duke@435: /* trims@1907: * Copyright (c) 1997, 2005, Oracle and/or its affiliates. All rights reserved. duke@435: * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. duke@435: * duke@435: * This code is free software; you can redistribute it and/or modify it duke@435: * under the terms of the GNU General Public License version 2 only, as duke@435: * published by the Free Software Foundation. duke@435: * duke@435: * This code is distributed in the hope that it will be useful, but WITHOUT duke@435: * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or duke@435: * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License duke@435: * version 2 for more details (a copy is included in the LICENSE file that duke@435: * accompanied this code). duke@435: * duke@435: * You should have received a copy of the GNU General Public License version duke@435: * 2 along with this work; if not, write to the Free Software Foundation, duke@435: * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. duke@435: * trims@1907: * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA trims@1907: * or visit www.oracle.com if you need additional information or have any trims@1907: * questions. duke@435: * duke@435: */ duke@435: duke@435: # include "incls/_precompiled.incl" duke@435: # include "incls/_allocation.cpp.incl" duke@435: duke@435: void* CHeapObj::operator new(size_t size){ duke@435: return (void *) AllocateHeap(size, "CHeapObj-new"); duke@435: } duke@435: duke@435: void CHeapObj::operator delete(void* p){ duke@435: FreeHeap(p); duke@435: } duke@435: duke@435: void* StackObj::operator new(size_t size) { ShouldNotCallThis(); return 0; }; duke@435: void StackObj::operator delete(void* p) { ShouldNotCallThis(); }; duke@435: void* _ValueObj::operator new(size_t size) { ShouldNotCallThis(); return 0; }; duke@435: void _ValueObj::operator delete(void* p) { ShouldNotCallThis(); }; duke@435: duke@435: void* ResourceObj::operator new(size_t size, allocation_type type) { duke@435: address res; duke@435: switch (type) { duke@435: case C_HEAP: duke@435: res = (address)AllocateHeap(size, "C_Heap: ResourceOBJ"); kvn@2040: DEBUG_ONLY(set_allocation_type(res, C_HEAP);) duke@435: break; duke@435: case RESOURCE_AREA: kvn@2043: // new(size) sets allocation type RESOURCE_AREA. duke@435: res = (address)operator new(size); duke@435: break; duke@435: default: duke@435: ShouldNotReachHere(); duke@435: } duke@435: return res; duke@435: } duke@435: duke@435: void ResourceObj::operator delete(void* p) { duke@435: assert(((ResourceObj *)p)->allocated_on_C_heap(), duke@435: "delete only allowed for C_HEAP objects"); kvn@2040: DEBUG_ONLY(((ResourceObj *)p)->_allocation = badHeapOopVal;) duke@435: FreeHeap(p); duke@435: } duke@435: kvn@2040: #ifdef ASSERT kvn@2040: void ResourceObj::set_allocation_type(address res, allocation_type type) { kvn@2040: // Set allocation type in the resource object kvn@2040: uintptr_t allocation = (uintptr_t)res; kvn@2043: assert((allocation & allocation_mask) == 0, "address should be aligned to 4 bytes at least"); kvn@2040: assert(type <= allocation_mask, "incorrect allocation type"); kvn@2040: ((ResourceObj *)res)->_allocation = ~(allocation + type); kvn@2040: } kvn@2040: kvn@2043: ResourceObj::allocation_type ResourceObj::get_allocation_type() const { kvn@2040: assert(~(_allocation | allocation_mask) == (uintptr_t)this, "lost resource object"); kvn@2040: return (allocation_type)((~_allocation) & allocation_mask); kvn@2040: } kvn@2040: kvn@2043: ResourceObj::ResourceObj() { // default constructor kvn@2040: if (~(_allocation | allocation_mask) != (uintptr_t)this) { kvn@2040: set_allocation_type((address)this, STACK_OR_EMBEDDED); kvn@2043: } else if (allocated_on_stack()) { kvn@2043: // For some reason we got a value which looks like an allocation on stack. kvn@2043: // Pass if it is really allocated on stack. kvn@2043: assert(Thread::current()->on_local_stack((address)this),"should be on stack"); kvn@2040: } else { kvn@2040: assert(allocated_on_res_area() || allocated_on_C_heap() || allocated_on_arena(), kvn@2040: "allocation_type should be set by operator new()"); kvn@2040: } kvn@2040: } kvn@2040: kvn@2043: ResourceObj::ResourceObj(const ResourceObj& r) { // default copy constructor kvn@2040: // Used in ClassFileParser::parse_constant_pool_entries() for ClassFileStream. kvn@2040: set_allocation_type((address)this, STACK_OR_EMBEDDED); kvn@2040: } kvn@2040: kvn@2040: ResourceObj& ResourceObj::operator=(const ResourceObj& r) { // default copy assignment kvn@2040: // Used in InlineTree::ok_to_inline() for WarmCallInfo. kvn@2040: assert(allocated_on_stack(), "copy only into local"); kvn@2040: // Keep current _allocation value; kvn@2040: return *this; kvn@2040: } kvn@2040: kvn@2040: ResourceObj::~ResourceObj() { kvn@2043: // allocated_on_C_heap() also checks that encoded (in _allocation) address == this. kvn@2043: if (!allocated_on_C_heap()) { // ResourceObj::delete() zaps _allocation for C_heap. kvn@2043: _allocation = badHeapOopVal; // zap type kvn@2040: } kvn@2040: } kvn@2040: #endif // ASSERT kvn@2040: kvn@2040: duke@435: void trace_heap_malloc(size_t size, const char* name, void* p) { duke@435: // A lock is not needed here - tty uses a lock internally duke@435: tty->print_cr("Heap malloc " INTPTR_FORMAT " %7d %s", p, size, name == NULL ? "" : name); duke@435: } duke@435: duke@435: duke@435: void trace_heap_free(void* p) { duke@435: // A lock is not needed here - tty uses a lock internally duke@435: tty->print_cr("Heap free " INTPTR_FORMAT, p); duke@435: } duke@435: duke@435: bool warn_new_operator = false; // see vm_main duke@435: duke@435: //-------------------------------------------------------------------------------------- duke@435: // ChunkPool implementation duke@435: duke@435: // MT-safe pool of chunks to reduce malloc/free thrashing duke@435: // NB: not using Mutex because pools are used before Threads are initialized duke@435: class ChunkPool { duke@435: Chunk* _first; // first cached Chunk; its first word points to next chunk duke@435: size_t _num_chunks; // number of unused chunks in pool duke@435: size_t _num_used; // number of chunks currently checked out duke@435: const size_t _size; // size of each chunk (must be uniform) duke@435: duke@435: // Our three static pools duke@435: static ChunkPool* _large_pool; duke@435: static ChunkPool* _medium_pool; duke@435: static ChunkPool* _small_pool; duke@435: duke@435: // return first element or null duke@435: void* get_first() { duke@435: Chunk* c = _first; duke@435: if (_first) { duke@435: _first = _first->next(); duke@435: _num_chunks--; duke@435: } duke@435: return c; duke@435: } duke@435: duke@435: public: duke@435: // All chunks in a ChunkPool has the same size duke@435: ChunkPool(size_t size) : _size(size) { _first = NULL; _num_chunks = _num_used = 0; } duke@435: duke@435: // Allocate a new chunk from the pool (might expand the pool) duke@435: void* allocate(size_t bytes) { duke@435: assert(bytes == _size, "bad size"); duke@435: void* p = NULL; duke@435: { ThreadCritical tc; duke@435: _num_used++; duke@435: p = get_first(); duke@435: if (p == NULL) p = os::malloc(bytes); duke@435: } duke@435: if (p == NULL) duke@435: vm_exit_out_of_memory(bytes, "ChunkPool::allocate"); duke@435: duke@435: return p; duke@435: } duke@435: duke@435: // Return a chunk to the pool duke@435: void free(Chunk* chunk) { duke@435: assert(chunk->length() + Chunk::aligned_overhead_size() == _size, "bad size"); duke@435: ThreadCritical tc; duke@435: _num_used--; duke@435: duke@435: // Add chunk to list duke@435: chunk->set_next(_first); duke@435: _first = chunk; duke@435: _num_chunks++; duke@435: } duke@435: duke@435: // Prune the pool duke@435: void free_all_but(size_t n) { duke@435: // if we have more than n chunks, free all of them duke@435: ThreadCritical tc; duke@435: if (_num_chunks > n) { duke@435: // free chunks at end of queue, for better locality duke@435: Chunk* cur = _first; duke@435: for (size_t i = 0; i < (n - 1) && cur != NULL; i++) cur = cur->next(); duke@435: duke@435: if (cur != NULL) { duke@435: Chunk* next = cur->next(); duke@435: cur->set_next(NULL); duke@435: cur = next; duke@435: duke@435: // Free all remaining chunks duke@435: while(cur != NULL) { duke@435: next = cur->next(); duke@435: os::free(cur); duke@435: _num_chunks--; duke@435: cur = next; duke@435: } duke@435: } duke@435: } duke@435: } duke@435: duke@435: // Accessors to preallocated pool's duke@435: static ChunkPool* large_pool() { assert(_large_pool != NULL, "must be initialized"); return _large_pool; } duke@435: static ChunkPool* medium_pool() { assert(_medium_pool != NULL, "must be initialized"); return _medium_pool; } duke@435: static ChunkPool* small_pool() { assert(_small_pool != NULL, "must be initialized"); return _small_pool; } duke@435: duke@435: static void initialize() { duke@435: _large_pool = new ChunkPool(Chunk::size + Chunk::aligned_overhead_size()); duke@435: _medium_pool = new ChunkPool(Chunk::medium_size + Chunk::aligned_overhead_size()); duke@435: _small_pool = new ChunkPool(Chunk::init_size + Chunk::aligned_overhead_size()); duke@435: } bobv@2036: bobv@2036: static void clean() { bobv@2036: enum { BlocksToKeep = 5 }; bobv@2036: _small_pool->free_all_but(BlocksToKeep); bobv@2036: _medium_pool->free_all_but(BlocksToKeep); bobv@2036: _large_pool->free_all_but(BlocksToKeep); bobv@2036: } duke@435: }; duke@435: duke@435: ChunkPool* ChunkPool::_large_pool = NULL; duke@435: ChunkPool* ChunkPool::_medium_pool = NULL; duke@435: ChunkPool* ChunkPool::_small_pool = NULL; duke@435: duke@435: void chunkpool_init() { duke@435: ChunkPool::initialize(); duke@435: } duke@435: bobv@2036: void bobv@2036: Chunk::clean_chunk_pool() { bobv@2036: ChunkPool::clean(); bobv@2036: } bobv@2036: duke@435: duke@435: //-------------------------------------------------------------------------------------- duke@435: // ChunkPoolCleaner implementation bobv@2036: // duke@435: duke@435: class ChunkPoolCleaner : public PeriodicTask { bobv@2036: enum { CleaningInterval = 5000 }; // cleaning interval in ms duke@435: duke@435: public: duke@435: ChunkPoolCleaner() : PeriodicTask(CleaningInterval) {} duke@435: void task() { bobv@2036: ChunkPool::clean(); duke@435: } duke@435: }; duke@435: duke@435: //-------------------------------------------------------------------------------------- duke@435: // Chunk implementation duke@435: duke@435: void* Chunk::operator new(size_t requested_size, size_t length) { duke@435: // requested_size is equal to sizeof(Chunk) but in order for the arena duke@435: // allocations to come out aligned as expected the size must be aligned duke@435: // to expected arean alignment. duke@435: // expect requested_size but if sizeof(Chunk) doesn't match isn't proper size we must align it. duke@435: assert(ARENA_ALIGN(requested_size) == aligned_overhead_size(), "Bad alignment"); duke@435: size_t bytes = ARENA_ALIGN(requested_size) + length; duke@435: switch (length) { duke@435: case Chunk::size: return ChunkPool::large_pool()->allocate(bytes); duke@435: case Chunk::medium_size: return ChunkPool::medium_pool()->allocate(bytes); duke@435: case Chunk::init_size: return ChunkPool::small_pool()->allocate(bytes); duke@435: default: { duke@435: void *p = os::malloc(bytes); duke@435: if (p == NULL) duke@435: vm_exit_out_of_memory(bytes, "Chunk::new"); duke@435: return p; duke@435: } duke@435: } duke@435: } duke@435: duke@435: void Chunk::operator delete(void* p) { duke@435: Chunk* c = (Chunk*)p; duke@435: switch (c->length()) { duke@435: case Chunk::size: ChunkPool::large_pool()->free(c); break; duke@435: case Chunk::medium_size: ChunkPool::medium_pool()->free(c); break; duke@435: case Chunk::init_size: ChunkPool::small_pool()->free(c); break; duke@435: default: os::free(c); duke@435: } duke@435: } duke@435: duke@435: Chunk::Chunk(size_t length) : _len(length) { duke@435: _next = NULL; // Chain on the linked list duke@435: } duke@435: duke@435: duke@435: void Chunk::chop() { duke@435: Chunk *k = this; duke@435: while( k ) { duke@435: Chunk *tmp = k->next(); duke@435: // clear out this chunk (to detect allocation bugs) duke@435: if (ZapResourceArea) memset(k->bottom(), badResourceValue, k->length()); duke@435: delete k; // Free chunk (was malloc'd) duke@435: k = tmp; duke@435: } duke@435: } duke@435: duke@435: void Chunk::next_chop() { duke@435: _next->chop(); duke@435: _next = NULL; duke@435: } duke@435: duke@435: duke@435: void Chunk::start_chunk_pool_cleaner_task() { duke@435: #ifdef ASSERT duke@435: static bool task_created = false; duke@435: assert(!task_created, "should not start chuck pool cleaner twice"); duke@435: task_created = true; duke@435: #endif duke@435: ChunkPoolCleaner* cleaner = new ChunkPoolCleaner(); duke@435: cleaner->enroll(); duke@435: } duke@435: duke@435: //------------------------------Arena------------------------------------------ duke@435: duke@435: Arena::Arena(size_t init_size) { duke@435: size_t round_size = (sizeof (char *)) - 1; duke@435: init_size = (init_size+round_size) & ~round_size; duke@435: _first = _chunk = new (init_size) Chunk(init_size); duke@435: _hwm = _chunk->bottom(); // Save the cached hwm, max duke@435: _max = _chunk->top(); duke@435: set_size_in_bytes(init_size); duke@435: } duke@435: duke@435: Arena::Arena() { duke@435: _first = _chunk = new (Chunk::init_size) Chunk(Chunk::init_size); duke@435: _hwm = _chunk->bottom(); // Save the cached hwm, max duke@435: _max = _chunk->top(); duke@435: set_size_in_bytes(Chunk::init_size); duke@435: } duke@435: duke@435: Arena::Arena(Arena *a) : _chunk(a->_chunk), _hwm(a->_hwm), _max(a->_max), _first(a->_first) { duke@435: set_size_in_bytes(a->size_in_bytes()); duke@435: } duke@435: duke@435: Arena *Arena::move_contents(Arena *copy) { duke@435: copy->destruct_contents(); duke@435: copy->_chunk = _chunk; duke@435: copy->_hwm = _hwm; duke@435: copy->_max = _max; duke@435: copy->_first = _first; duke@435: copy->set_size_in_bytes(size_in_bytes()); duke@435: // Destroy original arena duke@435: reset(); duke@435: return copy; // Return Arena with contents duke@435: } duke@435: duke@435: Arena::~Arena() { duke@435: destruct_contents(); duke@435: } duke@435: duke@435: // Destroy this arenas contents and reset to empty duke@435: void Arena::destruct_contents() { duke@435: if (UseMallocOnly && _first != NULL) { duke@435: char* end = _first->next() ? _first->top() : _hwm; duke@435: free_malloced_objects(_first, _first->bottom(), end, _hwm); duke@435: } duke@435: _first->chop(); duke@435: reset(); duke@435: } duke@435: duke@435: duke@435: // Total of all Chunks in arena duke@435: size_t Arena::used() const { duke@435: size_t sum = _chunk->length() - (_max-_hwm); // Size leftover in this Chunk duke@435: register Chunk *k = _first; duke@435: while( k != _chunk) { // Whilst have Chunks in a row duke@435: sum += k->length(); // Total size of this Chunk duke@435: k = k->next(); // Bump along to next Chunk duke@435: } duke@435: return sum; // Return total consumed space. duke@435: } duke@435: duke@435: duke@435: // Grow a new Chunk duke@435: void* Arena::grow( size_t x ) { duke@435: // Get minimal required size. Either real big, or even bigger for giant objs duke@435: size_t len = MAX2(x, (size_t) Chunk::size); duke@435: duke@435: Chunk *k = _chunk; // Get filled-up chunk address duke@435: _chunk = new (len) Chunk(len); duke@435: duke@435: if (_chunk == NULL) duke@435: vm_exit_out_of_memory(len * Chunk::aligned_overhead_size(), "Arena::grow"); duke@435: duke@435: if (k) k->set_next(_chunk); // Append new chunk to end of linked list duke@435: else _first = _chunk; duke@435: _hwm = _chunk->bottom(); // Save the cached hwm, max duke@435: _max = _chunk->top(); duke@435: set_size_in_bytes(size_in_bytes() + len); duke@435: void* result = _hwm; duke@435: _hwm += x; duke@435: return result; duke@435: } duke@435: duke@435: duke@435: duke@435: // Reallocate storage in Arena. duke@435: void *Arena::Arealloc(void* old_ptr, size_t old_size, size_t new_size) { duke@435: assert(new_size >= 0, "bad size"); duke@435: if (new_size == 0) return NULL; duke@435: #ifdef ASSERT duke@435: if (UseMallocOnly) { duke@435: // always allocate a new object (otherwise we'll free this one twice) duke@435: char* copy = (char*)Amalloc(new_size); duke@435: size_t n = MIN2(old_size, new_size); duke@435: if (n > 0) memcpy(copy, old_ptr, n); duke@435: Afree(old_ptr,old_size); // Mostly done to keep stats accurate duke@435: return copy; duke@435: } duke@435: #endif duke@435: char *c_old = (char*)old_ptr; // Handy name duke@435: // Stupid fast special case duke@435: if( new_size <= old_size ) { // Shrink in-place duke@435: if( c_old+old_size == _hwm) // Attempt to free the excess bytes duke@435: _hwm = c_old+new_size; // Adjust hwm duke@435: return c_old; duke@435: } duke@435: duke@435: // make sure that new_size is legal duke@435: size_t corrected_new_size = ARENA_ALIGN(new_size); duke@435: duke@435: // See if we can resize in-place duke@435: if( (c_old+old_size == _hwm) && // Adjusting recent thing duke@435: (c_old+corrected_new_size <= _max) ) { // Still fits where it sits duke@435: _hwm = c_old+corrected_new_size; // Adjust hwm duke@435: return c_old; // Return old pointer duke@435: } duke@435: duke@435: // Oops, got to relocate guts duke@435: void *new_ptr = Amalloc(new_size); duke@435: memcpy( new_ptr, c_old, old_size ); duke@435: Afree(c_old,old_size); // Mostly done to keep stats accurate duke@435: return new_ptr; duke@435: } duke@435: duke@435: duke@435: // Determine if pointer belongs to this Arena or not. duke@435: bool Arena::contains( const void *ptr ) const { duke@435: #ifdef ASSERT duke@435: if (UseMallocOnly) { duke@435: // really slow, but not easy to make fast duke@435: if (_chunk == NULL) return false; duke@435: char** bottom = (char**)_chunk->bottom(); duke@435: for (char** p = (char**)_hwm - 1; p >= bottom; p--) { duke@435: if (*p == ptr) return true; duke@435: } duke@435: for (Chunk *c = _first; c != NULL; c = c->next()) { duke@435: if (c == _chunk) continue; // current chunk has been processed duke@435: char** bottom = (char**)c->bottom(); duke@435: for (char** p = (char**)c->top() - 1; p >= bottom; p--) { duke@435: if (*p == ptr) return true; duke@435: } duke@435: } duke@435: return false; duke@435: } duke@435: #endif duke@435: if( (void*)_chunk->bottom() <= ptr && ptr < (void*)_hwm ) duke@435: return true; // Check for in this chunk duke@435: for (Chunk *c = _first; c; c = c->next()) { duke@435: if (c == _chunk) continue; // current chunk has been processed duke@435: if ((void*)c->bottom() <= ptr && ptr < (void*)c->top()) { duke@435: return true; // Check for every chunk in Arena duke@435: } duke@435: } duke@435: return false; // Not in any Chunk, so not in Arena duke@435: } duke@435: duke@435: duke@435: #ifdef ASSERT duke@435: void* Arena::malloc(size_t size) { duke@435: assert(UseMallocOnly, "shouldn't call"); duke@435: // use malloc, but save pointer in res. area for later freeing duke@435: char** save = (char**)internal_malloc_4(sizeof(char*)); duke@435: return (*save = (char*)os::malloc(size)); duke@435: } duke@435: duke@435: // for debugging with UseMallocOnly duke@435: void* Arena::internal_malloc_4(size_t x) { duke@435: assert( (x&(sizeof(char*)-1)) == 0, "misaligned size" ); duke@435: if (_hwm + x > _max) { duke@435: return grow(x); duke@435: } else { duke@435: char *old = _hwm; duke@435: _hwm += x; duke@435: return old; duke@435: } duke@435: } duke@435: #endif duke@435: duke@435: duke@435: //-------------------------------------------------------------------------------------- duke@435: // Non-product code duke@435: duke@435: #ifndef PRODUCT duke@435: // The global operator new should never be called since it will usually indicate duke@435: // a memory leak. Use CHeapObj as the base class of such