duke@435: /* drchase@5285: * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved. duke@435: * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. duke@435: * duke@435: * This code is free software; you can redistribute it and/or modify it duke@435: * under the terms of the GNU General Public License version 2 only, as duke@435: * published by the Free Software Foundation. duke@435: * duke@435: * This code is distributed in the hope that it will be useful, but WITHOUT duke@435: * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or duke@435: * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License duke@435: * version 2 for more details (a copy is included in the LICENSE file that duke@435: * accompanied this code). duke@435: * duke@435: * You should have received a copy of the GNU General Public License version duke@435: * 2 along with this work; if not, write to the Free Software Foundation, duke@435: * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. duke@435: * trims@1907: * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA trims@1907: * or visit www.oracle.com if you need additional information or have any trims@1907: * questions. duke@435: * duke@435: */ duke@435: stefank@2314: #include "precompiled.hpp" stefank@2314: #include "memory/allocation.inline.hpp" stefank@2314: #include "opto/block.hpp" stefank@2314: #include "opto/cfgnode.hpp" stefank@2314: #include "opto/chaitin.hpp" stefank@2314: #include "opto/coalesce.hpp" stefank@2314: #include "opto/connode.hpp" stefank@2314: #include "opto/indexSet.hpp" stefank@2314: #include "opto/machnode.hpp" stefank@2314: #include "opto/matcher.hpp" stefank@2314: #include "opto/regmask.hpp" duke@435: duke@435: #ifndef PRODUCT neliasso@4949: void PhaseCoalesce::dump(Node *n) const { duke@435: // Being a const function means I cannot use 'Find' neliasso@4949: uint r = _phc._lrg_map.find(n); duke@435: tty->print("L%d/N%d ",r,n->_idx); duke@435: } duke@435: duke@435: void PhaseCoalesce::dump() const { duke@435: // I know I have a block layout now, so I can print blocks in a loop adlertz@5539: for( uint i=0; i<_phc._cfg.number_of_blocks(); i++ ) { duke@435: uint j; adlertz@5539: Block* b = _phc._cfg.get_block(i); duke@435: // Print a nice block header duke@435: tty->print("B%d: ",b->_pre_order); duke@435: for( j=1; jnum_preds(); j++ ) adlertz@5509: tty->print("B%d ", _phc._cfg.get_block_for_node(b->pred(j))->_pre_order); duke@435: tty->print("-> "); duke@435: for( j=0; j_num_succs; j++ ) duke@435: tty->print("B%d ",b->_succs[j]->_pre_order); duke@435: tty->print(" IDom: B%d/#%d\n", b->_idom ? b->_idom->_pre_order : 0, b->_dom_depth); adlertz@5635: uint cnt = b->number_of_nodes(); duke@435: for( j=0; jget_node(j); duke@435: dump( n ); duke@435: tty->print("\t%s\t",n->Name()); duke@435: duke@435: // Dump the inputs duke@435: uint k; // Exit value of loop duke@435: for( k=0; kreq(); k++ ) // For all required inputs duke@435: if( n->in(k) ) dump( n->in(k) ); duke@435: else tty->print("_ "); duke@435: int any_prec = 0; duke@435: for( ; klen(); k++ ) // For all precedence inputs duke@435: if( n->in(k) ) { duke@435: if( !any_prec++ ) tty->print(" |"); duke@435: dump( n->in(k) ); duke@435: } duke@435: duke@435: // Dump node-specific info duke@435: n->dump_spec(tty); duke@435: tty->print("\n"); duke@435: duke@435: } duke@435: tty->print("\n"); duke@435: } duke@435: } duke@435: #endif duke@435: duke@435: // Combine the live ranges def'd by these 2 Nodes. N2 is an input to N1. neliasso@4949: void PhaseCoalesce::combine_these_two(Node *n1, Node *n2) { neliasso@4949: uint lr1 = _phc._lrg_map.find(n1); neliasso@4949: uint lr2 = _phc._lrg_map.find(n2); duke@435: if( lr1 != lr2 && // Different live ranges already AND duke@435: !_phc._ifg->test_edge_sq( lr1, lr2 ) ) { // Do not interfere duke@435: LRG *lrg1 = &_phc.lrgs(lr1); duke@435: LRG *lrg2 = &_phc.lrgs(lr2); duke@435: // Not an oop->int cast; oop->oop, int->int, AND int->oop are OK. duke@435: duke@435: // Now, why is int->oop OK? We end up declaring a raw-pointer as an oop duke@435: // and in general that's a bad thing. However, int->oop conversions only duke@435: // happen at GC points, so the lifetime of the misclassified raw-pointer duke@435: // is from the CheckCastPP (that converts it to an oop) backwards up duke@435: // through a merge point and into the slow-path call, and around the duke@435: // diamond up to the heap-top check and back down into the slow-path