ysr@777: /* xdono@1014: * Copyright 2001-2009 Sun Microsystems, Inc. All Rights Reserved. ysr@777: * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. ysr@777: * ysr@777: * This code is free software; you can redistribute it and/or modify it ysr@777: * under the terms of the GNU General Public License version 2 only, as ysr@777: * published by the Free Software Foundation. ysr@777: * ysr@777: * This code is distributed in the hope that it will be useful, but WITHOUT ysr@777: * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or ysr@777: * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License ysr@777: * version 2 for more details (a copy is included in the LICENSE file that ysr@777: * accompanied this code). ysr@777: * ysr@777: * You should have received a copy of the GNU General Public License version ysr@777: * 2 along with this work; if not, write to the Free Software Foundation, ysr@777: * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. ysr@777: * ysr@777: * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, ysr@777: * CA 95054 USA or visit www.sun.com if you need additional information or ysr@777: * have any questions. ysr@777: * ysr@777: */ ysr@777: ysr@777: // A "G1CollectedHeap" is an implementation of a java heap for HotSpot. ysr@777: // It uses the "Garbage First" heap organization and algorithm, which ysr@777: // may combine concurrent marking with parallel, incremental compaction of ysr@777: // heap subsets that will yield large amounts of garbage. ysr@777: ysr@777: class HeapRegion; ysr@777: class HeapRegionSeq; ysr@777: class PermanentGenerationSpec; ysr@777: class GenerationSpec; ysr@777: class OopsInHeapRegionClosure; ysr@777: class G1ScanHeapEvacClosure; ysr@777: class ObjectClosure; ysr@777: class SpaceClosure; ysr@777: class CompactibleSpaceClosure; ysr@777: class Space; ysr@777: class G1CollectorPolicy; ysr@777: class GenRemSet; ysr@777: class G1RemSet; ysr@777: class HeapRegionRemSetIterator; ysr@777: class ConcurrentMark; ysr@777: class ConcurrentMarkThread; ysr@777: class ConcurrentG1Refine; ysr@777: class ConcurrentZFThread; ysr@777: ysr@777: // If want to accumulate detailed statistics on work queues ysr@777: // turn this on. ysr@777: #define G1_DETAILED_STATS 0 ysr@777: ysr@777: #if G1_DETAILED_STATS ysr@777: # define IF_G1_DETAILED_STATS(code) code ysr@777: #else ysr@777: # define IF_G1_DETAILED_STATS(code) ysr@777: #endif ysr@777: jcoomes@1746: typedef GenericTaskQueue RefToScanQueue; jcoomes@1746: typedef GenericTaskQueueSet RefToScanQueueSet; ysr@777: johnc@1242: typedef int RegionIdx_t; // needs to hold [ 0..max_regions() ) johnc@1242: typedef int CardIdx_t; // needs to hold [ 0..CardsPerRegion ) johnc@1242: ysr@777: enum G1GCThreadGroups { ysr@777: G1CRGroup = 0, ysr@777: G1ZFGroup = 1, ysr@777: G1CMGroup = 2, ysr@777: G1CLGroup = 3 ysr@777: }; ysr@777: ysr@777: enum GCAllocPurpose { ysr@777: GCAllocForTenured, ysr@777: GCAllocForSurvived, ysr@777: GCAllocPurposeCount ysr@777: }; ysr@777: ysr@777: class YoungList : public CHeapObj { ysr@777: private: ysr@777: G1CollectedHeap* _g1h; ysr@777: ysr@777: HeapRegion* _head; ysr@777: ysr@777: HeapRegion* _scan_only_head; ysr@777: HeapRegion* _scan_only_tail; ysr@777: size_t _length; ysr@777: size_t _scan_only_length; ysr@777: ysr@777: size_t _last_sampled_rs_lengths; ysr@777: size_t _sampled_rs_lengths; ysr@777: HeapRegion* _curr; ysr@777: HeapRegion* _curr_scan_only; ysr@777: ysr@777: HeapRegion* _survivor_head; apetrusenko@980: HeapRegion* _survivor_tail; ysr@777: size_t _survivor_length; ysr@777: ysr@777: void empty_list(HeapRegion* list); ysr@777: ysr@777: public: ysr@777: YoungList(G1CollectedHeap* g1h); ysr@777: ysr@777: void push_region(HeapRegion* hr); ysr@777: void add_survivor_region(HeapRegion* hr); ysr@777: HeapRegion* pop_region(); ysr@777: void empty_list(); ysr@777: bool is_empty() { return _length == 0; } ysr@777: size_t length() { return _length; } ysr@777: size_t scan_only_length() { return _scan_only_length; } apetrusenko@980: size_t survivor_length() { return _survivor_length; } ysr@777: ysr@777: void rs_length_sampling_init(); ysr@777: bool rs_length_sampling_more(); ysr@777: void rs_length_sampling_next(); ysr@777: ysr@777: void reset_sampled_info() { ysr@777: _last_sampled_rs_lengths = 0; ysr@777: } ysr@777: size_t sampled_rs_lengths() { return _last_sampled_rs_lengths; } ysr@777: ysr@777: // for development purposes ysr@777: void reset_auxilary_lists(); ysr@777: HeapRegion* first_region() { return _head; } ysr@777: HeapRegion* first_scan_only_region() { return _scan_only_head; } ysr@777: HeapRegion* first_survivor_region() { return _survivor_head; } apetrusenko@980: HeapRegion* last_survivor_region() { return _survivor_tail; } ysr@777: HeapRegion* par_get_next_scan_only_region() { ysr@777: MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag); ysr@777: HeapRegion* ret = _curr_scan_only; ysr@777: if (ret != NULL) ysr@777: _curr_scan_only = ret->get_next_young_region(); ysr@777: return ret; ysr@777: } ysr@777: ysr@777: // debugging ysr@777: bool check_list_well_formed(); ysr@777: bool check_list_empty(bool ignore_scan_only_list, ysr@777: bool check_sample = true); ysr@777: void print(); ysr@777: }; ysr@777: ysr@777: class RefineCardTableEntryClosure; ysr@777: class G1CollectedHeap : public SharedHeap { ysr@777: friend class VM_G1CollectForAllocation; ysr@777: friend class VM_GenCollectForPermanentAllocation; ysr@777: friend class VM_G1CollectFull; ysr@777: friend class VM_G1IncCollectionPause; ysr@777: friend class VMStructs; ysr@777: ysr@777: // Closures used in implementation. ysr@777: friend class G1ParCopyHelper; ysr@777: friend class G1IsAliveClosure; ysr@777: friend class G1EvacuateFollowersClosure; ysr@777: friend class G1ParScanThreadState; ysr@777: friend class G1ParScanClosureSuper; ysr@777: friend class G1ParEvacuateFollowersClosure; ysr@777: friend class G1ParTask; ysr@777: friend class G1FreeGarbageRegionClosure; ysr@777: friend class RefineCardTableEntryClosure; ysr@777: friend class G1PrepareCompactClosure; ysr@777: friend class RegionSorter; ysr@777: friend class CountRCClosure; ysr@777: friend class EvacPopObjClosure; apetrusenko@1231: friend class G1ParCleanupCTTask; ysr@777: ysr@777: // Other related classes. ysr@777: friend class G1MarkSweep; ysr@777: ysr@777: private: ysr@777: // The one and only G1CollectedHeap, so static functions can find it. ysr@777: static G1CollectedHeap* _g1h; ysr@777: tonyp@1377: static size_t _humongous_object_threshold_in_words; tonyp@1377: ysr@777: // Storage for the G1 heap (excludes the permanent generation). ysr@777: VirtualSpace _g1_storage; ysr@777: MemRegion _g1_reserved; ysr@777: ysr@777: // The part of _g1_storage that is currently committed. ysr@777: MemRegion _g1_committed; ysr@777: ysr@777: // The maximum part of _g1_storage that has ever been committed. ysr@777: MemRegion _g1_max_committed; ysr@777: ysr@777: // The number of regions that are completely free. ysr@777: size_t _free_regions; ysr@777: ysr@777: // The number of regions we could create by expansion. ysr@777: size_t _expansion_regions; ysr@777: ysr@777: // Return the number of free regions in the heap (by direct counting.) ysr@777: size_t count_free_regions(); ysr@777: // Return the number of free regions on the free and unclean lists. ysr@777: size_t count_free_regions_list(); ysr@777: ysr@777: // The block offset table for the G1 heap. ysr@777: G1BlockOffsetSharedArray* _bot_shared; ysr@777: ysr@777: // Move all of the regions off the free lists, then rebuild those free ysr@777: // lists, before and after full GC. ysr@777: void tear_down_region_lists(); ysr@777: void rebuild_region_lists(); ysr@777: // This sets all non-empty regions to need zero-fill (which they will if ysr@777: // they are empty after full collection.) ysr@777: void set_used_regions_to_need_zero_fill(); ysr@777: ysr@777: // The sequence of all heap regions in the heap. ysr@777: HeapRegionSeq* _hrs; ysr@777: ysr@777: // The region from which normal-sized objects are currently being ysr@777: // allocated. May be NULL. ysr@777: HeapRegion* _cur_alloc_region; ysr@777: ysr@777: // Postcondition: cur_alloc_region == NULL. ysr@777: void abandon_cur_alloc_region(); tonyp@1071: void abandon_gc_alloc_regions(); ysr@777: ysr@777: // The to-space memory regions into which objects are being copied during ysr@777: // a GC. ysr@777: HeapRegion* _gc_alloc_regions[GCAllocPurposeCount]; apetrusenko@980: size_t _gc_alloc_region_counts[GCAllocPurposeCount]; tonyp@1071: // These are the regions, one per GCAllocPurpose, that are half-full tonyp@1071: // at the end of a collection and that we want to reuse during the tonyp@1071: // next collection. tonyp@1071: HeapRegion* _retained_gc_alloc_regions[GCAllocPurposeCount]; tonyp@1071: // This specifies whether we will keep the last half-full region at tonyp@1071: // the end of a collection so that it can be reused during the next tonyp@1071: // collection (this is specified per GCAllocPurpose) tonyp@1071: bool _retain_gc_alloc_region[GCAllocPurposeCount]; ysr@777: ysr@777: // A list of the regions that have been set to be alloc regions in the ysr@777: // current collection. ysr@777: HeapRegion* _gc_alloc_region_list; ysr@777: ysr@777: // When called by par thread, require par_alloc_during_gc_lock() to be held. ysr@777: void push_gc_alloc_region(HeapRegion* hr); ysr@777: ysr@777: // This should only be called single-threaded. Undeclares all GC alloc ysr@777: // regions. ysr@777: void forget_alloc_region_list(); ysr@777: ysr@777: // Should be used to set an alloc region, because there's other ysr@777: // associated bookkeeping. ysr@777: void set_gc_alloc_region(int purpose, HeapRegion* r); ysr@777: ysr@777: // Check well-formedness of alloc region list. ysr@777: bool check_gc_alloc_regions(); ysr@777: ysr@777: // Outside of GC pauses, the number of bytes used in all regions other ysr@777: // than