duke@435: /* duke@435: * Copyright 2003-2007 Sun Microsystems, Inc. All Rights Reserved. duke@435: * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. duke@435: * duke@435: * This code is free software; you can redistribute it and/or modify it duke@435: * under the terms of the GNU General Public License version 2 only, as duke@435: * published by the Free Software Foundation. duke@435: * duke@435: * This code is distributed in the hope that it will be useful, but WITHOUT duke@435: * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or duke@435: * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License duke@435: * version 2 for more details (a copy is included in the LICENSE file that duke@435: * accompanied this code). duke@435: * duke@435: * You should have received a copy of the GNU General Public License version duke@435: * 2 along with this work; if not, write to the Free Software Foundation, duke@435: * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. duke@435: * duke@435: * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, duke@435: * CA 95054 USA or visit www.sun.com if you need additional information or duke@435: * have any questions. duke@435: * duke@435: */ duke@435: duke@435: #include "incls/_precompiled.incl" duke@435: #include "incls/_assembler_x86_64.cpp.incl" duke@435: duke@435: // Implementation of AddressLiteral duke@435: duke@435: AddressLiteral::AddressLiteral(address target, relocInfo::relocType rtype) { duke@435: _is_lval = false; duke@435: _target = target; duke@435: switch (rtype) { duke@435: case relocInfo::oop_type: duke@435: // Oops are a special case. Normally they would be their own section duke@435: // but in cases like icBuffer they are literals in the code stream that duke@435: // we don't have a section for. We use none so that we get a literal address duke@435: // which is always patchable. duke@435: break; duke@435: case relocInfo::external_word_type: duke@435: _rspec = external_word_Relocation::spec(target); duke@435: break; duke@435: case relocInfo::internal_word_type: duke@435: _rspec = internal_word_Relocation::spec(target); duke@435: break; duke@435: case relocInfo::opt_virtual_call_type: duke@435: _rspec = opt_virtual_call_Relocation::spec(); duke@435: break; duke@435: case relocInfo::static_call_type: duke@435: _rspec = static_call_Relocation::spec(); duke@435: break; duke@435: case relocInfo::runtime_call_type: duke@435: _rspec = runtime_call_Relocation::spec(); duke@435: break; duke@435: case relocInfo::none: duke@435: break; duke@435: default: duke@435: ShouldNotReachHere(); duke@435: break; duke@435: } duke@435: } duke@435: duke@435: // Implementation of Address duke@435: duke@435: Address Address::make_array(ArrayAddress adr) { duke@435: #ifdef _LP64 duke@435: // Not implementable on 64bit machines duke@435: // Should have been handled higher up the call chain. duke@435: ShouldNotReachHere(); duke@435: return Address(); duke@435: #else duke@435: AddressLiteral base = adr.base(); duke@435: Address index = adr.index(); duke@435: assert(index._disp == 0, "must not have disp"); // maybe it can? duke@435: Address array(index._base, index._index, index._scale, (intptr_t) base.target()); duke@435: array._rspec = base._rspec; duke@435: return array; duke@435: #endif // _LP64 duke@435: } duke@435: duke@435: // exceedingly dangerous constructor duke@435: Address::Address(int disp, address loc, relocInfo::relocType rtype) { duke@435: _base = noreg; duke@435: _index = noreg; duke@435: _scale = no_scale; duke@435: _disp = disp; duke@435: switch (rtype) { duke@435: case relocInfo::external_word_type: duke@435: _rspec = external_word_Relocation::spec(loc); duke@435: break; duke@435: case relocInfo::internal_word_type: duke@435: _rspec = internal_word_Relocation::spec(loc); duke@435: break; duke@435: case relocInfo::runtime_call_type: duke@435: // HMM duke@435: _rspec = runtime_call_Relocation::spec(); duke@435: break; duke@435: case relocInfo::none: duke@435: break; duke@435: default: duke@435: ShouldNotReachHere(); duke@435: } duke@435: } duke@435: duke@435: // Convert the raw encoding form into the form expected by the constructor for duke@435: // Address. An index of 4 (rsp) corresponds to having no index, so convert duke@435: // that to noreg for the Address constructor. duke@435: Address Address::make_raw(int base, int index, int scale, int disp) { duke@435: bool valid_index = index != rsp->encoding(); duke@435: if (valid_index) { duke@435: Address madr(as_Register(base), as_Register(index), (Address::ScaleFactor)scale, in_ByteSize(disp)); duke@435: return madr; duke@435: } else { duke@435: Address madr(as_Register(base), noreg, Address::no_scale, in_ByteSize(disp)); duke@435: return madr; duke@435: } duke@435: } duke@435: duke@435: duke@435: // Implementation of Assembler duke@435: int AbstractAssembler::code_fill_byte() { duke@435: return (u_char)'\xF4'; // hlt duke@435: } duke@435: duke@435: // This should only be used by 64bit instructions that can use rip-relative duke@435: // it cannot be used by instructions that want an immediate value. duke@435: duke@435: bool Assembler::reachable(AddressLiteral adr) { duke@435: int64_t disp; duke@435: // None will force a 64bit literal to the code stream. Likely a placeholder duke@435: // for something that will be patched later and we need to certain it will duke@435: // always be reachable. duke@435: if (adr.reloc() == relocInfo::none) { duke@435: return false; duke@435: } duke@435: if (adr.reloc() == relocInfo::internal_word_type) { duke@435: // This should be rip relative and easily reachable. duke@435: return true; duke@435: } duke@435: if (adr.reloc() != relocInfo::external_word_type && duke@435: adr.reloc() != relocInfo::runtime_call_type ) { duke@435: return false; duke@435: } duke@435: duke@435: // Stress the correction code duke@435: if (ForceUnreachable) { duke@435: // Must be runtimecall reloc, see if it is in the codecache duke@435: // Flipping stuff in the codecache to be unreachable causes issues duke@435: // with things like inline caches where the additional instructions duke@435: // are not handled. duke@435: if (CodeCache::find_blob(adr._target) == NULL) { duke@435: return false; duke@435: } duke@435: } duke@435: // For external_word_type/runtime_call_type if it is reachable from where we duke@435: // are now (possibly a temp buffer) and where we might end up duke@435: // anywhere in the codeCache then we are always reachable. duke@435: // This would have to change if we ever save/restore shared code duke@435: // to be more pessimistic. duke@435: duke@435: disp = (int64_t)adr._target - ((int64_t)CodeCache::low_bound() + sizeof(int)); duke@435: if (!is_simm32(disp)) return false; duke@435: disp = (int64_t)adr._target - ((int64_t)CodeCache::high_bound() + sizeof(int)); duke@435: if (!is_simm32(disp)) return false; duke@435: duke@435: disp = (int64_t)adr._target - ((int64_t)_code_pos + sizeof(int)); duke@435: duke@435: // Because rip relative is a disp + address_of_next_instruction and we duke@435: // don't know the value of address_of_next_instruction we apply a fudge factor duke@435: // to make sure we will be ok no matter the size of the instruction we get placed into. duke@435: // We don't have to fudge the checks above here because they are already worst case. duke@435: duke@435: // 12 == override/rex byte, opcode byte, rm byte, sib byte, a 4-byte disp , 4-byte literal duke@435: // + 4 because better safe than sorry. duke@435: const int fudge = 12 + 4; duke@435: if (disp < 0) { duke@435: disp -= fudge; duke@435: } else { duke@435: disp += fudge; duke@435: } duke@435: return is_simm32(disp); duke@435: } duke@435: duke@435: duke@435: // make this go away eventually duke@435: void Assembler::emit_data(jint data, duke@435: relocInfo::relocType rtype, duke@435: int format) { duke@435: if (rtype == relocInfo::none) { duke@435: emit_long(data); duke@435: } else { duke@435: emit_data(data, Relocation::spec_simple(rtype), format); duke@435: } duke@435: } duke@435: duke@435: void Assembler::emit_data(jint data, duke@435: RelocationHolder const& rspec, duke@435: int format) { duke@435: assert(imm64_operand == 0, "default format must be imm64 in this file"); duke@435: assert(imm64_operand != format, "must not be imm64"); duke@435: assert(inst_mark() != NULL, "must be inside InstructionMark"); duke@435: if (rspec.type() != relocInfo::none) { duke@435: #ifdef ASSERT duke@435: check_relocation(rspec, format); duke@435: #endif duke@435: // Do not