ysr@777: /* ysr@777: * Copyright 2001-2007 Sun Microsystems, Inc. All Rights Reserved. ysr@777: * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. ysr@777: * ysr@777: * This code is free software; you can redistribute it and/or modify it ysr@777: * under the terms of the GNU General Public License version 2 only, as ysr@777: * published by the Free Software Foundation. ysr@777: * ysr@777: * This code is distributed in the hope that it will be useful, but WITHOUT ysr@777: * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or ysr@777: * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License ysr@777: * version 2 for more details (a copy is included in the LICENSE file that ysr@777: * accompanied this code). ysr@777: * ysr@777: * You should have received a copy of the GNU General Public License version ysr@777: * 2 along with this work; if not, write to the Free Software Foundation, ysr@777: * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. ysr@777: * ysr@777: * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, ysr@777: * CA 95054 USA or visit www.sun.com if you need additional information or ysr@777: * have any questions. ysr@777: * ysr@777: */ ysr@777: ysr@777: // The CollectedHeap type requires subtypes to implement a method ysr@777: // "block_start". For some subtypes, notably generational ysr@777: // systems using card-table-based write barriers, the efficiency of this ysr@777: // operation may be important. Implementations of the "BlockOffsetArray" ysr@777: // class may be useful in providing such efficient implementations. ysr@777: // ysr@777: // While generally mirroring the structure of the BOT for GenCollectedHeap, ysr@777: // the following types are tailored more towards G1's uses; these should, ysr@777: // however, be merged back into a common BOT to avoid code duplication ysr@777: // and reduce maintenance overhead. ysr@777: // ysr@777: // G1BlockOffsetTable (abstract) ysr@777: // -- G1BlockOffsetArray (uses G1BlockOffsetSharedArray) ysr@777: // -- G1BlockOffsetArrayContigSpace ysr@777: // ysr@777: // A main impediment to the consolidation of this code might be the ysr@777: // effect of making some of the block_start*() calls non-const as ysr@777: // below. Whether that might adversely affect performance optimizations ysr@777: // that compilers might normally perform in the case of non-G1 ysr@777: // collectors needs to be carefully investigated prior to any such ysr@777: // consolidation. ysr@777: ysr@777: // Forward declarations ysr@777: class ContiguousSpace; ysr@777: class G1BlockOffsetSharedArray; ysr@777: ysr@777: class G1BlockOffsetTable VALUE_OBJ_CLASS_SPEC { ysr@777: friend class VMStructs; ysr@777: protected: ysr@777: // These members describe the region covered by the table. ysr@777: ysr@777: // The space this table is covering. ysr@777: HeapWord* _bottom; // == reserved.start ysr@777: HeapWord* _end; // End of currently allocated region. ysr@777: ysr@777: public: ysr@777: // Initialize the table to cover the given space. ysr@777: // The contents of the initial table are undefined. ysr@777: G1BlockOffsetTable(HeapWord* bottom, HeapWord* end) : ysr@777: _bottom(bottom), _end(end) ysr@777: { ysr@777: assert(_bottom <= _end, "arguments out of order"); ysr@777: } ysr@777: ysr@777: // Note that the committed size of the covered space may have changed, ysr@777: // so the table size might also wish to change. ysr@777: virtual void resize(size_t new_word_size) = 0; ysr@777: ysr@777: virtual void set_bottom(HeapWord* new_bottom) { ysr@777: assert(new_bottom <= _end, "new_bottom > _end"); ysr@777: _bottom = new_bottom; ysr@777: resize(pointer_delta(_end, _bottom)); ysr@777: } ysr@777: ysr@777: // Requires "addr" to be contained by a block, and returns the address of ysr@777: // the start of that block. (May have side effects, namely updating