duke@435: /* coleenp@4037: * Copyright (c) 2002, 2012, Oracle and/or its affiliates. All rights reserved. duke@435: * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. duke@435: * duke@435: * This code is free software; you can redistribute it and/or modify it duke@435: * under the terms of the GNU General Public License version 2 only, as duke@435: * published by the Free Software Foundation. duke@435: * duke@435: * This code is distributed in the hope that it will be useful, but WITHOUT duke@435: * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or duke@435: * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License duke@435: * version 2 for more details (a copy is included in the LICENSE file that duke@435: * accompanied this code). duke@435: * duke@435: * You should have received a copy of the GNU General Public License version duke@435: * 2 along with this work; if not, write to the Free Software Foundation, duke@435: * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. duke@435: * trims@1907: * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA trims@1907: * or visit www.oracle.com if you need additional information or have any trims@1907: * questions. duke@435: * duke@435: */ duke@435: stefank@2314: #include "precompiled.hpp" stefank@2314: #include "gc_implementation/parallelScavenge/generationSizer.hpp" stefank@2314: #include "gc_implementation/parallelScavenge/psAdaptiveSizePolicy.hpp" stefank@2314: #include "gc_implementation/parallelScavenge/psGCAdaptivePolicyCounters.hpp" stefank@2314: #include "gc_implementation/parallelScavenge/psScavenge.hpp" stefank@2314: #include "gc_implementation/shared/gcPolicyCounters.hpp" stefank@2314: #include "gc_interface/gcCause.hpp" stefank@2314: #include "memory/collectorPolicy.hpp" stefank@2314: #include "runtime/timer.hpp" stefank@2314: #include "utilities/top.hpp" duke@435: duke@435: #include duke@435: duke@435: PSAdaptiveSizePolicy::PSAdaptiveSizePolicy(size_t init_eden_size, duke@435: size_t init_promo_size, duke@435: size_t init_survivor_size, duke@435: size_t intra_generation_alignment, duke@435: double gc_pause_goal_sec, duke@435: double gc_minor_pause_goal_sec, duke@435: uint gc_cost_ratio) : duke@435: AdaptiveSizePolicy(init_eden_size, duke@435: init_promo_size, duke@435: init_survivor_size, duke@435: gc_pause_goal_sec, duke@435: gc_cost_ratio), duke@435: _collection_cost_margin_fraction(AdaptiveSizePolicyCollectionCostMargin/ duke@435: 100.0), duke@435: _intra_generation_alignment(intra_generation_alignment), duke@435: _live_at_last_full_gc(init_promo_size), duke@435: _gc_minor_pause_goal_sec(gc_minor_pause_goal_sec), duke@435: _latest_major_mutator_interval_seconds(0), duke@435: _young_gen_change_for_major_pause_count(0) duke@435: { duke@435: // Sizing policy statistics duke@435: _avg_major_pause = duke@435: new AdaptivePaddedAverage(AdaptiveTimeWeight, PausePadding); duke@435: _avg_minor_interval = new AdaptiveWeightedAverage(AdaptiveTimeWeight); duke@435: _avg_major_interval = new AdaptiveWeightedAverage(AdaptiveTimeWeight); duke@435: duke@435: _avg_base_footprint = new AdaptiveWeightedAverage(AdaptiveSizePolicyWeight); duke@435: _major_pause_old_estimator = duke@435: new LinearLeastSquareFit(AdaptiveSizePolicyWeight); duke@435: _major_pause_young_estimator = duke@435: new LinearLeastSquareFit(AdaptiveSizePolicyWeight); duke@435: _major_collection_estimator = duke@435: new LinearLeastSquareFit(AdaptiveSizePolicyWeight); duke@435: duke@435: _young_gen_size_increment_supplement = YoungGenerationSizeSupplement; duke@435: _old_gen_size_increment_supplement = TenuredGenerationSizeSupplement; duke@435: duke@435: // Start the timers duke@435: _major_timer.start(); duke@435: duke@435: _old_gen_policy_is_ready = false; duke@435: } duke@435: duke@435: void PSAdaptiveSizePolicy::major_collection_begin() { duke@435: // Update the interval time duke@435: _major_timer.stop(); duke@435: // Save most recent collection time duke@435: _latest_major_mutator_interval_seconds = _major_timer.seconds(); duke@435: _major_timer.reset(); duke@435: _major_timer.start(); duke@435: } duke@435: duke@435: void PSAdaptiveSizePolicy::update_minor_pause_old_estimator( duke@435: double minor_pause_in_ms) { duke@435: double promo_size_in_mbytes = ((double)_promo_size)/((double)M); duke@435: _minor_pause_old_estimator->update(promo_size_in_mbytes, duke@435: minor_pause_in_ms); duke@435: } duke@435: duke@435: void PSAdaptiveSizePolicy::major_collection_end(size_t amount_live, duke@435: GCCause::Cause gc_cause) { duke@435: // Update the pause time. duke@435: _major_timer.stop(); duke@435: duke@435: if (gc_cause != GCCause::_java_lang_system_gc || duke@435: UseAdaptiveSizePolicyWithSystemGC) { duke@435: double major_pause_in_seconds = _major_timer.seconds(); duke@435: double major_pause_in_ms = major_pause_in_seconds * MILLIUNITS; duke@435: duke@435: // Sample for performance counter duke@435: _avg_major_pause->sample(major_pause_in_seconds); duke@435: duke@435: // Cost of collection (unit-less) duke@435: double collection_cost = 0.0; duke@435: if ((_latest_major_mutator_interval_seconds > 0.0) && duke@435: (major_pause_in_seconds > 0.0)) { duke@435: double interval_in_seconds = duke@435: _latest_major_mutator_interval_seconds + major_pause_in_seconds; duke@435: collection_cost = duke@435: major_pause_in_seconds / interval_in_seconds; duke@435: avg_major_gc_cost()->sample(collection_cost); duke@435: duke@435: // Sample for performance counter duke@435: _avg_major_interval->sample(interval_in_seconds); duke@435: } duke@435: duke@435: // Calculate variables used to estimate pause time vs. gen sizes duke@435: double eden_size_in_mbytes = ((double)_eden_size)/((double)M); duke@435: double promo_size_in_mbytes = ((double)_promo_size)/((double)M); duke@435: _major_pause_old_estimator->update(promo_size_in_mbytes, duke@435: major_pause_in_ms); duke@435: _major_pause_young_estimator->update(eden_size_in_mbytes, duke@435: major_pause_in_ms); duke@435: duke@435: if (PrintAdaptiveSizePolicy && Verbose) { duke@435: gclog_or_tty->print("psAdaptiveSizePolicy::major_collection_end: " duke@435: "major gc cost: %f average: %f", collection_cost, duke@435: avg_major_gc_cost()->average()); duke@435: gclog_or_tty->print_cr(" major pause: %f major period %f", duke@435: major_pause_in_ms, duke@435: _latest_major_mutator_interval_seconds * MILLIUNITS); duke@435: } duke@435: duke@435: // Calculate variable used to estimate collection cost vs. gen sizes duke@435: assert(collection_cost >= 0.0, "Expected to be non-negative"); duke@435: _major_collection_estimator->update(promo_size_in_mbytes, duke@435: collection_cost); duke@435: } duke@435: duke@435: // Update the amount live at the end of a full GC duke@435: _live_at_last_full_gc = amount_live; duke@435: duke@435: // The policy does not have enough data until at least some major collections duke@435: // have been done. duke@435: if (_avg_major_pause->count() >= AdaptiveSizePolicyReadyThreshold) { duke@435: _old_gen_policy_is_ready = true; duke@435: } duke@435: duke@435: // Interval times use this timer to measure the interval that duke@435: // the mutator runs. Reset after the GC pause has been measured. duke@435: _major_timer.reset(); duke@435: _major_timer.start(); duke@435: } duke@435: duke@435: // If the remaining free space in the old generation is less that duke@435: // that expected to be needed by the next collection, do a full duke@435: // collection now. duke@435: bool PSAdaptiveSizePolicy::should_full_GC(size_t old_free_in_bytes) { duke@435: duke@435: // A similar test is done in the scavenge's should_attempt_scavenge(). If duke@435: // this is changed, decide if that test should also be changed. duke@435: bool result = padded_average_promoted_in_bytes() > (float) old_free_in_bytes; duke@435: if (PrintGCDetails && Verbose) { duke@435: if (result) { duke@435: gclog_or_tty->print(" full after scavenge: "); duke@435: } else { duke@435: gclog_or_tty->print(" no full after scavenge: "); duke@435: } duke@435: gclog_or_tty->print_cr(" average_promoted " SIZE_FORMAT duke@435: " padded_average_promoted " SIZE_FORMAT duke@435: " free in old gen " SIZE_FORMAT, duke@435: (size_t) average_promoted_in_bytes(), duke@435: (size_t) padded_average_promoted_in_bytes(), duke@435: old_free_in_bytes); duke@435: } duke@435: return result; duke@435: } duke@435: duke@435: void PSAdaptiveSizePolicy::clear_generation_free_space_flags() { duke@435: duke@435: AdaptiveSizePolicy::clear_generation_free_space_flags(); duke@435: duke@435: set_change_old_gen_for_min_pauses(0); duke@435: duke@435: set_change_young_gen_for_maj_pauses(0); duke@435: } duke@435: duke@435: // If this is not a full GC, only test and modify the young generation. duke@435: jmasa@1822: void PSAdaptiveSizePolicy::compute_generation_free_space( jmasa@1822: size_t young_live, jmasa@1822: size_t eden_live, jmasa@1822: size_t old_live, jmasa@1822: size_t cur_eden, jmasa@1822: size_t max_old_gen_size, jmasa@1822: size_t max_eden_size, jmasa@1822: bool is_full_gc, jmasa@1822: GCCause::Cause gc_cause, jmasa@1822: CollectorPolicy* collector_policy) { duke@435: duke@435: // Update statistics duke@435: // Time statistics are updated as we go, update footprint stats here coleenp@4037: _avg_base_footprint->sample(BaseFootPrintEstimate); duke@435: avg_young_live()->sample(young_live); duke@435: avg_eden_live()->sample(eden_live); duke@435: if (is_full_gc) { duke@435: // old_live is only accurate after a full gc duke@435: avg_old_live()->sample(old_live); duke@435: } duke@435: duke@435: // This code used to return if the policy was not ready , i.e., duke@435: // policy_is_ready() returning false. The intent was that duke@435: // decisions below needed major collection times and so could duke@435: // not be made before two major collections. A consequence was duke@435: // adjustments to the young generation were not done until after duke@435: // two major collections even if the minor collections times duke@435: // exceeded the requested goals. Now let the young generation duke@435: // adjust for the minor collection times. Major collection times duke@435: // will be zero for the first collection and will naturally be duke@435: // ignored. Tenured generation adjustments are only made at the duke@435: // full collections so until the second major collection has duke@435: // been reached, no tenured generation adjustments will be made. duke@435: duke@435: // Until we know better, desired promotion size uses the last calculation duke@435: size_t desired_promo_size = _promo_size; duke@435: duke@435: // Start eden at the current value. The desired value that is stored duke@435: // in _eden_size is not bounded by constraints of the heap and can duke@435: // run away. duke@435: // duke@435: // As expected setting desired_eden_size to the current duke@435: // value of desired_eden_size as a starting point duke@435: // caused desired_eden_size to grow way too large and caused duke@435: // an overflow down stream. It may have improved performance in duke@435: // some case but is dangerous. duke@435: size_t desired_eden_size = cur_eden; duke@435: duke@435: #ifdef ASSERT duke@435: size_t original_promo_size = desired_promo_size; duke@435: size_t original_eden_size = desired_eden_size; duke@435: #endif duke@435: duke@435: // Cache some values. There's a bit of work getting these, so duke@435: // we might save a little time. duke@435: const double major_cost = major_gc_cost(); duke@435: const double minor_cost = minor_gc_cost(); duke@435: duke@435: // Used for diagnostics duke@435: clear_generation_free_space_flags(); duke@435: duke@435: // Limits on our growth duke@435: size_t promo_limit = (size_t)(max_old_gen_size - avg_old_live()->average()); duke@435: duke@435: // This method sets the desired eden size. That plus the duke@435: // desired survivor space sizes sets the desired young generation duke@435: // size. This methods does not know what the desired survivor duke@435: // size is but expects that other policy will attempt to make duke@435: // the survivor sizes compatible with the live data in the duke@435: // young generation. This limit is an estimate of the space left duke@435: // in the young generation after the survivor spaces have been duke@435: // subtracted out. duke@435: