) { duke@435: const char* home = Arguments::get_java_home(); duke@435: int home_len = (int)strlen(home); duke@435: duke@435: static const char* meta_index_dir_format = "%/lib/"; duke@435: static const char* meta_index_format = "%/lib/meta-index"; duke@435: char* meta_index = format_boot_path(meta_index_format, home, home_len, fileSep, pathSep); duke@435: if (meta_index == NULL) return false; duke@435: char* meta_index_dir = format_boot_path(meta_index_dir_format, home, home_len, fileSep, pathSep); duke@435: if (meta_index_dir == NULL) return false; duke@435: Arguments::set_meta_index_path(meta_index, meta_index_dir); duke@435: duke@435: // Any modification to the JAR-file list, for the boot classpath must be duke@435: // aligned with install/install/make/common/Pack.gmk. Note: boot class duke@435: // path class JARs, are stripped for StackMapTable to reduce download size. duke@435: static const char classpath_format[] = duke@435: "%/lib/resources.jar:" duke@435: "%/lib/rt.jar:" duke@435: "%/lib/sunrsasign.jar:" duke@435: "%/lib/jsse.jar:" duke@435: "%/lib/jce.jar:" duke@435: "%/lib/charsets.jar:" duke@435: "%/classes"; duke@435: char* sysclasspath = format_boot_path(classpath_format, home, home_len, fileSep, pathSep); duke@435: if (sysclasspath == NULL) return false; duke@435: Arguments::set_sysclasspath(sysclasspath); duke@435: duke@435: return true; duke@435: } duke@435: phh@1126: /* phh@1126: * Splits a path, based on its separator, the number of phh@1126: * elements is returned back in n. phh@1126: * It is the callers responsibility to: phh@1126: * a> check the value of n, and n may be 0. phh@1126: * b> ignore any empty path elements phh@1126: * c> free up the data. phh@1126: */ phh@1126: char** os::split_path(const char* path, int* n) { phh@1126: *n = 0; phh@1126: if (path == NULL || strlen(path) == 0) { phh@1126: return NULL; phh@1126: } phh@1126: const char psepchar = *os::path_separator(); phh@1126: char* inpath = (char*)NEW_C_HEAP_ARRAY(char, strlen(path) + 1); phh@1126: if (inpath == NULL) { phh@1126: return NULL; phh@1126: } phh@1126: strncpy(inpath, path, strlen(path)); phh@1126: int count = 1; phh@1126: char* p = strchr(inpath, psepchar); phh@1126: // Get a count of elements to allocate memory phh@1126: while (p != NULL) { phh@1126: count++; phh@1126: p++; phh@1126: p = strchr(p, psepchar); phh@1126: } phh@1126: char** opath = (char**) NEW_C_HEAP_ARRAY(char*, count); phh@1126: if (opath == NULL) { phh@1126: return NULL; phh@1126: } phh@1126: phh@1126: // do the actual splitting phh@1126: p = inpath; phh@1126: for (int i = 0 ; i < count ; i++) { phh@1126: size_t len = strcspn(p, os::path_separator()); phh@1126: if (len > JVM_MAXPATHLEN) { phh@1126: return NULL; phh@1126: } phh@1126: // allocate the string and add terminator storage phh@1126: char* s = (char*)NEW_C_HEAP_ARRAY(char, len + 1); phh@1126: if (s == NULL) { phh@1126: return NULL; phh@1126: } phh@1126: strncpy(s, p, len); phh@1126: s[len] = '\0'; phh@1126: opath[i] = s; phh@1126: p += len + 1; phh@1126: } phh@1126: FREE_C_HEAP_ARRAY(char, inpath); phh@1126: *n = count; phh@1126: return opath; phh@1126: } phh@1126: duke@435: void os::set_memory_serialize_page(address page) { duke@435: int count = log2_intptr(sizeof(class JavaThread)) - log2_intptr(64); duke@435: _mem_serialize_page = (volatile int32_t *)page; duke@435: // We initialize the serialization page shift count here duke@435: // We assume a cache line size of 64 bytes duke@435: assert(SerializePageShiftCount == count, duke@435: "thread size changed, fix SerializePageShiftCount constant"); duke@435: set_serialize_page_mask((uintptr_t)(vm_page_size() - sizeof(int32_t))); duke@435: } duke@435: xlu@490: static volatile intptr_t SerializePageLock = 0; xlu@490: duke@435: // This method is called from signal handler when SIGSEGV occurs while the current duke@435: // thread tries to store to the "read-only" memory serialize page during state duke@435: // transition. duke@435: void os::block_on_serialize_page_trap() { duke@435: if (TraceSafepoint) { duke@435: tty->print_cr("Block until the serialize page permission restored"); duke@435: } xlu@490: // When VMThread is holding the SerializePageLock during modifying the duke@435: // access permission of the memory serialize page, the following call duke@435: // will block until the permission of that page is restored to rw. duke@435: // Generally, it is unsafe to manipulate locks in signal handlers, but in duke@435: // this case, it's OK as the signal is synchronous and we know precisely when xlu@490: // it can occur. xlu@490: Thread::muxAcquire(&SerializePageLock, "set_memory_serialize_page"); xlu@490: Thread::muxRelease(&SerializePageLock); duke@435: } duke@435: duke@435: // Serialize all thread state variables duke@435: void os::serialize_thread_states() { duke@435: // On some platforms such as Solaris & Linux, the time duration of the page duke@435: // permission restoration is observed to be much longer than expected due to duke@435: // scheduler starvation problem etc. To avoid the long synchronization xlu@490: // time and expensive page trap spinning, 'SerializePageLock' is used to block xlu@490: // the mutator thread if such case is