use AbstractAssembler::relocate, which is not intended for duke@435: // embedded words. Instead, relocate to the enclosing instruction. duke@435: duke@435: // hack. call32 is too wide for mask so use disp32 duke@435: if (format == call32_operand) duke@435: code_section()->relocate(inst_mark(), rspec, disp32_operand); duke@435: else duke@435: code_section()->relocate(inst_mark(), rspec, format); duke@435: } duke@435: emit_long(data); duke@435: } duke@435: duke@435: void Assembler::emit_data64(jlong data, duke@435: relocInfo::relocType rtype, duke@435: int format) { duke@435: if (rtype == relocInfo::none) { duke@435: emit_long64(data); duke@435: } else { duke@435: emit_data64(data, Relocation::spec_simple(rtype), format); duke@435: } duke@435: } duke@435: duke@435: void Assembler::emit_data64(jlong data, duke@435: RelocationHolder const& rspec, duke@435: int format) { duke@435: assert(imm64_operand == 0, "default format must be imm64 in this file"); duke@435: assert(imm64_operand == format, "must be imm64"); duke@435: assert(inst_mark() != NULL, "must be inside InstructionMark"); duke@435: // Do not use AbstractAssembler::relocate, which is not intended for duke@435: // embedded words. Instead, relocate to the enclosing instruction. duke@435: code_section()->relocate(inst_mark(), rspec, format); duke@435: #ifdef ASSERT duke@435: check_relocation(rspec, format); duke@435: #endif duke@435: emit_long64(data); duke@435: } duke@435: duke@435: void Assembler::emit_arith_b(int op1, int op2, Register dst, int imm8) { duke@435: assert(isByte(op1) && isByte(op2), "wrong opcode"); duke@435: assert(isByte(imm8), "not a byte"); duke@435: assert((op1 & 0x01) == 0, "should be 8bit operation"); duke@435: int dstenc = dst->encoding(); duke@435: if (dstenc >= 8) { duke@435: dstenc -= 8; duke@435: } duke@435: emit_byte(op1); duke@435: emit_byte(op2 | dstenc); duke@435: emit_byte(imm8); duke@435: } duke@435: duke@435: void Assembler::emit_arith(int op1, int op2, Register dst, int imm32) { duke@435: assert(isByte(op1) && isByte(op2), "wrong opcode"); duke@435: assert((op1 & 0x01) == 1, "should be 32bit operation"); duke@435: assert((op1 & 0x02) == 0, "sign-extension bit should not be set"); duke@435: int dstenc = dst->encoding(); duke@435: if (dstenc >= 8) { duke@435: dstenc -= 8; duke@435: } duke@435: if (is8bit(imm32)) { duke@435: emit_byte(op1 | 0x02); // set sign bit duke@435: emit_byte(op2 | dstenc); duke@435: emit_byte(imm32 & 0xFF); duke@435: } else { duke@435: emit_byte(op1); duke@435: emit_byte(op2 | dstenc); duke@435: emit_long(imm32); duke@435: } duke@435: } duke@435: duke@435: // immediate-to-memory forms duke@435: void Assembler::emit_arith_operand(int op1, duke@435: Register rm, Address adr, duke@435: int imm32) { duke@435: assert((op1 & 0x01) == 1, "should be 32bit operation"); duke@435: assert((op1 & 0x02) == 0, "sign-extension bit should not be set"); duke@435: if (is8bit(imm32)) { duke@435: emit_byte(op1 | 0x02); // set sign bit duke@435: emit_operand(rm, adr, 1); duke@435: emit_byte(imm32 & 0xFF); duke@435: } else { duke@435: emit_byte(op1); duke@435: emit_operand(rm, adr, 4); duke@435: emit_long(imm32); duke@435: } duke@435: } duke@435: duke@435: duke@435: void Assembler::emit_arith(int op1, int op2, Register dst, Register src) { duke@435: assert(isByte(op1) && isByte(op2), "wrong opcode"); duke@435: int dstenc = dst->encoding(); duke@435: int srcenc = src->encoding(); duke@435: if (dstenc >= 8) { duke@435: dstenc -= 8; duke@435: } duke@435: if (srcenc >= 8) { duke@435: srcenc -= 8; duke@435: } duke@435: emit_byte(op1); duke@435: emit_byte(op2 | dstenc << 3 | srcenc); duke@435: } duke@435: duke@435: void Assembler::emit_operand(Register reg, Register base, Register index, duke@435: Address::ScaleFactor scale, int disp, duke@435: RelocationHolder const& rspec, duke@435: int rip_relative_correction) { duke@435: relocInfo::relocType rtype = (relocInfo::relocType) rspec.type(); duke@435: int regenc = reg->encoding(); duke@435: if (regenc >= 8) { duke@435: regenc -= 8; duke@435: } duke@435: if (base->is_valid()) { duke@435: if (index->is_valid()) { duke@435: assert(scale != Address::no_scale, "inconsistent address"); duke@435: int indexenc = index->encoding(); duke@435: if (indexenc >= 8) { duke@435: indexenc -= 8; duke@435: } duke@435: int baseenc = base->encoding(); duke@435: if (baseenc >= 8) { duke@435: baseenc -= 8; duke@435: } duke@435: // [base + index*scale + disp] duke@435: if (disp == 0 && rtype == relocInfo::none && duke@435: base != rbp && base != r13) { duke@435: // [base + index*scale] duke@435: // [00 reg 100][ss index base] duke@435: assert(index != rsp, "illegal addressing mode"); duke@435: emit_byte(0x04 | regenc << 3); duke@435: emit_byte(scale << 6 | indexenc << 3 | baseenc); duke@435: } else if (is8bit(disp) && rtype == relocInfo::none) { duke@435: // [base + index*scale + imm8] duke@435: // [01 reg 100][ss index base] imm8 duke@435: assert(index != rsp, "illegal addressing mode"); duke@435: emit_byte(0x44 | regenc << 3); duke@435: emit_byte(scale << 6 | indexenc << 3 | baseenc); duke@435: emit_byte(disp & 0xFF); duke@435: } else { duke@435: // [base + index*scale + disp32] duke@435: // [10 reg 100][ss index base] disp32 duke@435: assert(index != rsp, "illegal addressing mode"); duke@435: emit_byte(0x84 | regenc << 3); duke@435: emit_byte(scale << 6 | indexenc << 3 | baseenc); duke@435: emit_data(disp, rspec, disp32_operand); duke@435: } duke@435: } else if (base == rsp || base == r12) { duke@435: // [rsp + disp] duke@435: if (disp == 0 && rtype == relocInfo::none) { duke@435: // [rsp] duke@435: // [00 reg 100][00 100 100] duke@435: emit_byte(0x04 | regenc << 3); duke@435: emit_byte(0x24); duke@435: } else if (is8bit(disp) && rtype == relocInfo::none) { duke@435: // [rsp + imm8] duke@435: // [01 reg 100][00 100 100] disp8 duke@435: emit_byte(0x44 | regenc << 3); duke@435: emit_byte(0x24); duke@435: emit_byte(disp & 0xFF); duke@435: } else { duke@435: // [rsp + imm32] duke@435: // [10 reg 100][00 100 100] disp32 duke@435: emit_byte(0x84 | regenc << 3); duke@435: emit_byte(0x24); duke@435: emit_data(disp, rspec, disp32_operand); duke@435: } duke@435: } else { duke@435: // [base + disp] duke@435: assert(base != rsp && base != r12, "illegal addressing mode"); duke@435: int baseenc = base->encoding(); duke@435: if (baseenc >= 8) { duke@435: baseenc -= 8; duke@435: } duke@435: if (disp == 0 && rtype == relocInfo::none && duke@435: base != rbp && base != r13) { duke@435: // [base] duke@435: // [00 reg base] duke@435: emit_byte(0x00 | regenc << 3 | baseenc); duke@435: } else if (is8bit(disp) && rtype == relocInfo::none) { duke@435: // [base + disp8] duke@435: // [01 reg base] disp8 duke@435: emit_byte(0x40 | regenc << 3 | baseenc); duke@435: emit_byte(disp & 0xFF); duke@435: } else { duke@435: // [base + disp32] duke@435: // [10 reg base] disp32 duke@435: emit_byte(0x80 | regenc << 3 | baseenc); duke@435: emit_data(disp, rspec, disp32_operand); duke@435: } duke@435: } duke@435: } else { duke@435: if (index->is_valid()) { duke@435: assert(scale != Address::no_scale, "inconsistent address"); duke@435: int indexenc = index->encoding(); duke@435: if (indexenc >= 8) { duke@435: indexenc -= 8; duke@435: } duke@435: // [index*scale + disp] duke@435: // [00 reg 100][ss index 101] disp32 duke@435: assert(index != rsp, "illegal addressing mode"); duke@435: emit_byte(0x04 | regenc << 3); duke@435: emit_byte(scale << 6 | indexenc << 3 | 0x05); duke@435: emit_data(disp, rspec, disp32_operand); duke@435: #ifdef _LP64 duke@435: } else if (rtype != relocInfo::none ) { duke@435: // [disp] RIP-RELATIVE duke@435: // [00 000 101] disp32 duke@435: duke@435: emit_byte(0x05 | regenc << 3); duke@435: // Note that the RIP-rel. correction applies to the generated duke@435: // disp field, but _not_ to the target address in the rspec. duke@435: duke@435: // disp was created by converting the target address minus the pc duke@435: // at the start of the instruction. That needs more correction here. duke@435: // intptr_t disp = target - next_ip; duke@435: assert(inst_mark() != NULL, "must be inside InstructionMark"); duke@435: address next_ip = pc() + sizeof(int32_t) + rip_relative_correction; duke@435: int64_t adjusted = (int64_t) disp - (next_ip - inst_mark()); duke@435: assert(is_simm32(adjusted), duke@435: "must be 32bit offset (RIP relative address)"); duke@435: emit_data((int) adjusted, rspec, disp32_operand); duke@435: duke@435: #endif // _LP64 duke@435: } else { duke@435: // [disp] ABSOLUTE duke@435: // [00 reg 100][00 100 101] disp32 duke@435: emit_byte(0x04 | regenc << 3); duke@435: emit_byte(0x25); duke@435: emit_data(disp, rspec, disp32_operand); duke@435: } duke@435: } duke@435: } duke@435: duke@435: void Assembler::emit_operand(XMMRegister reg, Register base, Register index, duke@435: Address::ScaleFactor scale, int disp, duke@435: RelocationHolder const& rspec, duke@435: int rip_relative_correction) { duke@435: relocInfo::relocType rtype = (relocInfo::relocType) rspec.type(); duke@435: int regenc = reg->encoding(); duke@435: if (regenc >= 8) { duke@435: regenc -= 8; duke@435: } duke@435: if (base->is_valid()) { duke@435: if (index->is_valid()) { duke@435: assert(scale != Address::no_scale, "inconsistent address"); duke@435: int indexenc = index->encoding(); duke@435: if (indexenc >= 8) { duke@435: indexenc -= 8; duke@435: } duke@435: int baseenc = base->encoding(); duke@435: if (baseenc >= 8) { duke@435: baseenc -= 8; duke@435: } duke@435: // [base + index*scale + disp] duke@435: if (disp == 0 && rtype == relocInfo::none && duke@435: base != rbp && base != r13) { duke@435: // [base + index*scale] duke@435: // [00 reg 100][ss index base] duke@435: assert(index != rsp, "illegal addressing mode"); duke@435: emit_byte(0x04 | regenc << 3); duke@435: emit_byte(scale << 6 | indexenc << 3 | baseenc); duke@435: } else if (is8bit(disp) && rtype == relocInfo::none) { duke@435: // [base + index*scale + disp8] duke@435: // [01 reg 100][ss index base] disp8 duke@435: assert(index != rsp, "illegal addressing mode"); duke@435: emit_byte(0x44 | regenc << 3); duke@435: emit_byte(scale << 6 | indexenc << 3 | baseenc); duke@435: emit_byte(disp & 0xFF); duke@435: } else { duke@435: // [base + index*scale + disp32] duke@435: // [10 reg 100][ss index base] disp32 duke@435: assert(index != rsp, "illegal addressing mode"); duke@435: emit_byte(0x84 | regenc << 3); duke@435: emit_byte(scale << 6 | indexenc << 3 | baseenc); duke@435: emit_data(disp, rspec, disp32_operand); duke@435: } duke@435: } else if (base == rsp || base == r12) { duke@435: // [rsp + disp] duke@435: if (disp == 0 && rtype == relocInfo::none) { duke@435: // [rsp] duke@435: // [00 reg 100][00 100 100] duke@435: emit_byte(0x04 | regenc << 3); duke@435: emit_byte(0x24); duke@435: } else if (is8bit(disp) && rtype == relocInfo::none) { duke@435: // [rsp + imm8] duke@435: // [01 reg 100][00 100 100] disp8 duke@435: emit_byte(0x44 | regenc << 3); duke@435: emit_byte(0x24); duke@435: emit_byte(disp & 0xFF); duke@435: } else { duke@435: // [rsp + imm32] duke@435: // [10 reg 100][00 100 100] disp32 duke@435: emit_byte(0x84 | regenc << 3); duke@435: emit_byte(0x24); duke@435: emit_data(disp, rspec, disp32_operand); duke@435: } duke@435: } else { duke@435: // [base + disp] duke@435: assert(base != rsp && base != r12, "illegal addressing mode"); duke@435: int baseenc = base->encoding(); duke@435: if (baseenc >= 8) { duke@435: baseenc -= 8; duke@435: } duke@435: if (disp == 0 && rtype == relocInfo::none && duke@435: base != rbp && base != r13) { duke@435: // [base] duke@435: // [00 reg base] duke@435: emit_byte(0x00 | regenc << 3 | baseenc); duke@435: } else if (is8bit(disp) && rtype == relocInfo::none) { duke@435: // [base + imm8] duke@435: // [01 reg base] disp8 duke@435: emit_byte(0x40 | regenc << 3 | baseenc); duke@435: emit_byte(disp & 0xFF); duke@435: } else { duke@435: // [base + imm32] duke@435: // [10 reg base] disp32 duke@435: emit_byte(0x80 | regenc << 3 | baseenc); duke@435: emit_data(disp, rspec, disp32_operand); duke@435: } duke@435: } duke@435: } else { duke@435: if (index->is_valid()) { duke@435: assert(scale != Address::no_scale, "inconsistent address"); duke@435: int indexenc = index->encoding(); duke@435: if (indexenc >= 8) { duke@435: indexenc -= 8; duke@435: } duke@435: // [index*scale + disp] duke@435: // [00 reg 100][ss index 101] disp32 duke@435: assert(index != rsp, "illegal addressing mode"); duke@435: emit_byte(0x04 | regenc << 3); duke@435: emit_byte(scale << 6 | indexenc << 3 | 0x05); duke@435: emit_data(disp, rspec, disp32_operand); duke@435: #ifdef _LP64 duke@435: } else if ( rtype != relocInfo::none ) { duke@435: // [disp] RIP-RELATIVE duke@435: // [00 reg 101] disp32 