size_t eden_limit = max_eden_size; duke@435: duke@435: // But don't force a promo size below the current promo size. Otherwise, duke@435: // the promo size will shrink for no good reason. duke@435: promo_limit = MAX2(promo_limit, _promo_size); duke@435: duke@435: const double gc_cost_limit = GCTimeLimit/100.0; duke@435: duke@435: // Which way should we go? duke@435: // if pause requirement is not met duke@435: // adjust size of any generation with average paus exceeding duke@435: // the pause limit. Adjust one pause at a time (the larger) duke@435: // and only make adjustments for the major pause at full collections. duke@435: // else if throughput requirement not met duke@435: // adjust the size of the generation with larger gc time. Only duke@435: // adjust one generation at a time. duke@435: // else duke@435: // adjust down the total heap size. Adjust down the larger of the duke@435: // generations. duke@435: duke@435: // Add some checks for a threshhold for a change. For example, duke@435: // a change less than the necessary alignment is probably not worth duke@435: // attempting. duke@435: duke@435: duke@435: if ((_avg_minor_pause->padded_average() > gc_pause_goal_sec()) || duke@435: (_avg_major_pause->padded_average() > gc_pause_goal_sec())) { duke@435: // duke@435: // Check pauses duke@435: // duke@435: // Make changes only to affect one of the pauses (the larger) duke@435: // at a time. duke@435: adjust_for_pause_time(is_full_gc, &desired_promo_size, &desired_eden_size); duke@435: duke@435: } else if (_avg_minor_pause->padded_average() > gc_minor_pause_goal_sec()) { duke@435: // Adjust only for the minor pause time goal duke@435: adjust_for_minor_pause_time(is_full_gc, &desired_promo_size, &desired_eden_size); duke@435: duke@435: } else if(adjusted_mutator_cost() < _throughput_goal) { duke@435: // This branch used to require that (mutator_cost() > 0.0 in 1.4.2. duke@435: // This sometimes resulted in skipping to the minimize footprint duke@435: // code. Change this to try and reduce GC time if mutator time is duke@435: // negative for whatever reason. Or for future consideration, duke@435: // bail out of the code if mutator time is negative. duke@435: // duke@435: // Throughput duke@435: // duke@435: assert(major_cost >= 0.0, "major cost is < 0.0"); duke@435: assert(minor_cost >= 0.0, "minor cost is < 0.0"); duke@435: // Try to reduce the GC times. duke@435: adjust_for_throughput(is_full_gc, &desired_promo_size, &desired_eden_size); duke@435: duke@435: } else { duke@435: duke@435: // Be conservative about reducing the footprint. duke@435: // Do a minimum number of major collections first. duke@435: // Have reasonable averages for major and minor collections costs. duke@435: if (UseAdaptiveSizePolicyFootprintGoal && duke@435: young_gen_policy_is_ready() && duke@435: avg_major_gc_cost()->average() >= 0.0 && duke@435: avg_minor_gc_cost()->average() >= 0.0) { duke@435: size_t desired_sum = desired_eden_size + desired_promo_size; duke@435: desired_eden_size = adjust_eden_for_footprint(desired_eden_size, duke@435: desired_sum); duke@435: if (is_full_gc) { duke@435: set_decide_at_full_gc(decide_at_full_gc_true); duke@435: desired_promo_size = adjust_promo_for_footprint(desired_promo_size, duke@435: desired_sum); duke@435: } duke@435: } duke@435: } duke@435: duke@435: // Note we make the same tests as in the code block below; the code duke@435: // seems a little easier to read with the printing in another block. duke@435: if (PrintAdaptiveSizePolicy) { duke@435: if (desired_promo_size > promo_limit) { duke@435: // "free_in_old_gen" was the original value for used for promo_limit duke@435: size_t free_in_old_gen = (size_t)(max_old_gen_size - avg_old_live()->average()); duke@435: gclog_or_tty->print_cr( duke@435: "PSAdaptiveSizePolicy::compute_generation_free_space limits:" duke@435: " desired_promo_size: " SIZE_FORMAT duke@435: " promo_limit: " SIZE_FORMAT duke@435: " free_in_old_gen: " SIZE_FORMAT duke@435: " max_old_gen_size: " SIZE_FORMAT duke@435: " avg_old_live: " SIZE_FORMAT, duke@435: desired_promo_size, promo_limit, free_in_old_gen, duke@435: max_old_gen_size, (size_t) avg_old_live()->average()); duke@435: } duke@435: if (desired_eden_size > eden_limit) { duke@435: gclog_or_tty->print_cr( duke@435: "AdaptiveSizePolicy::compute_generation_free_space limits:" duke@435: " desired_eden_size: " SIZE_FORMAT duke@435: " old_eden_size: " SIZE_FORMAT duke@435: " eden_limit: " SIZE_FORMAT duke@435: " cur_eden: " SIZE_FORMAT duke@435: " max_eden_size: " SIZE_FORMAT duke@435: " avg_young_live: " SIZE_FORMAT, duke@435: desired_eden_size, _eden_size, eden_limit, cur_eden, duke@435: max_eden_size, (size_t)avg_young_live()->average()); duke@435: } duke@435: if (gc_cost() > gc_cost_limit) { duke@435: gclog_or_tty->print_cr( duke@435: "AdaptiveSizePolicy::compute_generation_free_space: gc time limit" duke@435: " gc_cost: %f " duke@435: " GCTimeLimit: %d", duke@435: gc_cost(), GCTimeLimit); duke@435: } duke@435: } duke@435: duke@435: // Align everything and make a final limit check duke@435: const size_t alignment = _intra_generation_alignment; duke@435: desired_eden_size = align_size_up(desired_eden_size, alignment); duke@435: desired_eden_size = MAX2(desired_eden_size, alignment); duke@435: desired_promo_size = align_size_up(desired_promo_size, alignment); duke@435: desired_promo_size = MAX2(desired_promo_size, alignment); duke@435: duke@435: eden_limit = align_size_down(eden_limit, alignment); duke@435: promo_limit = align_size_down(promo_limit, alignment); duke@435: duke@435: // Is too much time being spent in GC? duke@435: // Is the heap trying to grow beyond it's limits? duke@435: jmasa@1822: const size_t free_in_old_gen = jmasa@1822: (size_t)(max_old_gen_size - avg_old_live()->average()); duke@435: if (desired_promo_size > free_in_old_gen && desired_eden_size > eden_limit) { jmasa@1822: check_gc_overhead_limit(young_live, jmasa@1822: eden_live, jmasa@1822: max_old_gen_size, jmasa@1822: max_eden_size, jmasa@1822: is_full_gc, jmasa@1822: gc_cause, jmasa@1822: collector_policy); duke@435: } duke@435: duke@435: duke@435: // And one last limit