aoqi@0: /* aoqi@0: * Copyright (c) 1997, 2014, Oracle and/or its affiliates. All rights reserved. aoqi@0: * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. aoqi@0: * aoqi@0: * This code is free software; you can redistribute it and/or modify it aoqi@0: * under the terms of the GNU General Public License version 2 only, as aoqi@0: * published by the Free Software Foundation. aoqi@0: * aoqi@0: * This code is distributed in the hope that it will be useful, but WITHOUT aoqi@0: * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or aoqi@0: * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License aoqi@0: * version 2 for more details (a copy is included in the LICENSE file that aoqi@0: * accompanied this code). aoqi@0: * aoqi@0: * You should have received a copy of the GNU General Public License version aoqi@0: * 2 along with this work; if not, write to the Free Software Foundation, aoqi@0: * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. aoqi@0: * aoqi@0: * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA aoqi@0: * or visit www.oracle.com if you need additional information or have any aoqi@0: * questions. aoqi@0: * aoqi@0: */ aoqi@0: aoqi@0: #include "precompiled.hpp" aoqi@0: #include "opto/compile.hpp" aoqi@0: #include "opto/regmask.hpp" aoqi@0: #ifdef TARGET_ARCH_MODEL_x86_32 aoqi@0: # include "adfiles/ad_x86_32.hpp" aoqi@0: #endif aoqi@0: #ifdef TARGET_ARCH_MODEL_x86_64 aoqi@0: # include "adfiles/ad_x86_64.hpp" aoqi@0: #endif aoqi@0: #ifdef TARGET_ARCH_MODEL_sparc aoqi@0: # include "adfiles/ad_sparc.hpp" aoqi@0: #endif aoqi@0: #ifdef TARGET_ARCH_MODEL_zero aoqi@0: # include "adfiles/ad_zero.hpp" aoqi@0: #endif aoqi@0: #ifdef TARGET_ARCH_MODEL_arm aoqi@0: # include "adfiles/ad_arm.hpp" aoqi@0: #endif aoqi@0: #ifdef TARGET_ARCH_MODEL_ppc_32 aoqi@0: # include "adfiles/ad_ppc_32.hpp" aoqi@0: #endif aoqi@0: #ifdef TARGET_ARCH_MODEL_ppc_64 aoqi@0: # include "adfiles/ad_ppc_64.hpp" aoqi@0: #endif aoqi@0: aoqi@0: #define RM_SIZE _RM_SIZE /* a constant private to the class RegMask */ aoqi@0: aoqi@0: //-------------Non-zero bit search methods used by RegMask--------------------- aoqi@0: // Find lowest 1, or return 32 if empty aoqi@0: int find_lowest_bit( uint32 mask ) { aoqi@0: int n = 0; aoqi@0: if( (mask & 0xffff) == 0 ) { aoqi@0: mask >>= 16; aoqi@0: n += 16; aoqi@0: } aoqi@0: if( (mask & 0xff) == 0 ) { aoqi@0: mask >>= 8; aoqi@0: n += 8; aoqi@0: } aoqi@0: if( (mask & 0xf) == 0 ) { aoqi@0: mask >>= 4; aoqi@0: n += 4; aoqi@0: } aoqi@0: if( (mask & 0x3) == 0 ) { aoqi@0: mask >>= 2; aoqi@0: n += 2; aoqi@0: } aoqi@0: if( (mask & 0x1) == 0 ) { aoqi@0: mask >>= 1; aoqi@0: n += 1; aoqi@0: } aoqi@0: if( mask == 0 ) { aoqi@0: n = 32; aoqi@0: } aoqi@0: return n; aoqi@0: } aoqi@0: aoqi@0: // Find highest 1, or return 32 if empty aoqi@0: int find_hihghest_bit( uint32 mask ) { aoqi@0: int n = 0; aoqi@0: if( mask > 0xffff ) { aoqi@0: mask >>= 16; aoqi@0: n += 16; aoqi@0: } aoqi@0: if( mask > 0xff ) { aoqi@0: mask >>= 8; aoqi@0: n += 8; aoqi@0: } aoqi@0: if( mask > 0xf ) { aoqi@0: mask >>= 4; aoqi@0: n += 4; aoqi@0: } aoqi@0: if( mask > 0x3 ) { aoqi@0: mask >>= 2; aoqi@0: n += 2; aoqi@0: } aoqi@0: if( mask > 0x1 ) { aoqi@0: mask >>= 1; aoqi@0: n += 1; aoqi@0: } aoqi@0: if( mask == 0 ) { aoqi@0: n = 32; aoqi@0: } aoqi@0: return n; aoqi@0: } aoqi@0: aoqi@0: //------------------------------dump------------------------------------------- aoqi@0: aoqi@0: #ifndef