aoqi@0: /* aoqi@0: * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved. aoqi@0: * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. aoqi@0: * aoqi@0: * This code is free software; you can redistribute it and/or modify it aoqi@0: * under the terms of the GNU General Public License version 2 only, as aoqi@0: * published by the Free Software Foundation. aoqi@0: * aoqi@0: * This code is distributed in the hope that it will be useful, but WITHOUT aoqi@0: * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or aoqi@0: * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License aoqi@0: * version 2 for more details (a copy is included in the LICENSE file that aoqi@0: * accompanied this code). aoqi@0: * aoqi@0: * You should have received a copy of the GNU General Public License version aoqi@0: * 2 along with this work; if not, write to the Free Software Foundation, aoqi@0: * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. aoqi@0: * aoqi@0: * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA aoqi@0: * or visit www.oracle.com if you need additional information or have any aoqi@0: * questions. aoqi@0: * aoqi@0: */ aoqi@0: aoqi@0: #ifndef SHARE_VM_OPTO_PHASEX_HPP aoqi@0: #define SHARE_VM_OPTO_PHASEX_HPP aoqi@0: aoqi@0: #include "libadt/dict.hpp" aoqi@0: #include "libadt/vectset.hpp" aoqi@0: #include "memory/resourceArea.hpp" aoqi@0: #include "opto/memnode.hpp" aoqi@0: #include "opto/node.hpp" aoqi@0: #include "opto/phase.hpp" aoqi@0: #include "opto/type.hpp" aoqi@0: aoqi@0: class Compile; aoqi@0: class ConINode; aoqi@0: class ConLNode; aoqi@0: class Node; aoqi@0: class Type; aoqi@0: class PhaseTransform; aoqi@0: class PhaseGVN; aoqi@0: class PhaseIterGVN; aoqi@0: class PhaseCCP; aoqi@0: class PhasePeephole; aoqi@0: class PhaseRegAlloc; aoqi@0: aoqi@0: aoqi@0: //----------------------------------------------------------------------------- aoqi@0: // Expandable closed hash-table of nodes, initialized to NULL. aoqi@0: // Note that the constructor just zeros things aoqi@0: // Storage is reclaimed when the Arena's lifetime is over. aoqi@0: class NodeHash : public StackObj { aoqi@0: protected: aoqi@0: Arena *_a; // Arena to allocate in aoqi@0: uint _max; // Size of table (power of 2) aoqi@0: uint _inserts; // For grow and debug, count of hash_inserts aoqi@0: uint _insert_limit; // 'grow' when _inserts reaches _insert_limit aoqi@0: Node **_table; // Hash table of Node pointers aoqi@0: Node *_sentinel; // Replaces deleted entries in hash table aoqi@0: aoqi@0: public: aoqi@0: NodeHash(uint est_max_size); aoqi@0: NodeHash(Arena *arena, uint est_max_size); aoqi@0: NodeHash(NodeHash *use_this_state); aoqi@0: #ifdef ASSERT aoqi@0: ~NodeHash(); // Unlock all nodes upon destruction of table. aoqi@0: void operator=(const NodeHash&); // Unlock all nodes upon replacement of table. aoqi@0: #endif aoqi@0: Node *hash_find(const Node*);// Find an equivalent version in hash table aoqi@0: Node *hash_find_insert(Node*);// If not in table insert else return found node aoqi@0: void hash_insert(Node*); // Insert into hash table aoqi@0: bool hash_delete(const Node*);// Replace with _sentinel in hash table aoqi@0: void check_grow() { aoqi@0: _inserts++; aoqi@0: if( _inserts == _insert_limit ) { grow(); } aoqi@0: assert( _inserts <= _insert_limit, "hash table