check, now that we've aligned things. duke@435: if (desired_eden_size > eden_limit) { duke@435: // If the policy says to get a larger eden but duke@435: // is hitting the limit, don't decrease eden. duke@435: // This can lead to a general drifting down of the duke@435: // eden size. Let the tenuring calculation push more duke@435: // into the old gen. duke@435: desired_eden_size = MAX2(eden_limit, cur_eden); duke@435: } duke@435: desired_promo_size = MIN2(desired_promo_size, promo_limit); duke@435: duke@435: duke@435: if (PrintAdaptiveSizePolicy) { duke@435: // Timing stats duke@435: gclog_or_tty->print( duke@435: "PSAdaptiveSizePolicy::compute_generation_free_space: costs" duke@435: " minor_time: %f" duke@435: " major_cost: %f" duke@435: " mutator_cost: %f" duke@435: " throughput_goal: %f", duke@435: minor_gc_cost(), major_gc_cost(), mutator_cost(), duke@435: _throughput_goal); duke@435: duke@435: // We give more details if Verbose is set duke@435: if (Verbose) { duke@435: gclog_or_tty->print( " minor_pause: %f" duke@435: " major_pause: %f" duke@435: " minor_interval: %f" duke@435: " major_interval: %f" duke@435: " pause_goal: %f", duke@435: _avg_minor_pause->padded_average(), duke@435: _avg_major_pause->padded_average(), duke@435: _avg_minor_interval->average(), duke@435: _avg_major_interval->average(), duke@435: gc_pause_goal_sec()); duke@435: } duke@435: duke@435: // Footprint stats duke@435: gclog_or_tty->print( " live_space: " SIZE_FORMAT duke@435: " free_space: " SIZE_FORMAT, duke@435: live_space(), free_space()); duke@435: // More detail duke@435: if (Verbose) { duke@435: gclog_or_tty->print( " base_footprint: " SIZE_FORMAT duke@435: " avg_young_live: " SIZE_FORMAT duke@435: " avg_old_live: " SIZE_FORMAT, duke@435: (size_t)_avg_base_footprint->average(), duke@435: (size_t)avg_young_live()->average(), duke@435: (size_t)avg_old_live()->average()); duke@435: } duke@435: duke@435: // And finally, our old and new sizes. duke@435: gclog_or_tty->print(" old_promo_size: " SIZE_FORMAT duke@435: " old_eden_size: " SIZE_FORMAT duke@435: " desired_promo_size: " SIZE_FORMAT duke@435: " desired_eden_size: " SIZE_FORMAT, duke@435: _promo_size, _eden_size, duke@435: desired_promo_size, desired_eden_size); duke@435: gclog_or_tty->cr(); duke@435: } duke@435: duke@435: decay_supplemental_growth(is_full_gc); duke@435: duke@435: set_promo_size(desired_promo_size); duke@435: set_eden_size(desired_eden_size); duke@435: }; duke@435: duke@435: void PSAdaptiveSizePolicy::decay_supplemental_growth(bool is_full_gc) { duke@435: // Decay the supplemental increment? Decay the supplement growth duke@435: // factor even if it is not used. It is only meant to give a boost duke@435: // to the initial growth and if it is not used, then it was not duke@435: // needed. duke@435: if (is_full_gc) { duke@435: // Don't wait for the threshold value for the major collections. If duke@435: // here, the supplemental growth term was used and should decay. duke@435: if ((_avg_major_pause->count() % TenuredGenerationSizeSupplementDecay) duke@435: == 0) { duke@435: _old_gen_size_increment_supplement = duke@435: _old_gen_size_increment_supplement >> 1; duke@435: } duke@435: } else { duke@435: if ((_avg_minor_pause->count() >= AdaptiveSizePolicyReadyThreshold) && duke@435: (_avg_minor_pause->count() % YoungGenerationSizeSupplementDecay) == 0) { duke@435: _young_gen_size_increment_supplement = duke@435: _young_gen_size_increment_supplement >> 1; duke@435: } duke@435: } duke@435: } duke@435: duke@435: void PSAdaptiveSizePolicy::adjust_for_minor_pause_time(bool is_full_gc, duke@435: size_t* desired_promo_size_ptr, size_t* desired_eden_size_ptr) { duke@435: duke@435: // Adjust the young generation size to reduce pause time of duke@435: // of collections. duke@435: // duke@435: // The AdaptiveSizePolicyInitializingSteps test is not used duke@435: // here. It has not seemed to be needed but perhaps should duke@435: // be added for consistency. duke@435: if (minor_pause_young_estimator()->decrement_will_decrease()) { duke@435: // reduce eden size duke@435: set_change_young_gen_for_min_pauses( duke@435: decrease_young_gen_for_min_pauses_true); duke@435: *desired_eden_size_ptr = *desired_eden_size_ptr - duke@435: eden_decrement_aligned_down(*desired_eden_size_ptr); duke@435: } else { duke@435: // EXPERIMENTAL ADJUSTMENT duke@435: // Only record that the estimator indicated such an action. duke@435: // *desired_eden_size_ptr = *desired_eden_size_ptr + eden_heap_delta; duke@435: set_change_young_gen_for_min_pauses( duke@435: increase_young_gen_for_min_pauses_true); duke@435: } duke@435: if (PSAdjustTenuredGenForMinorPause) { duke@435: // If the desired eden size is as small as it will get, duke@435: // try to adjust the old gen size. duke@435: if (*desired_eden_size_ptr <= _intra_generation_alignment) { duke@435: // Vary the old gen size to reduce the young gen pause. This duke@435: // may not be a good idea. This is just a test. duke@435: if (minor_pause_old_estimator()->decrement_will_decrease()) { duke@435: set_change_old_gen_for_min_pauses( duke@435: decrease_old_gen_for_min_pauses_true); duke@435: *desired_promo_size_ptr = duke@435: _promo_size - promo_decrement_aligned_down(*desired_promo_size_ptr); duke@435: } else { duke@435: set_change_old_gen_for_min_pauses( duke@435: increase_old_gen_for_min_pauses_true); duke@435: size_t promo_heap_delta = duke@435: promo_increment_with_supplement_aligned_up(*desired_promo_size_ptr); duke@435: if ((*desired_promo_size_ptr + promo_heap_delta) > duke@435: *desired_promo_size_ptr) { duke@435: *desired_promo_size_ptr = duke@435: _promo_size + promo_heap_delta; duke@435: } duke@435: } duke@435: } duke@435: } duke@435: } duke@435: duke@435: void PSAdaptiveSizePolicy::adjust_for_pause_time(bool is_full_gc, duke@435: size_t* desired_promo_size_ptr, duke@435: size_t* desired_eden_size_ptr) { duke@435: duke@435: size_t promo_heap_delta = 0; duke@435: size_t eden_heap_delta = 0; duke@435: // Add some checks for a threshhold for a change. For example, duke@435: // a change less than the required alignment is probably not worth duke@435: // attempting. duke@435: if (is_full_gc) { duke@435: set_decide_at_full_gc(decide_at_full_gc_true); duke@435: } duke@435: duke@435: if (_avg_minor_pause->padded_average() > _avg_major_pause->padded_average()) { duke@435: adjust_for_minor_pause_time(is_full_gc, duke@435: desired_promo_size_ptr, duke@435: desired_eden_size_ptr); duke@435: // major pause adjustments duke@435: } else if (is_full_gc) { duke@435: // Adjust for the major pause time only at full gc's because the duke@435: // affects of a change can only be seen at full gc's. duke@435: duke@435: // Reduce old generation size to reduce pause? duke@435: if (major_pause_old_estimator()->decrement_will_decrease()) { duke@435: // reduce old generation size duke@435: set_change_old_gen_for_maj_pauses(decrease_old_gen_for_maj_pauses_true); duke@435: promo_heap_delta = promo_decrement_aligned_down(*desired_promo_size_ptr); duke@435: *desired_promo_size_ptr = _promo_size - promo_heap_delta; duke@435: } else { duke@435: // EXPERIMENTAL ADJUSTMENT duke@435: // Only record that the estimator indicated such an action. duke@435: // *desired_promo_size_ptr = _promo_size + duke@435: // promo_increment_aligned_up(*desired_promo_size_ptr); duke@435: set_change_old_gen_for_maj_pauses(increase_old_gen_for_maj_pauses_true); duke@435: } duke@435: if (PSAdjustYoungGenForMajorPause) { duke@435: // If the promo size is at the minimum (i.e., the old gen duke@435: // size will not actually decrease), consider changing the duke@435: // young gen size. duke@435: if (*desired_promo_size_ptr < _intra_generation_alignment) { duke@435: // If increasing the young generation will decrease the old gen duke@435: // pause, do it. duke@435: // During startup there is noise in the statistics for deciding duke@435: // on whether to increase or decrease the young gen size. For duke@435: // some number of iterations, just try to increase the young duke@435: // gen size if the major pause is too long to try and establish duke@435: // good statistics for later decisions. duke@435: if (major_pause_young_estimator()->increment_will_decrease() || duke@435: (_young_gen_change_for_major_pause_count duke@435: <= AdaptiveSizePolicyInitializingSteps)) { duke@435: set_change_young_gen_for_maj_pauses( duke@435: increase_young_gen_for_maj_pauses_true); duke@435: eden_heap_delta = eden_increment_aligned_up(*desired_eden_size_ptr); duke@435: *desired_eden_size_ptr = _eden_size + eden_heap_delta; duke@435: _young_gen_change_for_major_pause_count++; duke@435: } else { duke@435: // Record that decreasing the young gen size would decrease duke@435: // the major pause duke@435: set_change_young_gen_for_maj_pauses( duke@435: decrease_young_gen_for_maj_pauses_true); duke@435: eden_heap_delta = eden_decrement_aligned_down(*desired_eden_size_ptr); duke@435: *desired_eden_size_ptr = _eden_size - eden_heap_delta; duke@435: } duke@435: } duke@435: } duke@435: } duke@435: duke@435: if (PrintAdaptiveSizePolicy && Verbose) { duke@435: gclog_or_tty->print_cr( duke@435: "AdaptiveSizePolicy::compute_generation_free_space " duke@435: "adjusting gen sizes for major pause (avg %f goal %f). " duke@435: "desired_promo_size " SIZE_FORMAT "desired_eden_size " duke@435: SIZE_FORMAT duke@435: " promo delta " SIZE_FORMAT " eden delta " SIZE_FORMAT, duke@435: _avg_major_pause->average(), gc_pause_goal_sec(), duke@435: *desired_promo_size_ptr, *desired_eden_size_ptr, duke@435: promo_heap_delta, eden_heap_delta); duke@435: } duke@435: } duke@435: duke@435: void PSAdaptiveSizePolicy::adjust_for_throughput(bool is_full_gc, duke@435: size_t* desired_promo_size_ptr, duke@435: size_t* desired_eden_size_ptr) { duke@435: duke@435: // Add some checks for a threshhold for a change. For example, duke@435: // a change less than the required alignment is probably not worth duke@435: // attempting. duke@435: if (is_full_gc) { duke@435: set_decide_at_full_gc(decide_at_full_gc_true); duke@435: } duke@435: duke@435: if ((gc_cost() + mutator_cost()) == 0.0) { duke@435: return; duke@435: } duke@435: duke@435: if (PrintAdaptiveSizePolicy && Verbose) { duke@435: gclog_or_tty->print("\nPSAdaptiveSizePolicy::adjust_for_throughput(" duke@435: "is_full: %d, promo: " SIZE_FORMAT ", cur_eden: " SIZE_FORMAT "): ", duke@435: is_full_gc, *desired_promo_size_ptr, *desired_eden_size_ptr); duke@435: gclog_or_tty->print_cr("mutator_cost %f major_gc_cost %f " duke@435: "minor_gc_cost %f", mutator_cost(), major_gc_cost(), minor_gc_cost()); duke@435: } duke@435: duke@435: // Tenured generation duke@435: if (is_full_gc) { duke@435: duke@435: // Calculate the change to use for the tenured gen. duke@435: size_t scaled_promo_heap_delta = 0; duke@435: // Can the increment to the generation be scaled? duke@435: if (gc_cost() >= 0.0 && major_gc_cost() >= 0.0) { duke@435: size_t promo_heap_delta = duke@435: promo_increment_with_supplement_aligned_up(*desired_promo_size_ptr); duke@435: double scale_by_ratio = major_gc_cost() / gc_cost(); duke@435: scaled_promo_heap_delta = duke@435: (size_t) (scale_by_ratio * (double) promo_heap_delta); duke@435: if (PrintAdaptiveSizePolicy && Verbose) { duke@435: gclog_or_tty->print_cr( duke@435: "Scaled tenured increment: " SIZE_FORMAT " by %f down to " duke@435: SIZE_FORMAT, duke@435: promo_heap_delta, scale_by_ratio, scaled_promo_heap_delta); duke@435: } duke@435: } else if (major_gc_cost() >= 0.0) { duke@435: // Scaling is not going to work. If the major gc time is the duke@435: // larger, give it a full increment. duke@435: if (major_gc_cost() >= minor_gc_cost()) { duke@435: scaled_promo_heap_delta = duke@435: promo_increment_with_supplement_aligned_up(*desired_promo_size_ptr); duke@435: } duke@435: } else { duke@435: // Don't expect to get here but it's ok if it does duke@435: // in the product build since the delta will be 0 duke@435: // and nothing will change. duke@435: assert(false, "Unexpected value for gc costs"); duke@435: } duke@435: duke@435: switch (AdaptiveSizeThroughPutPolicy) { duke@435: case 1: duke@435: // Early in the run the statistics might not be good. Until duke@435: // a specific number of collections have been, use the heuristic duke@435: // that a larger generation size means