call. duke@435: // The misclassified raw pointer is NOT live across the slow-path call, duke@435: // and so does not appear in any GC info, so the fact that it is duke@435: // misclassified is OK. duke@435: duke@435: if( (lrg1->_is_oop || !lrg2->_is_oop) && // not an oop->int cast AND duke@435: // Compatible final mask duke@435: lrg1->mask().overlap( lrg2->mask() ) ) { duke@435: // Merge larger into smaller. duke@435: if( lr1 > lr2 ) { duke@435: uint tmp = lr1; lr1 = lr2; lr2 = tmp; duke@435: Node *n = n1; n1 = n2; n2 = n; duke@435: LRG *ltmp = lrg1; lrg1 = lrg2; lrg2 = ltmp; duke@435: } duke@435: // Union lr2 into lr1 duke@435: _phc.Union( n1, n2 ); duke@435: if (lrg1->_maxfreq < lrg2->_maxfreq) duke@435: lrg1->_maxfreq = lrg2->_maxfreq; duke@435: // Merge in the IFG duke@435: _phc._ifg->Union( lr1, lr2 ); duke@435: // Combine register restrictions duke@435: lrg1->AND(lrg2->mask()); duke@435: } duke@435: } duke@435: } duke@435: duke@435: // Copy coalescing adlertz@5539: void PhaseCoalesce::coalesce_driver() { duke@435: verify(); duke@435: // Coalesce from high frequency to low adlertz@5539: for (uint i = 0; i < _phc._cfg.number_of_blocks(); i++) { adlertz@5539: coalesce(_phc._blks[i]); adlertz@5539: } duke@435: } duke@435: duke@435: // I am inserting copies to come out of SSA form. In the general case, I am duke@435: // doing a parallel renaming. I'm in the Named world now, so I can't do a duke@435: // general parallel renaming. All the copies now use "names" (live-ranges) duke@435: // to carry values instead of the explicit use-def chains. Suppose I need to duke@435: // insert 2 copies into the same block. They copy L161->L128 and L128->L132. duke@435: // If I insert them in the wrong order then L128 will get clobbered before it duke@435: // can get used by the second copy. This cannot happen in the SSA model; duke@435: // direct use-def chains get me the right value. It DOES happen in the named duke@435: // model so I have to handle the reordering of copies. duke@435: // duke@435: // In general, I need to topo-sort the placed copies to avoid conflicts. duke@435: // Its possible to have a closed cycle of copies (e.g., recirculating the same duke@435: // values around a loop). In this case I need a temp to break the cycle. duke@435: void PhaseAggressiveCoalesce::insert_copy_with_overlap( Block *b, Node *copy, uint dst_name, uint src_name ) { duke@435: duke@435: // Scan backwards for the locations of the last use of the dst_name. duke@435: // I am about to clobber the dst_name, so the copy must be inserted duke@435: // after the last use. Last use is really first-use on a backwards scan. duke@435: uint i = b->end_idx()-1; neliasso@4949: while(1) { adlertz@5635: Node *n = b->get_node(i); duke@435: // Check for end of virtual copies; this is also the end of the duke@435: // parallel renaming effort. neliasso@4949: if (n->_idx < _unique) { neliasso@4949: break; neliasso@4949: } duke@435: uint idx = n->is_Copy(); kvn@3040: assert( idx || n->is_Con() || n->is_MachProj(), "Only copies during parallel renaming" ); neliasso@4949: if (idx && _phc._lrg_map.find(n->in(idx)) == dst_name) { neliasso@4949: break; neliasso@4949: } duke@435: i--; duke@435: } duke@435: uint last_use_idx = i; duke@435: duke@435: // Also search for any kill of src_name that exits the block. duke@435: // Since the copy uses src_name, I have to come before any kill. duke@435: uint kill_src_idx = b->end_idx(); duke@435: // There can be only 1 kill that exits any block and that is duke@435: // the last kill. Thus it is the first kill on a backwards scan. duke@435: i = b->end_idx()-1; neliasso@4949: while (1) { adlertz@5635: Node *n = b->get_node(i); duke@435: // Check for end of virtual copies; this is also the end of the duke@435: // parallel renaming effort. neliasso@4949: if (n->_idx < _unique) { neliasso@4949: break; neliasso@4949: } kvn@3040: assert( n->is_Copy() || n->is_Con() || n->is_MachProj(), "Only copies during parallel renaming" ); neliasso@4949: if (_phc._lrg_map.find(n) == src_name) { duke@435: kill_src_idx = i; duke@435: break; duke@435: } duke@435: i--; duke@435: } duke@435: // Need a temp? Last use of dst comes after the kill of src? neliasso@4949: if (last_use_idx >= kill_src_idx) { duke@435: // Need to break a cycle with a temp duke@435: uint idx = copy->is_Copy(); duke@435: Node *tmp = copy->clone(); neliasso@4949: uint max_lrg_id = _phc._lrg_map.max_lrg_id(); neliasso@4949: _phc.new_lrg(tmp, max_lrg_id); neliasso@4949: _phc._lrg_map.set_max_lrg_id(max_lrg_id + 1); neliasso@4949: duke@435: // Insert new temp between copy and source duke@435: tmp ->set_req(idx,copy->in(idx)); duke@435: copy->set_req(idx,tmp); duke@435: // Save source in temp early, before source is killed adlertz@5635: b->insert_node(tmp, kill_src_idx); adlertz@5509: _phc._cfg.map_node_to_block(tmp, b); duke@435: last_use_idx++; duke@435: } duke@435: duke@435: // Insert just after last use adlertz@5635: b->insert_node(copy, last_use_idx + 1); duke@435: } duke@435: duke@435: void PhaseAggressiveCoalesce::insert_copies( Matcher &matcher ) { duke@435: // We do LRGs compressing and fix a liveout data only here since the other duke@435: // place in Split() is guarded by the assert which we never hit. neliasso@4949: _phc._lrg_map.compress_uf_map_for_nodes(); duke@435: // Fix block's liveout data for compressed live ranges. neliasso@4949: for (uint lrg = 1; lrg < _phc._lrg_map.max_lrg_id(); lrg++) { neliasso@4949: uint compressed_lrg = _phc._lrg_map.find(lrg); neliasso@4949: if (lrg != compressed_lrg) { adlertz@5539: for (uint bidx = 0; bidx < _phc._cfg.number_of_blocks(); bidx++) { adlertz@5539: IndexSet *liveout = _phc._live->live(_phc._cfg.get_block(bidx)); neliasso@4949: if (liveout->member(lrg)) { duke@435: liveout->remove(lrg); duke@435: liveout->insert(compressed_lrg); duke@435: } duke@435: } duke@435: } duke@435: } duke@435: duke@435: // All new nodes added are actual copies to replace virtual copies. duke@435: // Nodes with index less than '_unique' are original, non-virtual Nodes. duke@435: _unique = C->unique(); duke@435: adlertz@5539: for (uint i = 0; i < _phc._cfg.number_of_blocks(); i++) { drchase@5285: C->check_node_count(NodeLimitFudgeFactor, "out of nodes in coalesce"); drchase@5285: if (C->failing()) return; adlertz@5539: Block *b = _phc._cfg.get_block(i); duke@435: uint cnt = b->num_preds(); // Number of inputs to the Phi duke@435: adlertz@5635: for( uint l = 1; lnumber_of_nodes(); l++ ) { adlertz@5635: Node *n = b->get_node(l); duke@435: duke@435: // Do not use removed-copies, use copied value instead duke@435: uint ncnt = n->req(); duke@435: for( uint k = 1; kin(k); duke@435: uint cidx = copy->is_Copy(); duke@435: if( cidx ) { duke@435: Node *def = copy->in(cidx); neliasso@4949: if (_phc._lrg_map.find(copy) == _phc._lrg_map.find(def)) { neliasso@4949: n->set_req(k, def); neliasso@4949: } duke@435: } duke@435: } duke@435: duke@435: // Remove any explicit copies that get coalesced. duke@435: uint cidx = n->is_Copy(); duke@435: if( cidx ) { duke@435: Node *def = n->in(cidx); neliasso@4949: if (_phc._lrg_map.find(n) == _phc._lrg_map.find(def)) { duke@435: n->replace_by(def); duke@435: n->set_req(cidx,NULL); adlertz@5635: b->remove_node(l); duke@435: l--; duke@435: continue; duke@435: } duke@435: } duke@435: neliasso@4949: if (n->is_Phi()) { duke@435: // Get the chosen name for the Phi neliasso@4949: uint phi_name = _phc._lrg_map.find(n); duke@435: // Ignore the pre-allocated specials neliasso@4949: if (!phi_name) { neliasso@4949: continue; neliasso@4949: } duke@435: // Check for mismatch inputs to Phi neliasso@4949: for (uint j = 1; j < cnt; j++) { duke@435: Node *m = n->in(j); neliasso@4949: uint src_name = _phc._lrg_map.find(m); neliasso@4949: if (src_name != phi_name) { adlertz@5509: Block *pred = _phc._cfg.get_block_for_node(b->pred(j)); duke@435: Node *copy; duke@435: assert(!m->is_Con() || m->is_Mach(), "all Con must be Mach"); duke@435: // Rematerialize constants instead of copying them duke@435: if( m->is_Mach() && m->as_Mach()->is_Con() && duke@435: m->as_Mach()->rematerialize() ) { duke@435: copy = m->clone(); duke@435: // Insert the copy in the predecessor basic block duke@435: pred->add_inst(copy); duke@435: // Copy any flags as well neliasso@4949: _phc.clone_projs(pred, pred->end_idx(), m, copy, _phc._lrg_map); duke@435: } else { duke@435: const RegMask *rm = C->matcher()->idealreg2spillmask[m->ideal_reg()]; neliasso@4949: copy = new (C) MachSpillCopyNode(m, *rm, *rm); duke@435: // Find a good place to insert. Kinda tricky, use a subroutine duke@435: insert_copy_with_overlap(pred,copy,phi_name,src_name); duke@435: } duke@435: // Insert the copy in the use-def chain neliasso@4949: n->set_req(j, copy); adlertz@5509: _phc._cfg.map_node_to_block(copy, pred); duke@435: // Extend ("register allocate") the names array for the copy. neliasso@4949: _phc._lrg_map.extend(copy->_idx, phi_name); duke@435: } // End of if Phi names do not match duke@435: } // End of for all inputs to Phi duke@435: } else { // End of if Phi duke@435: duke@435: // Now check for 2-address instructions duke@435: uint idx; duke@435: if( n->is_Mach() && (idx=n->as_Mach()->two_adr()) ) { duke@435: // Get the chosen name for the Node neliasso@4949: uint name = _phc._lrg_map.find(n); neliasso@4949: assert (name, "no 2-address specials"); duke@435: // Check for name mis-match on the 2-address input duke@435: Node *m = n->in(idx); neliasso@4949: if (_phc._lrg_map.find(m) != name) { duke@435: Node *copy; duke@435: assert(!m->is_Con() || m->is_Mach(), "all Con must be Mach"); duke@435: // At this point it is unsafe to extend live ranges (6550579). duke@435: // Rematerialize only constants as we do for Phi above. neliasso@4949: if(m->is_Mach() && m->as_Mach()->is_Con() && neliasso@4949: m->as_Mach()->rematerialize()) { duke@435: copy = m->clone(); duke@435: // Insert the copy in the basic block, just before us adlertz@5635: b->insert_node(copy, l++); kvn@5543: l += _phc.clone_projs(b, l, m, copy, _phc._lrg_map); duke@435: } else { duke@435: const RegMask *rm = C->matcher()->idealreg2spillmask[m->ideal_reg()]; neliasso@4949: copy = new (C) MachSpillCopyNode(m, *rm, *rm); duke@435: // Insert the copy in the basic block, just before us adlertz@5635: b->insert_node(copy, l++); duke@435: } duke@435: // Insert the copy in the use-def chain neliasso@4949: n->set_req(idx, copy); duke@435: // Extend ("register allocate") the names array for the copy. neliasso@4949: _phc._lrg_map.extend(copy->_idx, name); adlertz@5509: _phc._cfg.map_node_to_block(copy, b); duke@435: } duke@435: duke@435: } // End of is two-adr duke@435: duke@435: // Insert a copy at a debug use for a lrg which has high frequency adlertz@5639: if (b->_freq < OPTO_DEBUG_SPLIT_FREQ || _phc._cfg.is_uncommon(b)) { duke@435: // Walk the debug inputs to the node and check for lrg freq duke@435: JVMState* jvms = n->jvms(); duke@435: uint debug_start = jvms ? jvms->debug_start() : 999999; duke@435: uint debug_end = jvms ? jvms->debug_end() : 999999; duke@435: for(uint inpidx = debug_start; inpidx < debug_end; inpidx++) { duke@435: // Do not split monitors; they are only needed for debug table duke@435: // entries and need no code. neliasso@4949: if (jvms->is_monitor_use(inpidx)) { neliasso@4949: continue; neliasso@4949: } duke@435: Node *inp = n->in(inpidx); neliasso@4949: uint nidx = _phc._lrg_map.live_range_id(inp); duke@435: LRG &lrg = lrgs(nidx); duke@435: duke@435: // If this lrg has a high frequency use/def kvn@1108: if( lrg._maxfreq >= _phc.high_frequency_lrg() ) { duke@435: // If the live range is also live out of this block (like it duke@435: // would be for a fast/slow idiom), the normal spill mechanism duke@435: // does an excellent job. If it is not live out of this block duke@435: // (like it would be for debug info to uncommon trap) splitting duke@435: // the live range now allows a better allocation in the high duke@435: // frequency blocks. duke@435: // Build_IFG_virtual has converted the live sets to duke@435: // live-IN info, not live-OUT info. duke@435: uint k; duke@435: for( k=0; k < b->_num_succs; k++ ) duke@435: if( _phc._live->live(b->_succs[k])->member( nidx ) ) duke@435: break; // Live in to some successor block? duke@435: if( k < b->_num_succs ) duke@435: continue; // Live out; do not pre-split duke@435: // Split the lrg at this use duke@435: const RegMask *rm = C->matcher()->idealreg2spillmask[inp->ideal_reg()]; duke@435: Node *copy = new (C) MachSpillCopyNode( inp, *rm, *rm ); duke@435: // Insert the copy in the use-def chain duke@435: n->set_req(inpidx, copy ); duke@435: // Insert the copy in the basic block, just before us adlertz@5635: b->insert_node(copy, l++); duke@435: // Extend ("register allocate") the names array for the copy. neliasso@4949: uint max_lrg_id = _phc._lrg_map.max_lrg_id(); neliasso@4949: _phc.new_lrg(copy, max_lrg_id); neliasso@4949: _phc._lrg_map.set_max_lrg_id(max_lrg_id + 1); adlertz@5509: _phc._cfg.map_node_to_block(copy, b); duke@435: //tty->print_cr("Split a debug use in Aggressive Coalesce"); duke@435: } // End of if high frequency use/def duke@435: } // End of for all debug inputs duke@435: } // End of if low frequency safepoint duke@435: duke@435: } // End of if Phi duke@435: duke@435: } // End of for all instructions duke@435: } // End of