duke@435: /* drchase@6680: * Copyright (c) 2005, 2014, Oracle and/or its affiliates. All rights reserved. duke@435: * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. duke@435: * duke@435: * This code is free software; you can redistribute it and/or modify it duke@435: * under the terms of the GNU General Public License version 2 only, as duke@435: * published by the Free Software Foundation. duke@435: * duke@435: * This code is distributed in the hope that it will be useful, but WITHOUT duke@435: * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or duke@435: * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License duke@435: * version 2 for more details (a copy is included in the LICENSE file that duke@435: * accompanied this code). duke@435: * duke@435: * You should have received a copy of the GNU General Public License version duke@435: * 2 along with this work; if not, write to the Free Software Foundation, duke@435: * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. duke@435: * trims@1907: * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA trims@1907: * or visit www.oracle.com if you need additional information or have any trims@1907: * questions. duke@435: * duke@435: */ duke@435: stefank@2314: #include "precompiled.hpp" stefank@2314: #include "gc_implementation/concurrentMarkSweep/cmsAdaptiveSizePolicy.hpp" stefank@2314: #include "gc_implementation/concurrentMarkSweep/cmsGCAdaptivePolicyCounters.hpp" stefank@2314: #include "gc_implementation/parNew/asParNewGeneration.hpp" stefank@2314: #include "gc_implementation/parNew/parNewGeneration.hpp" stefank@2314: #include "gc_implementation/shared/markSweep.inline.hpp" stefank@2314: #include "gc_implementation/shared/spaceDecorator.hpp" stefank@2314: #include "memory/defNewGeneration.inline.hpp" stefank@2314: #include "memory/referencePolicy.hpp" stefank@2314: #include "oops/markOop.inline.hpp" stefank@2314: #include "oops/oop.pcgc.inline.hpp" duke@435: duke@435: ASParNewGeneration::ASParNewGeneration(ReservedSpace rs, duke@435: size_t initial_byte_size, duke@435: size_t min_byte_size, duke@435: int level) : duke@435: ParNewGeneration(rs, initial_byte_size, level), duke@435: _min_gen_size(min_byte_size) {} duke@435: duke@435: const char* ASParNewGeneration::name() const { duke@435: return "adaptive size par new generation"; duke@435: } duke@435: duke@435: void ASParNewGeneration::adjust_desired_tenuring_threshold() { duke@435: assert(UseAdaptiveSizePolicy, duke@435: "Should only be used with UseAdaptiveSizePolicy"); duke@435: } duke@435: duke@435: void ASParNewGeneration::resize(size_t eden_size, size_t survivor_size) { duke@435: // Resize the generation if needed. If the generation resize duke@435: // reports false, do not attempt to resize the spaces. duke@435: if (resize_generation(eden_size, survivor_size)) { duke@435: // Then we lay out the spaces inside the generation duke@435: resize_spaces(eden_size, survivor_size); duke@435: duke@435: space_invariants(); duke@435: duke@435: if (PrintAdaptiveSizePolicy && Verbose) { duke@435: gclog_or_tty->print_cr("Young generation size: " duke@435: "desired eden: " SIZE_FORMAT " survivor: " SIZE_FORMAT duke@435: " used: " SIZE_FORMAT " capacity: " SIZE_FORMAT duke@435: " gen limits: " SIZE_FORMAT " / " SIZE_FORMAT, duke@435: eden_size, survivor_size, used(), capacity(), duke@435: max_gen_size(), min_gen_size()); duke@435: } duke@435: } duke@435: } duke@435: duke@435: size_t ASParNewGeneration::available_to_min_gen() { duke@435: assert(virtual_space()->committed_size() >= min_gen_size(), "Invariant"); duke@435: return virtual_space()->committed_size() - min_gen_size(); duke@435: } duke@435: duke@435: // This method assumes that from-space has live data and that duke@435: // any shrinkage of the young gen is limited by location of duke@435: // from-space. duke@435: size_t ASParNewGeneration::available_to_live() const { duke@435: #undef SHRINKS_AT_END_OF_EDEN duke@435: #ifdef SHRINKS_AT_END_OF_EDEN duke@435: size_t delta_in_survivor = 0; duke@435: ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap(); jmasa@448: const size_t space_alignment = heap->intra_heap_alignment(); jmasa@448: const size_t gen_alignment = heap->object_heap_alignment(); duke@435: duke@435: MutableSpace* space_shrinking = NULL; duke@435: if (from_space()->end() > to_space()->end()) { duke@435: space_shrinking = from_space(); duke@435: } else { duke@435: space_shrinking = to_space(); duke@435: } duke@435: duke@435: // Include any space that is committed but not included in duke@435: // the survivor spaces. duke@435: assert(((HeapWord*)virtual_space()->high()) >= space_shrinking->end(), duke@435: "Survivor space beyond high end"); duke@435: size_t unused_committed = pointer_delta(virtual_space()->high(), duke@435: space_shrinking->end(), sizeof(char)); duke@435: duke@435: if (space_shrinking->is_empty()) { duke@435: // Don't let the space shrink to 0 duke@435: assert(space_shrinking->capacity_in_bytes() >= space_alignment, duke@435: "Space is too small"); duke@435: delta_in_survivor = space_shrinking->capacity_in_bytes() - space_alignment; duke@435: } else { duke@435: delta_in_survivor = pointer_delta(space_shrinking->end(), duke@435: space_shrinking->top(), duke@435: sizeof(char)); duke@435: } duke@435: duke@435: size_t delta_in_bytes = unused_committed + delta_in_survivor; duke@435: delta_in_bytes = align_size_down(delta_in_bytes, gen_alignment); duke@435: return delta_in_bytes; duke@435: #else duke@435: // The only space available for shrinking is in to-space if it duke@435: // is above from-space. duke@435: if (to()->bottom() > from()->bottom()) { duke@435: const size_t alignment = os::vm_page_size(); duke@435: if (to()->capacity() < alignment) { duke@435: return 0; duke@435: } else { duke@435: return to()->capacity() - alignment; duke@435: } duke@435: } else { duke@435: return 0; duke@435: } duke@435: #endif duke@435: } duke@435: duke@435: // Return the number of bytes available for resizing down the young duke@435: // generation. This is the minimum of duke@435: // input "bytes" duke@435: // bytes to the minimum young gen size duke@435: // bytes to the size currently being used + some small extra duke@435: size_t ASParNewGeneration::limit_gen_shrink (size_t bytes) { duke@435: // Allow shrinkage into the current eden but keep eden large enough duke@435: // to maintain the minimum young gen size duke@435: bytes = MIN3(bytes, available_to_min_gen(), available_to_live()); duke@435: return align_size_down(bytes, os::vm_page_size()); duke@435: } duke@435: duke@435: // Note that the the alignment used is the OS page size as duke@435: // opposed to an alignment associated with the virtual space duke@435: // (as is done in the ASPSYoungGen/ASPSOldGen) duke@435: bool ASParNewGeneration::resize_generation(size_t eden_size, duke@435: size_t survivor_size) { duke@435: const size_t alignment = os::vm_page_size(); duke@435: size_t orig_size = virtual_space()->committed_size(); duke@435: bool size_changed = false; duke@435: duke@435: // There used to be this guarantee there. duke@435: // guarantee ((eden_size + 