the current allocation region. ysr@777: size_t _summary_bytes_used; ysr@777: tonyp@961: // This is used for a quick test on whether a reference points into tonyp@961: // the collection set or not. Basically, we have an array, with one tonyp@961: // byte per region, and that byte denotes whether the corresponding tonyp@961: // region is in the collection set or not. The entry corresponding tonyp@961: // the bottom of the heap, i.e., region 0, is pointed to by tonyp@961: // _in_cset_fast_test_base. The _in_cset_fast_test field has been tonyp@961: // biased so that it actually points to address 0 of the address tonyp@961: // space, to make the test as fast as possible (we can simply shift tonyp@961: // the address to address into it, instead of having to subtract the tonyp@961: // bottom of the heap from the address before shifting it; basically tonyp@961: // it works in the same way the card table works). tonyp@961: bool* _in_cset_fast_test; tonyp@961: tonyp@961: // The allocated array used for the fast test on whether a reference tonyp@961: // points into the collection set or not. This field is also used to tonyp@961: // free the array. tonyp@961: bool* _in_cset_fast_test_base; tonyp@961: tonyp@961: // The length of the _in_cset_fast_test_base array. tonyp@961: size_t _in_cset_fast_test_length; tonyp@961: iveresov@788: volatile unsigned _gc_time_stamp; ysr@777: ysr@777: size_t* _surviving_young_words; ysr@777: ysr@777: void setup_surviving_young_words(); ysr@777: void update_surviving_young_words(size_t* surv_young_words); ysr@777: void cleanup_surviving_young_words(); ysr@777: ysr@777: protected: ysr@777: ysr@777: // Returns "true" iff none of the gc alloc regions have any allocations ysr@777: // since the last call to "save_marks". ysr@777: bool all_alloc_regions_no_allocs_since_save_marks(); apetrusenko@980: // Perform finalization stuff on all allocation regions. apetrusenko@980: void retire_all_alloc_regions(); ysr@777: ysr@777: // The number of regions allocated to hold humongous objects. ysr@777: int _num_humongous_regions; ysr@777: YoungList* _young_list; ysr@777: ysr@777: // The current policy object for the collector. ysr@777: G1CollectorPolicy* _g1_policy; ysr@777: ysr@777: // Parallel allocation lock to protect the current allocation region. ysr@777: Mutex _par_alloc_during_gc_lock; ysr@777: Mutex* par_alloc_during_gc_lock() { return &_par_alloc_during_gc_lock; } ysr@777: ysr@777: // If possible/desirable, allocate a new HeapRegion for normal object ysr@777: // allocation sufficient for an allocation of the given "word_size". ysr@777: // If "do_expand" is true, will attempt to expand the heap if necessary ysr@777: // to to satisfy the request. If "zero_filled" is true, requires a ysr@777: // zero-filled region. ysr@777: // (Returning NULL will trigger a GC.) ysr@777: virtual HeapRegion* newAllocRegion_work(size_t word_size, ysr@777: bool do_expand, ysr@777: bool zero_filled); ysr@777: ysr@777: virtual HeapRegion* newAllocRegion(size_t word_size, ysr@777: bool zero_filled = true) { ysr@777: return newAllocRegion_work(word_size, false, zero_filled); ysr@777: } ysr@777: virtual HeapRegion* newAllocRegionWithExpansion(int purpose, ysr@777: size_t word_size, ysr@777: bool zero_filled = true); ysr@777: ysr@777: // Attempt to allocate an object of the given (very large) "word_size". ysr@777: // Returns "NULL" on failure. ysr@777: virtual HeapWord* humongousObjAllocate(size_t word_size); ysr@777: ysr@777: // If possible, allocate a block of the given word_size, else return "NULL". ysr@777: // Returning NULL will trigger GC or heap expansion. ysr@777: // These two methods have rather awkward pre- and ysr@777: // post-conditions. If they are called outside a safepoint, then ysr@777: // they assume that the caller is holding the heap lock. Upon return ysr@777: // they release the heap lock, if they are returning a non-NULL ysr@777: // value. attempt_allocation_slow() also dirties the cards of a ysr@777: // newly-allocated young region after it releases the heap ysr@777: // lock. This change in interface was the neatest way to achieve ysr@777: // this card dirtying without affecting mem_allocate(), which is a ysr@777: // more frequently called method. We tried two or three different ysr@777: // approaches, but they were even more hacky. ysr@777: HeapWord* attempt_allocation(size_t word_size, ysr@777: bool permit_collection_pause = true); ysr@777: ysr@777: HeapWord* attempt_allocation_slow(size_t word_size, ysr@777: bool permit_collection_pause = true); ysr@777: ysr@777: // Allocate blocks during garbage collection. Will ensure an ysr@777: // allocation region, either by picking one or expanding the ysr@777: // heap, and then allocate a block of the given size. The block ysr@777: // may not be a humongous - it must fit into a single heap region. ysr@777: HeapWord* allocate_during_gc(GCAllocPurpose purpose, size_t word_size); ysr@777: HeapWord* par_allocate_during_gc(GCAllocPurpose purpose, size_t word_size); ysr@777: ysr@777: HeapWord* allocate_during_gc_slow(GCAllocPurpose purpose, ysr@777: HeapRegion* alloc_region, ysr@777: bool par, ysr@777: size_t word_size); ysr@777: ysr@777: // Ensure that no further allocations can happen in "r", bearing in mind ysr@777: // that parallel threads might be attempting allocations. ysr@777: void par_allocate_remaining_space(HeapRegion* r); ysr@777: apetrusenko@980: // Retires an allocation region when it is full or at the end of a apetrusenko@980: // GC pause. apetrusenko@980: void retire_alloc_region(HeapRegion* alloc_region, bool par); apetrusenko@980: ysr@777: // Helper function for two callbacks below. ysr@777: // "full", if true, indicates that the GC is for a System.gc() request, ysr@777: // and should collect the entire heap. If "clear_all_soft_refs" is true, ysr@777: // all soft references are cleared during the GC. If "full" is false, ysr@777: // "word_size" describes the allocation that the GC should ysr@777: // attempt (at least) to satisfy. ysr@777: void do_collection(bool full, bool clear_all_soft_refs, ysr@777: size_t word_size); ysr@777: ysr@777: // Callback from VM_G1CollectFull operation. ysr@777: // Perform a full collection. ysr@777: void do_full_collection(bool clear_all_soft_refs); ysr@777: ysr@777: // Resize the heap if necessary after a full collection. If this is ysr@777: // after a collect-for allocation, "word_size" is the allocation size, ysr@777: // and will be considered part of the used portion of the heap. ysr@777: void resize_if_necessary_after_full_collection(size_t word_size); ysr@777: ysr@777: // Callback from VM_G1CollectForAllocation operation. ysr@777: // This function does everything necessary/possible to satisfy a ysr@777: // failed allocation request (including collection, expansion, etc.) ysr@777: HeapWord* satisfy_failed_allocation(size_t word_size); ysr@777: ysr@777: // Attempting to expand the heap sufficiently ysr@777: // to support an allocation of the given "word_size". If ysr@777: // successful, perform the allocation and return the address of the ysr@777: // allocated block, or else "NULL". ysr@777: virtual HeapWord* expand_and_allocate(size_t word_size); ysr@777: ysr@777: public: ysr@777: // Expand the garbage-first heap by at least the given size (in bytes!). ysr@777: // (Rounds up to a HeapRegion boundary.) ysr@777: virtual void expand(size_t expand_bytes); ysr@777: ysr@777: // Do anything common to GC's. ysr@777: virtual void gc_prologue(bool full); ysr@777: virtual void gc_epilogue(bool full); ysr@777: tonyp@961: // We register a region with the fast "in collection set" test. We tonyp@961: // simply set to true the array slot corresponding to this region. tonyp@961: void register_region_with_in_cset_fast_test(HeapRegion* r) { tonyp@961: assert(_in_cset_fast_test_base != NULL, "sanity"); tonyp@961: assert(r->in_collection_set(), "invariant"); tonyp@961: int index = r->hrs_index(); tonyp@961: assert(0 <= (size_t) index && (size_t) index < _in_cset_fast_test_length, tonyp@961: "invariant"); tonyp@961: assert(!_in_cset_fast_test_base[index], "invariant"); tonyp@961: _in_cset_fast_test_base[index] = true; tonyp@961: } tonyp@961: tonyp@961: // This is a fast test on whether a reference points into the tonyp@961: // collection set or not. It does not assume that the reference tonyp@961: // points into the heap; if it doesn't, it will return false. tonyp@961: bool in_cset_fast_test(oop obj) { tonyp@961: assert(_in_cset_fast_test != NULL, "sanity"); tonyp@961: if (_g1_committed.contains((HeapWord*) obj)) { tonyp@961: // no need to subtract the bottom of the heap from obj, tonyp@961: // _in_cset_fast_test is biased tonyp@961: size_t index = ((size_t) obj) >> HeapRegion::LogOfHRGrainBytes; tonyp@961: bool ret = _in_cset_fast_test[index]; tonyp@961: // let's make sure the result is consistent with what the slower tonyp@961: // test returns tonyp@961: assert( ret || !obj_in_cs(obj), "sanity"); tonyp@961: assert(!ret || obj_in_cs(obj), "sanity"); tonyp@961: return ret; tonyp@961: } else { tonyp@961: return false; tonyp@961: } tonyp@961: } tonyp@961: ysr@777: protected: ysr@777: ysr@777: // Shrink the garbage-first heap by at most the given size (in bytes!). ysr@777: // (Rounds down to a HeapRegion boundary.) ysr@777: virtual void shrink(size_t expand_bytes); ysr@777: void shrink_helper(size_t expand_bytes); ysr@777: ysr@777: // Do an incremental collection: identify a collection set, and evacuate ysr@777: // its live objects elsewhere. ysr@777: virtual void do_collection_pause(); ysr@777: ysr@777: // The guts of the incremental collection pause, executed by the vm apetrusenko@1112: // thread. apetrusenko@1112: virtual void do_collection_pause_at_safepoint(); ysr@777: ysr@777: // Actually do the work of evacuating the collection set. ysr@777: virtual void evacuate_collection_set(); ysr@777: ysr@777: // If this is an appropriate right time, do a