for all blocks duke@435: } duke@435: adlertz@5539: duke@435: // Aggressive (but pessimistic) copy coalescing of a single block duke@435: duke@435: // The following coalesce pass represents a single round of aggressive duke@435: // pessimistic coalesce. "Aggressive" means no attempt to preserve duke@435: // colorability when coalescing. This occasionally means more spills, but duke@435: // it also means fewer rounds of coalescing for better code - and that means duke@435: // faster compiles. duke@435: duke@435: // "Pessimistic" means we do not hit the fixed point in one pass (and we are duke@435: // reaching for the least fixed point to boot). This is typically solved duke@435: // with a few more rounds of coalescing, but the compiler must run fast. We duke@435: // could optimistically coalescing everything touching PhiNodes together duke@435: // into one big live range, then check for self-interference. Everywhere duke@435: // the live range interferes with self it would have to be split. Finding duke@435: // the right split points can be done with some heuristics (based on duke@435: // expected frequency of edges in the live range). In short, it's a real duke@435: // research problem and the timeline is too short to allow such research. duke@435: // Further thoughts: (1) build the LR in a pass, (2) find self-interference duke@435: // in another pass, (3) per each self-conflict, split, (4) split by finding duke@435: // the low-cost cut (min-cut) of the LR, (5) edges in the LR are weighted duke@435: // according to the GCM algorithm (or just exec freq on CFG edges). duke@435: duke@435: void PhaseAggressiveCoalesce::coalesce( Block *b ) { duke@435: // Copies are still "virtual" - meaning we have not made them explicitly duke@435: // copies. Instead, Phi functions of successor blocks have mis-matched duke@435: // live-ranges. If I fail to coalesce, I'll have to insert a copy to line duke@435: // up the live-ranges. Check for Phis in successor blocks. duke@435: uint i; duke@435: for( i=0; i_num_succs; i++ ) { duke@435: Block *bs = b->_succs[i]; duke@435: // Find index of 'b' in 'bs' predecessors duke@435: uint j=1; adlertz@5509: while (_phc._cfg.get_block_for_node(bs->pred(j)) != b) { adlertz@5509: j++; adlertz@5509: } adlertz@5509: duke@435: // Visit all the Phis in successor block adlertz@5635: for( uint k = 1; knumber_of_nodes(); k++ ) { adlertz@5635: Node *n = bs->get_node(k); duke@435: if( !n->is_Phi() ) break; duke@435: combine_these_two( n, n->in(j) ); duke@435: } duke@435: } // End of for all successor blocks duke@435: duke@435: duke@435: // Check _this_ block for 2-address instructions and copies. duke@435: uint cnt = b->end_idx(); duke@435: for( i = 1; iget_node(i); duke@435: uint idx; duke@435: // 2-address instructions have a virtual Copy matching their input duke@435: // to their output neliasso@4949: if (n->is_Mach() && (idx = n->as_Mach()->two_adr())) { duke@435: MachNode *mach = n->as_Mach(); neliasso@4949: combine_these_two(mach, mach->in(idx)); duke@435: } duke@435: } // End of for all instructions in block duke@435: } duke@435: neliasso@4949: PhaseConservativeCoalesce::PhaseConservativeCoalesce(PhaseChaitin &chaitin) : PhaseCoalesce(chaitin) { neliasso@4949: _ulr.initialize(_phc._lrg_map.max_lrg_id()); duke@435: } duke@435: duke@435: void PhaseConservativeCoalesce::verify() { duke@435: #ifdef ASSERT duke@435: _phc.set_was_low(); duke@435: #endif duke@435: } duke@435: duke@435: void PhaseConservativeCoalesce::union_helper( Node *lr1_node, Node *lr2_node, uint lr1, uint lr2, Node *src_def, Node *dst_copy, Node *src_copy, Block *b, uint bindex ) { duke@435: // Join live ranges. Merge larger into smaller. Union lr2 into lr1 in the duke@435: // union-find tree duke@435: _phc.Union( lr1_node, lr2_node ); duke@435: duke@435: // Single-def live range ONLY if both live ranges are single-def. duke@435: // If both are single def, then src_def powers one live range duke@435: // and def_copy powers the other. After merging, src_def powers duke@435: // the combined live range. never@730: lrgs(lr1)._def = (lrgs(lr1).is_multidef() || never@730: lrgs(lr2).is_multidef() ) duke@435: ? NodeSentinel : src_def; duke@435: lrgs(lr2)._def = NULL; // No def for lrg 2 duke@435: lrgs(lr2).Clear(); // Force empty mask for LRG 2 duke@435: //lrgs(lr2)._size = 0; // Live-range 2 goes dead duke@435: lrgs(lr1)._is_oop |= lrgs(lr2)._is_oop; duke@435: lrgs(lr2)._is_oop = 0; // In