overflow"); aoqi@0: assert( _inserts < _max, "hash table overflow" ); aoqi@0: } aoqi@0: static uint round_up(uint); // Round up to nearest power of 2 aoqi@0: void grow(); // Grow _table to next power of 2 and rehash aoqi@0: // Return 75% of _max, rounded up. aoqi@0: uint insert_limit() const { return _max - (_max>>2); } aoqi@0: aoqi@0: void clear(); // Set all entries to NULL, keep storage. aoqi@0: // Size of hash table aoqi@0: uint size() const { return _max; } aoqi@0: // Return Node* at index in table aoqi@0: Node *at(uint table_index) { aoqi@0: assert(table_index < _max, "Must be within table"); aoqi@0: return _table[table_index]; aoqi@0: } aoqi@0: aoqi@0: void remove_useless_nodes(VectorSet &useful); // replace with sentinel aoqi@0: void replace_with(NodeHash* nh); aoqi@0: void check_no_speculative_types(); // Check no speculative part for type nodes in table aoqi@0: aoqi@0: Node *sentinel() { return _sentinel; } aoqi@0: aoqi@0: #ifndef PRODUCT aoqi@0: Node *find_index(uint idx); // For debugging aoqi@0: void dump(); // For debugging, dump statistics aoqi@0: #endif aoqi@0: uint _grows; // For debugging, count of table grow()s aoqi@0: uint _look_probes; // For debugging, count of hash probes aoqi@0: uint _lookup_hits; // For debugging, count of hash_finds aoqi@0: uint _lookup_misses; // For debugging, count of hash_finds aoqi@0: uint _insert_probes; // For debugging, count of hash probes aoqi@0: uint _delete_probes; // For debugging, count of hash probes for deletes aoqi@0: uint _delete_hits; // For debugging, count of hash probes for deletes aoqi@0: uint _delete_misses; // For debugging, count of hash probes for deletes aoqi@0: uint _total_inserts; // For debugging, total inserts into hash table aoqi@0: uint _total_insert_probes; // For debugging, total probes while inserting aoqi@0: }; aoqi@0: aoqi@0: aoqi@0: //----------------------------------------------------------------------------- aoqi@0: // Map dense integer indices to Types. Uses classic doubling-array trick. aoqi@0: // Abstractly provides an infinite array of Type*'s, initialized to NULL. aoqi@0: // Note that the constructor just zeros things, and since I use Arena aoqi@0: // allocation I do not need a destructor to reclaim storage. aoqi@0: // Despite the general name, this class is customized for use by PhaseTransform. aoqi@0: class Type_Array : public StackObj { aoqi@0: Arena *_a; // Arena to allocate in aoqi@0: uint _max; aoqi@0: const Type **_types; aoqi@0: void grow( uint i ); // Grow array node to fit aoqi@0: const Type *operator[] ( uint i ) const // Lookup, or NULL for not mapped aoqi@0: { return (i<_max) ? _types[i] : (Type*)NULL; } aoqi@0: friend class PhaseTransform; aoqi@0: public: aoqi@0: Type_Array(Arena *a) : _a(a), _max(0), _types(0) {} aoqi@0: Type_Array(Type_Array *ta) : _a(ta->_a), _max(ta->_max), _types(ta->_types) { } aoqi@0: const Type *fast_lookup(uint i) const{assert(i<_max,"oob");return _types[i];} aoqi@0: // Extend the mapping: index i maps to Type *n. aoqi@0: void map( uint i, const Type *n ) { if( i>=_max ) grow(i); _types[i] = n; } aoqi@0: uint Size() const { return _max; } aoqi@0: #ifndef PRODUCT aoqi@0: void dump() const; aoqi@0: #endif aoqi@0: }; aoqi@0: aoqi@0: aoqi@0: //------------------------------PhaseRemoveUseless----------------------------- aoqi@0: // Remove useless nodes from GVN hash-table, worklist, and graph aoqi@0: class PhaseRemoveUseless : public Phase { aoqi@0: protected: aoqi@0: Unique_Node_List _useful; // Nodes reachable from root aoqi@0: // list is allocated from current resource area aoqi@0: public: aoqi@0: PhaseRemoveUseless( PhaseGVN *gvn, Unique_Node_List *worklist ); aoqi@0: aoqi@0: Unique_Node_List *get_useful() { return &_useful; } aoqi@0: }; aoqi@0: aoqi@0: aoqi@0: //------------------------------PhaseTransform--------------------------------- aoqi@0: // Phases that analyze, then transform. Constructing the Phase object does any aoqi@0: // global or slow analysis. The results are cached later for a fast aoqi@0: // transformation pass. When the Phase object is deleted the cached analysis aoqi@0: // results are deleted. aoqi@0: class PhaseTransform : public Phase { aoqi@0: protected: aoqi@0: Arena* _arena; aoqi@0: Node_Array _nodes; // Map old node indices to new nodes. aoqi@0: Type_Array _types; // Map old node indices to Types. aoqi@0: aoqi@0: // ConNode caches: aoqi@0: enum { _icon_min = -1 * HeapWordSize, aoqi@0: _icon_max = 16 * HeapWordSize, aoqi@0: _lcon_min = _icon_min, aoqi@0: _lcon_max = _icon_max, aoqi@0: _zcon_max = (uint)T_CONFLICT aoqi@0: }; aoqi@0: ConINode* _icons[_icon_max - _icon_min + 1]; // cached jint constant nodes aoqi@0: ConLNode* _lcons[_lcon_max - _lcon_min + 1]; // cached jlong constant nodes aoqi@0: ConNode* _zcons[_zcon_max + 1]; // cached is_zero_type nodes aoqi@0: void init_con_caches(); aoqi@0: aoqi@0: // Support both int and long caches because either might be an intptr_t, aoqi@0: // so they show up frequently in address computations. aoqi@0: aoqi@0: public: aoqi@0: PhaseTransform( PhaseNumber pnum ); aoqi@0: PhaseTransform( Arena *arena, PhaseNumber pnum ); aoqi@0: PhaseTransform( PhaseTransform *phase, PhaseNumber pnum ); aoqi@0: aoqi@0: Arena* arena() { return _arena; } aoqi@0: Type_Array& types() { return _types; } aoqi@0: // _nodes is used in varying ways by subclasses, which define local accessors aoqi@0: aoqi@0: public: aoqi@0: // Get a previously recorded type for the node n. aoqi@0: // This type must already have been recorded. aoqi@0: // If you want the type of a very new (untransformed) node, aoqi@0: // you must use type_or_null, and test the result for NULL. aoqi@0: const Type* type(const Node* n) const { aoqi@0: assert(n != NULL, "must not be null"); aoqi@0: const Type* t = _types.fast_lookup(n->_idx); aoqi@0: assert(t != NULL, "must set before get"); aoqi@0: return t; aoqi@0: } aoqi@0: // Get a previously recorded type for the node n, aoqi@0: // or else return NULL if there is none. aoqi@0: const Type* type_or_null(const Node* n) const { aoqi@0: return _types.fast_lookup(n->_idx); aoqi@0: } aoqi@0: // Record a type for a node. aoqi@0: void set_type(const Node* n, const Type *t) { aoqi@0: assert(t != NULL, "type must not be null"); aoqi@0: _types.map(n->_idx, t); aoqi@0: } aoqi@0: // Record an initial type for a node, the node's bottom type. aoqi@0: void set_type_bottom(const Node* n) { aoqi@0: // Use this for initialization when bottom_type() (or better) is not handy. aoqi@0: // Usually the initialization shoudl be to n->Value(this) instead, aoqi@0: // or a hand-optimized value like Type::MEMORY or Type::CONTROL. aoqi@0: assert(_types[n->_idx] == NULL, "must set the initial type just once"); aoqi@0: _types.map(n->_idx, n->bottom_type()); aoqi@0: } aoqi@0: // Make sure the types array is big enough to record a size for the node n. aoqi@0: // (In product builds, we never want to do range checks on the types array!) aoqi@0: void ensure_type_or_null(const Node* n) { aoqi@0: if (n->_idx >= _types.Size()) aoqi@0: _types.map(n->_idx, NULL); // Grow the types array as needed. aoqi@0: } aoqi@0: aoqi@0: // Utility functions: aoqi@0: const TypeInt* find_int_type( Node* n); aoqi@0: const TypeLong* find_long_type(Node* n); aoqi@0: jint find_int_con( Node* n, jint value_if_unknown) { aoqi@0: const TypeInt* t = find_int_type(n); aoqi@0: return (t != NULL && t->is_con()) ? t->get_con() : value_if_unknown; aoqi@0: } aoqi@0: jlong find_long_con(Node* n, jlong value_if_unknown) { aoqi@0: const TypeLong* t = find_long_type(n); aoqi@0: return (t != NULL && t->is_con()) ? t->get_con() : value_if_unknown; aoqi@0: } aoqi@0: aoqi@0: // Make an idealized constant, i.e., one of ConINode, ConPNode, ConFNode, etc. aoqi@0: // Same as transform(ConNode::make(t)). aoqi@0: ConNode* makecon(const Type* t); aoqi@0: virtual ConNode* uncached_makecon(const Type* t) // override in PhaseValues aoqi@0: { ShouldNotCallThis(); return NULL; } aoqi@0: aoqi@0: // Fast int or long constant. Same as TypeInt::make(i) or TypeLong::make(l). aoqi@0: ConINode* intcon(jint i); aoqi@0: ConLNode* longcon(jlong l); aoqi@0: aoqi@0: // Fast zero or null constant. Same as makecon(Type::get_zero_type(bt)). aoqi@0: ConNode* zerocon(BasicType bt); aoqi@0: aoqi@0: // Return a node which computes the same function as this node, but aoqi@0: // in a faster or cheaper fashion. aoqi@0: virtual Node *transform( Node *n ) = 0; aoqi@0: aoqi@0: // Return whether two Nodes are equivalent. aoqi@0: // Must not be recursive, since the recursive version is built from this. aoqi@0: // For pessimistic optimizations this is simply pointer equivalence. aoqi@0: bool eqv(const Node* n1, const Node* n2) const { return n1 == n2; } aoqi@0: aoqi@0: // For pessimistic passes, the return type must monotonically narrow. aoqi@0: // For optimistic passes, the return type must monotonically widen. aoqi@0: // It is possible to get into a "death march" in either type of pass, aoqi@0: // where the types are continually moving but it will take 2**31 or aoqi@0: // more steps to converge. This doesn't happen on most normal loops. aoqi@0: // aoqi@0: // Here is an example of a deadly loop for an optimistic pass, along aoqi@0: // with a partial trace of inferred types: aoqi@0: // x = phi(0,x'); L: x' = x+1; if (x' >= 0) goto L; aoqi@0: // 0 1 join([0..max], 1) aoqi@0: // [0..1] [1..2] join([0..max], [1..2]) aoqi@0: // [0..2] [1..3] join([0..max], [1..3]) aoqi@0: // ... ... ... aoqi@0: // [0..max] [min]u[1..max] join([0..max], [min..max]) aoqi@0: // [0..max] ==> fixpoint aoqi@0: // We would have proven, the hard way, that the iteration space is all aoqi@0: // non-negative ints, with the loop terminating due to 32-bit overflow. aoqi@0: // aoqi@0: // Here is the corresponding example for a pessimistic pass: aoqi@0: // x = phi(0,x'); L: x' = x-1; if (x' >= 0) goto L; aoqi@0: // int int join([0..max], int) aoqi@0: // [0..max] [-1..max-1] join([0..max], [-1..max-1]) aoqi@0: // [0..max-1] [-1..max-2] join([0..max], [-1..max-2]) aoqi@0: // ... ... ... aoqi@0: // [0..1] [-1..0] join([0..max], [-1..0]) aoqi@0: // 0 -1 join([0..max], -1) aoqi@0: // 0 == fixpoint aoqi@0: // We would have proven, the hard way, that the iteration space is {0}. aoqi@0: // (Usually, other optimizations will make the "if (x >= 0)" fold up aoqi@0: // before we get into trouble. But not always.) aoqi@0: // aoqi@0: // It's a pleasant thing to observe that the pessimistic pass aoqi@0: // will make short work of the optimistic pass's deadly loop, aoqi@0: // and vice versa. That is a good example of the complementary aoqi@0: // purposes of the CCP (optimistic) vs. GVN (pessimistic) phases. aoqi@0: // aoqi@0: // In any case, only widen or narrow a few times before going to the aoqi@0: // correct flavor of top or bottom. aoqi@0: // aoqi@0: // This call only needs to be made once as the data flows around any aoqi@0: // given cycle. We do it at Phis, and nowhere else. aoqi@0: // The types presented are the new type of a phi (computed by PhiNode::Value) aoqi@0: // and the previously computed type, last time the phi was visited. aoqi@0: // aoqi@0: // The third argument is upper limit for the saturated value, aoqi@0: // if the phase wishes to widen the new_type. aoqi@0: // If the phase is narrowing, the old type provides a lower limit. aoqi@0: // Caller guarantees that old_type and new_type are no higher than limit_type. aoqi@0: virtual const Type* saturate(const Type* new_type, const Type* old_type, aoqi@0: const Type* limit_type) const aoqi@0: { ShouldNotCallThis(); return NULL; } aoqi@0: aoqi@0: #ifndef PRODUCT aoqi@0: void dump_old2new_map() const; aoqi@0: void dump_new( uint new_lidx ) const; aoqi@0: void dump_types() const; aoqi@0: void dump_nodes_and_types(const Node *root, uint depth, bool only_ctrl = true); aoqi@0: void dump_nodes_and_types_recur( const Node *n, uint depth, bool only_ctrl, VectorSet &visited); aoqi@0: aoqi@0: uint _count_progress; // For profiling, count transforms that make progress aoqi@0: void set_progress() { ++_count_progress; assert( allow_progress(),"No progress allowed during verification"); } aoqi@0: void clear_progress() { _count_progress = 0; } aoqi@0: uint made_progress() const { return _count_progress; } aoqi@0: aoqi@0: uint _count_transforms; // For profiling, count transforms performed aoqi@0: void set_transforms() { ++_count_transforms; } aoqi@0: void clear_transforms() { _count_transforms = 0; } aoqi@0: uint made_transforms() const{ return _count_transforms; } aoqi@0: aoqi@0: bool _allow_progress; // progress not allowed during verification pass aoqi@0: void set_allow_progress(bool allow) { _allow_progress = allow; } aoqi@0: bool allow_progress() { return _allow_progress; } aoqi@0: #endif aoqi@0: }; aoqi@0: aoqi@0: //------------------------------PhaseValues------------------------------------ aoqi@0: // Phase infrastructure to support values aoqi@0: class PhaseValues : public PhaseTransform { aoqi@0: protected: aoqi@0: NodeHash _table; // Hash table for value-numbering aoqi@0: aoqi@0: public: aoqi@0: PhaseValues( Arena *arena, uint est_max_size ); aoqi@0: PhaseValues( PhaseValues *pt ); aoqi@0: PhaseValues( PhaseValues *ptv, const char *dummy ); aoqi@0: NOT_PRODUCT( ~PhaseValues(); ) aoqi@0: virtual PhaseIterGVN *is_IterGVN() { return 0; } aoqi@0: aoqi@0: // Some Ideal and other transforms delete --> modify --> insert values aoqi@0: bool hash_delete(Node *n) { return _table.hash_delete(n); } aoqi@0: void hash_insert(Node *n) { _table.hash_insert(n); } aoqi@0: Node *hash_find_insert(Node *n){ return _table.hash_find_insert(n); } aoqi@0: Node *hash_find(const Node *n) { return _table.hash_find(n); } aoqi@0: aoqi@0: // Used after parsing to eliminate values that are no longer in program aoqi@0: void remove_useless_nodes(VectorSet &useful) { aoqi@0: _table.remove_useless_nodes(useful); aoqi@0: // this may invalidate cached cons so reset the cache aoqi@0: init_con_caches(); aoqi@0: } aoqi@0: aoqi@0: virtual ConNode* uncached_makecon(const Type* t); // override from PhaseTransform aoqi@0: aoqi@0: virtual const Type* saturate(const Type* new_type, const Type* old_type, aoqi@0: const Type* limit_type) const aoqi@0: { return new_type; } aoqi@0: aoqi@0: #ifndef PRODUCT aoqi@0: uint _count_new_values; // For profiling, count new values produced aoqi@0: void inc_new_values() { ++_count_new_values; } aoqi@0: void clear_new_values() { _count_new_values = 0; } aoqi@0: uint made_new_values() const { return _count_new_values; } aoqi@0: #endif aoqi@0: }; aoqi@0: aoqi@0: aoqi@0: //------------------------------PhaseGVN--------------------------------------- aoqi@0: // Phase for performing local, pessimistic GVN-style optimizations. aoqi@0: class PhaseGVN : public PhaseValues { aoqi@0: public: aoqi@0: PhaseGVN( Arena *arena, uint est_max_size ) : PhaseValues( arena, est_max_size ) {} aoqi@0: PhaseGVN( PhaseGVN *gvn ) : PhaseValues( gvn ) {} aoqi@0: PhaseGVN( PhaseGVN *gvn, const char *dummy ) : PhaseValues( gvn, dummy ) {} aoqi@0: aoqi@0: // Return a node which computes the same function as this node, but aoqi@0: // in a faster or cheaper fashion. aoqi@0: Node *transform( Node *n ); aoqi@0: Node *transform_no_reclaim( Node *n ); aoqi@0: aoqi@0: void replace_with(PhaseGVN* gvn) { aoqi@0: _table.replace_with(&gvn->_table); aoqi@0: _types = gvn->_types; aoqi@0: } aoqi@0: aoqi@0: // Check for a simple dead loop when a data node references itself. aoqi@0: DEBUG_ONLY(void dead_loop_check(Node *n);) aoqi@0: }; aoqi@0: aoqi@0: //------------------------------PhaseIterGVN----------------------------------- aoqi@0: // Phase for iteratively performing local, pessimistic GVN-style optimizations. aoqi@0: // and ideal transformations on the graph. aoqi@0: class PhaseIterGVN : public PhaseGVN { aoqi@0: private: aoqi@0: bool _delay_transform; // When true simply register the node when calling transform aoqi@0: // instead of actually optimizing it aoqi@0: aoqi@0: // Idealize old Node 'n' with respect to its inputs and its value aoqi@0: virtual Node *transform_old( Node *a_node ); aoqi@0: aoqi@0: // Subsume users of node 'old' into node 'nn' aoqi@0: void subsume_node( Node *old, Node *nn ); aoqi@0: aoqi@0: Node_Stack _stack; // Stack used to avoid recursion aoqi@0: aoqi@0: protected: aoqi@0: aoqi@0: // Idealize new Node 'n' with respect to its inputs and its value aoqi@0: virtual Node *transform( Node *a_node ); aoqi@0: aoqi@0: // Warm up hash table, type table and initial worklist aoqi@0: void init_worklist( Node *a_root ); aoqi@0: aoqi@0: virtual const Type* saturate(const