aoqi@1: /* aoqi@1: * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved. aoqi@1: * Copyright (c) 2015, 2016, Loongson Technology. All rights reserved. aoqi@1: * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. aoqi@1: * aoqi@1: * This code is free software; you can redistribute it and/or modify it aoqi@1: * under the terms of the GNU General Public License version 2 only, as aoqi@1: * published by the Free Software Foundation. aoqi@1: * aoqi@1: * This code is distributed in the hope that it will be useful, but WITHOUT aoqi@1: * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or aoqi@1: * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License aoqi@1: * version 2 for more details (a copy is included in the LICENSE file that aoqi@1: * accompanied this code). aoqi@1: * aoqi@1: * You should have received a copy of the GNU General Public License version aoqi@1: * 2 along with this work; if not, write to the Free Software Foundation, aoqi@1: * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. aoqi@1: * aoqi@1: * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA aoqi@1: * or visit www.oracle.com if you need additional information or have any aoqi@1: * questions. aoqi@1: * aoqi@1: */ aoqi@1: aoqi@1: #ifndef CPU_MIPS_VM_FRAME_MIPS_HPP aoqi@1: #define CPU_MIPS_VM_FRAME_MIPS_HPP aoqi@1: aoqi@1: #include "runtime/synchronizer.hpp" aoqi@1: #include "utilities/top.hpp" aoqi@1: aoqi@1: // A frame represents a physical stack frame (an activation). Frames can be aoqi@1: // C or Java frames, and the Java frames can be interpreted or compiled. aoqi@1: // In contrast, vframes represent source-level activations, so that one physical frame aoqi@1: // can correspond to multiple source level frames because of inlining. aoqi@1: // A frame is comprised of {pc, fp, sp} aoqi@1: // ------------------------------ Asm interpreter ---------------------------------------- aoqi@1: // Layout of asm interpreter frame: aoqi@1: // [expression stack ] * <- sp aoqi@1: // [monitors ] \ aoqi@1: // ... | monitor block size aoqi@1: // [monitors ] / aoqi@1: // [monitor block size ] aoqi@1: // [byte code index/pointr] = bcx() bcx_offset aoqi@1: // [pointer to locals ] = locals() locals_offset aoqi@1: // [constant pool cache ] = cache() cache_offset aoqi@1: // [methodData ] = mdp() mdx_offset aoqi@1: // [methodOop ] = method() method_offset aoqi@1: // [last sp ] = last_sp() last_sp_offset aoqi@1: // [old stack pointer ] (sender_sp) sender_sp_offset aoqi@1: // [old frame pointer ] <- fp = link() aoqi@1: // [return pc ] aoqi@1: // [oop temp ] (only for native calls) aoqi@1: // [locals and parameters ] aoqi@1: // <- sender sp aoqi@1: // ------------------------------ Asm interpreter ---------------------------------------- aoqi@1: aoqi@1: // ------------------------------ C++ interpreter ---------------------------------------- aoqi@1: // aoqi@1: // Layout of C++ interpreter frame: (While executing in BytecodeInterpreter::run) aoqi@1: // aoqi@1: // <- SP (current esp/rsp) aoqi@1: // [local variables ] BytecodeInterpreter::run local variables aoqi@1: // ... BytecodeInterpreter::run local variables aoqi@1: // [local variables ] BytecodeInterpreter::run local variables aoqi@1: // [old frame pointer ] fp [ BytecodeInterpreter::run's ebp/rbp ] aoqi@1: // [return pc ] (return to frame manager) aoqi@1: // [interpreter_state* ] (arg to BytecodeInterpreter::run) -------------- aoqi@1: // [expression stack ] <- last_Java_sp | aoqi@1: // [... ] * <- interpreter_state.stack | aoqi@1: // [expression stack ] * <- interpreter_state.stack_base | aoqi@1: // [monitors ] \ | aoqi@1: // ... | monitor block size | aoqi@1: // [monitors ] / <- interpreter_state.monitor_base | aoqi@1: // [struct interpretState ] <-----------------------------------------| aoqi@1: // [return pc ] (return to callee of frame manager [1] aoqi@1: // [locals and parameters ] aoqi@1: // <- sender sp aoqi@1: aoqi@1: // [1] When the c++ interpreter calls a new method it returns to the frame aoqi@1: // manager which allocates a new frame on the stack. In that case there aoqi@1: // is no real callee of this newly allocated frame. The frame manager is aoqi@1: // aware of the additional frame(s) and will pop them as nested calls aoqi@1: // complete. Howevers tTo make it look good in the debugger the frame aoqi@1: // manager actually installs a dummy pc pointing to RecursiveInterpreterActivation aoqi@1: // with a fake interpreter_state* parameter to make it easy to debug aoqi@1: // nested calls. aoqi@1: aoqi@1: // Note that contrary to the layout for the assembly interpreter the aoqi@1: // expression stack allocated for the C++ interpreter is full sized. aoqi@1: // However this is not as bad as it seems as the interpreter frame_manager aoqi@1: // will truncate the unused space on succesive method calls. aoqi@1: // aoqi@1: // ------------------------------ C++ interpreter ---------------------------------------- aoqi@1: aoqi@1: // Layout of interpreter frame: aoqi@1: // aoqi@1: // [ monitor entry ] <--- sp aoqi@1: // ... aoqi@1: // [ monitor entry ] aoqi@1: // -7 [ monitor block top ] ( the top monitor entry ) aoqi@1: // -6 [ byte code pointer ] (if native, bcp = 0) aoqi@1: // -5 [ constant pool cache ] aoqi@1: // -4 [ methodData ] mdx_offset(not core only) aoqi@1: // -3 [ methodOop ] aoqi@1: // -2 [ locals offset ] aoqi@1: // -1 [ sender's sp ] aoqi@1: // 0 [ sender's fp ] <--fp aoqi@1: // 1 [ return address ] aoqi@1: // 2 [ oop temp offset ] (only for native calls) aoqi@1: // 3 [ result handler offset ] (only for native calls) aoqi@1: // 4 [ result type info ] (only for native calls) aoqi@1: // [ local var m-1 ] aoqi@1: // ... aoqi@1: // [ local var 0 ] aoqi@1: // [ argumnet word n-1 ] <--- ( sender's sp ) aoqi@1: // ... aoqi@1: // [ argument word 0 ] <--- S7 aoqi@1: aoqi@1: public: aoqi@1: enum { aoqi@1: pc_return_offset = 0, aoqi@1: // All frames aoqi@1: link_offset = 0, aoqi@1: return_addr_offset = 1, aoqi@1: // non-interpreter frames aoqi@1: sender_sp_offset = 2, aoqi@1: aoqi@1: #ifndef CC_INTERP aoqi@1: aoqi@1: // Interpreter frames aoqi@1: interpreter_frame_return_addr_offset = 1, aoqi@1: interpreter_frame_result_handler_offset = 3, // for native calls only aoqi@1: interpreter_frame_oop_temp_offset = 2, // for native calls only aoqi@1: aoqi@1: interpreter_frame_sender_fp_offset = 0, aoqi@1: interpreter_frame_sender_sp_offset = -1, aoqi@1: // outgoing sp before a call to an invoked method aoqi@1: interpreter_frame_last_sp_offset = interpreter_frame_sender_sp_offset - 1, aoqi@1: interpreter_frame_locals_offset = interpreter_frame_last_sp_offset - 1, aoqi@1: interpreter_frame_method_offset = interpreter_frame_locals_offset - 1, aoqi@1: interpreter_frame_mdx_offset = interpreter_frame_method_offset - 1, aoqi@1: interpreter_frame_cache_offset = interpreter_frame_mdx_offset - 1, aoqi@1: // interpreter_frame_locals_offset = interpreter_frame_cache_offset - 1, aoqi@1: interpreter_frame_bcx_offset = interpreter_frame_cache_offset - 1, aoqi@1: interpreter_frame_initial_sp_offset = interpreter_frame_bcx_offset - 1, aoqi@1: aoqi@1: interpreter_frame_monitor_block_top_offset = interpreter_frame_initial_sp_offset, aoqi@1: interpreter_frame_monitor_block_bottom_offset = interpreter_frame_initial_sp_offset, aoqi@1: aoqi@1: #endif // CC_INTERP aoqi@1: aoqi@1: // Entry frames aoqi@1: #ifdef _LP64 aoqi@1: entry_frame_call_wrapper_offset = -9, aoqi@1: #else aoqi@1: entry_frame_call_wrapper_offset = 2, aoqi@1: #endif // AMD64 aoqi@1: aoqi@1: // Native frames aoqi@1: aoqi@1: native_frame_initial_param_offset = 2 aoqi@1: aoqi@1: }; aoqi@1: aoqi@1: intptr_t ptr_at(int offset) const { aoqi@1: return *ptr_at_addr(offset); aoqi@1: } aoqi@1: aoqi@1: void ptr_at_put(int offset, intptr_t value) { aoqi@1: *ptr_at_addr(offset) = value; aoqi@1: } aoqi@1: aoqi@1: private: aoqi@1: // an additional field beyond _sp and _pc: aoqi@1: intptr_t* _fp; // frame pointer aoqi@1: // The interpreter and adapters will extend the frame of the caller. aoqi@1: // Since oopMaps are based on the sp of the caller before extension aoqi@1: // we need to know that value. However in order to compute the address aoqi@1: // of the return address we need the real "raw" sp. Since sparc already aoqi@1: // uses sp() to mean "raw" sp and unextended_sp() to mean the caller's aoqi@1: // original sp we use that convention. aoqi@1: aoqi@1: intptr_t* _unextended_sp; aoqi@1: void adjust_unextended_sp(); aoqi@1: aoqi@1: intptr_t* ptr_at_addr(int offset) const { aoqi@1: return (intptr_t*) addr_at(offset); aoqi@1: } aoqi@1: #ifdef ASSERT aoqi@1: // Used in frame::sender_for_{interpreter,compiled}_frame aoqi@1: static void verify_deopt_original_pc( nmethod* nm, intptr_t* unextended_sp, bool is_method_handle_return = false); aoqi@1: static void verify_deopt_mh_original_pc(nmethod* nm, intptr_t* unextended_sp) { aoqi@1: verify_deopt_original_pc(nm, unextended_sp, true); aoqi@1: } aoqi@1: #endif aoqi@1: aoqi@1: public: aoqi@1: // Constructors aoqi@1: aoqi@1: frame(intptr_t* sp, intptr_t* fp, address pc); aoqi@1: aoqi@1: frame(intptr_t* sp, intptr_t* unextended_sp, intptr_t* fp, address pc); aoqi@1: aoqi@1: frame(intptr_t* sp, intptr_t* fp); aoqi@1: aoqi@1: // accessors for the instance variables aoqi@1: intptr_t* fp() const { return _fp; } aoqi@1: aoqi@1: inline address* sender_pc_addr() const; aoqi@1: aoqi@1: // return address of param, zero origin index. aoqi@1: inline address* native_param_addr(int idx) const; aoqi@1: aoqi@1: // expression stack tos if we are nested in a java call aoqi@1: intptr_t* interpreter_frame_last_sp() const; aoqi@1: aoqi@1: #ifndef CC_INTERP aoqi@1: // deoptimization support aoqi@1: void interpreter_frame_set_last_sp(intptr_t* sp); aoqi@1: #endif // CC_INTERP aoqi@1: aoqi@1: #ifdef CC_INTERP aoqi@1: inline interpreterState get_interpreterState() const; aoqi@1: #endif // CC_INTERP aoqi@1: #endif // CPU_MIPS_VM_FRAME_MIPS_HPP