of ysr@777: // shared array entries that "point" too far backwards. This can occur, ysr@777: // for example, when LAB allocation is used in a space covered by the ysr@777: // table.) ysr@777: virtual HeapWord* block_start_unsafe(const void* addr) = 0; ysr@777: // Same as above, but does not have any of the possible side effects ysr@777: // discussed above. ysr@777: virtual HeapWord* block_start_unsafe_const(const void* addr) const = 0; ysr@777: ysr@777: // Returns the address of the start of the block containing "addr", or ysr@777: // else "null" if it is covered by no block. (May have side effects, ysr@777: // namely updating of shared array entries that "point" too far ysr@777: // backwards. This can occur, for example, when lab allocation is used ysr@777: // in a space covered by the table.) ysr@777: inline HeapWord* block_start(const void* addr); ysr@777: // Same as above, but does not have any of the possible side effects ysr@777: // discussed above. ysr@777: inline HeapWord* block_start_const(const void* addr) const; ysr@777: }; ysr@777: ysr@777: // This implementation of "G1BlockOffsetTable" divides the covered region ysr@777: // into "N"-word subregions (where "N" = 2^"LogN". An array with an entry ysr@777: // for each such subregion indicates how far back one must go to find the ysr@777: // start of the chunk that includes the first word of the subregion. ysr@777: // ysr@777: // Each BlockOffsetArray is owned by a Space. However, the actual array ysr@777: // may be shared by several BlockOffsetArrays; this is useful ysr@777: // when a single resizable area (such as a generation) is divided up into ysr@777: // several spaces in which contiguous allocation takes place, ysr@777: // such as, for example, in G1 or in the train generation.) ysr@777: ysr@777: // Here is the shared array type. ysr@777: ysr@777: class G1BlockOffsetSharedArray: public CHeapObj { ysr@777: friend class G1BlockOffsetArray; ysr@777: friend class G1BlockOffsetArrayContigSpace; ysr@777: friend class VMStructs; ysr@777: ysr@777: private: ysr@777: // The reserved region covered by the shared array. ysr@777: MemRegion _reserved; ysr@777: ysr@777: // End of the current committed region. ysr@777: HeapWord* _end; ysr@777: ysr@777: // Array for keeping offsets for retrieving object start fast given an ysr@777: // address. ysr@777: VirtualSpace _vs; ysr@777: u_char* _offset_array; // byte array keeping backwards offsets ysr@777: ysr@777: // Bounds checking accessors: ysr@777: // For performance these have to devolve to array accesses in product builds. ysr@777: u_char offset_array(size_t index) const { ysr@777: assert(index < _vs.committed_size(), "index out of range"); ysr@777: return _offset_array[index]; ysr@777: } ysr@777: ysr@777: void set_offset_array(size_t index, u_char offset) { ysr@777: assert(index < _vs.committed_size(), "index out of range"); ysr@777: assert(offset <= N_words, "offset too large"); ysr@777: _offset_array[index] = offset; ysr@777: } ysr@777: ysr@777: void set_offset_array(size_t index, HeapWord* high, HeapWord* low) { ysr@777: assert(index < _vs.committed_size(), "index out of range"); ysr@777: assert(high >= low, "addresses out of order"); ysr@777: assert(pointer_delta(high, low) <= N_words, "offset too large"); ysr@777: _offset_array[index] = (u_char) pointer_delta(high, low); ysr@777: } ysr@777: ysr@777: void set_offset_array(HeapWord* left, HeapWord* right, u_char offset) { ysr@777: assert(index_for(right - 1) < _vs.committed_size(), ysr@777: "right address out of range"); ysr@777: assert(left < right, "Heap addresses out of order"); ysr@777: size_t num_cards = pointer_delta(right, left) >> LogN_words; ysr@777: memset(&_offset_array[index_for(left)], offset, num_cards); ysr@777: } ysr@777: ysr@777: void set_offset_array(size_t left, size_t right, u_char offset) { ysr@777: assert(right < _vs.committed_size(), "right address out of range"); ysr@777: assert(left <= right, "indexes out of order"); ysr@777: size_t num_cards = right - left + 1; ysr@777: memset(&_offset_array[left], offset, num_cards); ysr@777: } ysr@777: ysr@777: void check_offset_array(size_t index, HeapWord* high, HeapWord* low) const { ysr@777: assert(index < _vs.committed_size(), "index out of range"); ysr@777: assert(high >= low, "addresses out of order"); ysr@777: assert(pointer_delta(high, low) <= N_words, "offset too large"); ysr@777: assert(_offset_array[index] == pointer_delta(high, low), ysr@777: "Wrong offset"); ysr@777: } ysr@777: ysr@777: bool is_card_boundary(HeapWord* p) const; ysr@777: ysr@777: // Return the number of slots needed for an offset array ysr@777: // that covers mem_region_words words. ysr@777: // We always add an extra slot because if an object ysr@777: // ends on a card boundary we put a 0 in the next ysr@777: // offset array slot, so we want that slot always ysr@777: // to be reserved. ysr@777: ysr@777: size_t compute_size(size_t mem_region_words) { ysr@777: size_t number_of_slots = (mem_region_words / N_words) + 1; ysr@777: return ReservedSpace::page_align_size_up(number_of_slots); ysr@777: } ysr@777: ysr@777: public: ysr@777: enum SomePublicConstants { ysr@777: LogN = 9, ysr@777: LogN_words = LogN - LogHeapWordSize, ysr@777: N_bytes = 1 << LogN, ysr@777: N_words = 1 << LogN_words ysr@777: }; ysr@777: ysr@777: // Initialize the table to cover from "base" to (at least) ysr@777: // "base + init_word_size". In the future, the table may be expanded ysr@777: // (see "resize" below) up to the size of "_reserved" (which must be at ysr@777: // least "init_word_size".) The contents of the initial table are ysr@777: // undefined; it is the responsibility of the constituent ysr@777: // G1BlockOffsetTable(s) to initialize cards. ysr@777: G1BlockOffsetSharedArray(MemRegion reserved, size_t init_word_size); ysr@777: ysr@777: // Notes a change in the committed size of the region covered by the ysr@777: // table. The "new_word_size" may not be larger than the size of the ysr@777: // reserved region this table covers. ysr@777: void resize(size_t new_word_size); ysr@777: ysr@777: void set_bottom(HeapWord* new_bottom); ysr@777: ysr@777: // Updates all the BlockOffsetArray's sharing this shared array to ysr@777: // reflect the current "top"'s of their spaces. ysr@777: void update_offset_arrays(); ysr@777: ysr@777: // Return the appropriate index into "_offset_array" for "p". ysr@777: inline size_t index_for(const void* p) const; ysr@777: ysr@777: // Return the address indicating the start of the region corresponding to ysr@777: // "index" in "_offset_array". ysr@777: inline HeapWord* address_for_index(size_t index) const; ysr@777: }; ysr@777: ysr@777: // And here is the G1BlockOffsetTable subtype that uses the array. ysr@777: ysr@777: class G1BlockOffsetArray: public G1BlockOffsetTable { ysr@777: friend class G1BlockOffsetSharedArray; ysr@777: friend class G1BlockOffsetArrayContigSpace; ysr@777: friend class VMStructs; ysr@777: private: ysr@777: enum SomePrivateConstants { ysr@777: N_words = G1BlockOffsetSharedArray::N_words, ysr@777: LogN = G1BlockOffsetSharedArray::LogN ysr@777: }; ysr@777: ysr@777: // The following enums are used by do_block_helper ysr@777: enum Action { ysr@777: Action_single, // BOT records a single block (see single_block()) ysr@777: Action_mark, // BOT marks the start of a block (see mark_block()) ysr@777: Action_check // Check that BOT records block correctly ysr@777: // (see verify_single_block()). ysr@777: }; ysr@777: ysr@777: // This is the array, which can be shared by several BlockOffsetArray's ysr@777: // servicing different ysr@777: G1BlockOffsetSharedArray* _array; ysr@777: ysr@777: // The space that owns this subregion. ysr@777: Space* _sp; ysr@777: ysr@777: // If "_sp" is a contiguous space, the field below is the view of "_sp" ysr@777: // as a contiguous space, else NULL. ysr@777: ContiguousSpace* _csp; ysr@777: ysr@777: // If true, array entries are initialized to 0; otherwise, they are ysr@777: // initialized to point backwards to the beginning of the covered region. ysr@777: bool _init_to_zero; ysr@777: ysr@777: // The portion [_unallocated_block, _sp.end()) of the space that ysr@777: // is a single block known not to contain any objects. ysr@777: // NOTE: See BlockOffsetArrayUseUnallocatedBlock flag. ysr@777: HeapWord* _unallocated_block; ysr@777: ysr@777: // Sets the entries ysr@777: // corresponding to the cards starting at "start" and ending at "end" ysr@777: // to point back to the card before "start": the interval [start, end) ysr@777: // is right-open. ysr@777: void set_remainder_to_point_to_start(HeapWord* start, HeapWord* end); ysr@777: // Same as above, except that the args here are a card _index_ interval ysr@777: // that is closed: [start_index, end_index] ysr@777: void set_remainder_to_point_to_start_incl(size_t start, size_t end); ysr@777: ysr@777: // A helper function for BOT adjustment/verification work ysr@777: void do_block_internal(HeapWord* blk_start, HeapWord* blk_end, Action action); ysr@777: ysr@777: protected: ysr@777: ysr@777: ContiguousSpace* csp() const { return _csp; } ysr@777: ysr@777: // Returns the address of a block whose start is at most "addr". ysr@777: // If "has_max_index" is true, "assumes "max_index" is the last valid one ysr@777: // in the array. ysr@777: inline HeapWord* block_at_or_preceding(const void* addr, ysr@777: bool has_max_index, ysr@777: size_t max_index) const; ysr@777: ysr@777: // "q" is a block boundary that is <= "addr"; "n" is the address of the ysr@777: // next block (or the end of the space.) Return the address of the ysr@777: // beginning of the block that contains "addr". Does so without side ysr@777: // effects (see, e.g., spec of block_start.) ysr@777: inline HeapWord* ysr@777: forward_to_block_containing_addr_const(HeapWord* q, HeapWord* n, ysr@777: const void* addr) const; ysr@777: ysr@777: // "q" is a block boundary that is <= "addr"; return the address of the ysr@777: // beginning of the block that contains "addr". May have side effects ysr@777: // on "this", by updating imprecise entries. ysr@777: inline HeapWord* forward_to_block_containing_addr(HeapWord* q, ysr@777: const void* addr); ysr@777: ysr@777: // "q" is a block boundary that is <= "addr"; "n" is the address of the ysr@777: // next block (or the end of the space.) Return the address of the ysr@777: // beginning of the block that contains "addr". May have side effects ysr@777: // on "this", by updating imprecise entries. ysr@777: HeapWord* forward_to_block_containing_addr_slow(HeapWord* q, ysr@777: HeapWord* n, ysr@777: const void* addr); ysr@777: ysr@777: // Requires that "*threshold_" be the first array entry boundary at or ysr@777: // above "blk_start", and that "*index_" be the corresponding array ysr@777: // index. If the block starts at or crosses "*threshold_", records ysr@777: // "blk_start" as the appropriate block start for the array index ysr@777: // starting at "*threshold_", and for any other indices crossed by the ysr@777: // block. Updates "*threshold_" and "*index_" to correspond to the first ysr@777: // index after the block end. ysr@777: void alloc_block_work2(HeapWord** threshold_, size_t* index_, ysr@777: HeapWord* blk_start, HeapWord* blk_end); ysr@777: ysr@777: public: ysr@777: // The space may not have it's bottom and top set yet, which is why the ysr@777: // region is passed as a parameter. If "init_to_zero" is true, the ysr@777: // elements of the array are initialized to zero. Otherwise, they are ysr@777: // initialized to point backwards to