2*survivor_size) <= _max_gen_size, "incorrect input arguments"); duke@435: // Code below forces this requirement. In addition the desired eden duke@435: // size and disired survivor sizes are desired goals and may duke@435: // exceed the total generation size. duke@435: duke@435: assert(min_gen_size() <= orig_size && orig_size <= max_gen_size(), duke@435: "just checking"); duke@435: duke@435: // Adjust new generation size duke@435: const size_t eden_plus_survivors = duke@435: align_size_up(eden_size + 2 * survivor_size, alignment); duke@435: size_t desired_size = MAX2(MIN2(eden_plus_survivors, max_gen_size()), duke@435: min_gen_size()); duke@435: assert(desired_size <= max_gen_size(), "just checking"); duke@435: duke@435: if (desired_size > orig_size) { duke@435: // Grow the generation duke@435: size_t change = desired_size - orig_size; duke@435: assert(change % alignment == 0, "just checking"); jmasa@698: if (expand(change)) { duke@435: return false; // Error if we fail to resize! duke@435: } duke@435: size_changed = true; duke@435: } else if (desired_size < orig_size) { duke@435: size_t desired_change = orig_size - desired_size; duke@435: assert(desired_change % alignment == 0, "just checking"); duke@435: duke@435: desired_change = limit_gen_shrink(desired_change); duke@435: duke@435: if (desired_change > 0) { duke@435: virtual_space()->shrink_by(desired_change); duke@435: reset_survivors_after_shrink(); duke@435: duke@435: size_changed = true; duke@435: } duke@435: } else { duke@435: if (Verbose && PrintGC) { duke@435: if (orig_size == max_gen_size()) { duke@435: gclog_or_tty->print_cr("ASParNew generation size at maximum: " duke@435: SIZE_FORMAT "K", orig_size/K); duke@435: } else if (orig_size == min_gen_size()) { duke@435: gclog_or_tty->print_cr("ASParNew generation size at minium: " duke@435: SIZE_FORMAT "K", orig_size/K); duke@435: } duke@435: } duke@435: } duke@435: duke@435: if (size_changed) { duke@435: MemRegion cmr((HeapWord*)virtual_space()->low(), duke@435: (HeapWord*)virtual_space()->high()); duke@435: GenCollectedHeap::heap()->barrier_set()->resize_covered_region(cmr); duke@435: duke@435: if (Verbose && PrintGC) { duke@435: size_t current_size = virtual_space()->committed_size(); duke@435: gclog_or_tty->print_cr("ASParNew generation size changed: " duke@435: SIZE_FORMAT "K->" SIZE_FORMAT "K", duke@435: orig_size/K, current_size/K); duke@435: } duke@435: } duke@435: duke@435: guarantee(eden_plus_survivors <= virtual_space()->committed_size() || duke@435: virtual_space()->committed_size() == max_gen_size(), "Sanity"); duke@435: duke@435: return true; duke@435: } duke@435: duke@435: void ASParNewGeneration::reset_survivors_after_shrink() { duke@435: duke@435: GenCollectedHeap* gch = GenCollectedHeap::heap(); duke@435: HeapWord* new_end = (HeapWord*)virtual_space()->high(); duke@435: duke@435: if (from()->end() > to()->end()) { duke@435: assert(new_end >= from()->end(), "Shrinking past from-space"); duke@435: } else { duke@435: assert(new_end >= to()->bottom(), "Shrink was too large"); duke@435: // Was there a shrink of the survivor space? duke@435: if (new_end < to()->end()) { duke@435: MemRegion mr(to()->bottom(), new_end); jmasa@698: to()->initialize(mr, jmasa@698: SpaceDecorator::DontClear, jmasa@698: SpaceDecorator::DontMangle); duke@435: } duke@435: } duke@435: } duke@435: void ASParNewGeneration::resize_spaces(size_t requested_eden_size, duke@435: size_t requested_survivor_size) { duke@435: assert(UseAdaptiveSizePolicy, "sanity check"); duke@435: assert(requested_eden_size > 0 && requested_survivor_size > 