duke@435: /* drchase@6680: * Copyright (c) 2000, 2014, Oracle and/or its affiliates. All rights reserved. duke@435: * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. duke@435: * duke@435: * This code is free software; you can redistribute it and/or modify it duke@435: * under the terms of the GNU General Public License version 2 only, as duke@435: * published by the Free Software Foundation. duke@435: * duke@435: * This code is distributed in the hope that it will be useful, but WITHOUT duke@435: * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or duke@435: * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License duke@435: * version 2 for more details (a copy is included in the LICENSE file that duke@435: * accompanied this code). duke@435: * duke@435: * You should have received a copy of the GNU General Public License version duke@435: * 2 along with this work; if not, write to the Free Software Foundation, duke@435: * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. duke@435: * trims@1907: * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA trims@1907: * or visit www.oracle.com if you need additional information or have any trims@1907: * questions. duke@435: * duke@435: */ duke@435: stefank@2314: #ifndef SHARE_VM_MEMORY_CARDTABLEMODREFBS_HPP stefank@2314: #define SHARE_VM_MEMORY_CARDTABLEMODREFBS_HPP stefank@2314: stefank@2314: #include "memory/modRefBarrierSet.hpp" stefank@2314: #include "oops/oop.hpp" stefank@2314: #include "oops/oop.inline2.hpp" stefank@2314: duke@435: // This kind of "BarrierSet" allows a "CollectedHeap" to detect and duke@435: // enumerate ref fields that have been modified (since the last duke@435: // enumeration.) duke@435: duke@435: // As it currently stands, this barrier is *imprecise*: when a ref field in duke@435: // an object "o" is modified, the card table entry for the card containing duke@435: // the head of "o" is dirtied, not necessarily the card containing the duke@435: // modified field itself. For object arrays, however, the barrier *is* duke@435: // precise; only the card containing the modified element is dirtied. duke@435: // Any MemRegionClosures used to scan dirty cards should take these duke@435: // considerations into account. duke@435: duke@435: class Generation; duke@435: class OopsInGenClosure; duke@435: class DirtyCardToOopClosure; ysr@2819: class ClearNoncleanCardWrapper; duke@435: duke@435: class CardTableModRefBS: public ModRefBarrierSet { duke@435: // Some classes get to look at some private stuff. duke@435: friend class BytecodeInterpreter; duke@435: friend class VMStructs; duke@435: friend class CardTableRS; duke@435: friend class CheckForUnmarkedOops; // Needs access to raw card bytes. twisti@2047: friend class SharkBuilder; duke@435: #ifndef PRODUCT duke@435: // For debugging. duke@435: friend class GuaranteeNotModClosure; duke@435: #endif duke@435: protected: duke@435: duke@435: enum CardValues { duke@435: clean_card = -1, iveresov@1051: // The mask contains zeros in places for all other values. iveresov@1051: clean_card_mask = clean_card - 31, iveresov@1051: duke@435: dirty_card = 0, duke@435: precleaned_card = 1, iveresov@1051: claimed_card = 2, iveresov@1051: deferred_card = 4, iveresov@1051: last_card = 8, iveresov@1051: CT_MR_BS_last_reserved = 16 duke@435: }; duke@435: brutisso@3642: // a word's worth (row) of clean card values brutisso@3642: static const intptr_t clean_card_row = (intptr_t)(-1); brutisso@3642: duke@435: // dirty and precleaned are equivalent wrt younger_refs_iter. duke@435: static bool card_is_dirty_wrt_gen_iter(jbyte cv) { duke@435: return cv == dirty_card || cv == precleaned_card; duke@435: } duke@435: duke@435: // Returns "true" iff the value "cv" will cause