particular, not an oop for GC info duke@435: duke@435: if (lrgs(lr1)._maxfreq < lrgs(lr2)._maxfreq) duke@435: lrgs(lr1)._maxfreq = lrgs(lr2)._maxfreq; duke@435: duke@435: // Copy original value instead. Intermediate copies go dead, and duke@435: // the dst_copy becomes useless. duke@435: int didx = dst_copy->is_Copy(); duke@435: dst_copy->set_req( didx, src_def ); duke@435: // Add copy to free list duke@435: // _phc.free_spillcopy(b->_nodes[bindex]); adlertz@5635: assert( b->get_node(bindex) == dst_copy, "" ); duke@435: dst_copy->replace_by( dst_copy->in(didx) ); duke@435: dst_copy->set_req( didx, NULL); adlertz@5635: b->remove_node(bindex); duke@435: if( bindex < b->_ihrp_index ) b->_ihrp_index--; duke@435: if( bindex < b->_fhrp_index ) b->_fhrp_index--; duke@435: duke@435: // Stretched lr1; add it to liveness of intermediate blocks adlertz@5509: Block *b2 = _phc._cfg.get_block_for_node(src_copy); duke@435: while( b != b2 ) { adlertz@5509: b = _phc._cfg.get_block_for_node(b->pred(1)); duke@435: _phc._live->live(b)->insert(lr1); duke@435: } duke@435: } duke@435: duke@435: // Factored code from copy_copy that computes extra interferences from duke@435: // lengthening a live range by double-coalescing. duke@435: uint PhaseConservativeCoalesce::compute_separating_interferences(Node *dst_copy, Node *src_copy, Block *b, uint bindex, RegMask &rm, uint reg_degree, uint rm_size, uint lr1, uint lr2 ) { duke@435: duke@435: assert(!lrgs(lr1)._fat_proj, "cannot coalesce fat_proj"); duke@435: assert(!lrgs(lr2)._fat_proj, "cannot coalesce fat_proj"); duke@435: Node *prev_copy = dst_copy->in(dst_copy->is_Copy()); duke@435: Block *b2 = b; duke@435: uint bindex2 = bindex; duke@435: while( 1 ) { duke@435: // Find previous instruction duke@435: bindex2--; // Chain backwards 1 instruction duke@435: while( bindex2 == 0 ) { // At block start, find prior block duke@435: assert( b2->num_preds() == 2, "cannot double coalesce across c-flow" ); adlertz@5509: b2 = _phc._cfg.get_block_for_node(b2->pred(1)); duke@435: bindex2 = b2->end_idx()-1; duke@435: } duke@435: // Get prior instruction adlertz@5635: assert(bindex2 < b2->number_of_nodes(), "index out of bounds"); adlertz@5635: Node *x = b2->get_node(bindex2); duke@435: if( x == prev_copy ) { // Previous copy in copy chain? duke@435: if( prev_copy == src_copy)// Found end of chain and all interferences duke@435: break; // So break out of loop duke@435: // Else work back one in copy chain duke@435: prev_copy = prev_copy->in(prev_copy->is_Copy()); duke@435: } else { // Else collect interferences neliasso@4949: uint lidx = _phc._lrg_map.find(x); duke@435: // Found another def of live-range being stretched? neliasso@4949: if(lidx == lr1) { neliasso@4949: return max_juint; neliasso@4949: } neliasso@4949: if(lidx == lr2) { neliasso@4949: return max_juint; neliasso@4949: } duke@435: duke@435: // If we attempt to coalesce across a bound def duke@435: if( lrgs(lidx).is_bound() ) { duke@435: // Do not let the coalesced LRG expect to get the bound color duke@435: rm.SUBTRACT( lrgs(lidx).mask() ); duke@435: // Recompute rm_size duke@435: rm_size = rm.Size(); duke@435: //if( rm._flags ) rm_size += 1000000; duke@435: if( reg_degree >= rm_size ) return max_juint; duke@435: } duke@435: if( rm.overlap(lrgs(lidx).mask()) ) { duke@435: // Insert lidx into union LRG; returns TRUE if actually inserted duke@435: if( _ulr.insert(lidx) ) { duke@435: // Infinite-stack neighbors do not alter colorability, as they duke@435: // can always color to some other color. duke@435: if( !lrgs(lidx).mask().is_AllStack() ) { duke@435: // If this coalesce will make any new neighbor uncolorable, duke@435: // do not coalesce. duke@435: if( lrgs(lidx).just_lo_degree() ) duke@435: return max_juint; duke@435: // Bump our degree duke@435: if( ++reg_degree >= rm_size ) duke@435: return max_juint; duke@435: } // End of if not infinite-stack neighbor duke@435: } // End of if actually inserted duke@435: } // End of if live range overlaps twisti@1040: } // End of else collect interferences for 1 node twisti@1040: } // End of while forever, scan back for interferences duke@435: return reg_degree; duke@435: } duke@435: duke@435: void PhaseConservativeCoalesce::update_ifg(uint lr1, uint lr2, IndexSet *n_lr1, IndexSet *n_lr2) { duke@435: // Some original neighbors of lr1 might have gone away duke@435: // because the constrained register mask prevented them. duke@435: // Remove lr1 from such neighbors. duke@435: IndexSetIterator one(n_lr1); duke@435: uint neighbor; duke@435: LRG &lrg1 = lrgs(lr1); duke@435: while ((neighbor = one.next()) != 0) duke@435: if( !