duke@435: /* coleenp@4037: * Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved. duke@435: * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. duke@435: * duke@435: * This code is free software; you can redistribute it and/or modify it duke@435: * under the terms of the GNU General Public License version 2 only, as duke@435: * published by the Free Software Foundation. duke@435: * duke@435: * This code is distributed in the hope that it will be useful, but WITHOUT duke@435: * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or duke@435: * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License duke@435: * version 2 for more details (a copy is included in the LICENSE file that duke@435: * accompanied this code). duke@435: * duke@435: * You should have received a copy of the GNU General Public License version duke@435: * 2 along with this work; if not, write to the Free Software Foundation, duke@435: * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. duke@435: * trims@1907: * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA trims@1907: * or visit www.oracle.com if you need additional information or have any trims@1907: * questions. duke@435: * duke@435: */ duke@435: stefank@2314: #include "precompiled.hpp" stefank@2314: #include "interp_masm_x86_32.hpp" stefank@2314: #include "interpreter/interpreter.hpp" stefank@2314: #include "interpreter/interpreterRuntime.hpp" stefank@2314: #include "oops/arrayOop.hpp" stefank@2314: #include "oops/markOop.hpp" coleenp@4037: #include "oops/methodData.hpp" coleenp@4037: #include "oops/method.hpp" stefank@2314: #include "prims/jvmtiExport.hpp" stefank@2314: #include "prims/jvmtiRedefineClassesTrace.hpp" stefank@2314: #include "prims/jvmtiThreadState.hpp" stefank@2314: #include "runtime/basicLock.hpp" stefank@2314: #include "runtime/biasedLocking.hpp" stefank@2314: #include "runtime/sharedRuntime.hpp" stefank@2314: #ifdef TARGET_OS_FAMILY_linux stefank@2314: # include "thread_linux.inline.hpp" stefank@2314: #endif stefank@2314: #ifdef TARGET_OS_FAMILY_solaris stefank@2314: # include "thread_solaris.inline.hpp" stefank@2314: #endif stefank@2314: #ifdef TARGET_OS_FAMILY_windows stefank@2314: # include "thread_windows.inline.hpp" stefank@2314: #endif never@3156: #ifdef TARGET_OS_FAMILY_bsd never@3156: # include "thread_bsd.inline.hpp" never@3156: #endif duke@435: duke@435: duke@435: // Implementation of InterpreterMacroAssembler duke@435: #ifdef CC_INTERP duke@435: void InterpreterMacroAssembler::get_method(Register reg) { never@739: movptr(reg, Address(rbp, -(sizeof(BytecodeInterpreter) + 2 * wordSize))); never@739: movptr(reg, Address(reg, byte_offset_of(BytecodeInterpreter, _method))); duke@435: } duke@435: #endif // CC_INTERP duke@435: duke@435: duke@435: #ifndef CC_INTERP duke@435: void InterpreterMacroAssembler::call_VM_leaf_base( duke@435: address entry_point, duke@435: int number_of_arguments duke@435: ) { duke@435: // interpreter specific duke@435: // duke@435: // Note: No need to save/restore bcp & locals (rsi & rdi) pointer duke@435: // since these are callee saved registers and no blocking/ duke@435: // GC can happen in leaf calls. duke@435: // Further Note: DO NOT save/restore bcp/locals. If a caller has duke@435: // already saved them so that it can use rsi/rdi as temporaries duke@435: // then a save/restore here will DESTROY the copy the caller duke@435: // saved! There used to be a save_bcp() that only happened in duke@435: // the ASSERT path (no restore_bcp). Which caused bizarre failures duke@435: // when jvm built with ASSERTs. duke@435: #ifdef ASSERT duke@435: { Label L; never@739: cmpptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), (int32_t)NULL_WORD); duke@435: jcc(Assembler::equal, L); duke@435: stop("InterpreterMacroAssembler::call_VM_leaf_base: last_sp != NULL"); duke@435: bind(L); duke@435: } duke@435: #endif duke@435: // super call duke@435: MacroAssembler::call_VM_leaf_base(entry_point, number_of_arguments); duke@435: // interpreter specific duke@435: duke@435: // Used to ASSERT that rsi/rdi were equal to frame's bcp/locals duke@435: // but since they may not have been saved (and we don't want to duke@435: // save them here (see note above) the assert is invalid. duke@435: } duke@435: duke@435: duke@435: void InterpreterMacroAssembler::call_VM_base( duke@435: Register oop_result, duke@435: Register java_thread, duke@435: Register last_java_sp, duke@435: address entry_point, duke@435: int number_of_arguments, duke@435: bool check_exceptions duke@435: ) { duke@435: #ifdef ASSERT duke@435: { Label L; never@739: cmpptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), (int32_t)NULL_WORD); duke@435: jcc(Assembler::equal, L); duke@435: stop("InterpreterMacroAssembler::call_VM_base: last_sp != NULL"); duke@435: bind(L); duke@435: } duke@435: #endif /* ASSERT */ duke@435: // interpreter specific duke@435: // duke@435: // Note: Could avoid restoring locals ptr (callee saved) - however doesn't duke@435: // really make a difference for these runtime calls, since they are duke@435: // slow anyway. Btw., bcp must be saved/restored since it may change duke@435: // due to GC. duke@435: assert(java_thread == noreg , "not expecting a precomputed java thread"); duke@435: save_bcp(); duke@435: // super call duke@435: MacroAssembler::call_VM_base(oop_result, java_thread, last_java_sp, entry_point, number_of_arguments, check_exceptions); duke@435: // interpreter specific duke@435: restore_bcp(); duke@435: restore_locals(); duke@435: } duke@435: duke@435: duke@435: void InterpreterMacroAssembler::check_and_handle_popframe(Register java_thread) { duke@435: if (JvmtiExport::can_pop_frame()) { duke@435: Label L; duke@435: // Initiate popframe handling only if it is not already being processed. If the flag duke@435: // has the popframe_processing bit set, it means that this code is called *during* popframe duke@435: // handling - we don't want to reenter. duke@435: Register pop_cond = java_thread; // Not clear if any other register is available... duke@435: movl(pop_cond, Address(java_thread, JavaThread::popframe_condition_offset())); duke@435: testl(pop_cond, JavaThread::popframe_pending_bit); duke@435: jcc(Assembler::zero, L); duke@435: testl(pop_cond, JavaThread::popframe_processing_bit); duke@435: jcc(Assembler::notZero, L); duke@435: // Call Interpreter::remove_activation_preserving_args_entry() to get the duke@435: // address of the same-named entrypoint in the generated interpreter code. duke@435: call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_preserving_args_entry)); duke@435: jmp(rax); duke@435: bind(L); duke@435: get_thread(java_thread); duke@435: } duke@435: } duke@435: duke@435: duke@435: void InterpreterMacroAssembler::load_earlyret_value(TosState state) { duke@435: get_thread(rcx); duke@435: movl(rcx, Address(rcx, JavaThread::jvmti_thread_state_offset())); duke@435: const Address tos_addr (rcx, JvmtiThreadState::earlyret_tos_offset()); duke@435: const Address oop_addr (rcx, JvmtiThreadState::earlyret_oop_offset()); duke@435: const Address val_addr (rcx, JvmtiThreadState::earlyret_value_offset()); duke@435: const Address val_addr1(rcx, JvmtiThreadState::earlyret_value_offset() duke@435: + in_ByteSize(wordSize)); duke@435: switch (state) { never@739: case atos: movptr(rax, oop_addr); xlu@947: movptr(oop_addr, NULL_WORD); duke@435: verify_oop(rax, state); break; never@739: case ltos: never@739: movl(rdx, val_addr1); // fall through duke@435: case btos: // fall through duke@435: case ctos: // fall through duke@435: case stos: // fall through duke@435: case itos: movl(rax, val_addr); break; duke@435: case ftos: fld_s(val_addr); break; duke@435: case dtos: fld_d(val_addr); break; duke@435: case vtos: /* nothing to do */ break; duke@435: default : ShouldNotReachHere(); duke@435: } duke@435: // Clean up tos value in the thread object never@739: movl(tos_addr, (int32_t) ilgl); xlu@947: movptr(val_addr, NULL_WORD); xlu@968: NOT_LP64(movptr(val_addr1, NULL_WORD)); duke@435: } duke@435: duke@435: duke@435: void InterpreterMacroAssembler::check_and_handle_earlyret(Register java_thread) { duke@435: if (JvmtiExport::can_force_early_return()) { duke@435: Label L; duke@435: Register tmp = java_thread; never@739: movptr(tmp, Address(tmp, JavaThread::jvmti_thread_state_offset())); never@739: testptr(tmp, tmp); duke@435: jcc(Assembler::zero, L); // if (thread->jvmti_thread_state() == NULL) exit; duke@435: duke@435: // Initiate earlyret handling only if it is not already being processed. duke@435: // If the flag has the earlyret_processing bit set, it means that this code duke@435: // is called *during* earlyret handling - we don't want to reenter. duke@435: movl(tmp, Address(tmp, JvmtiThreadState::earlyret_state_offset())); duke@435: cmpl(tmp, JvmtiThreadState::earlyret_pending); duke@435: jcc(Assembler::notEqual, L); duke@435: duke@435: // Call Interpreter::remove_activation_early_entry() to get the address of the duke@435: // same-named entrypoint in the generated interpreter code. duke@435: get_thread(java_thread); never@739: movptr(tmp, Address(java_thread, JavaThread::jvmti_thread_state_offset())); duke@435: pushl(Address(tmp, JvmtiThreadState::earlyret_tos_offset())); duke@435: call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_early_entry), 1); duke@435: jmp(rax); duke@435: bind(L); duke@435: get_thread(java_thread); duke@435: } duke@435: } duke@435: duke@435: duke@435: void InterpreterMacroAssembler::get_unsigned_2_byte_index_at_bcp(Register reg, int bcp_offset) { duke@435: assert(bcp_offset >= 0, "bcp is still pointing to start of bytecode"); duke@435: movl(reg, Address(rsi, bcp_offset)); never@739: bswapl(reg); duke@435: shrl(reg, 16); duke@435: } duke@435: duke@435: jrose@1920: void InterpreterMacroAssembler::get_cache_index_at_bcp(Register reg, int bcp_offset, size_t index_size) { duke@435: assert(bcp_offset > 0, "bcp is still pointing to start of bytecode"); jrose@1920: if (index_size == sizeof(u2)) { jrose@1161: load_unsigned_short(reg, Address(rsi, bcp_offset)); jrose@1920: } else if (index_size == sizeof(u4)) { twisti@2698: assert(EnableInvokeDynamic, "giant index used only for JSR 292"); jrose@1161: movl(reg, Address(rsi, bcp_offset)); twisti@1543: // Check if the secondary index definition is still ~x, otherwise twisti@1543: // we have to change the following assembler code to calculate the twisti@1543: // plain index. coleenp@4037: assert(ConstantPool::decode_invokedynamic_index(~123) == 123, "else change next line"); jrose@1161: notl(reg); // convert to plain index jrose@1920: } else if (index_size == sizeof(u1)) { jrose@1920: load_unsigned_byte(reg, Address(rsi, bcp_offset)); jrose@1920: } else { jrose@1920: ShouldNotReachHere(); jrose@1161: } jrose@1161: } jrose@1161: jrose@1161: jrose@1161: void InterpreterMacroAssembler::get_cache_and_index_at_bcp(Register cache, Register index, jrose@1920: int bcp_offset, size_t index_size) { twisti@3050: assert_different_registers(cache, index); jrose@1920: get_cache_index_at_bcp(index, bcp_offset, index_size); never@739: movptr(cache, Address(rbp, frame::interpreter_frame_cache_offset * wordSize)); duke@435: assert(sizeof(ConstantPoolCacheEntry) == 4*wordSize, "adjust code below"); coleenp@4037: assert(exact_log2(in_words(ConstantPoolCacheEntry::size())) == 2, "else change next line"); never@739: shlptr(index, 2); // convert from field index to ConstantPoolCacheEntry index duke@435: } duke@435: duke@435: twisti@3050: void InterpreterMacroAssembler::get_cache_and_index_and_bytecode_at_bcp(Register cache, twisti@3050: Register index, twisti@3050: Register bytecode, twisti@3050: int byte_no, twisti@3050: int bcp_offset, twisti@3050: size_t index_size) { twisti@3050: get_cache_and_index_at_bcp(cache, index, bcp_offset, index_size); coleenp@4037: movptr(bytecode, Address(cache, index, Address::times_ptr, ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::indices_offset())); twisti@3050: const int shift_count = (1 + byte_no) * BitsPerByte; twisti@3969: assert((byte_no == TemplateTable::f1_byte && shift_count == ConstantPoolCacheEntry::bytecode_1_shift) || twisti@3969: (byte_no == TemplateTable::f2_byte && shift_count == ConstantPoolCacheEntry::bytecode_2_shift), twisti@3969: "correct shift count"); twisti@3050: shrptr(bytecode, shift_count); twisti@3969: assert(ConstantPoolCacheEntry::bytecode_1_mask == ConstantPoolCacheEntry::bytecode_2_mask, "common mask"); twisti@3969: andptr(bytecode, ConstantPoolCacheEntry::bytecode_1_mask); twisti@3050: } twisti@3050: twisti@3050: jrose@1161: void InterpreterMacroAssembler::get_cache_entry_pointer_at_bcp(Register cache, Register tmp, jrose@1920: int bcp_offset, size_t index_size) { duke@435: assert(cache != tmp, "must use different register"); jrose@1920: get_cache_index_at_bcp(tmp, bcp_offset, index_size); duke@435: assert(sizeof(ConstantPoolCacheEntry) == 4*wordSize, "adjust code below"); duke@435: // convert from field index to ConstantPoolCacheEntry index duke@435: // and from word offset to byte offset coleenp@4037: assert(exact_log2(in_bytes(ConstantPoolCacheEntry::size_in_bytes())) == 2 + LogBytesPerWord, "else change next line"); duke@435: shll(tmp, 2 + LogBytesPerWord); never@739: movptr(cache, Address(rbp, frame::interpreter_frame_cache_offset * wordSize)); duke@435: // skip past the header coleenp@4037: addptr(cache, in_bytes(ConstantPoolCache::base_offset())); never@739: addptr(cache, tmp); // construct pointer to cache entry duke@435: } duke@435: coleenp@4037: // Load object from cpool->resolved_references(index) coleenp@4037: void InterpreterMacroAssembler::load_resolved_reference_at_index( coleenp@4037: Register result, Register index) { coleenp@4037: assert_different_registers(result, index); coleenp@4037: // convert from field index to resolved_references() index and from coleenp@4037: // word index to byte offset. Since this is a java object, it can be compressed coleenp@4037: Register tmp = index; // reuse coleenp@4037: shll(tmp, LogBytesPerHeapOop); coleenp@4037: coleenp@4037: get_constant_pool(result); coleenp@4037: // load pointer for resolved_references[] objArray coleenp@4037: movptr(result, Address(result, ConstantPool::resolved_references_offset_in_bytes())); coleenp@4037: // JNIHandles::resolve(obj); coleenp@4037: movptr(result, Address(result, 0)); coleenp@4037: // Add in the index coleenp@4037: addptr(result, tmp); coleenp@4037: load_heap_oop(result, Address(result, arrayOopDesc::base_offset_in_bytes(T_OBJECT))); coleenp@4037: } duke@435: duke@435: // Generate a subtype check: branch to ok_is_subtype if sub_klass is duke@435: // a subtype of super_klass. EAX holds the super_klass. Blows ECX. duke@435: // Resets EDI to locals. Register sub_klass cannot be any of the above. duke@435: void InterpreterMacroAssembler::gen_subtype_check( Register Rsub_klass, Label &ok_is_subtype ) { duke@435: assert( Rsub_klass != rax, "rax, holds superklass" ); jrose@1079: assert( Rsub_klass != rcx, "used as a temp" ); jrose@1079: assert( Rsub_klass != rdi, "used as a temp, restored from locals" ); duke@435: duke@435: // Profile the not-null value's klass. jrose@1079: profile_typecheck(rcx, Rsub_klass, rdi); // blows rcx, reloads rdi duke@435: jrose@1079: // Do the