lower collection costs. duke@435: if (major_collection_estimator()->increment_will_decrease() || duke@435: (_old_gen_change_for_major_throughput duke@435: <= AdaptiveSizePolicyInitializingSteps)) { duke@435: // Increase tenured generation size to reduce major collection cost duke@435: if ((*desired_promo_size_ptr + scaled_promo_heap_delta) > duke@435: *desired_promo_size_ptr) { duke@435: *desired_promo_size_ptr = _promo_size + scaled_promo_heap_delta; duke@435: } duke@435: set_change_old_gen_for_throughput( duke@435: increase_old_gen_for_throughput_true); duke@435: _old_gen_change_for_major_throughput++; duke@435: } else { duke@435: // EXPERIMENTAL ADJUSTMENT duke@435: // Record that decreasing the old gen size would decrease duke@435: // the major collection cost but don't do it. duke@435: // *desired_promo_size_ptr = _promo_size - duke@435: // promo_decrement_aligned_down(*desired_promo_size_ptr); duke@435: set_change_old_gen_for_throughput( duke@435: decrease_old_gen_for_throughput_true); duke@435: } duke@435: duke@435: break; duke@435: default: duke@435: // Simplest strategy duke@435: if ((*desired_promo_size_ptr + scaled_promo_heap_delta) > duke@435: *desired_promo_size_ptr) { duke@435: *desired_promo_size_ptr = *desired_promo_size_ptr + duke@435: scaled_promo_heap_delta; duke@435: } duke@435: set_change_old_gen_for_throughput( duke@435: increase_old_gen_for_throughput_true); duke@435: _old_gen_change_for_major_throughput++; duke@435: } duke@435: duke@435: if (PrintAdaptiveSizePolicy && Verbose) { duke@435: gclog_or_tty->print_cr( duke@435: "adjusting tenured gen for throughput (avg %f goal %f). " duke@435: "desired_promo_size " SIZE_FORMAT " promo_delta " SIZE_FORMAT , duke@435: mutator_cost(), _throughput_goal, duke@435: *desired_promo_size_ptr, scaled_promo_heap_delta); duke@435: } duke@435: } duke@435: duke@435: // Young generation duke@435: size_t scaled_eden_heap_delta = 0; duke@435: // Can the increment to the generation be scaled? duke@435: if (gc_cost() >= 0.0 && minor_gc_cost() >= 0.0) { duke@435: size_t eden_heap_delta = duke@435: eden_increment_with_supplement_aligned_up(*desired_eden_size_ptr); duke@435: double scale_by_ratio = minor_gc_cost() / gc_cost(); duke@435: assert(scale_by_ratio <= 1.0 && scale_by_ratio >= 0.0, "Scaling is wrong"); duke@435: scaled_eden_heap_delta = duke@435: (size_t) (scale_by_ratio * (double) eden_heap_delta); duke@435: if (PrintAdaptiveSizePolicy && Verbose) { duke@435: gclog_or_tty->print_cr( duke@435: "Scaled eden increment: " SIZE_FORMAT " by %f down to " duke@435: SIZE_FORMAT, duke@435: eden_heap_delta, scale_by_ratio, scaled_eden_heap_delta); duke@435: } duke@435: } else if (minor_gc_cost() >= 0.0) { duke@435: // Scaling is not going to work. If the minor gc time is the duke@435: // larger, give it a full increment. duke@435: if (minor_gc_cost() > major_gc_cost()) { duke@435: scaled_eden_heap_delta = duke@435: eden_increment_with_supplement_aligned_up(*desired_eden_size_ptr); duke@435: } duke@435: } else { duke@435: // Don't expect to get here but it's ok if it does duke@435: // in the product build since the delta will be 0 duke@435: // and nothing will change. duke@435: assert(false, "Unexpected value for gc costs"); duke@435: } duke@435: duke@435: // Use a heuristic for some number of collections to give duke@435: // the averages time to settle down. duke@435: switch (AdaptiveSizeThroughPutPolicy) { duke@435: case 1: duke@435: if (minor_collection_estimator()->increment_will_decrease() || duke@435: (_young_gen_change_for_minor_throughput duke@435: <= AdaptiveSizePolicyInitializingSteps)) { duke@435: // Expand young generation size to reduce frequency of duke@435: // of collections. duke@435: if ((*desired_eden_size_ptr + scaled_eden_heap_delta) > duke@435: *desired_eden_size_ptr) { duke@435: *desired_eden_size_ptr = duke@435: *desired_eden_size_ptr + scaled_eden_heap_delta; duke@435: } duke@435: set_change_young_gen_for_throughput( duke@435: increase_young_gen_for_througput_true); duke@435: _young_gen_change_for_minor_throughput++; duke@435: } else { duke@435: // EXPERIMENTAL ADJUSTMENT duke@435: // Record that decreasing the young gen size would decrease duke@435: // the minor collection cost but don't do it. duke@435: // *desired_eden_size_ptr = _eden_size - duke@435: // eden_decrement_aligned_down(*desired_eden_size_ptr); duke@435: set_change_young_gen_for_throughput( duke@435: decrease_young_gen_for_througput_true); duke@435: } duke@435: break; duke@435: default: duke@435: if ((*desired_eden_size_ptr + scaled_eden_heap_delta) > duke@435: *desired_eden_size_ptr) { duke@435: *desired_eden_size_ptr = duke@435: *desired_eden_size_ptr + scaled_eden_heap_delta; duke@435: } duke@435: set_change_young_gen_for_throughput( duke@435: increase_young_gen_for_througput_true); duke@435: _young_gen_change_for_minor_throughput++; duke@435: } duke@435: duke@435: if (PrintAdaptiveSizePolicy && Verbose) { duke@435: gclog_or_tty->print_cr( duke@435: "adjusting eden for throughput (avg %f goal %f). desired_eden_size " duke@435: SIZE_FORMAT " eden delta " SIZE_FORMAT "\n", duke@435: mutator_cost(), _throughput_goal, duke@435: *desired_eden_size_ptr, scaled_eden_heap_delta); duke@435: } duke@435: } duke@435: duke@435: size_t PSAdaptiveSizePolicy::adjust_promo_for_footprint( duke@435: size_t desired_promo_size, size_t desired_sum) { duke@435: assert(desired_promo_size <= desired_sum, "Inconsistent parameters"); duke@435: set_decrease_for_footprint(decrease_old_gen_for_footprint_true); duke@435: duke@435: size_t change = promo_decrement(desired_promo_size); duke@435: change = scale_down(change, desired_promo_size, desired_sum); duke@435: duke@435: size_t reduced_size = desired_promo_size - change; duke@435: duke@435: if (PrintAdaptiveSizePolicy && Verbose) { duke@435: gclog_or_tty->print_cr( duke@435: "AdaptiveSizePolicy::compute_generation_free_space " duke@435: "adjusting tenured gen for footprint. " duke@435: "starting promo size " SIZE_FORMAT duke@435: " reduced promo size " SIZE_FORMAT, duke@435: " promo delta " SIZE_FORMAT, duke@435: desired_promo_size, reduced_size, change ); duke@435: } duke@435: duke@435: assert(reduced_size <= desired_promo_size, "Inconsistent result"); duke@435: return reduced_size; duke@435: } duke@435: duke@435: size_t PSAdaptiveSizePolicy::adjust_eden_for_footprint( duke@435: size_t desired_eden_size, size_t desired_sum) { duke@435: assert(desired_eden_size <= desired_sum, "Inconsistent parameters"); duke@435: set_decrease_for_footprint(decrease_young_gen_for_footprint_true); duke@435: duke@435: size_t change = eden_decrement(desired_eden_size); duke@435: change = scale_down(change, desired_eden_size, desired_sum); duke@435: duke@435: size_t reduced_size = desired_eden_size - change; duke@435: duke@435: if (PrintAdaptiveSizePolicy && Verbose) { duke@435: gclog_or_tty->print_cr( duke@435: "AdaptiveSizePolicy::compute_generation_free_space " duke@435: "adjusting eden for footprint. " duke@435: " starting eden size " SIZE_FORMAT duke@435: " reduced eden size " SIZE_FORMAT duke@435: " eden delta " SIZE_FORMAT, duke@435: desired_eden_size, reduced_size, change); duke@435: } duke@435: duke@435: assert(reduced_size <= desired_eden_size, "Inconsistent result"); duke@435: return reduced_size; duke@435: } duke@435: duke@435: // Scale down "change" by the factor duke@435: // part / total duke@435: // Don't align the results. duke@435: duke@435: size_t PSAdaptiveSizePolicy::scale_down(size_t change, duke@435: double part, duke@435: double total) { duke@435: assert(part <= total, "Inconsistent input"); duke@435: size_t reduced_change = change; duke@435: if (total > 0) { duke@435: double fraction = part / total; duke@435: reduced_change = (size_t) (fraction * (double) change); duke@435: } duke@435: assert(reduced_change <= change, "Inconsistent result"); duke@435: return reduced_change; duke@435: } duke@435: duke@435: size_t PSAdaptiveSizePolicy::eden_increment(size_t cur_eden, duke@435: uint percent_change) { duke@435: size_t eden_heap_delta; duke@435: eden_heap_delta = cur_eden / 100 * percent_change; duke@435: return eden_heap_delta; duke@435: } duke@435: duke@435: size_t PSAdaptiveSizePolicy::eden_increment(size_t cur_eden) { duke@435: return eden_increment(cur_eden, YoungGenerationSizeIncrement); duke@435: } duke@435: duke@435: size_t PSAdaptiveSizePolicy::eden_increment_aligned_up(size_t cur_eden) { duke@435: size_t result = eden_increment(cur_eden, YoungGenerationSizeIncrement); duke@435: return align_size_up(result, _intra_generation_alignment); duke@435: } duke@435: duke@435: size_t PSAdaptiveSizePolicy::eden_increment_aligned_down(size_t cur_eden) { duke@435: size_t result = eden_increment(cur_eden); duke@435: return align_size_down(result, _intra_generation_alignment); duke@435: } duke@435: duke@435: size_t PSAdaptiveSizePolicy::eden_increment_with_supplement_aligned_up( duke@435: size_t cur_eden) { duke@435: size_t result = eden_increment(cur_eden, duke@435: YoungGenerationSizeIncrement + _young_gen_size_increment_supplement); duke@435: return align_size_up(result, _intra_generation_alignment); duke@435: } duke@435: duke@435: size_t PSAdaptiveSizePolicy::eden_decrement_aligned_down(size_t cur_eden) { duke@435: size_t eden_heap_delta = eden_decrement(cur_eden); duke@435: return align_size_down(eden_heap_delta, _intra_generation_alignment); duke@435: } duke@435: duke@435: size_t PSAdaptiveSizePolicy::eden_decrement(size_t cur_eden) { duke@435: size_t eden_heap_delta = eden_increment(cur_eden) / duke@435: AdaptiveSizeDecrementScaleFactor; duke@435: return eden_heap_delta; duke@435: } duke@435: duke@435: size_t PSAdaptiveSizePolicy::promo_increment(size_t cur_promo, duke@435: uint percent_change) { duke@435: size_t promo_heap_delta; duke@435: promo_heap_delta = cur_promo / 100 * percent_change; duke@435: return promo_heap_delta; duke@435: } duke@435: duke@435: size_t PSAdaptiveSizePolicy::promo_increment(size_t cur_promo) { duke@435: return promo_increment(cur_promo, TenuredGenerationSizeIncrement); duke@435: } duke@435: duke@435: size_t PSAdaptiveSizePolicy::promo_increment_aligned_up(size_t cur_promo) { duke@435: size_t result = promo_increment(cur_promo, TenuredGenerationSizeIncrement); duke@435: return align_size_up(result, _intra_generation_alignment); duke@435: } duke@435: duke@435: size_t PSAdaptiveSizePolicy::promo_increment_aligned_down(size_t cur_promo) { duke@435: size_t result = promo_increment(cur_promo, TenuredGenerationSizeIncrement); duke@435: return align_size_down(result, _intra_generation_alignment); duke@435: } duke@435: duke@435: size_t PSAdaptiveSizePolicy::promo_increment_with_supplement_aligned_up( duke@435: size_t cur_promo) { duke@435: size_t result = promo_increment(cur_promo, duke@435: TenuredGenerationSizeIncrement + _old_gen_size_increment_supplement); duke@435: return align_size_up(result, _intra_generation_alignment); duke@435: } duke@435: duke@435: size_t PSAdaptiveSizePolicy::promo_decrement_aligned_down(size_t cur_promo) { duke@435: size_t promo_heap_delta = promo_decrement(cur_promo); duke@435: return align_size_down(promo_heap_delta, _intra_generation_alignment); duke@435: } duke@435: duke@435: size_t PSAdaptiveSizePolicy::promo_decrement(size_t cur_promo) { duke@435: size_t promo_heap_delta = promo_increment(cur_promo); duke@435: promo_heap_delta = promo_heap_delta / AdaptiveSizeDecrementScaleFactor; duke@435: return promo_heap_delta; duke@435: } duke@435: duke@435: int PSAdaptiveSizePolicy::compute_survivor_space_size_and_threshold( duke@435: bool is_survivor_overflow, duke@435: int tenuring_threshold, duke@435: size_t survivor_limit) { duke@435: assert(survivor_limit >= _intra_generation_alignment, duke@435: "survivor_limit too small"); duke@435: assert((size_t)align_size_down(survivor_limit, _intra_generation_alignment) duke@435: == survivor_limit, "survivor_limit not aligned"); duke@435: duke@435: // This method is called even if the tenuring threshold and survivor duke@435: // spaces are not adjusted so that the averages are sampled above. duke@435: if (!UsePSAdaptiveSurvivorSizePolicy || duke@435: !young_gen_policy_is_ready()) { duke@435: return tenuring_threshold; duke@435: } duke@435: duke@435: // We'll decide whether to increase or decrease the tenuring duke@435: // threshold based partly on the newly computed survivor size duke@435: // (if we hit the maximum limit allowed, we'll always choose to duke@435: // decrement the threshold). duke@435: bool incr_tenuring_threshold = false; duke@435: bool decr_tenuring_threshold = false; duke@435: duke@435: set_decrement_tenuring_threshold_for_gc_cost(false); duke@435: set_increment_tenuring_threshold_for_gc_cost(false); duke@435: set_decrement_tenuring_threshold_for_survivor_limit(false); duke@435: duke@435: if (!is_survivor_overflow) { duke@435: // Keep running averages on how much survived duke@435: duke@435: // We use the tenuring threshold to equalize the cost of major duke@435: // and minor collections. duke@435: // ThresholdTolerance is used to indicate how sensitive the duke@435: // tenuring threshold is to differences in cost betweent the duke@435: // collection types. duke@435: duke@435: // Get the times of interest. This involves a little work, so duke@435: // we cache the values here. duke@435: const double major_cost = major_gc_cost(); duke@435: const double minor_cost = minor_gc_cost(); duke@435: duke@435: if (minor_cost > major_cost * _threshold_tolerance_percent) { duke@435: // Minor times are getting too long; lower the threshold so duke@435: // less survives and more is promoted. duke@435: decr_tenuring_threshold = true; duke@435: set_decrement_tenuring_threshold_for_gc_cost(true); duke@435: } else if (major_cost > minor_cost * _threshold_tolerance_percent) { duke@435: // Major times are too long, so we want less promotion. duke@435: incr_tenuring_threshold = true; duke@435: set_increment_tenuring_threshold_for_gc_cost(true); duke@435: } duke@435: duke@435: } else { duke@435: // Survivor space overflow occurred, so promoted and survived are duke@435: // not accurate. We'll make our best guess by combining survived duke@435: // and promoted and count them as survivors. duke@435: // duke@435: // We'll lower the tenuring threshold to see if we can correct duke@435: // things. Also, set the survivor size conservatively. We're duke@435: // trying to avoid many overflows from occurring if defnew size duke@435: // is just too small. duke@435: duke@435: decr_tenuring_threshold = true; duke@435: } duke@435: duke@435: // The padded average also maintains a deviation from the average; duke@435: // we use this to see how good of an estimate we have of what survived. duke@435: // We're trying to pad the survivor size as little as possible without duke@435: // overflowing the survivor spaces. duke@435: size_t target_size = align_size_up((size_t)_avg_survived->padded_average(), duke@435: _intra_generation_alignment); duke@435: target_size = MAX2(target_size, _intra_generation_alignment); duke@435: duke@435: if (target_size > survivor_limit) { duke@435: // Target size is bigger than we can handle. Let's also reduce duke@435: // the tenuring threshold. duke@435: target_size = survivor_limit; duke@435: decr_tenuring_threshold = true; duke@435: set_decrement_tenuring_threshold_for_survivor_limit(true); duke@435: } duke@435: duke@435: // Finally, increment or decrement the tenuring threshold, as decided above. duke@435: // We test for decrementing first, as we might have hit the target size duke@435: // limit. duke@435: if (decr_tenuring_threshold && !(AlwaysTenure || NeverTenure)) { duke@435: if (tenuring_threshold > 1) { duke@435: tenuring_threshold--; duke@435: } duke@435: } else if (incr_tenuring_threshold && !(AlwaysTenure || NeverTenure)) { duke@435: if (tenuring_threshold < MaxTenuringThreshold) { duke@435: tenuring_threshold++; duke@435: } duke@435: } duke@435: duke@435: // We keep a running average of the amount promoted which is used duke@435: // to decide when we should collect the old generation (when duke@435: // the amount of old gen free space is less than what we expect to duke@435: // promote). duke@435: duke@435: if (PrintAdaptiveSizePolicy) { duke@435: // A little more detail if Verbose is on duke@435: if (Verbose) { duke@435: gclog_or_tty->print( " avg_survived: %f" duke@435: " avg_deviation: %f", duke@435: _avg_survived->average(), duke@435: _avg_survived->deviation()); duke@435: } duke@435: duke@435: gclog_or_tty->print( " avg_survived_padded_avg: %f", duke@435: _avg_survived->padded_average()); duke@435: duke@435: if (Verbose) { duke@435: gclog_or_tty->print( " avg_promoted_avg: %f" duke@435: " avg_promoted_dev: %f", duke@435: avg_promoted()->average(), duke@435: avg_promoted()->deviation()); duke@435: } duke@435: duke@435: gclog_or_tty->print( " avg_promoted_padded_avg: %f" duke@435: " avg_pretenured_padded_avg: %f" duke@435: " tenuring_thresh: %d" duke@435: " target_size: " SIZE_FORMAT, duke@435: avg_promoted()->padded_average(), duke@435: _avg_pretenured->padded_average(), duke@435: tenuring_threshold, target_size); duke@435: tty->cr(); duke@435: } duke@435: duke@435: set_survivor_size(target_size); duke@435: duke@435: return tenuring_threshold; duke@435: } duke@435: duke@435: void PSAdaptiveSizePolicy::update_averages(bool is_survivor_overflow, duke@435: size_t survived, duke@435: size_t promoted) { duke@435: // Update averages duke@435: if (!is_survivor_overflow) { duke@435: // Keep running averages on how much survived duke@435: _avg_survived->sample(survived); duke@435: } else { duke@435: size_t survived_guess = survived + promoted; duke@435: _avg_survived->sample(survived_guess); duke@435: } duke@435: avg_promoted()->sample(promoted + _avg_pretenured->padded_average()); duke@435: duke@435: if (PrintAdaptiveSizePolicy) { duke@435: gclog_or_tty->print( duke@435: "AdaptiveSizePolicy::compute_survivor_space_size_and_thresh:" duke@435: " survived: " SIZE_FORMAT duke@435: " promoted: " SIZE_FORMAT duke@435: " overflow: %s", duke@435: survived, promoted, is_survivor_overflow ? "true" : "false"); duke@435: } duke@435: } duke@435: duke@435: bool PSAdaptiveSizePolicy::print_adaptive_size_policy_on(outputStream* st) duke@435: const { duke@435: duke@435: if (!UseAdaptiveSizePolicy) return false; duke@435: duke@435: return AdaptiveSizePolicy::print_adaptive_size_policy_on( duke@435: st, duke@435: PSScavenge::tenuring_threshold()); duke@435: }