_ulr.member(neighbor) ) duke@435: if( _phc._ifg->neighbors(neighbor)->remove(lr1) ) duke@435: lrgs(neighbor).inc_degree( -lrg1.compute_degree(lrgs(neighbor)) ); duke@435: duke@435: duke@435: // lr2 is now called (coalesced into) lr1. duke@435: // Remove lr2 from the IFG. duke@435: IndexSetIterator two(n_lr2); duke@435: LRG &lrg2 = lrgs(lr2); duke@435: while ((neighbor = two.next()) != 0) duke@435: if( _phc._ifg->neighbors(neighbor)->remove(lr2) ) duke@435: lrgs(neighbor).inc_degree( -lrg2.compute_degree(lrgs(neighbor)) ); duke@435: duke@435: // Some neighbors of intermediate copies now interfere with the duke@435: // combined live range. duke@435: IndexSetIterator three(&_ulr); duke@435: while ((neighbor = three.next()) != 0) duke@435: if( _phc._ifg->neighbors(neighbor)->insert(lr1) ) duke@435: lrgs(neighbor).inc_degree( lrg1.compute_degree(lrgs(neighbor)) ); duke@435: } duke@435: duke@435: static void record_bias( const PhaseIFG *ifg, int lr1, int lr2 ) { duke@435: // Tag copy bias here duke@435: if( !ifg->lrgs(lr1)._copy_bias ) duke@435: ifg->lrgs(lr1)._copy_bias = lr2; duke@435: if( !ifg->lrgs(lr2)._copy_bias ) duke@435: ifg->lrgs(lr2)._copy_bias = lr1; duke@435: } duke@435: duke@435: // See if I can coalesce a series of multiple copies together. I need the duke@435: // final dest copy and the original src copy. They can be the same Node. duke@435: // Compute the compatible register masks. neliasso@4949: bool PhaseConservativeCoalesce::copy_copy(Node *dst_copy, Node *src_copy, Block *b, uint bindex) { duke@435: neliasso@4949: if (!dst_copy->is_SpillCopy()) { neliasso@4949: return false; neliasso@4949: } neliasso@4949: if (!src_copy->is_SpillCopy()) { neliasso@4949: return false; neliasso@4949: } duke@435: Node *src_def = src_copy->in(src_copy->is_Copy()); neliasso@4949: uint lr1 = _phc._lrg_map.find(dst_copy); neliasso@4949: uint lr2 = _phc._lrg_map.find(src_def); duke@435: duke@435: // Same live ranges already? neliasso@4949: if (lr1 == lr2) { neliasso@4949: return false; neliasso@4949: } duke@435: duke@435: // Interfere? neliasso@4949: if (_phc._ifg->test_edge_sq(lr1, lr2)) { neliasso@4949: return false; neliasso@4949: } duke@435: duke@435: // Not an oop->int cast; oop->oop, int->int, AND int->oop are OK. neliasso@4949: if (!lrgs(lr1)._is_oop && lrgs(lr2)._is_oop) { // not an oop->int cast duke@435: return false; neliasso@4949: } duke@435: duke@435: // Coalescing between an aligned live range and a mis-aligned live range? duke@435: // No, no! Alignment changes how we count degree. neliasso@4949: if (lrgs(lr1)._fat_proj != lrgs(lr2)._fat_proj) { duke@435: return false; neliasso@4949: } duke@435: duke@435: // Sort; use smaller live-range number duke@435: Node *lr1_node = dst_copy; duke@435: Node *lr2_node = src_def; neliasso@4949: if (lr1 > lr2) { duke@435: uint tmp = lr1; lr1 = lr2; lr2 = tmp; duke@435: lr1_node = src_def; lr2_node = dst_copy; duke@435: } duke@435: duke@435: // Check for compatibility of the 2 live ranges by duke@435: // intersecting their allowed register sets. duke@435: RegMask rm = lrgs(lr1).mask(); duke@435: rm.AND(lrgs(lr2).mask()); duke@435: // Number of bits free duke@435: uint rm_size = rm.Size(); duke@435: never@2085: if (UseFPUForSpilling && rm.is_AllStack() ) { never@2085: // Don't coalesce when frequency difference is large adlertz@5509: Block *dst_b = _phc._cfg.get_block_for_node(dst_copy); adlertz@5509: Block *src_def_b = _phc._cfg.get_block_for_node(src_def); never@2085: if (src_def_b->_freq > 10*dst_b->_freq ) never@2085: return false; never@2085: } never@2085: duke@435: // If we can use any stack slot, then effective size is infinite duke@435: if( rm.is_AllStack() ) rm_size += 1000000; duke@435: // Incompatible masks, no way to coalesce duke@435: if( rm_size == 0 ) return false; duke@435: duke@435: // Another early bail-out test is when we are double-coalescing and the twisti@1040: // 2 copies are separated by some control flow. duke@435: if( dst_copy != src_copy ) { adlertz@5509: Block *src_b = _phc._cfg.get_block_for_node(src_copy); duke@435: Block *b2 = b; duke@435: while( b2 != src_b ) { duke@435: if( b2->num_preds() > 2 ){// Found merge-point duke@435: _phc._lost_opp_cflow_coalesce++; duke@435: // extra record_bias commented out because Chris believes it is