collection pause. ysr@777: // The "word_size" argument, if non-zero, indicates the size of an ysr@777: // allocation request that is prompting this query. ysr@777: void do_collection_pause_if_appropriate(size_t word_size); ysr@777: ysr@777: // The g1 remembered set of the heap. ysr@777: G1RemSet* _g1_rem_set; ysr@777: // And it's mod ref barrier set, used to track updates for the above. ysr@777: ModRefBarrierSet* _mr_bs; ysr@777: iveresov@1051: // A set of cards that cover the objects for which the Rsets should be updated iveresov@1051: // concurrently after the collection. iveresov@1051: DirtyCardQueueSet _dirty_card_queue_set; iveresov@1051: ysr@777: // The Heap Region Rem Set Iterator. ysr@777: HeapRegionRemSetIterator** _rem_set_iterator; ysr@777: ysr@777: // The closure used to refine a single card. ysr@777: RefineCardTableEntryClosure* _refine_cte_cl; ysr@777: ysr@777: // A function to check the consistency of dirty card logs. ysr@777: void check_ct_logs_at_safepoint(); ysr@777: ysr@777: // After a collection pause, make the regions in the CS into free ysr@777: // regions. ysr@777: void free_collection_set(HeapRegion* cs_head); ysr@777: ysr@777: // Applies "scan_non_heap_roots" to roots outside the heap, ysr@777: // "scan_rs" to roots inside the heap (having done "set_region" to ysr@777: // indicate the region in which the root resides), and does "scan_perm" ysr@777: // (setting the generation to the perm generation.) If "scan_rs" is ysr@777: // NULL, then this step is skipped. The "worker_i" ysr@777: // param is for use with parallel roots processing, and should be ysr@777: // the "i" of the calling parallel worker thread's work(i) function. ysr@777: // In the sequential case this param will be ignored. ysr@777: void g1_process_strong_roots(bool collecting_perm_gen, ysr@777: SharedHeap::ScanningOption so, ysr@777: OopClosure* scan_non_heap_roots, ysr@777: OopsInHeapRegionClosure* scan_rs, ysr@777: OopsInHeapRegionClosure* scan_so, ysr@777: OopsInGenClosure* scan_perm, ysr@777: int worker_i); ysr@777: ysr@777: void scan_scan_only_set(OopsInHeapRegionClosure* oc, ysr@777: int worker_i); ysr@777: void scan_scan_only_region(HeapRegion* hr, ysr@777: OopsInHeapRegionClosure* oc, ysr@777: int worker_i); ysr@777: ysr@777: // Apply "blk" to all the weak roots of the system. These include ysr@777: // JNI weak roots, the code cache, system dictionary, symbol table, ysr@777: // string table, and referents of reachable weak refs. ysr@777: void g1_process_weak_roots(OopClosure* root_closure, ysr@777: OopClosure* non_root_closure); ysr@777: ysr@777: // Invoke "save_marks" on all heap regions. ysr@777: void save_marks(); ysr@777: ysr@777: // Free a heap region. ysr@777: void free_region(HeapRegion* hr); ysr@777: // A component of "free_region", exposed for 'batching'. ysr@777: // All the params after "hr" are out params: the used bytes of the freed ysr@777: // region(s), the number of H regions cleared, the number of regions ysr@777: // freed, and pointers to the head and tail of a list of freed contig ysr@777: // regions, linked throught the "next_on_unclean_list" field. ysr@777: void free_region_work(HeapRegion* hr, ysr@777: size_t& pre_used, ysr@777: size_t& cleared_h, ysr@777: size_t& freed_regions, ysr@777: UncleanRegionList* list, ysr@777: bool par = false); ysr@777: ysr@777: ysr@777: // The concurrent marker (and the thread it runs in.) ysr@777: ConcurrentMark* _cm; ysr@777: ConcurrentMarkThread* _cmThread; ysr@777: bool _mark_in_progress; ysr@777: ysr@777: // The concurrent refiner. ysr@777: ConcurrentG1Refine* _cg1r; ysr@777: ysr@777: // The concurrent zero-fill thread. ysr@777: ConcurrentZFThread* _czft; ysr@777: ysr@777: // The parallel task queues ysr@777: RefToScanQueueSet *_task_queues; ysr@777: ysr@777: // True iff a evacuation has failed in the current collection. ysr@777: bool _evacuation_failed; ysr@777: ysr@777: // Set the attribute indicating whether evacuation has failed in the ysr@777: // current collection. ysr@777: void set_evacuation_failed(bool b) { _evacuation_failed = b; } ysr@777: ysr@777: // Failed evacuations cause some logical from-space objects to have ysr@777: // forwarding pointers to themselves. Reset them. ysr@777: void remove_self_forwarding_pointers(); ysr@777: ysr@777: // When one is non-null, so is the other. Together, they each pair is ysr@777: // an object with a preserved mark, and its mark value. ysr@777: GrowableArray* _objs_with_preserved_marks; ysr@777: GrowableArray* _preserved_marks_of_objs; ysr@777: ysr@777: // Preserve the mark of "obj", if necessary, in preparation for its mark ysr@777: // word being overwritten with a self-forwarding-pointer. ysr@777: void preserve_mark_if_necessary(oop obj, markOop m); ysr@777: ysr@777: // The stack of evac-failure objects left to be scanned. ysr@777: GrowableArray* _evac_failure_scan_stack; ysr@777: // The closure to apply to evac-failure objects. ysr@777: ysr@777: OopsInHeapRegionClosure* _evac_failure_closure; ysr@777: // Set the field above. ysr@777: void ysr@777: set_evac_failure_closure(OopsInHeapRegionClosure* evac_failure_closure) { ysr@777: _evac_failure_closure = evac_failure_closure; ysr@777: } ysr@777: ysr@777: // Push "obj" on the scan stack. ysr@777: void push_on_evac_failure_scan_stack(oop obj); ysr@777: // Process scan stack entries until the stack is empty. ysr@777: void drain_evac_failure_scan_stack(); ysr@777: // True iff an invocation of "drain_scan_stack" is in progress; to ysr@777: // prevent unnecessary recursion. ysr@777: bool _drain_in_progress; ysr@777: ysr@777: // Do any necessary initialization for evacuation-failure handling. ysr@777: // "cl" is the closure that will be used to process evac-failure ysr@777: // objects. ysr@777: void init_for_evac_failure(OopsInHeapRegionClosure* cl); ysr@777: // Do any necessary cleanup for evacuation-failure handling data ysr@777: // structures. ysr@777: void finalize_for_evac_failure(); ysr@777: ysr@777: // An attempt to evacuate "obj" has failed; take necessary steps. ysr@777: void handle_evacuation_failure(oop obj); ysr@777: oop handle_evacuation_failure_par(OopsInHeapRegionClosure* cl, oop obj); ysr@777: void handle_evacuation_failure_common(oop obj, markOop m); ysr@777: ysr@777: ysr@777: // Ensure that the relevant gc_alloc regions are set. ysr@777: void get_gc_alloc_regions(); tonyp@1071: // We're done with GC alloc regions. We are going to tear down the tonyp@1071: // gc alloc list and remove the gc alloc tag from all the regions on tonyp@1071: // that list. However, we will also retain the last (i.e., the one tonyp@1071: // that is half-full) GC alloc region, per GCAllocPurpose, for tonyp@1071: // possible reuse during the next collection, provided tonyp@1071: // _retain_gc_alloc_region[] indicates that it should be the tonyp@1071: // case. Said regions are kept in the _retained_gc_alloc_regions[] tonyp@1071: // array. If the parameter totally is set, we will not retain any tonyp@1071: // regions, irrespective of what _retain_gc_alloc_region[] tonyp@1071: // indicates. tonyp@1071: void release_gc_alloc_regions(bool totally); tonyp@1071: #ifndef PRODUCT tonyp@1071: // Useful for debugging. tonyp@1071: void print_gc_alloc_regions(); tonyp@1071: #endif // !PRODUCT ysr@777: ysr@777: // ("Weak") Reference processing support ysr@777: ReferenceProcessor* _ref_processor; ysr@777: ysr@777: enum G1H_process_strong_roots_tasks { ysr@777: G1H_PS_mark_stack_oops_do, ysr@777: G1H_PS_refProcessor_oops_do, ysr@777: // Leave this one last. ysr@777: G1H_PS_NumElements ysr@777: }; ysr@777: ysr@777: SubTasksDone* _process_strong_tasks; ysr@777: ysr@777: // List of regions which require zero filling. ysr@777: UncleanRegionList _unclean_region_list; ysr@777: bool _unclean_regions_coming; ysr@777: ysr@777: public: ysr@777: void set_refine_cte_cl_concurrency(bool concurrent); ysr@777: ysr@777: RefToScanQueue *task_queue(int i); ysr@777: iveresov@1051: // A set of cards where updates happened during the GC iveresov@1051: DirtyCardQueueSet& dirty_card_queue_set() { return _dirty_card_queue_set; } iveresov@1051: ysr@777: // Create a G1CollectedHeap with the specified policy. ysr@777: // Must call the initialize method afterwards. ysr@777: // May not return if something goes wrong. ysr@777: G1CollectedHeap(G1CollectorPolicy* policy); ysr@777: ysr@777: // Initialize the G1CollectedHeap to have the initial and ysr@777: // maximum sizes, permanent generation, and remembered and barrier sets ysr@777: // specified by the policy object. ysr@777: jint initialize(); ysr@777: ysr@777: void ref_processing_init(); ysr@777: ysr@777: void set_par_threads(int t) { ysr@777: SharedHeap::set_par_threads(t); ysr@777: _process_strong_tasks->set_par_threads(t); ysr@777: } ysr@777: ysr@777: virtual CollectedHeap::Name kind() const { ysr@777: return CollectedHeap::G1CollectedHeap; ysr@777: } ysr@777: ysr@777: // The current policy object for the collector. ysr@777: G1CollectorPolicy* g1_policy() const { return _g1_policy; } ysr@777: ysr@777: // Adaptive size policy. No such thing for g1. ysr@777: virtual AdaptiveSizePolicy* size_policy() { return NULL; } ysr@777: ysr@777: // The rem set and barrier set. ysr@777: G1RemSet* g1_rem_set() const { return _g1_rem_set; } ysr@777: ModRefBarrierSet* mr_bs() const { return _mr_bs; } ysr@777: ysr@777: // The rem set iterator. ysr@777: HeapRegionRemSetIterator* rem_set_iterator(int i) { ysr@777: return _rem_set_iterator[i]; ysr@777: } ysr@777: ysr@777: HeapRegionRemSetIterator* rem_set_iterator() { ysr@777: return _rem_set_iterator[0]; ysr@777: } ysr@777: ysr@777: unsigned get_gc_time_stamp() { ysr@777: return _gc_time_stamp; ysr@777: } ysr@777: ysr@777: void reset_gc_time_stamp() { ysr@777: _gc_time_stamp = 0; iveresov@788: OrderAccess::fence(); iveresov@788: } iveresov@788: iveresov@788: void increment_gc_time_stamp() { iveresov@788: ++_gc_time_stamp; iveresov@788: OrderAccess::fence(); ysr@777: } ysr@777: ysr@777: void iterate_dirty_card_closure(bool concurrent, int worker_i); ysr@777: ysr@777: // The shared block offset table array. ysr@777: G1BlockOffsetSharedArray* bot_shared() const { return _bot_shared; } ysr@777: ysr@777: // Reference Processing accessor ysr@777: ReferenceProcessor* ref_processor() { return _ref_processor; } ysr@777: ysr@777: // Reserved (g1 only; super method includes perm), capacity and the used ysr@777: // portion in bytes. tonyp@1527: size_t g1_reserved_obj_bytes() const { return _g1_reserved.byte_size(); } ysr@777: virtual size_t capacity() const; ysr@777: virtual size_t used() const; tonyp@1281: // This should be called when we're not holding the heap lock. The tonyp@1281: // result might be a bit inaccurate. tonyp@1281: size_t used_unlocked() const; ysr@777: size_t recalculate_used() const; ysr@777: #ifndef PRODUCT ysr@777: size_t recalculate_used_regions() const; ysr@777: #endif // PRODUCT ysr@777: ysr@777: // These virtual functions do the actual allocation. ysr@777: virtual HeapWord* mem_allocate(size_t word_size, ysr@777: bool is_noref, ysr@777: bool is_tlab, ysr@777: bool* gc_overhead_limit_was_exceeded); ysr@777: ysr@777: // Some heaps may offer a contiguous region for shared non-blocking ysr@777: // allocation, via inlined code (by exporting the address of the top and ysr@777: // end fields defining the extent of the contiguous allocation region.) ysr@777: // But G1CollectedHeap doesn't yet support this. ysr@777: ysr@777: // Return an estimate of the maximum allocation that could be performed ysr@777: // without triggering any collection or expansion activity. In a ysr@777: // generational collector, for example, this is probably the largest ysr@777: // allocation that could be supported (without expansion) in the youngest ysr@777: // generation. It is "unsafe" because no locks are taken; the result ysr@777: // should be treated as an approximation, not a guarantee, for use in ysr@777: // heuristic resizing decisions. ysr@777: virtual size_t unsafe_max_alloc(); ysr@777: ysr@777: virtual bool is_maximal_no_gc() const { ysr@777: return _g1_storage.uncommitted_size() == 0; ysr@777: } ysr@777: ysr@777: // The total number of regions in the heap. ysr@777: size_t n_regions(); ysr@777: ysr@777: // The number of regions that are completely free. ysr@777: size_t max_regions(); ysr@777: ysr@777: // The number of regions that are completely free. ysr@777: size_t free_regions(); ysr@777: ysr@777: // The number of regions that are not completely free. ysr@777: size_t used_regions() { return n_regions() - free_regions(); } ysr@777: ysr@777: // True iff the ZF thread should run. ysr@777: bool should_zf(); ysr@777: ysr@777: // The number of regions available for "regular" expansion. ysr@777: size_t expansion_regions() { return _expansion_regions; } ysr@777: ysr@777: #ifndef PRODUCT ysr@777: bool regions_accounted_for(); ysr@777: bool print_region_accounting_info(); ysr@777: void print_region_counts(); ysr@777: #endif ysr@777: ysr@777: HeapRegion* alloc_region_from_unclean_list(bool zero_filled); ysr@777: HeapRegion* alloc_region_from_unclean_list_locked(bool zero_filled); ysr@777: ysr@777: void put_region_on_unclean_list(HeapRegion* r); ysr@777: void put_region_on_unclean_list_locked(HeapRegion* r); ysr@777: ysr@777: void prepend_region_list_on_unclean_list(UncleanRegionList* list); ysr@777: void prepend_region_list_on_unclean_list_locked(UncleanRegionList* list); ysr@777: ysr@777: void set_unclean_regions_coming(bool b); ysr@777: void set_unclean_regions_coming_locked(bool b); ysr@777: // Wait for cleanup to be complete. ysr@777: void wait_for_cleanup_complete(); ysr@777: // Like above, but assumes that the calling thread owns the Heap_lock. ysr@777: void wait_for_cleanup_complete_locked(); ysr@777: ysr@777: // Return the head of the unclean list. ysr@777: HeapRegion* peek_unclean_region_list_locked(); ysr@777: // Remove and return the head of the unclean list. ysr@777: HeapRegion* pop_unclean_region_list_locked(); ysr@777: ysr@777: // List of regions which are zero filled and ready for allocation. ysr@777: HeapRegion* _free_region_list; ysr@777: // Number of elements on the free list. ysr@777: size_t _free_region_list_size; ysr@777: ysr@777: // If the head of the unclean list is ZeroFilled, move it to the free ysr@777: // list. ysr@777: bool move_cleaned_region_to_free_list_locked(); ysr@777: bool move_cleaned_region_to_free_list(); ysr@777: ysr@777: void put_free_region_on_list_locked(HeapRegion* r); ysr@777: void put_free_region_on_list(HeapRegion* r); ysr@777: ysr@777: // Remove and return the head element of the free list. ysr@777: HeapRegion* pop_free_region_list_locked(); ysr@777: ysr@777: // If "zero_filled" is true, we first try the free list, then we try the ysr@777: // unclean list, zero-filling the result. If "zero_filled" is false, we ysr@777: // first try the unclean list, then the zero-filled list. ysr@777: HeapRegion* alloc_free_region_from_lists(bool zero_filled); ysr@777: ysr@777: // Verify the integrity of the region lists. ysr@777: void remove_allocated_regions_from_lists(); ysr@777: bool verify_region_lists(); ysr@777: bool verify_region_lists_locked(); ysr@777: size_t unclean_region_list_length(); ysr@777: size_t free_region_list_length(); ysr@777: ysr@777: // Perform a collection of the heap; intended for use in implementing ysr@777: // "System.gc". This probably implies as full a collection as the ysr@777: // "CollectedHeap" supports. ysr@777: virtual void collect(GCCause::Cause cause); ysr@777: ysr@777: // The same as above but assume that the caller holds the Heap_lock. ysr@777: void collect_locked(GCCause::Cause cause); ysr@777: ysr@777: // This interface assumes that it's being called by the ysr@777: // vm thread. It collects the heap assuming that the ysr@777: // heap lock is already held and that we are executing in ysr@777: // the context of the vm thread. ysr@777: virtual void collect_as_vm_thread(GCCause::Cause cause); ysr@777: ysr@777: // True iff a evacuation has failed in the most-recent collection. ysr@777: bool evacuation_failed() { return _evacuation_failed; } ysr@777: ysr@777: // Free a region if it is totally full of garbage. Returns the number of ysr@777: // bytes freed (0 ==> didn't free it). ysr@777: size_t free_region_if_totally_empty(HeapRegion *hr); ysr@777: void free_region_if_totally_empty_work(HeapRegion *hr, ysr@777: size_t& pre_used, ysr@777: size_t& cleared_h_regions, ysr@777: size_t& freed_regions, ysr@777: UncleanRegionList* list, ysr@777: bool par = false); ysr@777: ysr@777: // If we've done free region work that yields the given changes, update ysr@777: // the relevant global variables. ysr@777: void finish_free_region_work(size_t pre_used, ysr@777: size_t cleared_h_regions, ysr@777: size_t freed_regions, ysr@777: UncleanRegionList* list); ysr@777: ysr@777: ysr@777: // Returns "TRUE" iff "p" points into the allocated area of the heap. ysr@777: virtual bool is_in(const void* p) const; ysr@777: ysr@777: // Return "TRUE" iff the given object address is within the collection ysr@777: // set. ysr@777: inline bool obj_in_cs(oop obj); ysr@777: ysr@777: // Return "TRUE" iff the given object address is in the reserved ysr@777: // region of g1 (excluding the permanent generation). ysr@777: bool is_in_g1_reserved(const void* p) const { ysr@777: return _g1_reserved.contains(p); ysr@777: } ysr@777: ysr@777: // Returns a MemRegion that corresponds to the space that has been ysr@777: // committed in the heap ysr@777: MemRegion g1_committed() { ysr@777: return _g1_committed; ysr@777: } ysr@777: ysr@1376: NOT_PRODUCT(bool is_in_closed_subset(const void* p) const;) ysr@777: ysr@777: // Dirty card table entries covering a list of young regions. ysr@777: void dirtyCardsForYoungRegions(CardTableModRefBS* ct_bs, HeapRegion* list); ysr@777: ysr@777: // This resets the card table to all zeros. It is used after ysr@777: // a collection pause which used the card table to claim cards. ysr@777: void cleanUpCardTable(); ysr@777: ysr@777: // Iteration functions. ysr@777: ysr@777: // Iterate over all the ref-containing fields of all objects, calling ysr@777: // "cl.do_oop" on each. iveresov@1113: virtual void oop_iterate(OopClosure* cl) { iveresov@1113: oop_iterate(cl, true); iveresov@1113: } iveresov@1113: void oop_iterate(OopClosure* cl, bool do_perm); ysr@777: ysr@777: // Same as above, restricted to a memory region. iveresov@1113: virtual void oop_iterate(MemRegion mr, OopClosure* cl) { iveresov@1113: oop_iterate(mr, cl, true); iveresov@1113: } iveresov@1113: void oop_iterate(MemRegion mr, OopClosure* cl, bool do_perm); ysr@777: ysr@777: // Iterate over all objects, calling "cl.do_object" on each. iveresov@1113: virtual void object_iterate(ObjectClosure* cl) { iveresov@1113: object_iterate(cl, true); iveresov@1113: } iveresov@1113: virtual void safe_object_iterate(ObjectClosure* cl) { iveresov@1113: object_iterate(cl, true); iveresov@1113: } iveresov@1113: void object_iterate(ObjectClosure* cl, bool do_perm); ysr@777: ysr@777: // Iterate over all objects allocated since the last collection, calling ysr@777: // "cl.do_object" on each. The heap must have been initialized properly ysr@777: // to support this function, or else this call will fail. ysr@777: virtual void object_iterate_since_last_GC(ObjectClosure* cl); ysr@777: ysr@777: // Iterate over all spaces in use in the heap, in ascending address order. ysr@777: virtual void space_iterate(SpaceClosure* cl); ysr@777: ysr@777: // Iterate over heap regions, in address order, terminating the ysr@777: // iteration early if the "doHeapRegion" method returns "true". ysr@777: void heap_region_iterate(HeapRegionClosure* blk); ysr@777: ysr@777: // Iterate over heap regions starting with r (or the first region if "r" ysr@777: // is NULL), in address order, terminating early if the "doHeapRegion" ysr@777: // method returns "true". ysr@777: void heap_region_iterate_from(HeapRegion* r, HeapRegionClosure* blk); ysr@777: ysr@777: // As above but starting from the region at index idx. ysr@777: void heap_region_iterate_from(int idx, HeapRegionClosure* blk); ysr@777: ysr@777: HeapRegion* region_at(size_t idx); ysr@777: ysr@777: // Divide the heap region sequence into "chunks" of some size (the number ysr@777: // of regions divided by the number of parallel threads times some ysr@777: // overpartition factor, currently 4). Assumes that this will be called ysr@777: // in parallel by ParallelGCThreads worker threads with discinct worker ysr@777: // ids in the range [0..max(ParallelGCThreads-1, 1)], that all parallel ysr@777: // calls will use the same "claim_value", and that that claim value is ysr@777: // different from the claim_value of any heap region before the start of ysr@777: // the iteration. Applies "blk->doHeapRegion" to each of the regions, by ysr@777: // attempting to claim the first region in each chunk, and, if ysr@777: // successful, applying the closure to each region in the chunk (and ysr@777: // setting the claim value of the second and subsequent regions of the ysr@777: // chunk.) For now requires that "doHeapRegion" always returns "false", ysr@777: // i.e., that a closure never attempt to abort a traversal. ysr@777: void heap_region_par_iterate_chunked(HeapRegionClosure* blk, ysr@777: int worker, ysr@777: jint claim_value); ysr@777: tonyp@825: // It resets all the region claim values to the default. tonyp@825: void reset_heap_region_claim_values(); tonyp@825: tonyp@790: #ifdef ASSERT tonyp@790: bool check_heap_region_claim_values(jint claim_value); tonyp@790: #endif // ASSERT tonyp@790: ysr@777: // Iterate over the regions (if any) in the current collection set. ysr@777: void collection_set_iterate(HeapRegionClosure* blk); ysr@777: ysr@777: // As above but starting from region r ysr@777: void collection_set_iterate_from(HeapRegion* r, HeapRegionClosure *blk); ysr@777: ysr@777: // Returns the first (lowest address) compactible space in the heap. ysr@777: virtual CompactibleSpace* first_compactible_space(); ysr@777: ysr@777: // A CollectedHeap will contain some number of spaces. This finds the ysr@777: // space containing a given address, or else returns NULL. ysr@777: virtual Space* space_containing(const void* addr) const; ysr@777: ysr@777: // A G1CollectedHeap will contain some number of heap regions. This ysr@777: // finds the region containing a given address, or else returns NULL. ysr@777: HeapRegion* heap_region_containing(const void* addr) const; ysr@777: ysr@777: // Like the above, but requires "addr" to be in the heap (to avoid a ysr@777: // null-check), and unlike the above, may return an continuing humongous ysr@777: // region. ysr@777: HeapRegion* heap_region_containing_raw(const void* addr) const; ysr@777: ysr@777: // A CollectedHeap is divided into a dense sequence of "blocks"; that is, ysr@777: // each address in the (reserved) heap is a member of exactly ysr@777: // one block. The defining characteristic of a block is that it is ysr@777: // possible to find its size, and thus to progress forward to the next ysr@777: // block. (Blocks may be of different sizes.) Thus, blocks may ysr@777: // represent Java objects, or they might be free blocks in a ysr@777: // free-list-based heap (or subheap), as long as the two kinds are ysr@777: // distinguishable and the size of each is determinable. ysr@777: ysr@777: // Returns the address of the start of the "block" that contains the ysr@777: // address "addr". We say "blocks" instead of "object" since some heaps ysr@777: // may not pack objects densely; a chunk may either be an object or a ysr@777: // non-object. ysr@777: virtual HeapWord* block_start(const void* addr) const; ysr@777: ysr@777: // Requires "addr" to be the start of a chunk, and returns its size. ysr@777: // "addr + size" is required to be the start of a new chunk, or the end ysr@777: // of the active area of the heap. ysr@777: virtual size_t block_size(const HeapWord* addr) const; ysr@777: ysr@777: // Requires "addr" to be the start of a block, and returns "TRUE" iff ysr@777: // the block is an object. ysr@777: virtual bool block_is_obj(const HeapWord* addr) const; ysr@777: ysr@777: // Does this heap support heap inspection? (+PrintClassHistogram) ysr@777: virtual bool supports_heap_inspection() const { return true; } ysr@777: ysr@777: // Section on thread-local allocation buffers (TLABs) ysr@777: // See CollectedHeap for semantics. ysr@777: ysr@777: virtual bool supports_tlab_allocation() const; ysr@777: virtual size_t tlab_capacity(Thread* thr) const; ysr@777: virtual size_t unsafe_max_tlab_alloc(Thread* thr) const; ysr@777: virtual HeapWord* allocate_new_tlab(size_t size); ysr@777: ysr@777: // Can a compiler initialize a new object without store barriers? ysr@777: // This permission only extends from the creation of a new object ysr@1462: // via a TLAB up to the first subsequent safepoint. If such permission ysr@1462: // is granted for this heap type, the compiler promises to call ysr@1462: // defer_store_barrier() below on any slow path allocation of ysr@1462: // a new object for which such initializing store barriers will ysr@1462: // have been elided. G1, like CMS, allows this, but should be ysr@1462: // ready to provide a compensating write barrier as necessary ysr@1462: // if that storage came out of a non-young region. The efficiency ysr@1462: // of this implementation depends crucially on being able to ysr@1462: // answer very efficiently in constant time whether a piece of ysr@1462: // storage in the heap comes from a young region or not. ysr@1462: // See ReduceInitialCardMarks. ysr@777: virtual bool can_elide_tlab_store_barriers() const { ysr@1629: // 6920090: Temporarily disabled, because of lingering ysr@1629: // instabilities related to RICM with G1. In the ysr@1629: // interim, the option ReduceInitialCardMarksForG1 ysr@1629: // below is left solely as a debugging device at least ysr@1629: // until 6920109 fixes the instabilities. ysr@1629: return ReduceInitialCardMarksForG1; ysr@1462: } ysr@1462: ysr@1601: virtual bool card_mark_must_follow_store() const { ysr@1601: return true; ysr@1601: } ysr@1601: ysr@1462: bool is_in_young(oop obj) { ysr@1462: HeapRegion* hr = heap_region_containing(obj); ysr@1462: return hr != NULL && hr->is_young(); ysr@1462: } ysr@1462: ysr@1462: // We don't need barriers for initializing stores to objects ysr@1462: // in the young gen: for the SATB pre-barrier, there is no ysr@1462: // pre-value that needs to be remembered; for the remembered-set ysr@1462: // update logging post-barrier, we don't maintain remembered set ysr@1462: // information for young gen objects. Note that non-generational ysr@1462: // G1 does not have any "young" objects, should not elide ysr@1462: // the rs logging barrier and so should always answer false below. ysr@1462: // However, non-generational G1 (-XX:-G1Gen) appears to have ysr@1462: // bit-rotted so was not tested below. ysr@1462: virtual bool can_elide_initializing_store_barrier(oop new_obj) { ysr@1629: // Re 6920090, 6920109 above. ysr@1629: assert(ReduceInitialCardMarksForG1, "Else cannot be here"); ysr@1462: assert(G1Gen || !is_in_young(new_obj), ysr@1462: "Non-generational G1 should never return true below"); ysr@1462: return is_in_young(new_obj); ysr@777: } ysr@777: ysr@777: // Can a compiler elide a store barrier when it writes ysr@777: // a permanent oop into the heap? Applies when the compiler ysr@777: // is storing x to the heap, where x->is_perm() is true. ysr@777: virtual bool can_elide_permanent_oop_store_barriers() const { ysr@777: // At least until perm gen collection is also G1-ified, at ysr@777: // which point this should return false. ysr@777: return true; ysr@777: } ysr@777: ysr@777: virtual bool allocs_are_zero_filled(); ysr@777: ysr@777: // The boundary between a "large" and "small" array of primitives, in ysr@777: // words. ysr@777: virtual size_t large_typearray_limit(); ysr@777: ysr@777: // Returns "true" iff the given word_size is "very large". ysr@777: static bool isHumongous(size_t word_size) { johnc@1748: // Note this has to be strictly greater-than as the TLABs johnc@1748: // are capped at the humongous thresold and we want to johnc@1748: // ensure that we don't try to allocate a TLAB as johnc@1748: // humongous and that we don't allocate a humongous johnc@1748: // object in a TLAB. johnc@1748: return word_size > _humongous_object_threshold_in_words; ysr@777: } ysr@777: ysr@777: // Update mod union table with the set of dirty cards. ysr@777: void updateModUnion(); ysr@777: ysr@777: // Set the mod union bits corresponding to the given memRegion. Note ysr@777: // that this is always a safe operation, since it doesn't clear any ysr@777: // bits. ysr@777: void markModUnionRange(MemRegion mr); ysr@777: ysr@777: // Records the fact that a marking phase is no longer in progress. ysr@777: void set_marking_complete() { ysr@777: _mark_in_progress = false; ysr@777: } ysr@777: void set_marking_started() { ysr@777: _mark_in_progress = true; ysr@777: } ysr@777: bool mark_in_progress() { ysr@777: return _mark_in_progress; ysr@777: } ysr@777: ysr@777: // Print the maximum heap capacity. ysr@777: virtual size_t max_capacity() const; ysr@777: ysr@777: virtual jlong millis_since_last_gc(); ysr@777: ysr@777: // Perform any cleanup actions necessary before allowing a verification. ysr@777: virtual void prepare_for_verify(); ysr@777: ysr@777: // Perform verification. tonyp@1246: tonyp@1246: // use_prev_marking == true -> use "prev" marking information, tonyp@1246: // use_prev_marking == false -> use "next" marking information tonyp@1246: // NOTE: Only the "prev" marking information is guaranteed to be tonyp@1246: // consistent most of the time, so most calls to this should use tonyp@1246: // use_prev_marking == true. Currently, there