PRODUCT aoqi@0: void OptoReg::dump(int r, outputStream *st) { aoqi@0: switch (r) { aoqi@0: case Special: st->print("r---"); break; aoqi@0: case Bad: st->print("rBAD"); break; aoqi@0: default: aoqi@0: if (r < _last_Mach_Reg) st->print("%s", Matcher::regName[r]); aoqi@0: else st->print("rS%d",r); aoqi@0: break; aoqi@0: } aoqi@0: } aoqi@0: #endif aoqi@0: aoqi@0: aoqi@0: //============================================================================= aoqi@0: const RegMask RegMask::Empty( aoqi@0: # define BODY(I) 0, aoqi@0: FORALL_BODY aoqi@0: # undef BODY aoqi@0: 0 aoqi@0: ); aoqi@0: aoqi@0: //============================================================================= aoqi@0: bool RegMask::is_vector(uint ireg) { aoqi@0: return (ireg == Op_VecS || ireg == Op_VecD || ireg == Op_VecX || ireg == Op_VecY); aoqi@0: } aoqi@0: aoqi@0: int RegMask::num_registers(uint ireg) { aoqi@0: switch(ireg) { aoqi@0: case Op_VecY: aoqi@0: return 8; aoqi@0: case Op_VecX: aoqi@0: return 4; aoqi@0: case Op_VecD: aoqi@0: case Op_RegD: aoqi@0: case Op_RegL: aoqi@0: #ifdef _LP64 aoqi@0: case Op_RegP: aoqi@0: #endif aoqi@0: return 2; aoqi@0: } aoqi@0: // Op_VecS and the rest ideal registers. aoqi@0: return 1; aoqi@0: } aoqi@0: aoqi@0: //------------------------------find_first_pair-------------------------------- aoqi@0: // Find the lowest-numbered register pair in the mask. Return the aoqi@0: // HIGHEST register number in the pair, or BAD if no pairs. aoqi@0: OptoReg::Name RegMask::find_first_pair() const { aoqi@0: verify_pairs(); aoqi@0: for( int i = 0; i < RM_SIZE; i++ ) { aoqi@0: if( _A[i] ) { // Found some bits aoqi@0: int bit = _A[i] & -_A[i]; // Extract low bit aoqi@0: // Convert to bit number, return hi bit in pair aoqi@0: return OptoReg::Name((i<<_LogWordBits)+find_lowest_bit(bit)+1); aoqi@0: } aoqi@0: } aoqi@0: return OptoReg::Bad; aoqi@0: } aoqi@0: aoqi@0: //------------------------------ClearToPairs----------------------------------- aoqi@0: // Clear out partial bits; leave only bit pairs aoqi@0: void RegMask::clear_to_pairs() { aoqi@0: for( int i = 0; i < RM_SIZE; i++ ) { aoqi@0: int bits = _A[i]; aoqi@0: bits &= ((bits & 0x55555555)<<1); // 1 hi-bit set for each pair aoqi@0: bits |= (bits>>1); // Smear 1 hi-bit into a pair aoqi@0: _A[i] = bits; aoqi@0: } aoqi@0: verify_pairs(); aoqi@0: } aoqi@0: aoqi@0: //------------------------------SmearToPairs----------------------------------- aoqi@0: // Smear out partial bits; leave only bit pairs aoqi@0: void RegMask::smear_to_pairs() { aoqi@0: for( int i = 0; i < RM_SIZE; i++ ) { aoqi@0: int bits = _A[i]; aoqi@0: bits |= ((bits & 0x55555555)<<1); // Smear lo bit hi per pair aoqi@0: bits |= ((bits & 0xAAAAAAAA)>>1); // Smear hi bit lo per pair aoqi@0: _A[i] = bits; aoqi@0: } aoqi@0: verify_pairs(); aoqi@0: } aoqi@0: aoqi@0: //------------------------------is_aligned_pairs------------------------------- aoqi@0: bool RegMask::is_aligned_pairs() const { aoqi@0: // Assert that the register mask contains only bit pairs. aoqi@0: for( int i = 0; i < RM_SIZE; i++ ) { aoqi@0: int bits = _A[i]; aoqi@0: while( bits ) { // Check bits for pairing aoqi@0: int bit = bits & -bits; // Extract low bit aoqi@0: // Low bit is not odd means its mis-aligned. aoqi@0: if( (bit & 0x55555555) == 0 ) return false; aoqi@0: bits -= bit; // Remove bit from mask aoqi@0: // Check for aligned adjacent bit aoqi@0: if( (bits & (bit<<1)) == 0 ) return false; aoqi@0: bits -= (bit<<1); // Remove other halve of pair aoqi@0: } aoqi@0: } aoqi@0: return true; aoqi@0: } aoqi@0: aoqi@0: //------------------------------is_bound1-------------------------------------- aoqi@0: // Return TRUE if the mask contains a single bit aoqi@0: int RegMask::is_bound1() const { aoqi@0: if( is_AllStack() ) return false; aoqi@0: int bit = -1; // Set to hold the one bit allowed aoqi@0: for( int i = 0; i < RM_SIZE; i++ ) { aoqi@0: if( _A[i] ) { // Found some bits aoqi@0: if( bit != -1 ) return false; // Already had bits, so fail aoqi@0: bit = _A[i] & -_A[i]; // Extract 1 bit from mask aoqi@0: if( bit != _A[i] ) return false; // Found many bits, so fail aoqi@0: } aoqi@0: } aoqi@0: // True for both the empty mask and for a single bit aoqi@0: return true; aoqi@0: } aoqi@0: aoqi@0: //------------------------------is_bound2-------------------------------------- aoqi@0: // Return TRUE if the mask contains an adjacent pair of bits and no other bits. aoqi@0: int RegMask::is_bound_pair() const { aoqi@0: if( is_AllStack() ) return false; aoqi@0: aoqi@0: int bit = -1; // Set to hold the one bit allowed aoqi@0: for( int i = 0; i < RM_SIZE; i++ ) { aoqi@0: if( _A[i] ) { // Found some bits aoqi@0: if( bit != -1 ) return false; // Already had bits, so fail aoqi@0: bit = _A[i] & -(_A[i]); // Extract 1 bit from mask aoqi@0: if( (bit << 1) != 0 ) { // Bit pair stays in same word? aoqi@0: if( (bit | (bit<<1)) != _A[i] ) aoqi@0: return false; // Require adjacent bit pair and no more bits aoqi@0: } else { // Else its a split-pair case aoqi@0: if( bit != _A[i] ) return false; // Found many bits, so fail aoqi@0: i++; // Skip iteration forward aoqi@0: if( i >= RM_SIZE || _A[i] != 1 ) aoqi@0: return false; // Require 1 lo bit in next word aoqi@0: } aoqi@0: } aoqi@0: } aoqi@0: // True for both the empty mask and for a bit pair aoqi@0: return true; aoqi@0: } aoqi@0: aoqi@0: static int low_bits[3] = { 0x55555555, 0x11111111, 0x01010101 }; aoqi@0: //------------------------------find_first_set--------------------------------- aoqi@0: // Find the lowest-numbered register set in the mask. Return the aoqi@0: // HIGHEST register number in the set, or BAD if no sets. aoqi@0: // Works also for size 1. aoqi@0: OptoReg::Name RegMask::find_first_set(const int size) const { aoqi@0: verify_sets(size); aoqi@0: for (int i = 0; i < RM_SIZE; i++) { aoqi@0: if (_A[i]) { // Found some bits aoqi@0: int bit = _A[i] & -_A[i]; // Extract low bit aoqi@0: // Convert to bit number, return hi bit in pair aoqi@0: return OptoReg::Name((i<<_LogWordBits)+find_lowest_bit(bit)+(size-1)); aoqi@0: } aoqi@0: } aoqi@0: return OptoReg::Bad; aoqi@0: } aoqi@0: aoqi@0: //------------------------------clear_to_sets---------------------------------- aoqi@0: // Clear out partial bits; leave only aligned adjacent bit pairs aoqi@0: void RegMask::clear_to_sets(const int size) { aoqi@0: if (size == 1) return; aoqi@0: assert(2 <= size && size <= 8, "update low bits table"); aoqi@0: assert(is_power_of_2(size), "sanity"); aoqi@0: int low_bits_mask = low_bits[size>>2]; aoqi@0: for (int i = 0; i < RM_SIZE; i++) { aoqi@0: int bits = _A[i]; aoqi@0: int sets = (bits & low_bits_mask); aoqi@0: for (int j = 1; j < size; j++) { aoqi@0: sets = (bits & (sets<<1)); // filter bits which produce whole sets aoqi@0: } aoqi@0: sets |= (sets>>1); // Smear 1 hi-bit into a set aoqi@0: if (size > 2) { aoqi@0: sets |= (sets>>2); // Smear 2 hi-bits into a set