the card containing it duke@435: // to be scanned in the current traversal. May be overridden by duke@435: // subtypes. duke@435: virtual bool card_will_be_scanned(jbyte cv) { duke@435: return CardTableModRefBS::card_is_dirty_wrt_gen_iter(cv); duke@435: } duke@435: duke@435: // Returns "true" iff the value "cv" may have represented a dirty card at duke@435: // some point. duke@435: virtual bool card_may_have_been_dirty(jbyte cv) { duke@435: return card_is_dirty_wrt_gen_iter(cv); duke@435: } duke@435: duke@435: // The declaration order of these const fields is important; see the duke@435: // constructor before changing. duke@435: const MemRegion _whole_heap; // the region covered by the card table tschatzl@7051: size_t _guard_index; // index of very last element in the card duke@435: // table; it is set to a guard value duke@435: // (last_card) and should never be modified tschatzl@7051: size_t _last_valid_index; // index of the last valid element duke@435: const size_t _page_size; // page size used when mapping _byte_map tschatzl@7051: size_t _byte_map_size; // in bytes duke@435: jbyte* _byte_map; // the card marking array duke@435: duke@435: int _cur_covered_regions; duke@435: // The covered regions should be in address order. duke@435: MemRegion* _covered; duke@435: // The committed regions correspond one-to-one to the covered regions. duke@435: // They represent the card-table memory that has been committed to service duke@435: // the corresponding covered region. It may be that committed region for duke@435: // one covered region corresponds to a larger region because of page-size duke@435: // roundings. Thus, a committed region for one covered region may duke@435: // actually extend onto the card-table space for the next covered region. duke@435: MemRegion* _committed; duke@435: duke@435: // The last card is a guard card, and we commit the page for it so duke@435: // we can use the card for verification purposes. We make sure we never duke@435: // uncommit the MemRegion for that page. duke@435: MemRegion _guard_region; duke@435: duke@435: protected: duke@435: // Initialization utilities; covered_words is the size of the covered region duke@435: // in, um, words. tschatzl@7051: inline size_t cards_required(size_t covered_words) { tschatzl@7051: // Add one for a guard card, used to detect errors. tschatzl@7051: const size_t words = align_size_up(covered_words, card_size_in_words); tschatzl@7051: return words / card_size_in_words + 1; tschatzl@7051: } tschatzl@7051: duke@435: inline size_t compute_byte_map_size(); duke@435: duke@435: // Finds and return the index of the region, if any, to which the given duke@435: // region would be contiguous. If none exists, assign a new region and duke@435: // returns its index. Requires that no more than the maximum number of duke@435: // covered regions defined in the constructor are ever in use. duke@435: int find_covering_region_by_base(HeapWord* base); duke@435: duke@435: // Same as above, but finds the region containing the given address duke@435: // instead of starting at a given base address. duke@435: int find_covering_region_containing(HeapWord* addr); duke@435: duke@435: // Resize one of the regions covered by the remembered set. tschatzl@7051: virtual void resize_covered_region(MemRegion new_region); duke@435: duke@435: // Returns the leftmost end of a committed region corresponding to a duke@435: // covered region before covered region "ind", or else "NULL" if "ind" is duke@435: // the first covered region. duke@435: HeapWord* largest_prev_committed_end(int ind) const; duke@435: duke@435: // Returns the part of the region mr that doesn't intersect with duke@435: // any committed region other than self. Used to