duke@435: emit_byte(0x05 | regenc << 3); duke@435: // Note that the RIP-rel. correction applies to the generated duke@435: // disp field, but _not_ to the target address in the rspec. duke@435: duke@435: // disp was created by converting the target address minus the pc duke@435: // at the start of the instruction. That needs more correction here. duke@435: // intptr_t disp = target - next_ip; duke@435: duke@435: assert(inst_mark() != NULL, "must be inside InstructionMark"); duke@435: address next_ip = pc() + sizeof(int32_t) + rip_relative_correction; duke@435: duke@435: int64_t adjusted = (int64_t) disp - (next_ip - inst_mark()); duke@435: assert(is_simm32(adjusted), duke@435: "must be 32bit offset (RIP relative address)"); duke@435: emit_data((int) adjusted, rspec, disp32_operand); duke@435: #endif // _LP64 duke@435: } else { duke@435: // [disp] ABSOLUTE duke@435: // [00 reg 100][00 100 101] disp32 duke@435: emit_byte(0x04 | regenc << 3); duke@435: emit_byte(0x25); duke@435: emit_data(disp, rspec, disp32_operand); duke@435: } duke@435: } duke@435: } duke@435: duke@435: // Secret local extension to Assembler::WhichOperand: duke@435: #define end_pc_operand (_WhichOperand_limit) duke@435: duke@435: address Assembler::locate_operand(address inst, WhichOperand which) { duke@435: // Decode the given instruction, and return the address of duke@435: // an embedded 32-bit operand word. duke@435: duke@435: // If "which" is disp32_operand, selects the displacement portion duke@435: // of an effective address specifier. duke@435: // If "which" is imm64_operand, selects the trailing immediate constant. duke@435: // If "which" is call32_operand, selects the displacement of a call or jump. duke@435: // Caller is responsible for ensuring that there is such an operand, duke@435: // and that it is 32/64 bits wide. duke@435: duke@435: // If "which" is end_pc_operand, find the end of the instruction. duke@435: duke@435: address ip = inst; duke@435: bool is_64bit = false; duke@435: duke@435: debug_only(bool has_disp32 = false); duke@435: int tail_size = 0; // other random bytes (#32, #16, etc.) at end of insn duke@435: duke@435: again_after_prefix: duke@435: switch (0xFF & *ip++) { duke@435: duke@435: // These convenience macros generate groups of "case" labels for the switch. duke@435: #define REP4(x) (x)+0: case (x)+1: case (x)+2: case (x)+3 duke@435: #define REP8(x) (x)+0: case (x)+1: case (x)+2: case (x)+3: \ duke@435: case (x)+4: case (x)+5: case (x)+6: case (x)+7 duke@435: #define REP16(x) REP8((x)+0): \ duke@435: case REP8((x)+8) duke@435: duke@435: case CS_segment: duke@435: case SS_segment: duke@435: case DS_segment: duke@435: case ES_segment: duke@435: case FS_segment: duke@435: case GS_segment: duke@435: assert(0, "shouldn't have that prefix"); duke@435: assert(ip == inst + 1 || ip == inst + 2, "only two prefixes allowed"); duke@435: goto again_after_prefix; duke@435: duke@435: case 0x67: duke@435: case REX: duke@435: case REX_B: duke@435: case REX_X: duke@435: case REX_XB: duke@435: case REX_R: duke@435: case REX_RB: duke@435: case REX_RX: duke@435: case REX_RXB: duke@435: // assert(ip == inst + 1, "only one prefix allowed"); duke@435: goto again_after_prefix; duke@435: duke@435: case REX_W: duke@435: case REX_WB: duke@435: case REX_WX: duke@435: case REX_WXB: duke@435: case REX_WR: duke@435: case REX_WRB: duke@435: case REX_WRX: duke@435: case REX_WRXB: duke@435: is_64bit = true; duke@435: // assert(ip == inst + 1, "only one prefix allowed"); duke@435: goto again_after_prefix; duke@435: duke@435: case 0xFF: // pushq a; decl a; incl a; call a; jmp a duke@435: case 0x88: // movb a, r duke@435: case 0x89: // movl a, r duke@435: case 0x8A: // movb r, a duke@435: case 0x8B: // movl r, a duke@435: case 0x8F: // popl a duke@435: debug_only(has_disp32 = true); duke@435: break; duke@435: duke@435: case 0x68: // pushq #32 duke@435: if (which == end_pc_operand) { duke@435: return ip + 4; duke@435: } duke@435: assert(0, "pushq has no disp32 or imm64"); duke@435: ShouldNotReachHere(); duke@435: duke@435: case 0x66: // movw ... (size prefix) duke@435: again_after_size_prefix2: duke@435: switch (0xFF & *ip++) { duke@435: case REX: duke@435: case REX_B: duke@435: case REX_X: duke@435: case REX_XB: duke@435: case REX_R: duke@435: case REX_RB: duke@435: case REX_RX: duke@435: case REX_RXB: duke@435: case REX_W: duke@435: case REX_WB: duke@435: case REX_WX: duke@435: case REX_WXB: duke@435: case REX_WR: duke@435: case REX_WRB: duke@435: case REX_WRX: duke@435: case REX_WRXB: duke@435: goto again_after_size_prefix2; duke@435: case 0x8B: // movw r, a duke@435: case 0x89: // movw a, r duke@435: break; duke@435: case 0xC7: // movw a, #16 duke@435: tail_size = 2; // the imm16 duke@435: break; duke@435: case 0x0F: // several SSE/SSE2 variants duke@435: ip--; // reparse the 0x0F duke@435: goto again_after_prefix; duke@435: default: duke@435: ShouldNotReachHere(); duke@435: } duke@435: break; duke@435: duke@435: case REP8(0xB8): // movl/q r, #32/#64(oop?) duke@435: if (which == end_pc_operand) return ip + (is_64bit ? 8 : 4); duke@435: assert((which == call32_operand || which == imm64_operand) && is_64bit, ""); duke@435: return ip; duke@435: duke@435: case 0x69: // imul r, a, #32 duke@435: case 0xC7: // movl a, #32(oop?) duke@435: tail_size = 4; duke@435: debug_only(has_disp32 = true); // has both kinds of operands! duke@435: break; duke@435: duke@435: case 0x0F: // movx..., etc. duke@435: switch (0xFF & *ip++) { duke@435: case 0x12: // movlps duke@435: case 0x28: // movaps duke@435: case 0x2E: // ucomiss duke@435: case 0x2F: // comiss duke@435: case 0x54: // andps duke@435: case 0x57: // xorps duke@435: case 0x6E: // movd duke@435: case 0x7E: // movd duke@435: case 0xAE: // ldmxcsr a duke@435: debug_only(has_disp32 = true); // has both kinds of operands! duke@435: break; duke@435: case 0xAD: // shrd r, a, %cl duke@435: case 0xAF: // imul r, a duke@435: case 0xBE: // movsbl r, a duke@435: case 0xBF: // movswl r, a duke@435: case 0xB6: // movzbl r, a duke@435: case 0xB7: // movzwl r, a duke@435: case REP16(0x40): // cmovl cc, r, a duke@435: case 0xB0: // cmpxchgb duke@435: case 0xB1: // cmpxchg duke@435: case 0xC1: // xaddl duke@435: case 0xC7: // cmpxchg8 duke@435: case REP16(0x90): // setcc a duke@435: debug_only(has_disp32 = true); duke@435: // fall out of the switch to decode the address duke@435: break; duke@435: case 0xAC: // shrd r, a, #8 duke@435: debug_only(has_disp32 = true); duke@435: tail_size = 1; // the imm8 duke@435: break; duke@435: case REP16(0x80): // jcc rdisp32 duke@435: if (which == end_pc_operand) return ip + 4; duke@435: assert(which == call32_operand, "jcc has no disp32 or imm64"); duke@435: return ip; duke@435: default: duke@435: ShouldNotReachHere(); duke@435: } duke@435: break; duke@435: duke@435: case 0x81: // addl a, #32; addl r, #32 duke@435: // also: orl, adcl, sbbl, andl, subl, xorl, cmpl duke@435: tail_size = 4; duke@435: debug_only(has_disp32 = true); // has both kinds of operands! duke@435: break; duke@435: duke@435: case 0x83: // addl a, #8; addl r, #8 duke@435: // also: orl, adcl, sbbl, andl, subl, xorl, cmpl duke@435: debug_only(has_disp32 = true); // has both kinds of operands! duke@435: tail_size = 1; duke@435: break; duke@435: duke@435: case 0x9B: duke@435: switch (0xFF & *ip++) { duke@435: case 0xD9: // fnstcw a duke@435: debug_only(has_disp32 = true); duke@435: break; duke@435: default: duke@435: ShouldNotReachHere(); duke@435: } duke@435: break; duke@435: duke@435: case REP4(0x00): // addb a, r; addl a, r; addb r, a; addl r, a duke@435: case REP4(0x10): // adc... duke@435: case REP4(0x20): // and... duke@435: case REP4(0x30): // xor... duke@435: case REP4(0x08): // or... duke@435: case REP4(0x18): // sbb... duke@435: case REP4(0x28): // sub... duke@435: case 0xF7: // mull a duke@435: case 0x87: // xchg r, a duke@435: debug_only(has_disp32 = true); duke@435: break; duke@435: case REP4(0x38): // cmp... duke@435: case 0x8D: // lea r, a duke@435: case 0x85: // test r, a duke@435: debug_only(has_disp32 = true); // has both kinds of operands! duke@435: break; duke@435: duke@435: case 0xC1: // sal a, #8; sar a, #8; shl a, #8; shr a, #8 duke@435: case 0xC6: // movb a, #8 duke@435: case 0x80: // cmpb a, #8 duke@435: case 0x6B: // imul r, a, #8 duke@435: debug_only(has_disp32 = true); // has both kinds of operands! duke@435: tail_size = 1; // the imm8 duke@435: break; duke@435: duke@435: case 0xE8: // call rdisp32 duke@435: case 0xE9: // jmp rdisp32 