encountered. See bug 6546278 for details. xlu@490: Thread::muxAcquire(&SerializePageLock, "serialize_thread_states"); coleenp@672: os::protect_memory((char *)os::get_memory_serialize_page(), coleenp@912: os::vm_page_size(), MEM_PROT_READ); coleenp@912: os::protect_memory((char *)os::get_memory_serialize_page(), coleenp@912: os::vm_page_size(), MEM_PROT_RW); xlu@490: Thread::muxRelease(&SerializePageLock); duke@435: } duke@435: duke@435: // Returns true if the current stack pointer is above the stack shadow duke@435: // pages, false otherwise. duke@435: duke@435: bool os::stack_shadow_pages_available(Thread *thread, methodHandle method) { duke@435: assert(StackRedPages > 0 && StackYellowPages > 0,"Sanity check"); duke@435: address sp = current_stack_pointer(); duke@435: // Check if we have StackShadowPages above the yellow zone. This parameter twisti@1040: // is dependent on the depth of the maximum VM call stack possible from duke@435: // the handler for stack overflow. 'instanceof' in the stack overflow duke@435: // handler or a println uses at least 8k stack of VM and native code duke@435: // respectively. duke@435: const int framesize_in_bytes = duke@435: Interpreter::size_top_interpreter_activation(method()) * wordSize; duke@435: int reserved_area = ((StackShadowPages + StackRedPages + StackYellowPages) duke@435: * vm_page_size()) + framesize_in_bytes; duke@435: // The very lower end of the stack duke@435: address stack_limit = thread->stack_base() - thread->stack_size(); duke@435: return (sp > (stack_limit + reserved_area)); duke@435: } duke@435: duke@435: size_t os::page_size_for_region(size_t region_min_size, size_t region_max_size, duke@435: uint min_pages) duke@435: { duke@435: assert(min_pages > 0, "sanity"); duke@435: if (UseLargePages) { duke@435: const size_t max_page_size = region_max_size / min_pages; duke@435: duke@435: for (unsigned int i = 0; _page_sizes[i] != 0; ++i) { duke@435: const size_t sz = _page_sizes[i]; duke@435: const size_t mask = sz - 1; duke@435: if ((region_min_size & mask) == 0 && (region_max_size & mask) == 0) { duke@435: // The largest page size with no fragmentation. duke@435: return sz; duke@435: } duke@435: duke@435: if (sz <= max_page_size) { duke@435: // The largest page size that satisfies the min_pages requirement. duke@435: return sz; duke@435: } duke@435: } duke@435: } duke@435: duke@435: return vm_page_size(); duke@435: } duke@435: duke@435: #ifndef PRODUCT duke@435: void os::trace_page_sizes(const char* str, const size_t region_min_size, duke@435: const size_t region_max_size, const size_t page_size, duke@435: const char* base, const size_t size) duke@435: { duke@435: if (TracePageSizes) { duke@435: tty->print_cr("%s: min=" SIZE_FORMAT " max=" SIZE_FORMAT duke@435: " pg_sz=" SIZE_FORMAT " base=" PTR_FORMAT duke@435: " size=" SIZE_FORMAT, duke@435: str, region_min_size, region_max_size, duke@435: page_size, base, size); duke@435: } duke@435: } duke@435: #endif // #ifndef PRODUCT duke@435: duke@435: // This is the working definition of a server class machine: duke@435: // >= 2 physical CPU's and >=2GB of memory, with some fuzz duke@435: // because the graphics memory (?) sometimes masks physical memory. duke@435: // If you want to change the definition of a server class machine duke@435: // on some OS or platform, e.g., >=4GB on Windohs platforms, duke@435: // then you'll have to parameterize this method based on that state, duke@435: // as was done for logical processors here, or replicate and duke@435: // specialize this method for each platform. (Or fix os to have duke@435: // some inheritance structure and use subclassing. Sigh.) duke@435: // If you want some platform to always or never behave as a server duke@435: // class machine, change the setting of AlwaysActAsServerClassMachine duke@435: // and NeverActAsServerClassMachine in globals*.hpp. duke@435: bool os::is_server_class_machine() { duke@435: // First check for the early returns duke@435: if (NeverActAsServerClassMachine) { duke@435: return false; duke@435: } duke@435: if (AlwaysActAsServerClassMachine) { duke@435: return true; duke@435: } duke@435: // Then actually look at the machine duke@435: bool result = false; duke@435: const unsigned int server_processors = 2; duke@435: const julong server_memory = 2UL * G; duke@435: // We seem not to get our full complement of memory. duke@435: // We allow some part (1/8?) of the memory to be "missing", duke@435: // based on the sizes of DIMMs, and maybe graphics cards. duke@435: const julong missing_memory = 256UL * M; duke@435: duke@435: /* Is this a server class machine? */ duke@435: if ((os::active_processor_count() >= (int)server_processors) && duke@435: (os::physical_memory() >= (server_memory - missing_memory))) { duke@435: const unsigned int logical_processors = duke@435: VM_Version::logical_processors_per_package(); duke@435: if (logical_processors > 1) { duke@435: const unsigned int physical_packages = duke@435: os::active_processor_count() / logical_processors; duke@435: if (physical_packages > server_processors) { duke@435: result = true; duke@435: } duke@435: } else { duke@435: result = true; duke@435: } duke@435: } duke@435: return result; duke@435: }