prevent uncommitting duke@435: // regions that are also committed by other regions. Also protects duke@435: // against uncommitting the guard region. duke@435: MemRegion committed_unique_to_self(int self, MemRegion mr) const; duke@435: duke@435: // Mapping from address to card marking array entry duke@435: jbyte* byte_for(const void* p) const { duke@435: assert(_whole_heap.contains(p), ysr@2891: err_msg("Attempt to access p = "PTR_FORMAT" out of bounds of " ysr@2891: " card marking array's _whole_heap = ["PTR_FORMAT","PTR_FORMAT")", drchase@6680: p2i(p), p2i(_whole_heap.start()), p2i(_whole_heap.end()))); duke@435: jbyte* result = &byte_map_base[uintptr_t(p) >> card_shift]; duke@435: assert(result >= _byte_map && result < _byte_map + _byte_map_size, duke@435: "out of bounds accessor for card marking array"); duke@435: return result; duke@435: } duke@435: duke@435: // The card table byte one after the card marking array duke@435: // entry for argument address. Typically used for higher bounds duke@435: // for loops iterating through the card table. duke@435: jbyte* byte_after(const void* p) const { duke@435: return byte_for(p) + 1; duke@435: } duke@435: duke@435: // Iterate over the portion of the card-table which covers the given duke@435: // region mr in the given space and apply cl to any dirty sub-regions ysr@2819: // of mr. Dirty cards are _not_ cleared by the iterator method itself, ysr@2819: // but closures may arrange to do so on their own should they so wish. ysr@2819: void non_clean_card_iterate_serial(MemRegion mr, MemRegionClosure* cl); duke@435: ysr@2819: // A variant of the above that will operate in a parallel mode if ysr@2819: // worker threads are available, and clear the dirty cards as it ysr@2819: // processes them. ysr@2889: // XXX ??? MemRegionClosure above vs OopsInGenClosure below XXX ysr@2889: // XXX some new_dcto_cl's take OopClosure's, plus as above there are ysr@2889: // some MemRegionClosures. Clean this up everywhere. XXX ysr@2819: void non_clean_card_iterate_possibly_parallel(Space* sp, MemRegion mr, ysr@2889: OopsInGenClosure* cl, CardTableRS* ct); duke@435: ysr@2819: private: ysr@2819: // Work method used to implement non_clean_card_iterate_possibly_parallel() ysr@2819: // above in the parallel case. ysr@2819: void non_clean_card_iterate_parallel_work(Space* sp, MemRegion mr, ysr@2889: OopsInGenClosure* cl, CardTableRS* ct, ysr@2819: int n_threads); duke@435: ysr@2819: protected: duke@435: // Dirty the bytes corresponding to "mr" (not all of which must be duke@435: // covered.) duke@435: void dirty_MemRegion(MemRegion mr); duke@435: duke@435: // Clear (to clean_card) the bytes entirely contained within "mr" (not duke@435: // all of which must be covered.) duke@435: void clear_MemRegion(MemRegion mr); duke@435: duke@435: // *** Support for parallel card scanning. duke@435: duke@435: // This is an array, one element per covered region of the card table. duke@435: // Each entry is itself an array, with one element per chunk in the duke@435: // covered region. Each entry of these arrays is the lowest non-clean duke@435: // card of the corresponding chunk containing part of an object from the duke@435: // previous chunk, or else NULL. duke@435: typedef jbyte* CardPtr; duke@435: typedef CardPtr* CardArr; duke@435: CardArr* _lowest_non_clean; duke@435: size_t* _lowest_non_clean_chunk_size; duke@435: uintptr_t* _lowest_non_clean_base_chunk_index; duke@435: int* _last_LNC_resizing_collection; duke@435: duke@435: // Initializes "lowest_non_clean" to point to the array for the region duke@435: // covering "sp", and "lowest_non_clean_base_chunk_index" to the chunk duke@435: // index of the corresponding to the first element of that array. duke@435: // Ensures that these arrays are of sufficient size, allocating if necessary. duke@435: // May be called by several threads concurrently. duke@435: void get_LNC_array_for_space(Space* sp, duke@435: jbyte**& lowest_non_clean, duke@435: uintptr_t& lowest_non_clean_base_chunk_index, duke@435: size_t& lowest_non_clean_chunk_size); duke@435: duke@435: // Returns the number of chunks necessary to cover "mr". duke@435: size_t chunks_to_cover(MemRegion mr) { duke@435: return (size_t)(addr_to_chunk_index(mr.last()) - duke@435: addr_to_chunk_index(mr.start()) + 1); duke@435: } duke@435: duke@435: // Returns the index of the chunk in a stride which duke@435: // covers the given address. duke@435: uintptr_t addr_to_chunk_index(const void* addr) { duke@435: uintptr_t card = (uintptr_t) byte_for(addr); ysr@2889: return card / ParGCCardsPerStrideChunk; duke@435: } duke@435: duke@435: // Apply cl, which must either itself apply dcto_cl or be dcto_cl, duke@435: // to the cards in the stride (of n_strides) within the given space. duke@435: void process_stride(Space* sp, duke@435: MemRegion used, duke@435: jint stride, int n_strides, ysr@2889: OopsInGenClosure* cl, ysr@2889: CardTableRS* ct, duke@435: jbyte** lowest_non_clean, duke@435: uintptr_t lowest_non_clean_base_chunk_index, duke@435: size_t lowest_non_clean_chunk_size); duke@435: duke@435: // Makes sure that chunk boundaries are handled appropriately, by duke@435: // adjusting the min_done of dcto_cl, and by using a special card-table duke@435: // value to indicate how min_done should be set. duke@435: void process_chunk_boundaries(Space* sp, duke@435: DirtyCardToOopClosure* dcto_cl, duke@435: MemRegion chunk_mr, duke@435: MemRegion used, duke@435: jbyte** lowest_non_clean, duke@435: uintptr_t lowest_non_clean_base_chunk_index, duke@435: size_t lowest_non_clean_chunk_size); duke@435: duke@435: public: duke@435: // Constants duke@435: enum SomePublicConstants { duke@435: card_shift = 9, duke@435: card_size = 1 << card_shift, duke@435: card_size_in_words = card_size / sizeof(HeapWord) duke@435: }; duke@435: ysr@777: static int clean_card_val() { return clean_card; } iveresov@1051: static int clean_card_mask_val() { return clean_card_mask; } ysr@777: static int dirty_card_val() { return dirty_card; } ysr@777: static int claimed_card_val() { return claimed_card; } ysr@777: static int precleaned_card_val() { return precleaned_card; } iveresov@1051: static int deferred_card_val() { return deferred_card; } ysr@777: duke@435: // For RTTI simulation. duke@435: bool is_a(BarrierSet::Name bsn) { ysr@777: return bsn == BarrierSet::CardTableModRef || ModRefBarrierSet::is_a(bsn); duke@435: } duke@435: duke@435: CardTableModRefBS(MemRegion whole_heap, int max_covered_regions); minqi@5103: ~CardTableModRefBS(); duke@435: tschatzl@7051: virtual void initialize(); tschatzl@7051: duke@435: // *** Barrier set functions. duke@435: ysr@777: bool has_write_ref_pre_barrier() { return false; } ysr@777: duke@435: // Record a reference update. Note that these versions are precise! duke@435: // The scanning code has to handle the fact that the write barrier may be duke@435: // either precise or imprecise. We make non-virtual inline variants of duke@435: // these functions here for performance. duke@435: protected: duke@435: void write_ref_field_work(oop obj, size_t offset, oop newVal); goetz@6493: virtual void write_ref_field_work(void* field, oop newVal, bool release = false); duke@435: public: duke@435: duke@435: bool has_write_ref_array_opt() { return true; } duke@435: bool has_write_region_opt() { return true; } duke@435: duke@435: inline void inline_write_region(MemRegion mr) { duke@435: dirty_MemRegion(mr); duke@435: } duke@435: protected: duke@435: void write_region_work(MemRegion mr) { duke@435: inline_write_region(mr); duke@435: } duke@435: public: duke@435: duke@435: inline void inline_write_ref_array(MemRegion mr) { duke@435: dirty_MemRegion(mr); duke@435: } duke@435: protected: duke@435: void write_ref_array_work(MemRegion mr) { duke@435: inline_write_ref_array(mr); duke@435: } duke@435: public: duke@435: duke@435: bool is_aligned(HeapWord* addr) { duke@435: return is_card_aligned(addr); duke@435: } duke@435: duke@435: // *** Card-table-barrier-specific things. duke@435: ysr@1280: template inline void inline_write_ref_field_pre(T* field, oop newVal) {} ysr@777: goetz@6493: template inline void inline_write_ref_field(T* field, oop newVal, bool release) { ysr@1280: jbyte* byte = byte_for((void*)field); goetz@6493: if (release) { goetz@6493: // Perform a releasing store if requested. goetz@6493: OrderAccess::release_store((volatile jbyte*) byte, dirty_card); goetz@6493: } else { goetz@6493: *byte = dirty_card; goetz@6493: } duke@435: } duke@435: ysr@777: // These are used by G1, when it uses the card table as a temporary data ysr@777: // structure for card claiming. ysr@777: bool is_card_dirty(size_t card_index) { ysr@777: return _byte_map[card_index] == dirty_card_val(); ysr@777: } ysr@777: ysr@777: void mark_card_dirty(size_t card_index) { ysr@777: _byte_map[card_index] = dirty_card_val(); ysr@777: } ysr@777: ysr@777: bool is_card_clean(size_t card_index) { ysr@777: return _byte_map[card_index] == clean_card_val(); ysr@777: } ysr@777: duke@435: // Card marking array base (adjusted for heap low boundary) duke@435: // This would be the 0th element of _byte_map, if the heap started at 0x0. duke@435: // But since the heap starts at some higher address, this points to somewhere duke@435: // before the beginning of the actual _byte_map. duke@435: jbyte* byte_map_base; duke@435: duke@435: // Return true if "p" is at the start of a card. duke@435: bool is_card_aligned(HeapWord* p) { duke@435: jbyte* pcard = byte_for(p); duke@435: return (addr_for(pcard) == p); duke@435: } duke@435: tonyp@2715: HeapWord* align_to_card_boundary(HeapWord* p) { tonyp@2715: jbyte* pcard = byte_for(p + card_size_in_words - 1); tonyp@2715: return addr_for(pcard); tonyp@2715: } tonyp@2715: duke@435: // The kinds of precision a CardTableModRefBS may offer. duke@435: enum PrecisionStyle { duke@435: Precise, duke@435: ObjHeadPreciseArray duke@435: }; duke@435: duke@435: // Tells what style of precision this card table offers. duke@435: PrecisionStyle precision() { duke@435: return ObjHeadPreciseArray; // Only one supported for now. duke@435: } duke@435: duke@435: // ModRefBS functions. ysr@777: virtual void invalidate(MemRegion mr, bool whole_heap = false); duke@435: void clear(MemRegion mr); ysr@777: void dirty(MemRegion mr); duke@435: duke@435: // *** Card-table-RemSet-specific things. duke@435: duke@435: // Invoke "cl.do_MemRegion" on a set of MemRegions that collectively duke@435: // includes all the modified cards (expressing each card as a duke@435: // MemRegion). Thus, several modified cards may be lumped into one duke@435: // region. The regions are non-overlapping, and are visited in duke@435: // *decreasing* address order. (This order aids with imprecise card duke@435: // marking, where a dirty card may cause scanning, and summarization duke@435: // marking, of objects that extend onto subsequent cards.) ysr@2788: void mod_card_iterate(MemRegionClosure* cl) { ysr@2819: non_clean_card_iterate_serial(_whole_heap, cl); duke@435: } duke@435: duke@435: // Like the "mod_cards_iterate" above, except only invokes the closure duke@435: // for cards within the MemRegion "mr" (which is required to be duke@435: // card-aligned and sized.) ysr@2788: void mod_card_iterate(MemRegion mr, MemRegionClosure* cl) { ysr@2819: non_clean_card_iterate_serial(mr, cl); duke@435: } duke@435: duke@435: static uintx ct_max_alignment_constraint(); duke@435: ysr@777: // Apply closure "cl" to the dirty cards containing some part of ysr@777: // MemRegion "mr". ysr@777: void dirty_card_iterate(MemRegion mr, MemRegionClosure* cl); duke@435: duke@435: // Return the MemRegion corresponding to the first maximal run ysr@777: // of dirty cards lying completely within MemRegion mr. ysr@777: // If reset is "true", then sets those card table entries to the given ysr@777: // value. ysr@777: MemRegion dirty_card_range_after_reset(MemRegion mr, bool reset, ysr@777: int reset_val); duke@435: ysr@777: // Provide read-only access to the card table array. ysr@777: const jbyte* byte_for_const(const void* p) const { ysr@777: return byte_for(p); ysr@777: } ysr@777: const jbyte* byte_after_const(const void* p) const { ysr@777: return byte_after(p); ysr@777: } ysr@777: ysr@777: // Mapping from card marking array entry to address of first word ysr@777: HeapWord* addr_for(const jbyte* p) const { ysr@777: assert(p >= _byte_map && p < _byte_map + _byte_map_size, ysr@777: "out of bounds access to card marking array"); ysr@777: size_t delta = pointer_delta(p, byte_map_base, sizeof(jbyte)); ysr@777: HeapWord* result = (HeapWord*) (delta << card_shift); ysr@777: assert(_whole_heap.contains(result), ysr@2891: err_msg("Returning result = "PTR_FORMAT" out of bounds of " ysr@2891: " card marking array's _whole_heap = ["PTR_FORMAT","PTR_FORMAT")", drchase@6680: p2i(result), p2i(_whole_heap.start()), p2i(_whole_heap.end()))); ysr@777: return result; ysr@777: } ysr@777: duke@435: // Mapping from address to card marking array index. swamyv@924: size_t index_for(void* p) { duke@435: assert(_whole_heap.contains(p), ysr@2891: err_msg("Attempt to access p = "PTR_FORMAT" out of bounds of " ysr@2891: " card marking array's _whole_heap = ["PTR_FORMAT","PTR_FORMAT")", drchase@6680: p2i(p), p2i(_whole_heap.start()), p2i(_whole_heap.end()))); duke@435: return byte_for(p) - _byte_map; duke@435: } duke@435: iveresov@1051: const jbyte* byte_for_index(const size_t card_index) const { iveresov@1051: return _byte_map + card_index; iveresov@1051: } iveresov@1051: never@3687: // Print a description of the memory for the barrier set never@3687: virtual void print_on(outputStream* st) const; never@3687: duke@435: void verify(); duke@435: void verify_guard(); duke@435: tonyp@2849: // val_equals -> it will check that all cards covered by mr equal val tonyp@2849: // !val_equals -> it will check that all cards covered by mr do not equal val tonyp@2849: void verify_region(MemRegion mr, jbyte val, bool val_equals) PRODUCT_RETURN; tonyp@2849: void verify_not_dirty_region(MemRegion mr) PRODUCT_RETURN; apetrusenko@1375: void verify_dirty_region(MemRegion mr) PRODUCT_RETURN; duke@435: duke@435: static size_t par_chunk_heapword_alignment() { ysr@2889: return ParGCCardsPerStrideChunk * card_size_in_words; duke@435: } ysr@777: duke@435: }; duke@435: duke@435: class CardTableRS; duke@435: duke@435: // A specialization for the CardTableRS gen rem set. duke@435: class CardTableModRefBSForCTRS: public CardTableModRefBS { duke@435: CardTableRS* _rs; duke@435: protected: duke@435: bool card_will_be_scanned(jbyte cv); duke@435: bool card_may_have_been_dirty(jbyte cv); duke@435: public: duke@435: CardTableModRefBSForCTRS(MemRegion whole_heap, duke@435: int max_covered_regions) : duke@435: CardTableModRefBS(whole_heap, max_covered_regions) {} duke@435: duke@435: void set_CTRS(CardTableRS* rs) { _rs = rs; } duke@435: }; stefank@2314: ysr@2819: stefank@2314: #endif // SHARE_VM_MEMORY_CARDTABLEMODREFBS_HPP