check. jrose@1079: check_klass_subtype(Rsub_klass, rax, rcx, ok_is_subtype); // blows rcx duke@435: jrose@1079: // Profile the failure of the check. duke@435: profile_typecheck_failed(rcx); // blows rcx duke@435: } duke@435: duke@435: void InterpreterMacroAssembler::f2ieee() { duke@435: if (IEEEPrecision) { duke@435: fstp_s(Address(rsp, 0)); duke@435: fld_s(Address(rsp, 0)); duke@435: } duke@435: } duke@435: duke@435: duke@435: void InterpreterMacroAssembler::d2ieee() { duke@435: if (IEEEPrecision) { duke@435: fstp_d(Address(rsp, 0)); duke@435: fld_d(Address(rsp, 0)); duke@435: } duke@435: } duke@435: duke@435: // Java Expression Stack duke@435: duke@435: void InterpreterMacroAssembler::pop_ptr(Register r) { never@739: pop(r); duke@435: } duke@435: duke@435: void InterpreterMacroAssembler::pop_i(Register r) { never@739: pop(r); duke@435: } duke@435: duke@435: void InterpreterMacroAssembler::pop_l(Register lo, Register hi) { never@739: pop(lo); never@739: pop(hi); duke@435: } duke@435: duke@435: void InterpreterMacroAssembler::pop_f() { duke@435: fld_s(Address(rsp, 0)); never@739: addptr(rsp, 1 * wordSize); duke@435: } duke@435: duke@435: void InterpreterMacroAssembler::pop_d() { duke@435: fld_d(Address(rsp, 0)); never@739: addptr(rsp, 2 * wordSize); duke@435: } duke@435: duke@435: duke@435: void InterpreterMacroAssembler::pop(TosState state) { duke@435: switch (state) { duke@435: case atos: pop_ptr(rax); break; duke@435: case btos: // fall through duke@435: case ctos: // fall through duke@435: case stos: // fall through duke@435: case itos: pop_i(rax); break; duke@435: case ltos: pop_l(rax, rdx); break; duke@435: case ftos: pop_f(); break; duke@435: case dtos: pop_d(); break; duke@435: case vtos: /* nothing to do */ break; duke@435: default : ShouldNotReachHere(); duke@435: } duke@435: verify_oop(rax, state); duke@435: } duke@435: duke@435: void InterpreterMacroAssembler::push_ptr(Register r) { never@739: push(r); duke@435: } duke@435: duke@435: void InterpreterMacroAssembler::push_i(Register r) { never@739: push(r); duke@435: } duke@435: duke@435: void InterpreterMacroAssembler::push_l(Register lo, Register hi) { never@739: push(hi); never@739: push(lo); duke@435: } duke@435: duke@435: void InterpreterMacroAssembler::push_f() { duke@435: // Do not schedule for no AGI! Never write beyond rsp! never@739: subptr(rsp, 1 * wordSize); duke@435: fstp_s(Address(rsp, 0)); duke@435: } duke@435: duke@435: void InterpreterMacroAssembler::push_d(Register r) { twisti@1861: // Do not schedule for no AGI! Never write beyond rsp! twisti@1861: subptr(rsp, 2 * wordSize); twisti@1861: fstp_d(Address(rsp, 0)); duke@435: } duke@435: duke@435: duke@435: void InterpreterMacroAssembler::push(TosState state) { duke@435: verify_oop(rax, state); duke@435: switch (state) { duke@435: case atos: push_ptr(rax); break; duke@435: case btos: // fall through duke@435: case ctos: // fall through duke@435: case stos: // fall through duke@435: case itos: push_i(rax); break; duke@435: case ltos: push_l(rax, rdx); break; duke@435: case ftos: push_f(); break; duke@435: case dtos: push_d(rax); break; duke@435: case vtos: /* nothing to do */ break; duke@435: default : ShouldNotReachHere(); duke@435: } duke@435: } duke@435: duke@435: twisti@1861: // Helpers for swap and dup twisti@1861: void InterpreterMacroAssembler::load_ptr(int n, Register val) { never@739: movptr(val, Address(rsp, Interpreter::expr_offset_in_bytes(n))); duke@435: } duke@435: twisti@1861: void InterpreterMacroAssembler::store_ptr(int n, Register val) { never@739: movptr(Address(rsp, Interpreter::expr_offset_in_bytes(n)), val); duke@435: } duke@435: jrose@1145: void InterpreterMacroAssembler::prepare_to_jump_from_interpreted() { duke@435: // set sender sp never@739: lea(rsi, Address(rsp, wordSize)); duke@435: // record last_sp never@739: movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), rsi); jrose@1145: } jrose@1145: jrose@1145: jrose@1145: // Jump to from_interpreted entry of a call unless single stepping is possible jrose@1145: // in this thread in which case we must call the i2i entry jrose@1145: void InterpreterMacroAssembler::jump_from_interpreted(Register method, Register temp) { jrose@1145: prepare_to_jump_from_interpreted(); duke@435: duke@435: if (JvmtiExport::can_post_interpreter_events()) { duke@435: Label run_compiled_code; duke@435: // JVMTI events, such as single-stepping, are implemented partly by avoiding running duke@435: // compiled code in threads for which the event is enabled. Check here for duke@435: // interp_only_mode if these events CAN be enabled. duke@435: get_thread(temp); duke@435: // interp_only is an int, on little endian it is sufficient to test the byte only never@3005: // Is a cmpl faster? duke@435: cmpb(Address(temp, JavaThread::interp_only_mode_offset()), 0); never@3005: jccb(Assembler::zero, run_compiled_code); coleenp@4037: jmp(Address(method, Method::interpreter_entry_offset())); duke@435: bind(run_compiled_code); duke@435: } duke@435: coleenp@4037: jmp(Address(method, Method::from_interpreted_offset())); duke@435: duke@435: } duke@435: duke@435: duke@435: // The following two routines provide a hook so that an implementation duke@435: // can schedule the dispatch in two parts. Intel does not do this. duke@435: void InterpreterMacroAssembler::dispatch_prolog(TosState state, int step) { duke@435: // Nothing Intel-specific to be done here. duke@435: } duke@435: duke@435: void InterpreterMacroAssembler::dispatch_epilog(TosState state, int step) { duke@435: dispatch_next(state, step); duke@435: } duke@435: duke@435: void InterpreterMacroAssembler::dispatch_base(TosState state, address* table, duke@435: bool verifyoop) { duke@435: verify_FPU(1, state); duke@435: if (VerifyActivationFrameSize) { duke@435: Label L; never@739: mov(rcx, rbp); never@739: subptr(rcx, rsp); duke@435: int min_frame_size = (frame::link_offset - frame::interpreter_frame_initial_sp_offset) * wordSize; never@739: cmpptr(rcx, min_frame_size); duke@435: jcc(Assembler::greaterEqual, L); duke@435: stop("broken stack frame"); duke@435: bind(L); duke@435: } duke@435: if (verifyoop) verify_oop(rax, state); never@739: Address index(noreg, rbx, Address::times_ptr); duke@435: ExternalAddress tbl((address)table); duke@435: ArrayAddress dispatch(tbl, index); duke@435: jump(dispatch); duke@435: } duke@435: duke@435: duke@435: void InterpreterMacroAssembler::dispatch_only(TosState state) { duke@435: dispatch_base(state, Interpreter::dispatch_table(state)); duke@435: } duke@435: duke@435: duke@435: void InterpreterMacroAssembler::dispatch_only_normal(TosState state) { duke@435: dispatch_base(state, Interpreter::normal_table(state)); duke@435: } duke@435: duke@435: void InterpreterMacroAssembler::dispatch_only_noverify(TosState state) { duke@435: dispatch_base(state, Interpreter::normal_table(state), false); duke@435: } duke@435: duke@435: duke@435: void InterpreterMacroAssembler::dispatch_next(TosState state, int step) { duke@435: // load next bytecode (load before advancing rsi to prevent AGI) duke@435: load_unsigned_byte(rbx, Address(rsi, step)); duke@435: // advance rsi duke@435: increment(rsi, step); duke@435: dispatch_base(state, Interpreter::dispatch_table(state)); duke@435: } duke@435: duke@435: duke@435: void InterpreterMacroAssembler::dispatch_via(TosState state, address* table) { duke@435: // load current bytecode duke@435: load_unsigned_byte(rbx, Address(rsi, 0)); duke@435: dispatch_base(state, table); duke@435: } duke@435: duke@435: // remove activation duke@435: // duke@435: // Unlock the receiver if this is a synchronized method. duke@435: // Unlock