0, duke@435: "just checking"); duke@435: CollectedHeap* heap = Universe::heap(); duke@435: assert(heap->kind() == CollectedHeap::GenCollectedHeap, "Sanity"); duke@435: duke@435: duke@435: // We require eden and to space to be empty duke@435: if ((!eden()->is_empty()) || (!to()->is_empty())) { duke@435: return; duke@435: } duke@435: duke@435: size_t cur_eden_size = eden()->capacity(); duke@435: duke@435: if (PrintAdaptiveSizePolicy && Verbose) { duke@435: gclog_or_tty->print_cr("ASParNew::resize_spaces(requested_eden_size: " duke@435: SIZE_FORMAT duke@435: ", requested_survivor_size: " SIZE_FORMAT ")", duke@435: requested_eden_size, requested_survivor_size); duke@435: gclog_or_tty->print_cr(" eden: [" PTR_FORMAT ".." PTR_FORMAT ") " duke@435: SIZE_FORMAT, drchase@6680: p2i(eden()->bottom()), drchase@6680: p2i(eden()->end()), duke@435: pointer_delta(eden()->end(), duke@435: eden()->bottom(), duke@435: sizeof(char))); duke@435: gclog_or_tty->print_cr(" from: [" PTR_FORMAT ".." PTR_FORMAT ") " duke@435: SIZE_FORMAT, drchase@6680: p2i(from()->bottom()), drchase@6680: p2i(from()->end()), duke@435: pointer_delta(from()->end(), duke@435: from()->bottom(), duke@435: sizeof(char))); duke@435: gclog_or_tty->print_cr(" to: [" PTR_FORMAT ".." PTR_FORMAT ") " duke@435: SIZE_FORMAT, drchase@6680: p2i(to()->bottom()), drchase@6680: p2i(to()->end()), duke@435: pointer_delta( to()->end(), duke@435: to()->bottom(), duke@435: sizeof(char))); duke@435: } duke@435: duke@435: // There's nothing to do if the new sizes are the same as the current duke@435: if (requested_survivor_size == to()->capacity() && duke@435: requested_survivor_size == from()->capacity() && duke@435: requested_eden_size == eden()->capacity()) { duke@435: if (PrintAdaptiveSizePolicy && Verbose) { duke@435: gclog_or_tty->print_cr(" capacities are the right sizes, returning"); duke@435: } duke@435: return; duke@435: } duke@435: duke@435: char* eden_start = (char*)eden()->bottom(); duke@435: char* eden_end = (char*)eden()->end(); duke@435: char* from_start = (char*)from()->bottom(); duke@435: char* from_end = (char*)from()->end(); duke@435: char* to_start = (char*)to()->bottom(); duke@435: char* to_end = (char*)to()->end(); duke@435: duke@435: const size_t alignment = os::vm_page_size(); duke@435: const bool maintain_minimum = duke@435: (requested_eden_size + 2 * requested_survivor_size) <= min_gen_size(); duke@435: duke@435: // Check whether from space is below to space duke@435: if (from_start < to_start) { duke@435: // Eden, from, to duke@435: if (PrintAdaptiveSizePolicy && Verbose) { duke@435: gclog_or_tty->print_cr(" Eden, from, to:"); duke@435: } duke@435: duke@435: // Set eden duke@435: // "requested_eden_size" is a goal for the size of eden duke@435: // and may not be attainable. "eden_size" below is duke@435: // calculated based on the location of from-space and duke@435: // the goal for the size of eden. from-space is duke@435: // fixed in place because it contains live data. duke@435: // The calculation is done this way to avoid 32bit duke@435: // overflow (i.e., eden_start + requested_eden_size duke@435: // may too large for representation in 32bits). duke@435: size_t eden_size; duke@435: if (maintain_minimum) { duke@435: // Only make eden larger than the requested size if duke@435: // the minimum size of the generation has to be maintained. duke@435: // This could be done in general but policy at a higher duke@435: // level is determining a requested size for eden and that duke@435: // should be honored unless there is a fundamental reason. duke@435: eden_size = pointer_delta(from_start, duke@435: eden_start, duke@435: sizeof(char)); duke@435: } else { duke@435: eden_size = MIN2(requested_eden_size, duke@435: pointer_delta(from_start, eden_start, sizeof(char))); duke@435: } duke@435: duke@435: eden_size = align_size_down(eden_size, alignment); duke@435: eden_end = eden_start + eden_size; jcoomes@1844: assert(eden_end >= eden_start, "addition overflowed"); duke@435: duke@435: // To may resize into from space as long as it is clear of live data. duke@435: // From space must remain page aligned, though, so we need to do some duke@435: // extra calculations. duke@435: duke@435: // First calculate an optimal to-space duke@435: to_end = (char*)virtual_space()->high(); duke@435: to_start = (char*)pointer_delta(to_end, (char*)requested_survivor_size, duke@435: sizeof(char)); duke@435: duke@435: // Does the optimal to-space overlap from-space? duke@435: if (to_start < (char*)from()->end()) { duke@435: // Calculate the minimum offset possible for from_end duke@435: size_t from_size = pointer_delta(from()->top(), from_start, sizeof(char)); duke@435: duke@435: // Should we be in this method if from_space is empty? Why not the set_space method? FIX ME! duke@435: if (from_size == 0) { duke@435: from_size = alignment; duke@435: } else { duke@435: from_size = align_size_up(from_size, alignment); duke@435: } duke@435: duke@435: from_end = from_start + from_size; duke@435: assert(from_end > from_start, "addition overflow or from_size problem"); duke@435: duke@435: guarantee(from_end <= (char*)from()->end(), "from_end moved to the right"); duke@435: duke@435: // Now update to_start with the new from_end duke@435: to_start = MAX2(from_end, to_start); duke@435: } else { duke@435: // If shrinking, move to-space down to abut the end of from-space duke@435: // so that shrinking will move to-space down. If not shrinking duke@435: // to-space is moving up to allow for growth on the next expansion. duke@435: if (requested_eden_size <= cur_eden_size) { duke@435: to_start = from_end; duke@435: if (to_start + requested_survivor_size > to_start) { duke@435: to_end = to_start + requested_survivor_size; duke@435: } duke@435: } duke@435: // else leave to_end pointing to the high end of the virtual space. duke@435: } duke@435: duke@435: guarantee(to_start != to_end, "to space is zero sized"); duke@435: duke@435: if (PrintAdaptiveSizePolicy && Verbose) { duke@435: gclog_or_tty->print_cr(" [eden_start .. eden_end): " duke@435: "[" PTR_FORMAT " .. " PTR_FORMAT ") " SIZE_FORMAT, drchase@6680: p2i(eden_start), drchase@6680: p2i(eden_end), duke@435: pointer_delta(eden_end, eden_start, sizeof(char))); duke@435: gclog_or_tty->print_cr(" [from_start .. from_end): " duke@435: "[" PTR_FORMAT " .. " PTR_FORMAT ") " SIZE_FORMAT, drchase@6680: p2i(from_start), drchase@6680: p2i(from_end), duke@435: pointer_delta(from_end, from_start, sizeof(char))); duke@435: gclog_or_tty->print_cr(" [ to_start .. to_end): " duke@435: "[" PTR_FORMAT " .. " PTR_FORMAT ") " SIZE_FORMAT, drchase@6680: p2i(to_start), drchase@6680: p2i(to_end), duke@435: pointer_delta( to_end, to_start, sizeof(char))); duke@435: } duke@435: } else { duke@435: // Eden, to, from duke@435: if (PrintAdaptiveSizePolicy && Verbose) { duke@435: gclog_or_tty->print_cr(" Eden, to, from:"); duke@435: } duke@435: duke@435: // Calculate the to-space boundaries based on duke@435: // the start of from-space. duke@435: to_end = from_start; duke@435: to_start = (char*)pointer_delta(from_start, duke@435: (char*)requested_survivor_size, duke@435: sizeof(char)); duke@435: // Calculate the ideal eden boundaries. duke@435: // eden_end is already at the bottom of the generation duke@435: assert(eden_start == virtual_space()->low(), duke@435: "Eden is not starting at the low end of the virtual space"); duke@435: if (eden_start + requested_eden_size >= eden_start) { duke@435: eden_end = eden_start + requested_eden_size; duke@435: } else { duke@435: eden_end = to_start; duke@435: } duke@435: duke@435: // Does eden intrude into to-space? to-space duke@435: // gets priority but eden is not allowed to shrink duke@435: // to 0. duke@435: if (eden_end > to_start) { duke@435: eden_end = to_start; duke@435: } duke@435: duke@435: // Don't let eden shrink down to 0 or less. duke@435: eden_end = MAX2(eden_end, eden_start + alignment); duke@435: assert(eden_start + alignment >= eden_start, "Overflow"); duke@435: duke@435: size_t eden_size; duke@435: if (maintain_minimum) { duke@435: // Use all the space available. duke@435: eden_end = MAX2(eden_end, to_start); duke@435: eden_size = pointer_delta(eden_end, eden_start, sizeof(char)); duke@435: eden_size = MIN2(eden_size, cur_eden_size); duke@435: } else { duke@435: eden_size = pointer_delta(eden_end, eden_start, sizeof(char)); duke@435: } duke@435: eden_size = align_size_down(eden_size, alignment); duke@435: assert(maintain_minimum || eden_size <= requested_eden_size, duke@435: "Eden size is too large"); duke@435: assert(eden_size >= alignment, "Eden size is too small"); duke@435: eden_end = eden_start + eden_size; duke@435: duke@435: // Move to-space down to eden. duke@435: if (requested_eden_size < cur_eden_size) { duke@435: to_start = eden_end; duke@435: if (to_start + requested_survivor_size > to_start) { duke@435: to_end = MIN2(from_start, to_start + requested_survivor_size); duke@435: } else { duke@435: to_end = from_start; duke@435: } duke@435: } duke@435: duke@435: // eden_end may have moved so again make sure duke@435: // the to-space and eden don't overlap. duke@435: to_start = MAX2(eden_end, to_start); duke@435: duke@435: // from-space duke@435: size_t from_used = from()->used(); duke@435: if (requested_survivor_size > from_used) { duke@435: if (from_start + requested_survivor_size >= from_start) { duke@435: from_end = from_start + requested_survivor_size; duke@435: } duke@435: if (from_end > virtual_space()->high()) { duke@435: from_end = virtual_space()->high(); duke@435: } duke@435: } duke@435: duke@435: assert(to_start >= eden_end, "to-space should be above eden"); duke@435: if (PrintAdaptiveSizePolicy && Verbose) { duke@435: gclog_or_tty->print_cr(" [eden_start .. eden_end): " duke@435: "[" PTR_FORMAT " .. " PTR_FORMAT ") " SIZE_FORMAT, drchase@6680: p2i(eden_start), drchase@6680: p2i(eden_end), duke@435: pointer_delta(eden_end, eden_start, sizeof(char))); duke@435: gclog_or_tty->print_cr(" [ to_start .. to_end): " duke@435: "[" PTR_FORMAT " .. " PTR_FORMAT ") " SIZE_FORMAT, drchase@6680: p2i(to_start), drchase@6680: p2i(to_end), duke@435: pointer_delta( to_end, to_start, sizeof(char))); duke@435: gclog_or_tty->print_cr(" [from_start .. from_end): " duke@435: "[" PTR_FORMAT " .. " PTR_FORMAT ") " SIZE_FORMAT, drchase@6680: p2i(from_start), drchase@6680: p2i(from_end), duke@435: pointer_delta(from_end, from_start, sizeof(char))); duke@435: } duke@435: } duke@435: duke@435: duke@435: guarantee((HeapWord*)from_start <= from()->bottom(), duke@435: "from start moved to the right"); duke@435: guarantee((HeapWord*)from_end >= from()->top(), duke@435: "from end moved into live data"); duke@435: assert(is_object_aligned((intptr_t)eden_start), "checking alignment"); duke@435: assert(is_object_aligned((intptr_t)from_start), "checking alignment"); duke@435: assert(is_object_aligned((intptr_t)to_start), "checking alignment"); duke@435: duke@435: MemRegion edenMR((HeapWord*)eden_start, (HeapWord*)eden_end); duke@435: MemRegion toMR ((HeapWord*)to_start, (HeapWord*)to_end); duke@435: MemRegion fromMR((HeapWord*)from_start, (HeapWord*)from_end); duke@435: duke@435: // Let's make sure the call to initialize doesn't reset "top"! duke@435: HeapWord* old_from_top = from()->top(); duke@435: duke@435: // For PrintAdaptiveSizePolicy block below duke@435: size_t old_from = from()->capacity(); duke@435: size_t old_to = to()->capacity(); duke@435: jmasa@698: // If not clearing the spaces, do some checking to verify that jmasa@698: // the spaces are already mangled. jmasa@698: jmasa@698: // Must check mangling before the spaces are reshaped. Otherwise, jmasa@698: // the bottom or end of one space may have moved into another jmasa@698: // a failure of the check may not correctly indicate which space jmasa@698: // is not properly mangled. jmasa@698: if (ZapUnusedHeapArea) { jmasa@698: HeapWord* limit = (HeapWord*) virtual_space()->high(); jmasa@698: eden()->check_mangled_unused_area(limit); jmasa@698: from()->check_mangled_unused_area(limit); jmasa@698: to()->check_mangled_unused_area(limit); jmasa@698: } jmasa@698: duke@435: // The call to initialize NULL's the next compaction space jmasa@698: eden()->initialize(edenMR, jmasa@698: SpaceDecorator::Clear, jmasa@698: SpaceDecorator::DontMangle); duke@435: eden()->set_next_compaction_space(from()); jmasa@698: to()->initialize(toMR , jmasa@698: SpaceDecorator::Clear, jmasa@698: SpaceDecorator::DontMangle); jmasa@698: from()->initialize(fromMR, jmasa@698: SpaceDecorator::DontClear, jmasa@698: SpaceDecorator::DontMangle); duke@435: duke@435: assert(from()->top() == old_from_top, "from top changed!"); duke@435: duke@435: if (PrintAdaptiveSizePolicy) { duke@435: GenCollectedHeap* gch = GenCollectedHeap::heap(); duke@435: assert(gch->kind() == CollectedHeap::GenCollectedHeap, "Sanity"); duke@435: duke@435: gclog_or_tty->print("AdaptiveSizePolicy::survivor space sizes: " duke@435: "collection: %d " duke@435: "(" SIZE_FORMAT ", " SIZE_FORMAT ") -> " duke@435: "(" SIZE_FORMAT ", " SIZE_FORMAT ") ", duke@435: gch->total_collections(), duke@435: old_from, old_to, duke@435: from()->capacity(), duke@435: to()->capacity()); duke@435: gclog_or_tty->cr(); duke@435: } duke@435: } duke@435: duke@435: void ASParNewGeneration::compute_new_size() { duke@435: GenCollectedHeap* gch = GenCollectedHeap::heap(); duke@435: assert(gch->kind() == CollectedHeap::GenCollectedHeap, duke@435: "not a CMS generational heap"); duke@435: duke@435: duke@435: CMSAdaptiveSizePolicy* size_policy = duke@435: (CMSAdaptiveSizePolicy*)gch->gen_policy()->size_policy(); duke@435: assert(size_policy->is_gc_cms_adaptive_size_policy(), duke@435: "Wrong type of size policy"); duke@435: duke@435: size_t survived = from()->used(); duke@435: if (!survivor_overflow()) { duke@435: // Keep running averages on how much survived duke@435: size_policy->avg_survived()->sample(survived); duke@435: } else { duke@435: size_t promoted = duke@435: (size_t) next_gen()->gc_stats()->avg_promoted()->last_sample(); duke@435: assert(promoted < gch->capacity(), "Conversion problem?"); duke@435: size_t survived_guess = survived + promoted; duke@435: size_policy->avg_survived()->sample(survived_guess); duke@435: } duke@435: duke@435: size_t survivor_limit = max_survivor_size(); duke@435: _tenuring_threshold = duke@435: size_policy->compute_survivor_space_size_and_threshold( duke@435: _survivor_overflow, duke@435: _tenuring_threshold, duke@435: survivor_limit); duke@435: size_policy->avg_young_live()->sample(used()); duke@435: size_policy->avg_eden_live()->sample(eden()->used()); duke@435: tamao@5192: size_policy->compute_eden_space_size(eden()->capacity(), max_gen_size()); duke@435: duke@435: resize(size_policy->calculated_eden_size_in_bytes(), duke@435: size_policy->calculated_survivor_size_in_bytes()); duke@435: duke@435: if (UsePerfData) { duke@435: CMSGCAdaptivePolicyCounters* counters = duke@435: (CMSGCAdaptivePolicyCounters*) gch->collector_policy()->counters(); duke@435: assert(counters->kind() == duke@435: GCPolicyCounters::CMSGCAdaptivePolicyCountersKind, duke@435: "Wrong kind of counters"); duke@435: counters->update_tenuring_threshold(_tenuring_threshold); duke@435: counters->update_survivor_overflowed(_survivor_overflow); duke@435: counters->update_young_capacity(capacity()); duke@435: } duke@435: } duke@435: duke@435: duke@435: #ifndef PRODUCT duke@435: // Changes from PSYoungGen version duke@435: // value of "alignment" duke@435: void ASParNewGeneration::space_invariants() { duke@435: const size_t alignment = os::vm_page_size(); duke@435: duke@435: // Currently, our eden size cannot shrink to zero duke@435: guarantee(eden()->capacity() >= alignment, "eden too small"); duke@435: guarantee(from()->capacity() >= alignment, "from too small"); duke@435: guarantee(to()->capacity() >= alignment, "to too small"); duke@435: duke@435: // Relationship of spaces to each other duke@435: char* eden_start = (char*)eden()->bottom(); duke@435: char* eden_end = (char*)eden()->end(); duke@435: char* from_start = (char*)from()->bottom(); duke@435: char* from_end = (char*)from()->end(); duke@435: char* to_start = (char*)to()->bottom(); duke@435: char* to_end = (char*)to()->end(); duke@435: duke@435: guarantee(eden_start >= virtual_space()->low(), "eden bottom"); duke@435: guarantee(eden_start < eden_end, "eden space consistency"); duke@435: guarantee(from_start < from_end, "from space consistency"); duke@435: guarantee(to_start < to_end, "to space consistency"); duke@435: duke@435: // Check whether from space is below to space duke@435: if (from_start < to_start) { duke@435: // Eden, from, to duke@435: guarantee(eden_end <= from_start, "eden/from boundary"); duke@435: guarantee(from_end <= to_start, "from/to boundary"); duke@435: guarantee(to_end <= virtual_space()->high(), "to end"); duke@435: } else { duke@435: // Eden, to, from duke@435: guarantee(eden_end <= to_start, "eden/to boundary"); duke@435: guarantee(to_end <= from_start, "to/from boundary"); duke@435: guarantee(from_end <= virtual_space()->high(), "from end"); duke@435: } duke@435: duke@435: // More checks that the virtual space is consistent with the spaces duke@435: assert(virtual_space()->committed_size() >= duke@435: (eden()->capacity() + duke@435: to()->capacity() + duke@435: from()->capacity()), "Committed size is inconsistent"); duke@435: assert(virtual_space()->committed_size() <= virtual_space()->reserved_size(), duke@435: "Space invariant"); duke@435: char* eden_top = (char*)eden()->top(); duke@435: char* from_top = (char*)from()->top(); duke@435: char* to_top = (char*)to()->top(); duke@435: assert(eden_top <= virtual_space()->high(), "eden top"); duke@435: assert(from_top <= virtual_space()->high(), "from top"); duke@435: assert(to_top <= virtual_space()->high(), "to top"); duke@435: } duke@435: #endif