Type* new_type, const Type* old_type, aoqi@0: const Type* limit_type) const; aoqi@0: // Usually returns new_type. Returns old_type if new_type is only a slight aoqi@0: // improvement, such that it would take many (>>10) steps to reach 2**32. aoqi@0: aoqi@0: public: aoqi@0: PhaseIterGVN( PhaseIterGVN *igvn ); // Used by CCP constructor aoqi@0: PhaseIterGVN( PhaseGVN *gvn ); // Used after Parser aoqi@0: PhaseIterGVN( PhaseIterGVN *igvn, const char *dummy ); // Used after +VerifyOpto aoqi@0: aoqi@0: virtual PhaseIterGVN *is_IterGVN() { return this; } aoqi@0: aoqi@0: Unique_Node_List _worklist; // Iterative worklist aoqi@0: aoqi@0: // Given def-use info and an initial worklist, apply Node::Ideal, aoqi@0: // Node::Value, Node::Identity, hash-based value numbering, Node::Ideal_DU aoqi@0: // and dominator info to a fixed point. aoqi@0: void optimize(); aoqi@0: aoqi@0: // Register a new node with the iter GVN pass without transforming it. aoqi@0: // Used when we need to restructure a Region/Phi area and all the Regions aoqi@0: // and Phis need to complete this one big transform before any other aoqi@0: // transforms can be triggered on the region. aoqi@0: // Optional 'orig' is an earlier version of this node. aoqi@0: // It is significant only for debugging and profiling. aoqi@0: Node* register_new_node_with_optimizer(Node* n, Node* orig = NULL); aoqi@0: aoqi@0: // Kill a globally dead Node. All uses are also globally dead and are aoqi@0: // aggressively trimmed. aoqi@0: void remove_globally_dead_node( Node *dead ); aoqi@0: aoqi@0: // Kill all inputs to a dead node, recursively making more dead nodes. aoqi@0: // The Node must be dead locally, i.e., have no uses. aoqi@0: void remove_dead_node( Node *dead ) { aoqi@0: assert(dead->outcnt() == 0 && !dead->is_top(), "node must be dead"); aoqi@0: remove_globally_dead_node(dead); aoqi@0: } aoqi@0: aoqi@0: // Add users of 'n' to worklist aoqi@0: void add_users_to_worklist0( Node *n ); aoqi@0: void add_users_to_worklist ( Node *n ); aoqi@0: aoqi@0: // Replace old node with new one. aoqi@0: void replace_node( Node *old, Node *nn ) { aoqi@0: add_users_to_worklist(old); aoqi@0: hash_delete(old); // Yank from hash before hacking edges aoqi@0: subsume_node(old, nn); aoqi@0: } aoqi@0: aoqi@0: // Delayed node rehash: remove a node from the hash table and rehash it during aoqi@0: // next optimizing pass aoqi@0: void rehash_node_delayed(Node* n) { aoqi@0: hash_delete(n); aoqi@0: _worklist.push(n); aoqi@0: } aoqi@0: aoqi@0: // Replace ith edge of "n" with "in" aoqi@0: void replace_input_of(Node* n, int i, Node* in) { aoqi@0: rehash_node_delayed(n); aoqi@0: n->set_req(i, in); aoqi@0: } aoqi@0: aoqi@0: // Delete ith edge of "n" aoqi@0: void delete_input_of(Node* n, int i) { aoqi@0: rehash_node_delayed(n); aoqi@0: n->del_req(i); aoqi@0: } aoqi@0: aoqi@0: bool delay_transform() const { return _delay_transform; } aoqi@0: aoqi@0: void set_delay_transform(bool delay) { aoqi@0: _delay_transform = delay; aoqi@0: } aoqi@0: aoqi@0: // Clone loop predicates. Defined in loopTransform.cpp. aoqi@0: Node* clone_loop_predicates(Node* old_entry, Node* new_entry, bool clone_limit_check); aoqi@0: // Create a new if below new_entry for the predicate to be cloned aoqi@0: ProjNode* create_new_if_for_predicate(ProjNode* cont_proj, Node* new_entry, aoqi@0: Deoptimization::DeoptReason reason); aoqi@0: aoqi@0: void remove_speculative_types(); aoqi@0: void check_no_speculative_types() { aoqi@0: _table.check_no_speculative_types(); aoqi@0: } aoqi@0: aoqi@0: #ifndef PRODUCT aoqi@0: protected: aoqi@0: // Sub-quadratic implementation of VerifyIterativeGVN. aoqi@0: julong _verify_counter; aoqi@0: julong _verify_full_passes; aoqi@0: enum { _verify_window_size = 30 }; aoqi@0: Node* _verify_window[_verify_window_size]; aoqi@0: void verify_step(Node* n); aoqi@0: #endif aoqi@0: }; aoqi@0: aoqi@0: //------------------------------PhaseCCP--------------------------------------- aoqi@0: // Phase for performing global Conditional Constant Propagation. aoqi@0: // Should be replaced with combined CCP & GVN someday. aoqi@0: class PhaseCCP : public PhaseIterGVN { aoqi@0: // Non-recursive. Use analysis to transform single Node. aoqi@0: virtual Node *transform_once( Node *n ); aoqi@0: aoqi@0: public: aoqi@0: PhaseCCP( PhaseIterGVN *igvn ); // Compute conditional constants aoqi@0: NOT_PRODUCT( ~PhaseCCP(); ) aoqi@0: aoqi@0: // Worklist algorithm identifies constants aoqi@0: void analyze(); aoqi@0: // Recursive traversal of program. Used analysis to modify program. aoqi@0: virtual Node *transform( Node *n ); aoqi@0: // Do any transformation after analysis aoqi@0: void do_transform(); aoqi@0: aoqi@0: virtual const Type* saturate(const Type* new_type, const Type* old_type, aoqi@0: const Type* limit_type) const; aoqi@0: // Returns new_type->widen(old_type), which increments the widen bits until aoqi@0: // giving up with TypeInt::INT or TypeLong::LONG. aoqi@0: // Result is clipped to limit_type if necessary. aoqi@0: aoqi@0: #ifndef PRODUCT aoqi@0: static uint _total_invokes; // For profiling, count invocations aoqi@0: void inc_invokes() { ++PhaseCCP::_total_invokes; } aoqi@0: aoqi@0: static uint _total_constants; // For profiling, count constants found aoqi@0: uint _count_constants; aoqi@0: void clear_constants() { _count_constants = 0; } aoqi@0: void inc_constants() { ++_count_constants; } aoqi@0: uint count_constants() const { return _count_constants; } aoqi@0: aoqi@0: static void print_statistics(); aoqi@0: #endif aoqi@0: }; aoqi@0: aoqi@0: aoqi@0: //------------------------------PhasePeephole---------------------------------- aoqi@0: // Phase for performing peephole optimizations on register allocated basic blocks. aoqi@0: class PhasePeephole : public PhaseTransform { aoqi@0: PhaseRegAlloc *_regalloc; aoqi@0: PhaseCFG &_cfg; aoqi@0: // Recursive traversal of program. Pure function is unused in this phase aoqi@0: virtual Node *transform( Node *n ); aoqi@0: aoqi@0: public: aoqi@0: PhasePeephole( PhaseRegAlloc *regalloc, PhaseCFG &cfg ); aoqi@0: NOT_PRODUCT( ~PhasePeephole(); ) aoqi@0: aoqi@0: // Do any transformation after analysis aoqi@0: void do_transform(); aoqi@0: aoqi@0: #ifndef PRODUCT aoqi@0: static uint _total_peepholes; // For profiling, count peephole rules applied aoqi@0: uint _count_peepholes; aoqi@0: void clear_peepholes() { _count_peepholes = 0; } aoqi@0: void inc_peepholes() { ++_count_peepholes; } aoqi@0: uint count_peepholes() const { return _count_peepholes; } aoqi@0: aoqi@0: static void print_statistics(); aoqi@0: #endif aoqi@0: }; aoqi@0: aoqi@0: #endif // SHARE_VM_OPTO_PHASEX_HPP