any Java monitors from syncronized blocks. duke@435: // Remove the activation from the stack. duke@435: // duke@435: // If there are locked Java monitors duke@435: // If throw_monitor_exception duke@435: // throws IllegalMonitorStateException duke@435: // Else if install_monitor_exception duke@435: // installs IllegalMonitorStateException duke@435: // Else duke@435: // no error processing duke@435: void InterpreterMacroAssembler::remove_activation(TosState state, Register ret_addr, duke@435: bool throw_monitor_exception, duke@435: bool install_monitor_exception, duke@435: bool notify_jvmdi) { duke@435: // Note: Registers rax, rdx and FPU ST(0) may be in use for the result duke@435: // check if synchronized method duke@435: Label unlocked, unlock, no_unlock; duke@435: duke@435: get_thread(rcx); duke@435: const Address do_not_unlock_if_synchronized(rcx, duke@435: in_bytes(JavaThread::do_not_unlock_if_synchronized_offset())); duke@435: duke@435: movbool(rbx, do_not_unlock_if_synchronized); never@739: mov(rdi,rbx); duke@435: movbool(do_not_unlock_if_synchronized, false); // reset the flag duke@435: never@739: movptr(rbx, Address(rbp, frame::interpreter_frame_method_offset * wordSize)); // get method access flags coleenp@4037: movl(rcx, Address(rbx, Method::access_flags_offset())); duke@435: duke@435: testl(rcx, JVM_ACC_SYNCHRONIZED); duke@435: jcc(Assembler::zero, unlocked); duke@435: duke@435: // Don't unlock anything if the _do_not_unlock_if_synchronized flag duke@435: // is set. never@739: mov(rcx,rdi); duke@435: testbool(rcx); duke@435: jcc(Assembler::notZero, no_unlock); duke@435: duke@435: // unlock monitor duke@435: push(state); // save result duke@435: duke@435: // BasicObjectLock will be first in list, since this is a synchronized method. However, need duke@435: // to check that the object has not been unlocked by an explicit monitorexit bytecode. duke@435: const Address monitor(rbp, frame::interpreter_frame_initial_sp_offset * wordSize - (int)sizeof(BasicObjectLock)); never@739: lea (rdx, monitor); // address of first monitor duke@435: never@739: movptr (rax, Address(rdx, BasicObjectLock::obj_offset_in_bytes())); never@739: testptr(rax, rax); never@739: jcc (Assembler::notZero, unlock); duke@435: duke@435: pop(state); duke@435: if (throw_monitor_exception) { duke@435: empty_FPU_stack(); // remove possible return value from FPU-stack, otherwise stack could overflow duke@435: duke@435: // Entry already unlocked, need to throw exception duke@435: call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_illegal_monitor_state_exception)); duke@435: should_not_reach_here(); duke@435: } else { duke@435: // Monitor already unlocked during a stack unroll. duke@435: // If requested, install an illegal_monitor_state_exception. duke@435: // Continue with stack unrolling. duke@435: if (install_monitor_exception) { duke@435: empty_FPU_stack(); // remove possible return value from FPU-stack, otherwise stack could overflow duke@435: call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::new_illegal_monitor_state_exception)); duke@435: } duke@435: jmp(unlocked); duke@435: } duke@435: duke@435: bind(unlock); duke@435: unlock_object(rdx); duke@435: pop(state); duke@435: duke@435: // Check that for block-structured locking (i.e., that all locked objects has been unlocked) duke@435: bind(unlocked); duke@435: duke@435: // rax, rdx: Might contain return value duke@435: duke@435: // Check that all monitors are unlocked duke@435: { duke@435: Label loop, exception, entry, restart; duke@435: const int entry_size = frame::interpreter_frame_monitor_size() * wordSize; duke@435: const Address monitor_block_top(rbp, frame::interpreter_frame_monitor_block_top_offset * wordSize); duke@435: const Address monitor_block_bot(rbp, frame::interpreter_frame_initial_sp_offset * wordSize); duke@435: duke@435: bind(restart); never@739: movptr(rcx, monitor_block_top); // points to current entry, starting with top-most entry never@739: lea(rbx, monitor_block_bot); // points to word before bottom of monitor block duke@435: jmp(entry); duke@435: duke@435: // Entry already locked, need to throw exception duke@435: bind(exception); duke@435: duke@435: if (throw_monitor_exception) { duke@435: empty_FPU_stack(); // remove possible return value from FPU-stack, otherwise stack could overflow duke@435: duke@435: // Throw exception duke@435: call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_illegal_monitor_state_exception)); duke@435: should_not_reach_here(); duke@435: } else { duke@435: // Stack unrolling. Unlock object and install illegal_monitor_exception duke@435: // Unlock does not block, so don't have to worry about the frame duke@435: duke@435: push(state); never@739: mov(rdx, rcx); duke@435: unlock_object(rdx); duke@435: pop(state); duke@435: duke@435: if (install_monitor_exception) { duke@435: empty_FPU_stack(); // remove possible return value from FPU-stack, otherwise stack could overflow duke@435: call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::new_illegal_monitor_state_exception)); duke@435: } duke@435: duke@435: jmp(restart); duke@435: } duke@435: duke@435: bind(loop); never@739: cmpptr(Address(rcx, BasicObjectLock::obj_offset_in_bytes()), (int32_t)NULL_WORD); // check if current entry is used duke@435: jcc(Assembler::notEqual, exception); duke@435: never@739: addptr(rcx, entry_size); // otherwise advance to next entry duke@435: bind(entry); never@739: cmpptr(rcx, rbx); // check if bottom reached duke@435: jcc(Assembler::notEqual, loop); // if not at bottom then check this entry duke@435: } duke@435: duke@435: bind(no_unlock); duke@435: duke@435: // jvmti support duke@435: if (notify_jvmdi) { duke@435: notify_method_exit(state, NotifyJVMTI); // preserve TOSCA duke@435: } else { duke@435: notify_method_exit(state, SkipNotifyJVMTI); // preserve TOSCA duke@435: } duke@435: duke@435: // remove activation never@739: movptr(rbx, Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize)); // get sender sp duke@435: leave(); // remove frame anchor never@739: pop(ret_addr); // get return address never@739: mov(rsp, rbx); // set sp to sender sp duke@435: if (UseSSE) { duke@435: // float and double are returned in xmm register in SSE-mode duke@435: if (state == ftos && UseSSE >= 1) { never@739: subptr(rsp, wordSize); duke@435: fstp_s(Address(rsp, 0)); duke@435: movflt(xmm0, Address(rsp, 0)); never@739: addptr(rsp, wordSize); duke@435: } else if (state == dtos && UseSSE >= 2) { never@739: subptr(rsp, 2*wordSize); duke@435: fstp_d(Address(rsp, 0)); duke@435: movdbl(xmm0, Address(rsp, 0)); never@739: addptr(rsp, 2*wordSize); duke@435: } duke@435: } duke@435: } duke@435: duke@435: #endif /* !CC_INTERP */ duke@435: duke@435: duke@435: // Lock object duke@435: // duke@435: // Argument: rdx : Points to BasicObjectLock to be used for locking. Must duke@435: // be initialized with object to lock duke@435: void InterpreterMacroAssembler::lock_object(Register lock_reg) { duke@435: assert(lock_reg == rdx, "The argument is only for looks. It must be rdx"); duke@435: duke@435: if (UseHeavyMonitors) { duke@435: call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter), lock_reg); duke@435: } else { duke@435: duke@435: Label done; duke@435: duke@435: const Register swap_reg = rax; // Must use rax, for cmpxchg instruction duke@435: const Register obj_reg = rcx; // Will contain the oop duke@435: duke@435: const int obj_offset = BasicObjectLock::obj_offset_in_bytes(); duke@435: const int lock_offset = BasicObjectLock::lock_offset_in_bytes (); duke@435: const int mark_offset = lock_offset + BasicLock::displaced_header_offset_in_bytes(); duke@435: duke@435: Label slow_case; duke@435: duke@435: // Load object pointer into obj_reg %rcx never@739: movptr(obj_reg, Address(lock_reg, obj_offset)); duke@435: duke@435: if (UseBiasedLocking) { duke@435: // Note: we use noreg for the temporary register since it's hard duke@435: // to come up with a free register on all incoming code paths duke@435: biased_locking_enter(lock_reg, obj_reg, swap_reg, noreg, false, done, &slow_case); duke@435: } duke@435: duke@435: // Load immediate 1 into swap_reg %rax, never@739: movptr(swap_reg, (int32_t)1); duke@435: duke@435: // Load (object->mark() | 1) into swap_reg %rax, never@739: orptr(swap_reg, Address(obj_reg, 0)); duke@435: duke@435: // Save (object->mark() | 1) into BasicLock's displaced header never@739: movptr(Address(lock_reg, mark_offset), swap_reg); duke@435: duke@435: assert(lock_offset == 0, "displached header must be first word in BasicObjectLock"); duke@435: if (os::is_MP()) { duke@435: lock(); duke@435: } never@739: cmpxchgptr(lock_reg, Address(obj_reg, 0)); duke@435: if (PrintBiasedLockingStatistics) { duke@435: cond_inc32(Assembler::zero, duke@435: ExternalAddress((address) BiasedLocking::fast_path_entry_count_addr())); duke@435: } duke@435: jcc(Assembler::zero, done); duke@435: duke@435: // Test if the oopMark is an obvious stack pointer, i.e., duke@435: // 1) (mark & 3) == 0, and duke@435: // 2) rsp <= mark < mark + os::pagesize() duke@435: // duke@435: // These 3 tests can be done by evaluating the following duke@435: // expression: ((mark - rsp) & (3 - os::vm_page_size())), duke@435: // assuming both stack pointer and pagesize have their duke@435: // least significant 2 bits clear. duke@435: // NOTE: the oopMark is in swap_reg %rax, as the result of cmpxchg never@739: subptr(swap_reg, rsp); never@739: andptr(swap_reg, 3 - os::vm_page_size()); duke@435: duke@435: // Save the test result, for recursive case, the result is zero never@739: movptr(Address(lock_reg, mark_offset), swap_reg); duke@435: duke@435: if (PrintBiasedLockingStatistics) { duke@435: cond_inc32(Assembler::zero, duke@435: ExternalAddress((address) BiasedLocking::fast_path_entry_count_addr())); duke@435: } duke@435: jcc(Assembler::zero, done); duke@435: duke@435: bind(slow_case); duke@435: duke@435: // Call the runtime routine for slow case duke@435: call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter), lock_reg); duke@435: duke@435: bind(done); duke@435: } duke@435: } duke@435: duke@435: duke@435: // Unlocks an object. Used in monitorexit bytecode and remove_activation. duke@435: // duke@435: // Argument: rdx : Points to BasicObjectLock structure for lock duke@435: // Throw an IllegalMonitorException if object is not locked by current thread duke@435: // duke@435: // Uses: rax, rbx, rcx, rdx duke@435: void InterpreterMacroAssembler::unlock_object(Register lock_reg) { duke@435: assert(lock_reg == rdx, "The argument is only for looks. It must be rdx"); duke@435: duke@435: if (UseHeavyMonitors) { duke@435: call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit), lock_reg); duke@435: } else { duke@435: Label done; duke@435: duke@435: const Register swap_reg = rax; // Must use rax, for cmpxchg instruction duke@435: const Register header_reg = rbx; // Will contain the old oopMark duke@435: const Register obj_reg = rcx; // Will contain the oop duke@435: duke@435: save_bcp(); // Save in case of exception duke@435: duke@435: // Convert from BasicObjectLock structure to object and BasicLock structure duke@435: // Store the BasicLock address into %rax, never@739: lea(swap_reg, Address(lock_reg, BasicObjectLock::lock_offset_in_bytes())); duke@435: duke@435: // Load oop into obj_reg(%rcx) never@739: movptr(obj_reg, Address(lock_reg, BasicObjectLock::obj_offset_in_bytes ())); duke@435: duke@435: // Free entry xlu@947: movptr(Address(lock_reg, BasicObjectLock::obj_offset_in_bytes()), NULL_WORD); duke@435: duke@435: if (UseBiasedLocking) { duke@435: biased_locking_exit(obj_reg, header_reg, done); duke@435: } duke@435: duke@435: // Load the old header from BasicLock structure never@739: movptr(header_reg, Address(swap_reg, BasicLock::displaced_header_offset_in_bytes())); duke@435: duke@435: // Test for recursion never@739: testptr(header_reg, header_reg); duke@435: duke@435: // zero for recursive case duke@435: jcc(Assembler::zero, done); duke@435: duke@435: // Atomic swap back the old header duke@435: if (os::is_MP()) lock(); never@739: cmpxchgptr(header_reg, Address(obj_reg, 0)); duke@435: duke@435: // zero for recursive case duke@435: jcc(Assembler::zero, done); duke@435: duke@435: // Call the runtime routine for slow case. never@739: movptr(Address(lock_reg, BasicObjectLock::obj_offset_in_bytes()), obj_reg); // restore obj duke@435: call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit), lock_reg); duke@435: duke@435: bind(done); duke@435: duke@435: restore_bcp(); duke@435: } duke@435: } duke@435: duke@435: duke@435: #ifndef CC_INTERP duke@435: duke@435: // Test ImethodDataPtr. If it is null, continue at the specified label duke@435: void InterpreterMacroAssembler::test_method_data_pointer(Register mdp, Label& zero_continue) { duke@435: assert(ProfileInterpreter, "must be profiling interpreter"); never@739: movptr(mdp, Address(rbp, frame::interpreter_frame_mdx_offset * wordSize)); never@739: testptr(mdp, mdp); duke@435: jcc(Assembler::zero, zero_continue); duke@435: } duke@435: duke@435: duke@435: // Set the method data pointer for the current bcp. duke@435: void InterpreterMacroAssembler::set_method_data_pointer_for_bcp() { duke@435: assert(ProfileInterpreter, "must be profiling interpreter"); iveresov@2438: Label set_mdp; never@739: push(rax); never@739: push(rbx); duke@435: duke@435: get_method(rbx); duke@435: // Test MDO to avoid the call if it is NULL. coleenp@4037: movptr(rax, Address(rbx, in_bytes(Method::method_data_offset()))); never@739: testptr(rax, rax); iveresov@2438: jcc(Assembler::zero, set_mdp); duke@435: // rbx,: method duke@435: // rsi: bcp duke@435: call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::bcp_to_di), rbx, rsi); duke@435: // rax,: mdi iveresov@2438: // mdo is guaranteed to be non-zero here, we checked for it before the call. coleenp@4037: movptr(rbx, Address(rbx, in_bytes(Method::method_data_offset()))); coleenp@4037: addptr(rbx, in_bytes(MethodData::data_offset())); iveresov@2438: addptr(rax, rbx); iveresov@2438: bind(set_mdp); iveresov@2438: movptr(Address(rbp, frame::interpreter_frame_mdx_offset * wordSize), rax); never@739: pop(rbx); never@739: pop(rax); duke@435: } duke@435: duke@435: void InterpreterMacroAssembler::verify_method_data_pointer() { duke@435: assert(ProfileInterpreter, "must be profiling interpreter"); duke@435: #ifdef ASSERT duke@435: Label verify_continue; never@739: push(rax); never@739: push(rbx); never@739: push(rcx); never@739: push(rdx); duke@435: test_method_data_pointer(rcx, verify_continue); // If mdp is zero, continue duke@435: get_method(rbx); duke@435: duke@435: // If the mdp is valid, it will point to a DataLayout header which is duke@435: // consistent with the bcp. The converse is highly probable also. jrose@1057: load_unsigned_short(rdx, Address(rcx, in_bytes(DataLayout::bci_offset()))); coleenp@4037: addptr(rdx, Address(rbx, Method::const_offset())); coleenp@4037: lea(rdx, Address(rdx, ConstMethod::codes_offset())); never@739: cmpptr(rdx, rsi); duke@435: jcc(Assembler::equal, verify_continue); duke@435: // rbx,: method duke@435: // rsi: bcp duke@435: // rcx: mdp duke@435: call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::verify_mdp), rbx, rsi, rcx); duke@435: bind(verify_continue); never@739: pop(rdx); never@739: pop(rcx); never@739: pop(rbx); never@739: pop(rax); duke@435: #endif // ASSERT duke@435: } duke@435: duke@435: duke@435: void InterpreterMacroAssembler::set_mdp_data_at(Register mdp_in, int constant, Register value) { never@739: // %%% this seems to be used to store counter data which is surely 32bits never@739: // however 64bit side stores 64 bits which seems wrong duke@435: assert(ProfileInterpreter, "must be profiling interpreter"); duke@435: Address data(mdp_in, constant); never@739: movptr(data, value); duke@435: } duke@435: duke@435: duke@435: void InterpreterMacroAssembler::increment_mdp_data_at(Register mdp_in, duke@435: int constant, duke@435: bool decrement) { duke@435: // Counter address duke@435: Address data(mdp_in, constant); duke@435: duke@435: increment_mdp_data_at(data, decrement); duke@435: } duke@435: duke@435: duke@435: void InterpreterMacroAssembler::increment_mdp_data_at(Address data, duke@435: bool decrement) { duke@435: duke@435: assert( DataLayout::counter_increment==1, "flow-free idiom only works with 1" ); duke@435: assert(ProfileInterpreter, "must be profiling interpreter"); duke@435: never@739: // %%% 64bit treats this as 64 bit which seems unlikely duke@435: if (decrement) { duke@435: // Decrement the register. Set condition codes. duke@435: addl(data, -DataLayout::counter_increment); duke@435: // If the decrement causes the counter to overflow, stay negative duke@435: Label L; duke@435: jcc(Assembler::negative, L); duke@435: addl(data, DataLayout::counter_increment); duke@435: bind(L); duke@435: } else { duke@435: assert(DataLayout::counter_increment == 1, duke@435: "flow-free idiom only works with 1"); duke@435: // Increment the register. Set carry flag. duke@435: addl(data, DataLayout::counter_increment); duke@435: // If the increment causes the counter to overflow, pull back by 1. duke@435: sbbl(data, 0); duke@435: } duke@435: } duke@435: duke@435: duke@435: void InterpreterMacroAssembler::increment_mdp_data_at(Register mdp_in, duke@435: Register reg, duke@435: int constant, duke@435: bool decrement) { duke@435: Address data(mdp_in, reg, Address::times_1, constant); duke@435: duke@435: increment_mdp_data_at(data, decrement); duke@435: } duke@435: duke@435: duke@435: void InterpreterMacroAssembler::set_mdp_flag_at(Register mdp_in, int flag_byte_constant) { duke@435: assert(ProfileInterpreter, "must be profiling interpreter"); duke@435: int header_offset = in_bytes(DataLayout::header_offset()); duke@435: int header_bits = DataLayout::flag_mask_to_header_mask(flag_byte_constant); duke@435: // Set the flag duke@435: orl(Address(mdp_in, header_offset), header_bits); duke@435: } duke@435: duke@435: duke@435: duke@435: void InterpreterMacroAssembler::test_mdp_data_at(Register mdp_in, duke@435: int offset, duke@435: Register value, duke@435: Register test_value_out, duke@435: Label& not_equal_continue) { duke@435: assert(ProfileInterpreter, "must be profiling interpreter"); duke@435: if (test_value_out == noreg) { never@739: cmpptr(value, Address(mdp_in, offset)); duke@435: } else { duke@435: // Put the test value into a register, so caller can use it: never@739: movptr(test_value_out, Address(mdp_in, offset)); never@739: cmpptr(test_value_out, value); duke@435: } duke@435: jcc(Assembler::notEqual, not_equal_continue); duke@435: } duke@435: duke@435: duke@435: void InterpreterMacroAssembler::update_mdp_by_offset(Register mdp_in, int offset_of_disp) { duke@435: assert(ProfileInterpreter, "must be profiling interpreter"); duke@435: Address disp_address(mdp_in, offset_of_disp); never@739: addptr(mdp_in,disp_address); never@739: movptr(Address(rbp, frame::interpreter_frame_mdx_offset * wordSize), mdp_in); duke@435: } duke@435: duke@435: duke@435: void InterpreterMacroAssembler::update_mdp_by_offset(Register mdp_in, Register reg, int offset_of_disp) { duke@435: assert(ProfileInterpreter, "must be profiling interpreter"); duke@435: Address disp_address(mdp_in, reg, Address::times_1, offset_of_disp); never@739: addptr(mdp_in, disp_address); never@739: movptr(Address(rbp, frame::interpreter_frame_mdx_offset * wordSize), mdp_in); duke@435: } duke@435: duke@435: duke@435: void InterpreterMacroAssembler::update_mdp_by_constant(Register mdp_in, int constant) { duke@435: assert(ProfileInterpreter, "must be profiling interpreter"); never@739: addptr(mdp_in, constant); never@739: movptr(Address(rbp, frame::interpreter_frame_mdx_offset * wordSize), mdp_in); duke@435: } duke@435: duke@435: duke@435: void InterpreterMacroAssembler::update_mdp_for_ret(Register return_bci) { duke@435: assert(ProfileInterpreter, "must be profiling interpreter"); never@739: push(return_bci); // save/restore across call_VM duke@435: call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::update_mdp_for_ret), return_bci); never@739: pop(return_bci); duke@435: } duke@435: duke@435: duke@435: void InterpreterMacroAssembler::profile_taken_branch(Register mdp, Register bumped_count) { duke@435: if (ProfileInterpreter) { duke@435: Label profile_continue; duke@435: duke@435: // If no method data exists, go to profile_continue. duke@435: // Otherwise, assign to mdp duke@435: test_method_data_pointer(mdp, profile_continue); duke@435: duke@435: // We are taking a branch. Increment the taken count. duke@435: // We inline increment_mdp_data_at to return bumped_count in a register duke@435: //increment_mdp_data_at(mdp, in_bytes(JumpData::taken_offset())); duke@435: Address data(mdp, in_bytes(JumpData::taken_offset())); never@739: never@739: // %%% 64bit treats these cells as 64 bit but they seem to be 32 bit duke@435: movl(bumped_count,data); duke@435: assert( DataLayout::counter_increment==1, "flow-free idiom only works with 1" ); duke@435: addl(bumped_count, DataLayout::counter_increment); duke@435: sbbl(bumped_count, 0); duke@435: movl(data,bumped_count); // Store back out duke@435: duke@435: // The method data pointer needs to be updated to reflect the new target. duke@435: update_mdp_by_offset(mdp, in_bytes(JumpData::displacement_offset())); duke@435: bind (profile_continue); duke@435: } duke@435: } duke@435: duke@435: duke@435: void InterpreterMacroAssembler::profile_not_taken_branch(Register mdp) { duke@435: if (ProfileInterpreter) { duke@435: Label profile_continue; duke@435: duke@435: // If no method data exists, go to profile_continue. duke@435: test_method_data_pointer(mdp, profile_continue); duke@435: duke@435: // We are taking a branch. Increment the not taken count. duke@435: increment_mdp_data_at(mdp, in_bytes(BranchData::not_taken_offset())); duke@435: duke@435: // The method data pointer needs to be updated to correspond to the next bytecode duke@435: update_mdp_by_constant(mdp, in_bytes(BranchData::branch_data_size())); duke@435: bind (profile_continue); duke@435: } duke@435: } duke@435: duke@435: duke@435: void InterpreterMacroAssembler::profile_call(Register mdp) { duke@435: if (ProfileInterpreter) { duke@435: Label profile_continue; duke@435: duke@435: // If no method data exists, go to profile_continue. duke@435: test_method_data_pointer(mdp, profile_continue); duke@435: duke@435: // We are making a call. Increment the count. duke@435: increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset())); duke@435: duke@435: // The method data pointer needs to be updated to reflect the new target. duke@435: update_mdp_by_constant(mdp, in_bytes(CounterData::counter_data_size())); duke@435: bind (profile_continue); duke@435: } duke@435: } duke@435: duke@435: duke@435: void InterpreterMacroAssembler::profile_final_call(Register