is only one case where tonyp@1246: // this is called with use_prev_marking == false, which is to verify tonyp@1246: // the "next" marking information at the end of remark. tonyp@1246: void verify(bool allow_dirty, bool silent, bool use_prev_marking); tonyp@1246: tonyp@1246: // Override; it uses the "prev" marking information ysr@777: virtual void verify(bool allow_dirty, bool silent); tonyp@1273: // Default behavior by calling print(tty); ysr@777: virtual void print() const; tonyp@1273: // This calls print_on(st, PrintHeapAtGCExtended). ysr@777: virtual void print_on(outputStream* st) const; tonyp@1273: // If extended is true, it will print out information for all tonyp@1273: // regions in the heap by calling print_on_extended(st). tonyp@1273: virtual void print_on(outputStream* st, bool extended) const; tonyp@1273: virtual void print_on_extended(outputStream* st) const; ysr@777: ysr@777: virtual void print_gc_threads_on(outputStream* st) const; ysr@777: virtual void gc_threads_do(ThreadClosure* tc) const; ysr@777: ysr@777: // Override ysr@777: void print_tracing_info() const; ysr@777: ysr@777: // If "addr" is a pointer into the (reserved?) heap, returns a positive ysr@777: // number indicating the "arena" within the heap in which "addr" falls. ysr@777: // Or else returns 0. ysr@777: virtual int addr_to_arena_id(void* addr) const; ysr@777: ysr@777: // Convenience function to be used in situations where the heap type can be ysr@777: // asserted to be this type. ysr@777: static G1CollectedHeap* heap(); ysr@777: ysr@777: void empty_young_list(); ysr@777: bool should_set_young_locked(); ysr@777: ysr@777: void set_region_short_lived_locked(HeapRegion* hr); ysr@777: // add appropriate methods for any other surv rate groups ysr@777: ysr@777: void young_list_rs_length_sampling_init() { ysr@777: _young_list->rs_length_sampling_init(); ysr@777: } ysr@777: bool young_list_rs_length_sampling_more() { ysr@777: return _young_list->rs_length_sampling_more(); ysr@777: } ysr@777: void young_list_rs_length_sampling_next() { ysr@777: _young_list->rs_length_sampling_next(); ysr@777: } ysr@777: size_t young_list_sampled_rs_lengths() { ysr@777: return _young_list->sampled_rs_lengths(); ysr@777: } ysr@777: ysr@777: size_t young_list_length() { return _young_list->length(); } ysr@777: size_t young_list_scan_only_length() { ysr@777: return _young_list->scan_only_length(); } ysr@777: ysr@777: HeapRegion* pop_region_from_young_list() { ysr@777: return _young_list->pop_region(); ysr@777: } ysr@777: ysr@777: HeapRegion* young_list_first_region() { ysr@777: return _young_list->first_region(); ysr@777: } ysr@777: ysr@777: // debugging ysr@777: bool check_young_list_well_formed() { ysr@777: return _young_list->check_list_well_formed(); ysr@777: } ysr@777: bool check_young_list_empty(bool ignore_scan_only_list, ysr@777: bool check_sample = true); ysr@777: ysr@777: // *** Stuff related to concurrent marking. It's not clear to me that so ysr@777: // many of these need to be public. ysr@777: ysr@777: // The functions below are helper functions that a subclass of ysr@777: // "CollectedHeap" can use in the implementation of its virtual ysr@777: // functions. ysr@777: // This performs a concurrent marking of the live objects in a ysr@777: // bitmap off to the side. ysr@777: void doConcurrentMark(); ysr@777: ysr@777: // This is called from the marksweep collector which then does ysr@777: // a concurrent mark and verifies that the results agree with ysr@777: // the stop the world marking. ysr@777: void checkConcurrentMark(); ysr@777: void do_sync_mark(); ysr@777: ysr@777: bool isMarkedPrev(oop obj) const; ysr@777: bool isMarkedNext(oop obj) const; ysr@777: tonyp@1246: // use_prev_marking == true -> use "prev" marking information, tonyp@1246: // use_prev_marking == false -> use "next" marking information tonyp@1246: bool is_obj_dead_cond(const oop obj, tonyp@1246: const HeapRegion* hr, tonyp@1246: const bool use_prev_marking) const { tonyp@1246: if (use_prev_marking) { tonyp@1246: return is_obj_dead(obj, hr); tonyp@1246: } else { tonyp@1246: return is_obj_ill(obj, hr); tonyp@1246: } tonyp@1246: } tonyp@1246: ysr@777: // Determine if an object is dead, given the object and also ysr@777: // the region to which the object belongs. An object is dead ysr@777: // iff a) it was not allocated since the last mark and b) it ysr@777: // is not marked. ysr@777: ysr@777: bool is_obj_dead(const oop obj, const HeapRegion* hr) const { ysr@777: return ysr@777: !hr->obj_allocated_since_prev_marking(obj) && ysr@777: !isMarkedPrev(obj); ysr@777: } ysr@777: ysr@777: // This is used when copying an object to survivor space. ysr@777: // If the object is marked live, then we mark the copy live. ysr@777: // If the object is allocated since the start of this mark ysr@777: // cycle, then we mark the copy live. ysr@777: // If the object has been around since the previous mark ysr@777: // phase, and hasn't been marked yet during this phase, ysr@777: // then we don't mark it, we just wait for the ysr@777: // current marking cycle to get to it. ysr@777: ysr@777: // This function returns true when an object has been ysr@777: // around since the previous marking and hasn't yet ysr@777: // been marked during this marking. ysr@777: ysr@777: bool is_obj_ill(const oop obj, const HeapRegion* hr) const { ysr@777: return ysr@777: !hr->obj_allocated_since_next_marking(obj) && ysr@777: !isMarkedNext(obj); ysr@777: } ysr@777: ysr@777: // Determine if an object is dead, given only the object itself. ysr@777: // This will find the region to which the object belongs and ysr@777: // then call the region version of the same function. ysr@777: ysr@777: // Added if it is in permanent gen it isn't dead. ysr@777: // Added if it is NULL it isn't dead. ysr@777: tonyp@1246: // use_prev_marking == true -> use "prev" marking information, tonyp@1246: // use_prev_marking == false -> use "next" marking information tonyp@1246: bool is_obj_dead_cond(const oop obj, tonyp@1246: const bool use_prev_marking) { tonyp@1246: if (use_prev_marking) { tonyp@1246: return is_obj_dead(obj); tonyp@1246: } else { tonyp@1246: return is_obj_ill(obj); tonyp@1246: } tonyp@1246: } tonyp@1246: tonyp@1246: bool is_obj_dead(const oop obj) { tonyp@1246: const HeapRegion* hr = heap_region_containing(obj); ysr@777: if (hr == NULL) { ysr@777: if (Universe::heap()->is_in_permanent(obj)) ysr@777: return false; ysr@777: else if (obj == NULL) return false; ysr@777: else return true; ysr@777: } ysr@777: else return is_obj_dead(obj, hr); ysr@777: } ysr@777: tonyp@1246: bool is_obj_ill(const oop obj) { tonyp@1246: const HeapRegion* hr = heap_region_containing(obj); ysr@777: if (hr == NULL) { ysr@777: if (Universe::heap()->is_in_permanent(obj)) ysr@777: return false; ysr@777: else if (obj == NULL) return false; ysr@777: else return true; ysr@777: } ysr@777: else return is_obj_ill(obj, hr); ysr@777: } ysr@777: ysr@777: // The following is just to alert the verification code ysr@777: // that a full collection has occurred and that the ysr@777: // remembered sets are no longer up to date. ysr@777: bool _full_collection; ysr@777: void set_full_collection() { _full_collection = true;} ysr@777: void clear_full_collection() {_full_collection = false;} ysr@777: bool full_collection() {return _full_collection;} ysr@777: ysr@777: ConcurrentMark* concurrent_mark() const { return _cm; } ysr@777: ConcurrentG1Refine* concurrent_g1_refine() const { return _cg1r; } ysr@777: apetrusenko@1231: // The dirty cards region list is used to record a subset of regions apetrusenko@1231: // whose cards need clearing. The list if populated during the apetrusenko@1231: // remembered set scanning and drained during the card table apetrusenko@1231: // cleanup. Although the methods are reentrant, population/draining apetrusenko@1231: // phases must not overlap. For synchronization purposes the last apetrusenko@1231: // element on the list points to itself. apetrusenko@1231: HeapRegion* _dirty_cards_region_list; apetrusenko@1231: void push_dirty_cards_region(HeapRegion* hr); apetrusenko@1231: HeapRegion* pop_dirty_cards_region(); apetrusenko@1231: ysr@777: public: ysr@777: void stop_conc_gc_threads(); ysr@777: ysr@777: // ysr@777: ysr@777: double predict_region_elapsed_time_ms(HeapRegion* hr, bool young); ysr@777: void check_if_region_is_too_expensive(double predicted_time_ms); ysr@777: size_t pending_card_num(); ysr@777: size_t max_pending_card_num(); ysr@777: size_t cards_scanned(); ysr@777: ysr@777: // ysr@777: ysr@777: protected: ysr@777: size_t _max_heap_capacity; ysr@777: ysr@777: // debug_only(static void check_for_valid_allocation_state();) ysr@777: ysr@777: public: ysr@777: // Temporary: call to mark things unimplemented for the G1 heap (e.g., ysr@777: // MemoryService). In productization, we can make this assert false ysr@777: // to catch such places (as well as searching for calls to this...) ysr@777: static void g1_unimplemented(); ysr@777: ysr@777: }; ysr@777: ysr@1280: #define use_local_bitmaps 1 ysr@1280: #define verify_local_bitmaps 0 ysr@1280: #define oop_buffer_length 256 ysr@1280: ysr@1280: #ifndef PRODUCT ysr@1280: class GCLabBitMap; ysr@1280: class GCLabBitMapClosure: public BitMapClosure { ysr@1280: private: ysr@1280: ConcurrentMark* _cm; ysr@1280: GCLabBitMap* _bitmap; ysr@1280: ysr@1280: public: ysr@1280: GCLabBitMapClosure(ConcurrentMark* cm, ysr@1280: GCLabBitMap* bitmap) { ysr@1280: _cm = cm; ysr@1280: _bitmap = bitmap; ysr@1280: } ysr@1280: ysr@1280: virtual bool do_bit(size_t offset); ysr@1280: }; ysr@1280: #endif // !PRODUCT ysr@1280: ysr@1280: class GCLabBitMap: public BitMap { ysr@1280: private: ysr@1280: ConcurrentMark* _cm; ysr@1280: ysr@1280: int _shifter; ysr@1280: size_t _bitmap_word_covers_words; ysr@1280: ysr@1280: // beginning of the heap ysr@1280: HeapWord* _heap_start; ysr@1280: ysr@1280: // this is the actual start of the GCLab ysr@1280: HeapWord* _real_start_word; ysr@1280: ysr@1280: // this is the actual end of the GCLab ysr@1280: HeapWord* _real_end_word; ysr@1280: ysr@1280: // this is the first word, possibly located before the actual start ysr@1280: // of the GCLab, that corresponds to the first bit of the bitmap ysr@1280: HeapWord* _start_word; ysr@1280: ysr@1280: // size of a GCLab in words ysr@1280: size_t _gclab_word_size; ysr@1280: ysr@1280: static int shifter() { ysr@1280: return MinObjAlignment - 1; ysr@1280: } ysr@1280: ysr@1280: // how many heap words does a single bitmap word corresponds to? ysr@1280: static size_t bitmap_word_covers_words() { ysr@1280: return BitsPerWord << shifter(); ysr@1280: } ysr@1280: ysr@1280: static size_t gclab_word_size() { ysr@1280: return G1ParallelGCAllocBufferSize / HeapWordSize; ysr@1280: } ysr@1280: ysr@1280: static size_t bitmap_size_in_bits() { ysr@1280: size_t bits_in_bitmap = gclab_word_size() >> shifter(); ysr@1280: // We are going to ensure that the beginning of a word in this ysr@1280: // bitmap also corresponds to the beginning of a word in the ysr@1280: // global marking bitmap. To handle the case where a GCLab ysr@1280: // starts from the middle of the bitmap, we need to add enough ysr@1280: // space (i.e. up to a bitmap word) to ensure that we have ysr@1280: // enough bits in the bitmap. ysr@1280: return bits_in_bitmap + BitsPerWord - 1; ysr@1280: } ysr@1280: public: ysr@1280: GCLabBitMap(HeapWord* heap_start) ysr@1280: : BitMap(bitmap_size_in_bits()), ysr@1280: _cm(G1CollectedHeap::heap()->concurrent_mark()), ysr@1280: _shifter(shifter()), ysr@1280: _bitmap_word_covers_words(bitmap_word_covers_words()), ysr@1280: _heap_start(heap_start), ysr@1280: _gclab_word_size(gclab_word_size()), ysr@1280: _real_start_word(NULL), ysr@1280: _real_end_word(NULL), ysr@1280: _start_word(NULL) ysr@1280: { ysr@1280: guarantee( size_in_words() >= bitmap_size_in_words(), ysr@1280: "just making sure"); ysr@1280: } ysr@1280: ysr@1280: inline unsigned heapWordToOffset(HeapWord* addr) { ysr@1280: unsigned offset = (unsigned) pointer_delta(addr, _start_word) >> _shifter; ysr@1280: assert(offset < size(), "offset should be within bounds"); ysr@1280: return offset; ysr@1280: } ysr@1280: ysr@1280: inline HeapWord* offsetToHeapWord(size_t offset) { ysr@1280: HeapWord* addr = _start_word + (offset << _shifter); ysr@1280: assert(_real_start_word <= addr && addr < _real_end_word, "invariant"); ysr@1280: return addr; ysr@1280: } ysr@1280: ysr@1280: bool fields_well_formed() { ysr@1280: bool ret1 = (_real_start_word == NULL) && ysr@1280: (_real_end_word == NULL) && ysr@1280: (_start_word == NULL); ysr@1280: if (ret1) ysr@1280: return true; ysr@1280: ysr@1280: bool ret2 = _real_start_word >= _start_word && ysr@1280: _start_word < _real_end_word && ysr@1280: (_real_start_word + _gclab_word_size) == _real_end_word && ysr@1280: (_start_word + _gclab_word_size + _bitmap_word_covers_words) ysr@1280: > _real_end_word; ysr@1280: return ret2; ysr@1280: } ysr@1280: ysr@1280: inline bool mark(HeapWord* addr) { ysr@1280: guarantee(use_local_bitmaps, "invariant"); ysr@1280: assert(fields_well_formed(), "invariant"); ysr@1280: ysr@1280: if (addr >= _real_start_word && addr < _real_end_word) { ysr@1280: assert(!isMarked(addr), "should not have already been marked"); ysr@1280: ysr@1280: // first mark it on the bitmap ysr@1280: at_put(heapWordToOffset(addr), true); ysr@1280: ysr@1280: return true; ysr@1280: } else { ysr@1280: return false; ysr@1280: } ysr@1280: } ysr@1280: ysr@1280: inline bool isMarked(HeapWord* addr) { ysr@1280: guarantee(use_local_bitmaps, "invariant"); ysr@1280: assert(fields_well_formed(), "invariant"); ysr@1280: ysr@1280: return at(heapWordToOffset(addr)); ysr@1280: } ysr@1280: ysr@1280: void set_buffer(HeapWord* start) { ysr@1280: guarantee(use_local_bitmaps, "invariant"); ysr@1280: clear(); ysr@1280: ysr@1280: assert(start != NULL, "invariant"); ysr@1280: _real_start_word = start; ysr@1280: _real_end_word = start + _gclab_word_size; ysr@1280: ysr@1280: size_t diff = ysr@1280: pointer_delta(start, _heap_start) % _bitmap_word_covers_words; ysr@1280: _start_word = start - diff; ysr@1280: ysr@1280: assert(fields_well_formed(), "invariant"); ysr@1280: } ysr@1280: ysr@1280: #ifndef PRODUCT ysr@1280: void verify() { ysr@1280: // verify that the marks have been propagated ysr@1280: GCLabBitMapClosure cl(_cm, this); ysr@1280: iterate(&cl); ysr@1280: } ysr@1280: #endif // PRODUCT ysr@1280: ysr@1280: void retire() { ysr@1280: guarantee(use_local_bitmaps, "invariant"); ysr@1280: assert(fields_well_formed(), "invariant"); ysr@1280: ysr@1280: if (_start_word != NULL) { ysr@1280: CMBitMap* mark_bitmap = _cm->nextMarkBitMap(); ysr@1280: ysr@1280: // this means that the bitmap was set up for the GCLab ysr@1280: assert(_real_start_word != NULL && _real_end_word != NULL, "invariant"); ysr@1280: ysr@1280: mark_bitmap->mostly_disjoint_range_union(this, ysr@1280: 0, // always start from the start of the bitmap ysr@1280: _start_word, ysr@1280: size_in_words()); ysr@1280: _cm->grayRegionIfNecessary(MemRegion(_real_start_word, _real_end_word)); ysr@1280: ysr@1280: #ifndef PRODUCT ysr@1280: if (use_local_bitmaps && verify_local_bitmaps) ysr@1280: verify(); ysr@1280: #endif // PRODUCT ysr@1280: } else { ysr@1280: assert(_real_start_word == NULL && _real_end_word == NULL, "invariant"); ysr@1280: } ysr@1280: } ysr@1280: ysr@1280: static size_t bitmap_size_in_words() { ysr@1280: return (bitmap_size_in_bits() + BitsPerWord - 1) / BitsPerWord; ysr@1280: } ysr@1280: }; ysr@1280: ysr@1280: class G1ParGCAllocBuffer: public ParGCAllocBuffer { ysr@1280: private: ysr@1280: bool _retired; ysr@1280: bool _during_marking; ysr@1280: GCLabBitMap _bitmap; ysr@1280: ysr@1280: public: ysr@1280: G1ParGCAllocBuffer() : ysr@1280: ParGCAllocBuffer(G1ParallelGCAllocBufferSize / HeapWordSize), ysr@1280: _during_marking(G1CollectedHeap::heap()->mark_in_progress()), ysr@1280: _bitmap(G1CollectedHeap::heap()->reserved_region().start()), ysr@1280: _retired(false) ysr@1280: { } ysr@1280: ysr@1280: inline bool mark(HeapWord* addr) { ysr@1280: guarantee(use_local_bitmaps, "invariant"); ysr@1280: assert(_during_marking, "invariant"); ysr@1280: return _bitmap.mark(addr); ysr@1280: } ysr@1280: ysr@1280: inline void set_buf(HeapWord* buf) { ysr@1280: if (use_local_bitmaps && _during_marking) ysr@1280: _bitmap.set_buffer(buf); ysr@1280: ParGCAllocBuffer::set_buf(buf); ysr@1280: _retired = false; ysr@1280: } ysr@1280: ysr@1280: inline void retire(bool end_of_gc, bool retain) { ysr@1280: if (_retired) ysr@1280: return; ysr@1280: if (use_local_bitmaps && _during_marking) { ysr@1280: _bitmap.retire(); ysr@1280: } ysr@1280: ParGCAllocBuffer::retire(end_of_gc, retain); ysr@1280: _retired = true; ysr@1280: } ysr@1280: }; ysr@1280: ysr@1280: class G1ParScanThreadState : public StackObj { ysr@1280: protected: ysr@1280: G1CollectedHeap* _g1h; ysr@1280: RefToScanQueue* _refs; ysr@1280: DirtyCardQueue _dcq; ysr@1280: CardTableModRefBS* _ct_bs; ysr@1280: G1RemSet* _g1_rem; ysr@1280: ysr@1280: typedef GrowableArray OverflowQueue; ysr@1280: OverflowQueue* _overflowed_refs; ysr@1280: ysr@1280: G1ParGCAllocBuffer _alloc_buffers[GCAllocPurposeCount]; ysr@1280: ageTable _age_table; ysr@1280: ysr@1280: size_t _alloc_buffer_waste; ysr@1280: size_t _undo_waste; ysr@1280: ysr@1280: OopsInHeapRegionClosure* _evac_failure_cl; ysr@1280: G1ParScanHeapEvacClosure* _evac_cl; ysr@1280: G1ParScanPartialArrayClosure* _partial_scan_cl; ysr@1280: ysr@1280: int _hash_seed; ysr@1280: int _queue_num; ysr@1280: ysr@1280: int _term_attempts; ysr@1280: #if G1_DETAILED_STATS ysr@1280: int _pushes, _pops, _steals, _steal_attempts; ysr@1280: int _overflow_pushes; ysr@1280: #endif ysr@1280: ysr@1280: double _start; ysr@1280: double _start_strong_roots; ysr@1280: double _strong_roots_time; ysr@1280: double _start_term; ysr@1280: double _term_time; ysr@1280: ysr@1280: // Map from young-age-index (0 == not young, 1 is youngest) to ysr@1280: // surviving words. base is what we get back from the malloc call ysr@1280: size_t* _surviving_young_words_base; ysr@1280: // this points into the array, as we use the first few entries for padding ysr@1280: size_t* _surviving_young_words; ysr@1280: ysr@1280: #define PADDING_ELEM_NUM (64 / sizeof(size_t)) ysr@1280: ysr@1280: void add_to_alloc_buffer_waste(size_t waste) { _alloc_buffer_waste += waste; } ysr@1280: ysr@1280: void add_to_undo_waste(size_t waste) { _undo_waste += waste; } ysr@1280: ysr@1280: DirtyCardQueue& dirty_card_queue() { return _dcq; } ysr@1280: CardTableModRefBS* ctbs() { return _ct_bs; } ysr@1280: ysr@1280: template void immediate_rs_update(HeapRegion* from, T* p, int tid) { ysr@1280: if (!from->is_survivor()) { ysr@1280: _g1_rem->par_write_ref(from, p, tid); ysr@1280: } ysr@1280: } ysr@1280: ysr@1280: template void deferred_rs_update(HeapRegion* from, T* p, int tid) { ysr@1280: // If the new value of the field points to the same region or ysr@1280: // is the to-space, we don't need to include it in the Rset updates. ysr@1280: if (!from->is_in_reserved(oopDesc::load_decode_heap_oop(p)) && !from->is_survivor()) { ysr@1280: size_t card_index = ctbs()->index_for(p); ysr@1280: // If the card hasn't been added to the buffer, do it. ysr@1280: if (ctbs()->mark_card_deferred(card_index)) { ysr@1280: dirty_card_queue().enqueue((jbyte*)ctbs()->byte_for_index(card_index)); ysr@1280: } ysr@1280: } ysr@1280: } ysr@1280: ysr@1280: public: ysr@1280: G1ParScanThreadState(G1CollectedHeap* g1h, int queue_num); ysr@1280: ysr@1280: ~G1ParScanThreadState() { ysr@1280: FREE_C_HEAP_ARRAY(size_t, _surviving_young_words_base); ysr@1280: } ysr@1280: ysr@1280: RefToScanQueue* refs() { return _refs; } ysr@1280: OverflowQueue* overflowed_refs() { return _overflowed_refs; } ysr@1280: ageTable* age_table() { return &_age_table; } ysr@1280: ysr@1280: G1ParGCAllocBuffer* alloc_buffer(GCAllocPurpose purpose) { ysr@1280: return &_alloc_buffers[purpose]; ysr@1280: } ysr@1280: ysr@1280: size_t alloc_buffer_waste() { return _alloc_buffer_waste; } ysr@1280: size_t undo_waste() { return _undo_waste; } ysr@1280: ysr@1280: template void push_on_queue(T* ref) { ysr@1280: assert(ref != NULL, "invariant"); ysr@1280: assert(has_partial_array_mask(ref) || iveresov@1696: _g1h->is_in_g1_reserved(oopDesc::load_decode_heap_oop(ref)), "invariant"); ysr@1280: #ifdef ASSERT ysr@1280: if (has_partial_array_mask(ref)) { ysr@1280: oop p = clear_partial_array_mask(ref); ysr@1280: // Verify that we point into the CS ysr@1280: assert(_g1h->obj_in_cs(p), "Should be in CS"); ysr@1280: } ysr@1280: #endif ysr@1280: if (!refs()->push(ref)) { ysr@1280: overflowed_refs()->push(ref); ysr@1280: IF_G1_DETAILED_STATS(note_overflow_push()); ysr@1280: } else { ysr@1280: IF_G1_DETAILED_STATS(note_push()); ysr@1280: } ysr@1280: } ysr@1280: ysr@1280: void pop_from_queue(StarTask& ref) { ysr@1280: if (refs()->pop_local(ref)) { ysr@1280: assert((oop*)ref != NULL, "pop_local() returned true"); ysr@1280: assert(UseCompressedOops || !ref.is_narrow(), "Error"); ysr@1280: assert(has_partial_array_mask((oop*)ref) || iveresov@1696: _g1h->is_in_g1_reserved(ref.is_narrow() ? oopDesc::load_decode_heap_oop((narrowOop*)ref) iveresov@1696: : oopDesc::load_decode_heap_oop((oop*)ref)), iveresov@1696: "invariant"); ysr@1280: IF_G1_DETAILED_STATS(note_pop()); ysr@1280: } else { ysr@1280: StarTask null_task; ysr@1280: ref = null_task; ysr@1280: } ysr@1280: } ysr@1280: ysr@1280: void pop_from_overflow_queue(StarTask& ref) { ysr@1280: StarTask new_ref = overflowed_refs()->pop(); ysr@1280: assert((oop*)new_ref != NULL, "pop() from a local non-empty stack"); ysr@1280: assert(UseCompressedOops || !new_ref.is_narrow(), "Error"); ysr@1280: assert(has_partial_array_mask((oop*)new_ref) || iveresov@1696: _g1h->is_in_g1_reserved(new_ref.is_narrow() ? oopDesc::load_decode_heap_oop((narrowOop*)new_ref) iveresov@1696: : oopDesc::load_decode_heap_oop((oop*)new_ref)), iveresov@1696: "invariant"); ysr@1280: ref = new_ref; ysr@1280: } ysr@1280: ysr@1280: int refs_to_scan() { return refs()->size(); } ysr@1280: int overflowed_refs_to_scan() { return overflowed_refs()->length(); } ysr@1280: ysr@1280: template void update_rs(HeapRegion* from, T* p, int tid) { ysr@1280: if (G1DeferredRSUpdate) { ysr@1280: deferred_rs_update(from, p, tid); ysr@1280: } else { ysr@1280: immediate_rs_update(from, p, tid); ysr@1280: } ysr@1280: } ysr@1280: ysr@1280: HeapWord* allocate_slow(GCAllocPurpose purpose, size_t word_sz) { ysr@1280: ysr@1280: HeapWord* obj = NULL; ysr@1280: if (word_sz * 100 < ysr@1280: (size_t)(G1ParallelGCAllocBufferSize / HeapWordSize) * ysr@1280: ParallelGCBufferWastePct) { ysr@1280: G1ParGCAllocBuffer* alloc_buf = alloc_buffer(purpose); ysr@1280: add_to_alloc_buffer_waste(alloc_buf->words_remaining()); ysr@1280: alloc_buf->retire(false, false); ysr@1280: ysr@1280: HeapWord* buf = ysr@1280: _g1h->par_allocate_during_gc(purpose, G1ParallelGCAllocBufferSize / HeapWordSize); ysr@1280: if (buf == NULL) return NULL; // Let caller handle allocation failure. ysr@1280: // Otherwise. ysr@1280: alloc_buf->set_buf(buf); ysr@1280: ysr@1280: obj = alloc_buf->allocate(word_sz); ysr@1280: assert(obj != NULL, "buffer was definitely big enough..."); ysr@1280: } else { ysr@1280: obj = _g1h->par_allocate_during_gc(purpose, word_sz); ysr@1280: } ysr@1280: return obj; ysr@1280: } ysr@1280: ysr@1280: HeapWord* allocate(GCAllocPurpose purpose, size_t word_sz) { ysr@1280: HeapWord* obj = alloc_buffer(purpose)->allocate(word_sz); ysr@1280: if (obj != NULL) return obj; ysr@1280: return allocate_slow(purpose, word_sz); ysr@1280: } ysr@1280: ysr@1280: void undo_allocation(GCAllocPurpose purpose, HeapWord* obj, size_t word_sz) { ysr@1280: if (alloc_buffer(purpose)->contains(obj)) { ysr@1280: assert(alloc_buffer(purpose)->contains(obj + word_sz - 1), ysr@1280: "should contain whole object"); ysr@1280: alloc_buffer(purpose)->undo_allocation(obj, word_sz); ysr@1280: } else { ysr@1280: CollectedHeap::fill_with_object(obj, word_sz); ysr@1280: add_to_undo_waste(word_sz); ysr@1280: } ysr@1280: } ysr@1280: ysr@1280: void set_evac_failure_closure(OopsInHeapRegionClosure* evac_failure_cl) { ysr@1280: _evac_failure_cl = evac_failure_cl; ysr@1280: } ysr@1280: OopsInHeapRegionClosure* evac_failure_closure() { ysr@1280: return _evac_failure_cl; ysr@1280: } ysr@1280: ysr@1280: void set_evac_closure(G1ParScanHeapEvacClosure* evac_cl) { ysr@1280: _evac_cl = evac_cl; ysr@1280: } ysr@1280: ysr@1280: void set_partial_scan_closure(G1ParScanPartialArrayClosure* partial_scan_cl) { ysr@1280: _partial_scan_cl = partial_scan_cl; ysr@1280: } ysr@1280: ysr@1280: int* hash_seed() { return &_hash_seed; } ysr@1280: int queue_num() { return _queue_num; } ysr@1280: ysr@1280: int term_attempts() { return _term_attempts; } ysr@1280: void note_term_attempt() { _term_attempts++; } ysr@1280: ysr@1280: #if G1_DETAILED_STATS ysr@1280: int pushes() { return _pushes; } ysr@1280: int pops() { return _pops; } ysr@1280: int steals() { return _steals; } ysr@1280: int steal_attempts() { return _steal_attempts; } ysr@1280: int overflow_pushes() { return _overflow_pushes; } ysr@1280: ysr@1280: void note_push() { _pushes++; } ysr@1280: void note_pop() { _pops++; } ysr@1280: void note_steal() { _steals++; } ysr@1280: void note_steal_attempt() { _steal_attempts++; } ysr@1280: void note_overflow_push() { _overflow_pushes++; } ysr@1280: #endif ysr@1280: ysr@1280: void start_strong_roots() { ysr@1280: _start_strong_roots = os::elapsedTime(); ysr@1280: } ysr@1280: void end_strong_roots() { ysr@1280: _strong_roots_time += (os::elapsedTime() - _start_strong_roots); ysr@1280: } ysr@1280: double strong_roots_time() { return _strong_roots_time; } ysr@1280: ysr@1280: void start_term_time() { ysr@1280: note_term_attempt(); ysr@1280: _start_term = os::elapsedTime(); ysr@1280: } ysr@1280: void end_term_time() { ysr@1280: _term_time += (os::elapsedTime() - _start_term); ysr@1280: } ysr@1280: double term_time() { return _term_time; } ysr@1280: ysr@1280: double elapsed() { ysr@1280: return os::elapsedTime() - _start; ysr@1280: } ysr@1280: ysr@1280: size_t* surviving_young_words() { ysr@1280: // We add on to hide entry 0 which accumulates surviving words for ysr@1280: // age -1 regions (i.e. non-young ones) ysr@1280: return _surviving_young_words; ysr@1280: } ysr@1280: ysr@1280: void retire_alloc_buffers() { ysr@1280: for (int ap = 0; ap < GCAllocPurposeCount; ++ap) { ysr@1280: size_t waste = _alloc_buffers[ap].words_remaining(); ysr@1280: add_to_alloc_buffer_waste(waste); ysr@1280: _alloc_buffers[ap].retire(true, false); ysr@1280: } ysr@1280: } ysr@1280: ysr@1280: private: ysr@1280: template void deal_with_reference(T* ref_to_scan) { ysr@1280: if (has_partial_array_mask(ref_to_scan)) { ysr@1280: _partial_scan_cl->do_oop_nv(ref_to_scan); ysr@1280: } else { ysr@1280: // Note: we can use "raw" versions of "region_containing" because ysr@1280: // "obj_to_scan" is definitely in the heap, and is not in a ysr@1280: // humongous region. ysr@1280: HeapRegion* r = _g1h->heap_region_containing_raw(ref_to_scan); ysr@1280: _evac_cl->set_region(r); ysr@1280: _evac_cl->do_oop_nv(ref_to_scan); ysr@1280: } ysr@1280: } ysr@1280: ysr@1280: public: ysr@1280: void trim_queue() { ysr@1280: // I've replicated the loop twice, first to drain the overflow ysr@1280: // queue, second to drain the task queue. This is better than ysr@1280: // having a single loop, which checks both conditions and, inside ysr@1280: // it, either pops the overflow queue or the task queue, as each ysr@1280: // loop is tighter. Also, the decision to drain the overflow queue ysr@1280: // first is not arbitrary, as the overflow queue is not visible ysr@1280: // to the other workers, whereas the task queue is. So, we want to ysr@1280: // drain the "invisible" entries first, while allowing the other ysr@1280: // workers to potentially steal the "visible" entries. ysr@1280: ysr@1280: while (refs_to_scan() > 0 || overflowed_refs_to_scan() > 0) { ysr@1280: while (overflowed_refs_to_scan() > 0) { ysr@1280: StarTask ref_to_scan; ysr@1280: assert((oop*)ref_to_scan == NULL, "Constructed above"); ysr@1280: pop_from_overflow_queue(ref_to_scan); ysr@1280: // We shouldn't have pushed it on the queue if it was not ysr@1280: // pointing into the CSet. ysr@1280: assert((oop*)ref_to_scan != NULL, "Follows from inner loop invariant"); ysr@1280: if (ref_to_scan.is_narrow()) { ysr@1280: assert(UseCompressedOops, "Error"); ysr@1280: narrowOop* p = (narrowOop*)ref_to_scan; ysr@1280: assert(!has_partial_array_mask(p) && iveresov@1696: _g1h->is_in_g1_reserved(oopDesc::load_decode_heap_oop(p)), "sanity"); ysr@1280: deal_with_reference(p); ysr@1280: } else { ysr@1280: oop* p = (oop*)ref_to_scan; iveresov@1696: assert((has_partial_array_mask(p) && _g1h->is_in_g1_reserved(clear_partial_array_mask(p))) || iveresov@1696: _g1h->is_in_g1_reserved(oopDesc::load_decode_heap_oop(p)), "sanity"); ysr@1280: deal_with_reference(p); ysr@1280: } ysr@1280: } ysr@1280: ysr@1280: while (refs_to_scan() > 0) { ysr@1280: StarTask ref_to_scan; ysr@1280: assert((oop*)ref_to_scan == NULL, "Constructed above"); ysr@1280: pop_from_queue(ref_to_scan); ysr@1280: if ((oop*)ref_to_scan != NULL) { ysr@1280: if (ref_to_scan.is_narrow()) { ysr@1280: assert(UseCompressedOops, "Error"); ysr@1280: narrowOop* p = (narrowOop*)ref_to_scan; ysr@1280: assert(!has_partial_array_mask(p) && iveresov@1696: _g1h->is_in_g1_reserved(oopDesc::load_decode_heap_oop(p)), "sanity"); ysr@1280: deal_with_reference(p); ysr@1280: } else { ysr@1280: oop* p = (oop*)ref_to_scan; ysr@1280: assert((has_partial_array_mask(p) && _g1h->obj_in_cs(clear_partial_array_mask(p))) || iveresov@1696: _g1h->is_in_g1_reserved(oopDesc::load_decode_heap_oop(p)), "sanity"); ysr@1280: deal_with_reference(p); ysr@1280: } ysr@1280: } ysr@1280: } ysr@1280: } ysr@1280: } ysr@1280: };