objects to make it explicit duke@435: // that they're allocated on the C heap. duke@435: // Commented out in product version to avoid conflicts with third-party C++ native code. duke@435: // %% note this is causing a problem on solaris debug build. the global duke@435: // new is being called from jdk source and causing data corruption. duke@435: // src/share/native/sun/awt/font/fontmanager/textcache/hsMemory.cpp::hsSoftNew duke@435: // define CATCH_OPERATOR_NEW_USAGE if you want to use this. duke@435: #ifdef CATCH_OPERATOR_NEW_USAGE duke@435: void* operator new(size_t size){ duke@435: static bool warned = false; duke@435: if (!warned && warn_new_operator) duke@435: warning("should not call global (default) operator new"); duke@435: warned = true; duke@435: return (void *) AllocateHeap(size, "global operator new"); duke@435: } duke@435: #endif duke@435: duke@435: void AllocatedObj::print() const { print_on(tty); } duke@435: void AllocatedObj::print_value() const { print_value_on(tty); } duke@435: duke@435: void AllocatedObj::print_on(outputStream* st) const { duke@435: st->print_cr("AllocatedObj(" INTPTR_FORMAT ")", this); duke@435: } duke@435: duke@435: void AllocatedObj::print_value_on(outputStream* st) const { duke@435: st->print("AllocatedObj(" INTPTR_FORMAT ")", this); duke@435: } duke@435: duke@435: size_t Arena::_bytes_allocated = 0; duke@435: duke@435: AllocStats::AllocStats() { duke@435: start_mallocs = os::num_mallocs; duke@435: start_frees = os::num_frees; duke@435: start_malloc_bytes = os::alloc_bytes; duke@435: start_res_bytes = Arena::_bytes_allocated; duke@435: } duke@435: duke@435: int AllocStats::num_mallocs() { return os::num_mallocs - start_mallocs; } duke@435: size_t AllocStats::alloc_bytes() { return os::alloc_bytes - start_malloc_bytes; } duke@435: size_t AllocStats::resource_bytes() { return Arena::_bytes_allocated - start_res_bytes; } duke@435: int AllocStats::num_frees() { return os::num_frees - start_frees; } duke@435: void AllocStats::print() { duke@435: tty->print("%d mallocs (%ldK), %d frees, %ldK resrc", duke@435: num_mallocs(), alloc_bytes()/K, num_frees(), resource_bytes()/K); duke@435: } duke@435: duke@435: duke@435: // debugging code duke@435: inline void Arena::free_all(char** start, char** end) { duke@435: for (char** p = start; p < end; p++) if (*p) os::free(*p); duke@435: } duke@435: duke@435: void Arena::free_malloced_objects(Chunk* chunk, char* hwm, char* max, char* hwm2) { duke@435: assert(UseMallocOnly, "should not call"); duke@435: // free all objects malloced since resource mark was created; resource area duke@435: // contains their addresses duke@435: if (chunk->next()) { duke@435: // this chunk is full, and some others too duke@435: for (Chunk* c = chunk->next(); c != NULL; c = c->next()) { duke@435: char* top = c->top(); duke@435: if (c->next() == NULL) { duke@435: top = hwm2; // last junk is only used up to hwm2 duke@435: assert(c->contains(hwm2), "bad hwm2"); duke@435: } duke@435: free_all((char**)c->bottom(), (char**)top); duke@435: } duke@435: assert(chunk->contains(hwm), "bad hwm"); duke@435: assert(chunk->contains(max), "bad max"); duke@435: free_all((char**)hwm, (char**)max); duke@435: } else { duke@435: // this chunk was partially used duke@435: assert(chunk->contains(hwm), "bad hwm"); duke@435: assert(chunk->contains(hwm2), "bad hwm2"); duke@435: free_all((char**)hwm, (char**)hwm2); duke@435: } duke@435: } duke@435: duke@435: duke@435: ReallocMark::ReallocMark() { duke@435: #ifdef ASSERT duke@435: Thread *thread = ThreadLocalStorage::get_thread_slow(); duke@435: _nesting = thread->resource_area()->nesting(); duke@435: #endif duke@435: } duke@435: duke@435: void ReallocMark::check() { duke@435: #ifdef ASSERT duke@435: if (_nesting != Thread::current()->resource_area()->nesting()) { duke@435: fatal("allocation bug: array could grow within nested ResourceMark"); duke@435: } duke@435: #endif duke@435: } duke@435: duke@435: #endif // Non-product