mdp) { duke@435: if (ProfileInterpreter) { duke@435: Label profile_continue; duke@435: duke@435: // If no method data exists, go to profile_continue. duke@435: test_method_data_pointer(mdp, profile_continue); duke@435: duke@435: // We are making a call. Increment the count. duke@435: increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset())); duke@435: duke@435: // The method data pointer needs to be updated to reflect the new target. duke@435: update_mdp_by_constant(mdp, in_bytes(VirtualCallData::virtual_call_data_size())); duke@435: bind (profile_continue); duke@435: } duke@435: } duke@435: duke@435: jrose@1161: void InterpreterMacroAssembler::profile_virtual_call(Register receiver, Register mdp, jrose@1161: Register reg2, jrose@1161: bool receiver_can_be_null) { duke@435: if (ProfileInterpreter) { duke@435: Label profile_continue; duke@435: duke@435: // If no method data exists, go to profile_continue. duke@435: test_method_data_pointer(mdp, profile_continue); duke@435: jrose@1161: Label skip_receiver_profile; jrose@1161: if (receiver_can_be_null) { kvn@1641: Label not_null; jrose@1161: testptr(receiver, receiver); kvn@1641: jccb(Assembler::notZero, not_null); kvn@1641: // We are making a call. Increment the count for null receiver. kvn@1641: increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset())); kvn@1641: jmp(skip_receiver_profile); kvn@1641: bind(not_null); jrose@1161: } jrose@1161: duke@435: // Record the receiver type. kvn@1641: record_klass_in_profile(receiver, mdp, reg2, true); jrose@1161: bind(skip_receiver_profile); duke@435: duke@435: // The method data pointer needs to be updated to reflect the new target. duke@435: update_mdp_by_constant(mdp, duke@435: in_bytes(VirtualCallData:: duke@435: virtual_call_data_size())); duke@435: bind(profile_continue); duke@435: } duke@435: } duke@435: duke@435: duke@435: void InterpreterMacroAssembler::record_klass_in_profile_helper( duke@435: Register receiver, Register mdp, kvn@1641: Register reg2, int start_row, kvn@1641: Label& done, bool is_virtual_call) { kvn@1641: if (TypeProfileWidth == 0) { kvn@1641: if (is_virtual_call) { kvn@1641: increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset())); kvn@1641: } poonam@1402: return; kvn@1641: } poonam@1402: duke@435: int last_row = VirtualCallData::row_limit() - 1; duke@435: assert(start_row <= last_row, "must be work left to do"); duke@435: // Test this row for both the receiver and for null. duke@435: // Take any of three different outcomes: duke@435: // 1. found receiver => increment count and goto done duke@435: // 2. found null => keep looking for case 1, maybe allocate this cell duke@435: // 3. found something else => keep looking for cases 1 and 2 duke@435: // Case 3 is handled by a recursive call. duke@435: for (int row = start_row; row <= last_row; row++) { duke@435: Label next_test; duke@435: bool test_for_null_also = (row == start_row); duke@435: duke@435: // See if the receiver is receiver[n]. duke@435: int recvr_offset = in_bytes(VirtualCallData::receiver_offset(row)); duke@435: test_mdp_data_at(mdp, recvr_offset, receiver, duke@435: (test_for_null_also ? reg2 : noreg), duke@435: next_test); duke@435: // (Reg2 now contains the receiver from the CallData.) duke@435: duke@435: // The receiver is receiver[n]. Increment count[n]. duke@435: int count_offset = in_bytes(VirtualCallData::receiver_count_offset(row)); duke@435: increment_mdp_data_at(mdp, count_offset); duke@435: jmp(done); duke@435: bind(next_test); duke@435: duke@435: if (row == start_row) { kvn@1641: Label found_null; duke@435: // Failed the equality check on receiver[n]... Test for null. never@739: testptr(reg2, reg2); duke@435: if (start_row == last_row) { duke@435: // The only thing left to do is handle the null case. kvn@1641: if (is_virtual_call) { kvn@1641: jccb(Assembler::zero, found_null); kvn@1641: // Receiver did not match any saved receiver and there is no empty row for it. kvn@1686: // Increment total counter to indicate polymorphic case. kvn@1641: increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset())); kvn@1641: jmp(done); kvn@1641: bind(found_null); kvn@1641: } else { kvn@1641: jcc(Assembler::notZero, done); kvn@1641: } duke@435: break; duke@435: } duke@435: // Since null is rare, make it be the branch-taken case. duke@435: jcc(Assembler::zero, found_null); duke@435: duke@435: // Put all the "Case 3" tests here. kvn@1641: record_klass_in_profile_helper(receiver, mdp, reg2, start_row + 1, done, is_virtual_call); duke@435: duke@435: // Found a null. Keep searching for a matching receiver, duke@435: // but remember that this is an empty (unused) slot. duke@435: bind(found_null); duke@435: } duke@435: } duke@435: duke@435: // In the fall-through case, we found no matching receiver, but we duke@435: // observed the receiver[start_row] is NULL. duke@435: duke@435: // Fill in the receiver field and increment the count. duke@435: int recvr_offset = in_bytes(VirtualCallData::receiver_offset(start_row)); duke@435: set_mdp_data_at(mdp, recvr_offset, receiver); duke@435: int count_offset = in_bytes(VirtualCallData::receiver_count_offset(start_row)); never@3156: movptr(reg2, (intptr_t)DataLayout::counter_increment); duke@435: set_mdp_data_at(mdp, count_offset, reg2); kvn@1641: if (start_row > 0) { kvn@1641: jmp(done); kvn@1641: } duke@435: } duke@435: duke@435: void InterpreterMacroAssembler::record_klass_in_profile(Register receiver, kvn@1641: Register mdp, Register reg2, kvn@1641: bool is_virtual_call) { duke@435: assert(ProfileInterpreter, "must be profiling"); duke@435: Label done; duke@435: kvn@1641: record_klass_in_profile_helper(receiver, mdp, reg2, 0, done, is_virtual_call); duke@435: duke@435: bind (done); duke@435: } duke@435: duke@435: void InterpreterMacroAssembler::profile_ret(Register return_bci, Register mdp) { duke@435: if (ProfileInterpreter) { duke@435: Label profile_continue; duke@435: uint row; duke@435: duke@435: // If no method data exists, go to profile_continue. duke@435: test_method_data_pointer(mdp, profile_continue); duke@435: duke@435: // Update the total ret count. duke@435: increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset())); duke@435: duke@435: for (row = 0; row < RetData::row_limit(); row++) { duke@435: Label next_test; duke@435: duke@435: // See if return_bci is equal to bci[n]: duke@435: test_mdp_data_at(mdp, in_bytes(RetData::bci_offset(row)), return_bci, duke@435: noreg, next_test); duke@435: duke@435: // return_bci is equal to bci[n]. Increment the count. duke@435: increment_mdp_data_at(mdp, in_bytes(RetData::bci_count_offset(row))); duke@435: duke@435: // The method data pointer needs to be updated to reflect the new target. duke@435: update_mdp_by_offset(mdp, in_bytes(RetData::bci_displacement_offset(row))); duke@435: jmp(profile_continue); duke@435: bind(next_test); duke@435: } duke@435: duke@435: update_mdp_for_ret(return_bci); duke@435: duke@435: bind (profile_continue); duke@435: } duke@435: } duke@435: duke@435: duke@435: void InterpreterMacroAssembler::profile_null_seen(Register mdp) { duke@435: if (ProfileInterpreter) { duke@435: Label profile_continue; duke@435: duke@435: // If no method data exists, go to profile_continue. duke@435: test_method_data_pointer(mdp, profile_continue); duke@435: never@1261: set_mdp_flag_at(mdp, BitData::null_seen_byte_constant()); never@1261: duke@435: // The method data pointer needs to be updated. duke@435: int mdp_delta = in_bytes(BitData::bit_data_size()); duke@435: if (TypeProfileCasts) { duke@435: mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size()); duke@435: } duke@435: update_mdp_by_constant(mdp, mdp_delta); duke@435: duke@435: bind (profile_continue); duke@435: } duke@435: } duke@435: duke@435: duke@435: void InterpreterMacroAssembler::profile_typecheck_failed(Register mdp) { duke@435: if (ProfileInterpreter && TypeProfileCasts) { duke@435: Label profile_continue; duke@435: duke@435: // If no method data exists, go to profile_continue. duke@435: test_method_data_pointer(mdp, profile_continue); duke@435: duke@435: int count_offset = in_bytes(CounterData::count_offset()); duke@435: // Back up the address, since we have already bumped the mdp. duke@435: count_offset -= in_bytes(VirtualCallData::virtual_call_data_size()); duke@435: duke@435: // *Decrement* the counter. We expect to see zero or small negatives. duke@435: increment_mdp_data_at(mdp, count_offset, true); duke@435: duke@435: bind (profile_continue); duke@435: } duke@435: } duke@435: duke@435: duke@435: void InterpreterMacroAssembler::profile_typecheck(Register mdp, Register klass, Register reg2) duke@435: { duke@435: if (ProfileInterpreter) { duke@435: Label profile_continue; duke@435: duke@435: // If no method data exists, go to profile_continue. duke@435: test_method_data_pointer(mdp, profile_continue); duke@435: duke@435: // The method data pointer needs to be updated. duke@435: int mdp_delta = in_bytes(BitData::bit_data_size()); duke@435: if (TypeProfileCasts) { duke@435: mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size()); duke@435: duke@435: // Record the object type. kvn@1641: record_klass_in_profile(klass, mdp, reg2, false); duke@435: assert(reg2 == rdi, "we know how to fix this blown reg"); duke@435: restore_locals(); // Restore EDI duke@435: } duke@435: update_mdp_by_constant(mdp, mdp_delta); duke@435: duke@435: bind(profile_continue); duke@435: } duke@435: } duke@435: duke@435: duke@435: void InterpreterMacroAssembler::profile_switch_default(Register mdp) { duke@435: if (ProfileInterpreter) { duke@435: Label profile_continue; duke@435: duke@435: // If no method data exists, go to profile_continue. duke@435: test_method_data_pointer(mdp, profile_continue); duke@435: duke@435: // Update the default case count duke@435: increment_mdp_data_at(mdp, in_bytes(MultiBranchData::default_count_offset())); duke@435: duke@435: // The method data pointer needs to be updated. duke@435: update_mdp_by_offset(mdp, in_bytes(MultiBranchData::default_displacement_offset())); duke@435: duke@435: bind (profile_continue); duke@435: } duke@435: } duke@435: duke@435: duke@435: void InterpreterMacroAssembler::profile_switch_case(Register index, Register mdp, Register reg2) { duke@435: if (ProfileInterpreter) { duke@435: Label profile_continue; duke@435: duke@435: // If no method data exists, go to profile_continue. duke@435: test_method_data_pointer(mdp, profile_continue); duke@435: duke@435: // Build the base (index * per_case_size_in_bytes()) + case_array_offset_in_bytes() never@3156: movptr(reg2, (intptr_t)in_bytes(MultiBranchData::per_case_size())); never@739: // index is positive and so should have correct value if this code were never@739: // used on 64bits never@739: imulptr(index, reg2); never@739: addptr(index, in_bytes(MultiBranchData::case_array_offset())); duke@435: duke@435: // Update the case count duke@435: increment_mdp_data_at(mdp, index, in_bytes(MultiBranchData::relative_count_offset())); duke@435: duke@435: // The method data pointer needs to be updated. duke@435: update_mdp_by_offset(mdp, index, in_bytes(MultiBranchData::relative_displacement_offset())); duke@435: duke@435: bind (profile_continue); duke@435: } duke@435: } duke@435: duke@435: #endif // !CC_INTERP duke@435: duke@435: duke@435: duke@435: void InterpreterMacroAssembler::verify_oop(Register reg, TosState state) { duke@435: if (state == atos) MacroAssembler::verify_oop(reg); duke@435: } duke@435: duke@435: duke@435: #ifndef CC_INTERP duke@435: void InterpreterMacroAssembler::verify_FPU(int stack_depth, TosState state) { duke@435: if (state == ftos || state == dtos) MacroAssembler::verify_FPU(stack_depth); duke@435: } duke@435: duke@435: #endif /* CC_INTERP */ duke@435: duke@435: duke@435: void InterpreterMacroAssembler::notify_method_entry() { duke@435: // Whenever JVMTI is interp_only_mode, method entry/exit events are sent to duke@435: // track stack depth. If it is possible to enter interp_only_mode we add duke@435: // the code to check if the event should be sent. duke@435: if (JvmtiExport::can_post_interpreter_events()) { duke@435: Label L; duke@435: get_thread(rcx); duke@435: movl(rcx, Address(rcx, JavaThread::interp_only_mode_offset())); duke@435: testl(rcx,rcx); duke@435: jcc(Assembler::zero, L); duke@435: call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_entry)); duke@435: bind(L); duke@435: } duke@435: duke@435: { duke@435: SkipIfEqual skip_if(this, &DTraceMethodProbes, 0); duke@435: get_thread(rcx); duke@435: get_method(rbx); duke@435: call_VM_leaf( duke@435: CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry), rcx, rbx); duke@435: } dcubed@1045: dcubed@1045: // RedefineClasses() tracing support for obsolete method entry dcubed@1045: if (RC_TRACE_IN_RANGE(0x00001000, 0x00002000)) { dcubed@1045: get_thread(rcx); dcubed@1045: get_method(rbx); dcubed@1045: call_VM_leaf( dcubed@1045: CAST_FROM_FN_PTR(address, SharedRuntime::rc_trace_method_entry), dcubed@1045: rcx, rbx); dcubed@1045: } duke@435: } duke@435: duke@435: duke@435: void InterpreterMacroAssembler::notify_method_exit( duke@435: TosState state, NotifyMethodExitMode mode) { duke@435: // Whenever JVMTI is interp_only_mode, method entry/exit events are sent to duke@435: // track stack depth. If it is possible to enter interp_only_mode we add duke@435: // the code to check if the event should be sent. duke@435: if (mode == NotifyJVMTI && JvmtiExport::can_post_interpreter_events()) { duke@435: Label L; duke@435: // Note: frame::interpreter_frame_result has a dependency on how the duke@435: // method result is saved across the call to post_method_exit. If this duke@435: // is changed then the interpreter_frame_result implementation will duke@435: // need to be updated too. duke@435: duke@435: // For c++ interpreter the result is always stored at a known location in the frame duke@435: // template interpreter will leave it on the top of the stack. duke@435: NOT_CC_INTERP(push(state);) duke@435: get_thread(rcx); duke@435: movl(rcx, Address(rcx, JavaThread::interp_only_mode_offset())); duke@435: testl(rcx,rcx); duke@435: jcc(Assembler::zero, L); duke@435: call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_exit)); duke@435: bind(L); duke@435: NOT_CC_INTERP(pop(state);) duke@435: } duke@435: duke@435: { duke@435: SkipIfEqual skip_if(this, &DTraceMethodProbes, 0); never@739: NOT_CC_INTERP(push(state)); duke@435: get_thread(rbx); duke@435: get_method(rcx); duke@435: call_VM_leaf( duke@435: CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit), duke@435: rbx, rcx); never@739: NOT_CC_INTERP(pop(state)); duke@435: } duke@435: } iveresov@2138: iveresov@2138: // Jump if ((*counter_addr += increment) & mask) satisfies the condition. iveresov@2138: void InterpreterMacroAssembler::increment_mask_and_jump(Address counter_addr, iveresov@2138: int increment, int mask, iveresov@2138: Register scratch, bool preloaded, iveresov@2138: Condition cond, Label* where) { iveresov@2138: if (!preloaded) { iveresov@2138: movl(scratch, counter_addr); iveresov@2138: } iveresov@2138: incrementl(scratch, increment); iveresov@2138: movl(counter_addr, scratch); iveresov@2138: andl(scratch, mask); iveresov@2138: jcc(cond, *where); iveresov@2138: }