aoqi@0: if (size > 4) { aoqi@0: sets |= (sets>>4); // Smear 4 hi-bits into a set aoqi@0: } aoqi@0: } aoqi@0: _A[i] = sets; aoqi@0: } aoqi@0: verify_sets(size); aoqi@0: } aoqi@0: aoqi@0: //------------------------------smear_to_sets---------------------------------- aoqi@0: // Smear out partial bits to aligned adjacent bit sets aoqi@0: void RegMask::smear_to_sets(const int size) { aoqi@0: if (size == 1) return; aoqi@0: assert(2 <= size && size <= 8, "update low bits table"); aoqi@0: assert(is_power_of_2(size), "sanity"); aoqi@0: int low_bits_mask = low_bits[size>>2]; aoqi@0: for (int i = 0; i < RM_SIZE; i++) { aoqi@0: int bits = _A[i]; aoqi@0: int sets = 0; aoqi@0: for (int j = 0; j < size; j++) { aoqi@0: sets |= (bits & low_bits_mask); // collect partial bits aoqi@0: bits = bits>>1; aoqi@0: } aoqi@0: sets |= (sets<<1); // Smear 1 lo-bit into a set aoqi@0: if (size > 2) { aoqi@0: sets |= (sets<<2); // Smear 2 lo-bits into a set aoqi@0: if (size > 4) { aoqi@0: sets |= (sets<<4); // Smear 4 lo-bits into a set aoqi@0: } aoqi@0: } aoqi@0: _A[i] = sets; aoqi@0: } aoqi@0: verify_sets(size); aoqi@0: } aoqi@0: aoqi@0: //------------------------------is_aligned_set-------------------------------- aoqi@0: bool RegMask::is_aligned_sets(const int size) const { aoqi@0: if (size == 1) return true; aoqi@0: assert(2 <= size && size <= 8, "update low bits table"); aoqi@0: assert(is_power_of_2(size), "sanity"); aoqi@0: int low_bits_mask = low_bits[size>>2]; aoqi@0: // Assert that the register mask contains only bit sets. aoqi@0: for (int i = 0; i < RM_SIZE; i++) { aoqi@0: int bits = _A[i]; aoqi@0: while (bits) { // Check bits for pairing aoqi@0: int bit = bits & -bits; // Extract low bit aoqi@0: // Low bit is not odd means its mis-aligned. aoqi@0: if ((bit & low_bits_mask) == 0) return false; aoqi@0: // Do extra work since (bit << size) may overflow. aoqi@0: int hi_bit = bit << (size-1); // high bit aoqi@0: int set = hi_bit + ((hi_bit-1) & ~(bit-1)); aoqi@0: // Check for aligned adjacent bits in this set aoqi@0: if ((bits & set) != set) return false; aoqi@0: bits -= set; // Remove this set aoqi@0: } aoqi@0: } aoqi@0: return true; aoqi@0: } aoqi@0: aoqi@0: //------------------------------is_bound_set----------------------------------- aoqi@0: // Return TRUE if the mask contains one adjacent set of bits and no other bits. aoqi@0: // Works also for size 1. aoqi@0: int RegMask::is_bound_set(const int size) const { aoqi@0: if( is_AllStack() ) return false; aoqi@0: assert(1 <= size && size <= 8, "update low bits table"); aoqi@0: int bit = -1; // Set to hold the one bit allowed aoqi@0: for (int i = 0; i < RM_SIZE; i++) { aoqi@0: if (_A[i] ) { // Found some bits aoqi@0: if (bit != -1) aoqi@0: return false; // Already had bits, so fail aoqi@0: bit = _A[i] & -_A[i]; // Extract low bit from mask aoqi@0: int hi_bit = bit << (size-1); // high bit aoqi@0: if (hi_bit != 0) { // Bit set stays in same word? aoqi@0: int set = hi_bit + ((hi_bit-1) & ~(bit-1)); aoqi@0: if (set != _A[i]) aoqi@0: return false; // Require adjacent bit set and no more bits aoqi@0: } else { // Else its a split-set case aoqi@0: if (((-1) & ~(bit-1)) != _A[i]) aoqi@0: return false; // Found many bits, so fail aoqi@0: i++; // Skip iteration forward and check high part aoqi@0: // The lower 24 bits should be 0 since it is split case and size <= 8. aoqi@0: int set = bit>>24; aoqi@0: set = set & -set; // Remove sign extension. aoqi@0: set = (((set << size) - 1) >> 8); aoqi@0: if (i >= RM_SIZE || _A[i] != set) aoqi@0: return false; // Require expected low bits in next word aoqi@0: } aoqi@0: } aoqi@0: } aoqi@0: // True for both the empty mask and for a bit set aoqi@0: return true; aoqi@0: } aoqi@0: aoqi@0: //------------------------------is_UP------------------------------------------ aoqi@0: // UP means register only, Register plus stack, or stack only is DOWN aoqi@0: bool RegMask::is_UP() const { aoqi@0: // Quick common case check for DOWN (any stack slot is legal) aoqi@0: if( is_AllStack() ) aoqi@0: return false; aoqi@0: // Slower check for any stack bits set (also DOWN) aoqi@0: if( overlap(Matcher::STACK_ONLY_mask) ) aoqi@0: return false; aoqi@0: // Not DOWN, so must be UP aoqi@0: return true; aoqi@0: } aoqi@0: aoqi@0: //------------------------------Size------------------------------------------- aoqi@0: // Compute size of register mask in bits aoqi@0: uint RegMask::Size() const { aoqi@0: extern uint8 bitsInByte[256]; aoqi@0: uint sum = 0; aoqi@0: for( int i = 0; i < RM_SIZE; i++ ) aoqi@0: sum += aoqi@0: bitsInByte[(_A[i]>>24) & 0xff] + aoqi@0: bitsInByte[(_A[i]>>16) & 0xff] + aoqi@0: bitsInByte[(_A[i]>> 8) & 0xff] + aoqi@0: bitsInByte[ _A[i] & 0xff]; aoqi@0: return sum; aoqi@0: } aoqi@0: aoqi@0: #ifndef PRODUCT aoqi@0: //------------------------------print------------------------------------------ aoqi@0: void RegMask::dump(outputStream *st) const { aoqi@0: st->print("["); aoqi@0: RegMask rm = *this; // Structure copy into local temp aoqi@0: aoqi@0: OptoReg::Name start = rm.find_first_elem(); // Get a register aoqi@0: if (OptoReg::is_valid(start)) { // Check for empty mask aoqi@0: rm.Remove(start); // Yank from mask aoqi@0: OptoReg::dump(start, st); // Print register aoqi@0: OptoReg::Name last = start; aoqi@0: aoqi@0: // Now I have printed an initial register. aoqi@0: // Print adjacent registers as "rX-rZ" instead of "rX,rY,rZ". aoqi@0: // Begin looping over the remaining registers. aoqi@0: while (1) { // aoqi@0: OptoReg::Name reg = rm.find_first_elem(); // Get a register aoqi@0: if (!OptoReg::is_valid(reg)) aoqi@0: break; // Empty mask, end loop aoqi@0: rm.Remove(reg); // Yank from mask aoqi@0: aoqi@0: if (last+1 == reg) { // See if they are adjacent aoqi@0: // Adjacent registers just collect into long runs, no printing. aoqi@0: last = reg; aoqi@0: } else { // Ending some kind of run aoqi@0: if (start == last) { // 1-register run; no special printing aoqi@0: } else if (start+1 == last) { aoqi@0: st->print(","); // 2-register run; print as "rX,rY" aoqi@0: OptoReg::dump(last, st); aoqi@0: } else { // Multi-register run; print as "rX-rZ" aoqi@0: st->print("-"); aoqi@0: OptoReg::dump(last, st); aoqi@0: } aoqi@0: st->print(","); // Seperate start of new run aoqi@0: start = last = reg; // Start a new register run aoqi@0: OptoReg::dump(start, st); // Print register aoqi@0: } // End of if ending a register run or not aoqi@0: } // End of while regmask not empty aoqi@0: aoqi@0: if (start == last) { // 1-register run; no special printing aoqi@0: } else if (start+1 == last) { aoqi@0: st->print(","); // 2-register run; print as "rX,rY" aoqi@0: OptoReg::dump(last, st); aoqi@0: } else { // Multi-register run; print as "rX-rZ" aoqi@0: st->print("-"); aoqi@0: OptoReg::dump(last, st); aoqi@0: } aoqi@0: if (rm.is_AllStack()) st->print("..."); aoqi@0: } aoqi@0: st->print("]"); aoqi@0: } aoqi@0: #endif