the beginning. ysr@777: G1BlockOffsetArray(G1BlockOffsetSharedArray* array, MemRegion mr, ysr@777: bool init_to_zero); ysr@777: ysr@777: // Note: this ought to be part of the constructor, but that would require ysr@777: // "this" to be passed as a parameter to a member constructor for ysr@777: // the containing concrete subtype of Space. ysr@777: // This would be legal C++, but MS VC++ doesn't allow it. ysr@777: void set_space(Space* sp); ysr@777: ysr@777: // Resets the covered region to the given "mr". ysr@777: void set_region(MemRegion mr); ysr@777: ysr@777: // Resets the covered region to one with the same _bottom as before but ysr@777: // the "new_word_size". ysr@777: void resize(size_t new_word_size); ysr@777: ysr@777: // These must be guaranteed to work properly (i.e., do nothing) ysr@777: // when "blk_start" ("blk" for second version) is "NULL". ysr@777: virtual void alloc_block(HeapWord* blk_start, HeapWord* blk_end); ysr@777: virtual void alloc_block(HeapWord* blk, size_t size) { ysr@777: alloc_block(blk, blk + size); ysr@777: } ysr@777: ysr@777: // The following methods are useful and optimized for a ysr@777: // general, non-contiguous space. ysr@777: ysr@777: // The given arguments are required to be the starts of adjacent ("blk1" ysr@777: // before "blk2") well-formed blocks covered by "this". After this call, ysr@777: // they should be considered to form one block. ysr@777: virtual void join_blocks(HeapWord* blk1, HeapWord* blk2); ysr@777: ysr@777: // Given a block [blk_start, blk_start + full_blk_size), and ysr@777: // a left_blk_size < full_blk_size, adjust the BOT to show two ysr@777: // blocks [blk_start, blk_start + left_blk_size) and ysr@777: // [blk_start + left_blk_size, blk_start + full_blk_size). ysr@777: // It is assumed (and verified in the non-product VM) that the ysr@777: // BOT was correct for the original block. ysr@777: void split_block(HeapWord* blk_start, size_t full_blk_size, ysr@777: size_t left_blk_size); ysr@777: ysr@777: // Adjust the BOT to show that it has a single block in the ysr@777: // range [blk_start, blk_start + size). All necessary BOT ysr@777: // cards are adjusted, but _unallocated_block isn't. ysr@777: void single_block(HeapWord* blk_start, HeapWord* blk_end); ysr@777: void single_block(HeapWord* blk, size_t size) { ysr@777: single_block(blk, blk + size); ysr@777: } ysr@777: ysr@777: // Adjust BOT to show that it has a block in the range ysr@777: // [blk_start, blk_start + size). Only the first card ysr@777: // of BOT is touched. It is assumed (and verified in the ysr@777: // non-product VM) that the remaining cards of the block ysr@777: // are correct. ysr@777: void mark_block(HeapWord* blk_start, HeapWord* blk_end); ysr@777: void mark_block(HeapWord* blk, size_t size) { ysr@777: mark_block(blk, blk + size); ysr@777: } ysr@777: ysr@777: // Adjust _unallocated_block to indicate that a particular ysr@777: // block has been newly allocated or freed. It is assumed (and ysr@777: // verified in the non-product VM) that the BOT is correct for ysr@777: // the given block. ysr@777: inline void allocated(HeapWord* blk_start, HeapWord* blk_end) { ysr@777: // Verify that the BOT shows [blk, blk + blk_size) to be one block. ysr@777: verify_single_block(blk_start, blk_end); ysr@777: if (BlockOffsetArrayUseUnallocatedBlock) { ysr@777: _unallocated_block = MAX2(_unallocated_block, blk_end); ysr@777: } ysr@777: } ysr@777: ysr@777: inline void allocated(HeapWord* blk, size_t size) { ysr@777: allocated(blk, blk + size); ysr@777: } ysr@777: ysr@777: inline void freed(HeapWord* blk_start, HeapWord* blk_end); ysr@777: ysr@777: inline void freed(HeapWord* blk, size_t size); ysr@777: ysr@777: virtual HeapWord* block_start_unsafe(const void* addr); ysr@777: virtual HeapWord* block_start_unsafe_const(const void* addr) const; ysr@777: ysr@777: // Requires "addr" to be the start of a card and returns the ysr@777: // start of the block that contains the given address. ysr@777: HeapWord* block_start_careful(const void* addr) const; ysr@777: ysr@777: // If true, initialize array slots with no allocated blocks to zero. ysr@777: // Otherwise, make them point back to the front. ysr@777: bool init_to_zero() { return _init_to_zero; } ysr@777: ysr@777: // Verification & debugging - ensure that the offset table reflects the fact ysr@777: // that the block [blk_start, blk_end) or [blk, blk + size) is a ysr@777: // single block of storage. NOTE: can;t const this because of ysr@777: // call to non-const do_block_internal() below. ysr@777: inline void verify_single_block(HeapWord* blk_start, HeapWord* blk_end) { ysr@777: if (VerifyBlockOffsetArray) { ysr@777: do_block_internal(blk_start, blk_end, Action_check); ysr@777: } ysr@777: } ysr@777: ysr@777: inline void verify_single_block(HeapWord* blk, size_t size) { ysr@777: verify_single_block(blk, blk + size); ysr@777: } ysr@777: ysr@777: // Verify that the given block is before _unallocated_block ysr@777: inline void verify_not_unallocated(HeapWord* blk_start, ysr@777: HeapWord* blk_end) const { ysr@777: if (BlockOffsetArrayUseUnallocatedBlock) { ysr@777: assert(blk_start < blk_end, "Block inconsistency?"); ysr@777: assert(blk_end <= _unallocated_block, "_unallocated_block problem"); ysr@777: } ysr@777: } ysr@777: ysr@777: inline void verify_not_unallocated(HeapWord* blk, size_t size) const { ysr@777: verify_not_unallocated(blk, blk + size); ysr@777: } ysr@777: ysr@777: void check_all_cards(size_t left_card, size_t right_card) const; ysr@777: }; ysr@777: ysr@777: // A subtype of BlockOffsetArray that takes advantage of the fact ysr@777: // that its underlying space is a ContiguousSpace, so that its "active" ysr@777: // region can be more efficiently tracked (than for a non-contiguous space). ysr@777: class G1BlockOffsetArrayContigSpace: public G1BlockOffsetArray { ysr@777: friend class VMStructs; ysr@777: ysr@777: // allocation boundary at which offset array must be updated ysr@777: HeapWord* _next_offset_threshold; ysr@777: size_t _next_offset_index; // index corresponding to that boundary ysr@777: ysr@777: // Work function to be called when allocation start crosses the next ysr@777: // threshold in the contig space. ysr@777: void alloc_block_work1(HeapWord* blk_start, HeapWord* blk_end) { ysr@777: alloc_block_work2(&_next_offset_threshold, &_next_offset_index, ysr@777: blk_start, blk_end); ysr@777: } ysr@777: ysr@777: ysr@777: public: ysr@777: G1BlockOffsetArrayContigSpace(G1BlockOffsetSharedArray* array, MemRegion mr); ysr@777: ysr@777: // Initialize the threshold to reflect the first boundary after the ysr@777: // bottom of the covered region. ysr@777: HeapWord* initialize_threshold(); ysr@777: ysr@777: // Zero out the entry for _bottom (offset will be zero). ysr@777: void zero_bottom_entry(); ysr@777: ysr@777: // Return the next threshold, the point at which the table should be ysr@777: // updated. ysr@777: HeapWord* threshold() const { return _next_offset_threshold; } ysr@777: ysr@777: // These must be guaranteed to work properly (i.e., do nothing) ysr@777: // when "blk_start" ("blk" for second version) is "NULL". In this ysr@777: // implementation, that's true because NULL is represented as 0, and thus ysr@777: // never exceeds the "_next_offset_threshold". ysr@777: void alloc_block(HeapWord* blk_start, HeapWord* blk_end) { ysr@777: if (blk_end > _next_offset_threshold) ysr@777: alloc_block_work1(blk_start, blk_end); ysr@777: } ysr@777: void alloc_block(HeapWord* blk, size_t size) { ysr@777: alloc_block(blk, blk+size); ysr@777: } ysr@777: ysr@777: HeapWord* block_start_unsafe(const void* addr); ysr@777: HeapWord* block_start_unsafe_const(const void* addr) const; ysr@777: };