not duke@435: // productive. Since we can record only 1 bias, we want to choose one duke@435: // that stands a chance of working and this one probably does not. duke@435: //record_bias( _phc._lrgs, lr1, lr2 ); duke@435: return false; // To hard to find all interferences duke@435: } adlertz@5509: b2 = _phc._cfg.get_block_for_node(b2->pred(1)); duke@435: } duke@435: } duke@435: duke@435: // Union the two interference sets together into '_ulr' duke@435: uint reg_degree = _ulr.lrg_union( lr1, lr2, rm_size, _phc._ifg, rm ); duke@435: duke@435: if( reg_degree >= rm_size ) { duke@435: record_bias( _phc._ifg, lr1, lr2 ); duke@435: return false; duke@435: } duke@435: duke@435: // Now I need to compute all the interferences between dst_copy and duke@435: // src_copy. I'm not willing visit the entire interference graph, so duke@435: // I limit my search to things in dst_copy's block or in a straight duke@435: // line of previous blocks. I give up at merge points or when I get duke@435: // more interferences than my degree. I can stop when I find src_copy. duke@435: if( dst_copy != src_copy ) { duke@435: reg_degree = compute_separating_interferences(dst_copy, src_copy, b, bindex, rm, rm_size, reg_degree, lr1, lr2 ); duke@435: if( reg_degree == max_juint ) { duke@435: record_bias( _phc._ifg, lr1, lr2 ); duke@435: return false; duke@435: } duke@435: } // End of if dst_copy & src_copy are different duke@435: duke@435: duke@435: // ---- THE COMBINED LRG IS COLORABLE ---- duke@435: duke@435: // YEAH - Now coalesce this copy away duke@435: assert( lrgs(lr1).num_regs() == lrgs(lr2).num_regs(), "" ); duke@435: duke@435: IndexSet *n_lr1 = _phc._ifg->neighbors(lr1); duke@435: IndexSet *n_lr2 = _phc._ifg->neighbors(lr2); duke@435: duke@435: // Update the interference graph duke@435: update_ifg(lr1, lr2, n_lr1, n_lr2); duke@435: duke@435: _ulr.remove(lr1); duke@435: duke@435: // Uncomment the following code to trace Coalescing in great detail. duke@435: // duke@435: //if (false) { duke@435: // tty->cr(); duke@435: // tty->print_cr("#######################################"); duke@435: // tty->print_cr("union %d and %d", lr1, lr2); duke@435: // n_lr1->dump(); duke@435: // n_lr2->dump(); duke@435: // tty->print_cr("resulting set is"); duke@435: // _ulr.dump(); duke@435: //} duke@435: duke@435: // Replace n_lr1 with the new combined live range. _ulr will use duke@435: // n_lr1's old memory on the next iteration. n_lr2 is cleared to duke@435: // send its internal memory to the free list. duke@435: _ulr.swap(n_lr1); duke@435: _ulr.clear(); duke@435: n_lr2->clear(); duke@435: duke@435: lrgs(lr1).set_degree( _phc._ifg->effective_degree(lr1) ); duke@435: lrgs(lr2).set_degree( 0 ); duke@435: duke@435: // Join live ranges. Merge larger into smaller. Union lr2 into lr1 in the duke@435: // union-find tree duke@435: union_helper( lr1_node, lr2_node, lr1, lr2, src_def, dst_copy, src_copy, b, bindex ); duke@435: // Combine register restrictions duke@435: lrgs(lr1).set_mask(rm); duke@435: lrgs(lr1).compute_set_mask_size(); duke@435: lrgs(lr1)._cost += lrgs(lr2)._cost; duke@435: lrgs(lr1)._area += lrgs(lr2)._area; duke@435: duke@435: // While its uncommon to successfully coalesce live ranges that started out duke@435: // being not-lo-degree, it can happen. In any case the combined coalesced duke@435: // live range better Simplify nicely. duke@435: lrgs(lr1)._was_lo = 1; duke@435: duke@435: // kinda expensive to do all the time duke@435: //tty->print_cr("warning: slow verify happening"); duke@435: //_phc._ifg->verify( &_phc ); duke@435: return true; duke@435: } duke@435: duke@435: // Conservative (but pessimistic) copy coalescing of a single block duke@435: void PhaseConservativeCoalesce::coalesce( Block *b ) { duke@435: // Bail out on infrequent blocks adlertz@5639: if (_phc._cfg.is_uncommon(b)) { duke@435: return; adlertz@5509: } duke@435: // Check this block for copies. duke@435: for( uint i = 1; iend_idx(); i++ ) { duke@435: // Check for actual copies on inputs. Coalesce a copy into its duke@435: // input if use and copy's input are compatible. adlertz@5635: Node *copy1 = b->get_node(i); duke@435: uint idx1 = copy1->is_Copy(); duke@435: if( !idx1 ) continue; // Not a copy duke@435: duke@435: if( copy_copy(copy1,copy1,b,i) ) { duke@435: i--; // Retry, same location in block duke@435: PhaseChaitin::_conserv_coalesce++; // Collect stats on success duke@435: continue; duke@435: } duke@435: } duke@435: }