duke@435: if (which == end_pc_operand) return ip + 4; duke@435: assert(which == call32_operand, "call has no disp32 or imm32"); duke@435: return ip; duke@435: duke@435: case 0xD1: // sal a, 1; sar a, 1; shl a, 1; shr a, 1 duke@435: case 0xD3: // sal a, %cl; sar a, %cl; shl a, %cl; shr a, %cl duke@435: case 0xD9: // fld_s a; fst_s a; fstp_s a; fldcw a duke@435: case 0xDD: // fld_d a; fst_d a; fstp_d a duke@435: case 0xDB: // fild_s a; fistp_s a; fld_x a; fstp_x a duke@435: case 0xDF: // fild_d a; fistp_d a duke@435: case 0xD8: // fadd_s a; fsubr_s a; fmul_s a; fdivr_s a; fcomp_s a duke@435: case 0xDC: // fadd_d a; fsubr_d a; fmul_d a; fdivr_d a; fcomp_d a duke@435: case 0xDE: // faddp_d a; fsubrp_d a; fmulp_d a; fdivrp_d a; fcompp_d a duke@435: debug_only(has_disp32 = true); duke@435: break; duke@435: duke@435: case 0xF3: // For SSE duke@435: case 0xF2: // For SSE2 duke@435: switch (0xFF & *ip++) { duke@435: case REX: duke@435: case REX_B: duke@435: case REX_X: duke@435: case REX_XB: duke@435: case REX_R: duke@435: case REX_RB: duke@435: case REX_RX: duke@435: case REX_RXB: duke@435: case REX_W: duke@435: case REX_WB: duke@435: case REX_WX: duke@435: case REX_WXB: duke@435: case REX_WR: duke@435: case REX_WRB: duke@435: case REX_WRX: duke@435: case REX_WRXB: duke@435: ip++; duke@435: default: duke@435: ip++; duke@435: } duke@435: debug_only(has_disp32 = true); // has both kinds of operands! duke@435: break; duke@435: duke@435: default: duke@435: ShouldNotReachHere(); duke@435: duke@435: #undef REP8 duke@435: #undef REP16 duke@435: } duke@435: duke@435: assert(which != call32_operand, "instruction is not a call, jmp, or jcc"); duke@435: assert(which != imm64_operand, "instruction is not a movq reg, imm64"); duke@435: assert(which != disp32_operand || has_disp32, "instruction has no disp32 field"); duke@435: duke@435: // parse the output of emit_operand duke@435: int op2 = 0xFF & *ip++; duke@435: int base = op2 & 0x07; duke@435: int op3 = -1; duke@435: const int b100 = 4; duke@435: const int b101 = 5; duke@435: if (base == b100 && (op2 >> 6) != 3) { duke@435: op3 = 0xFF & *ip++; duke@435: base = op3 & 0x07; // refetch the base duke@435: } duke@435: // now ip points at the disp (if any) duke@435: duke@435: switch (op2 >> 6) { duke@435: case 0: duke@435: // [00 reg 100][ss index base] duke@435: // [00 reg 100][00 100 esp] duke@435: // [00 reg base] duke@435: // [00 reg 100][ss index 101][disp32] duke@435: // [00 reg 101] [disp32] duke@435: duke@435: if (base == b101) { duke@435: if (which == disp32_operand) duke@435: return ip; // caller wants the disp32 duke@435: ip += 4; // skip the disp32 duke@435: } duke@435: break; duke@435: duke@435: case 1: duke@435: // [01 reg 100][ss index base][disp8] duke@435: // [01 reg 100][00 100 esp][disp8] duke@435: // [01 reg base] [disp8] duke@435: ip += 1; // skip the disp8 duke@435: break; duke@435: duke@435: case 2: duke@435: // [10 reg 100][ss index base][disp32] duke@435: // [10 reg 100][00 100 esp][disp32] duke@435: // [10 reg base] [disp32] duke@435: if (which == disp32_operand) duke@435: return ip; // caller wants the disp32 duke@435: ip += 4; // skip the disp32 duke@435: break; duke@435: duke@435: case 3: duke@435: // [11 reg base] (not a memory addressing mode) duke@435: break; duke@435: } duke@435: duke@435: if (which == end_pc_operand) { duke@435: return ip + tail_size; duke@435: } duke@435: duke@435: assert(0, "fix locate_operand"); duke@435: return ip; duke@435: } duke@435: duke@435: address Assembler::locate_next_instruction(address inst) { duke@435: // Secretly share code with locate_operand: duke@435: return locate_operand(inst, end_pc_operand); duke@435: } duke@435: duke@435: #ifdef ASSERT duke@435: void Assembler::check_relocation(RelocationHolder const& rspec, int format) { duke@435: address inst = inst_mark(); duke@435: assert(inst != NULL && inst < pc(), duke@435: "must point to beginning of instruction"); duke@435: address opnd; duke@435: duke@435: Relocation* r = rspec.reloc(); duke@435: if (r->type() == relocInfo::none) { duke@435: return; duke@435: } else if (r->is_call() || format == call32_operand) { duke@435: opnd = locate_operand(inst, call32_operand); duke@435: } else if (r->is_data()) { duke@435: assert(format == imm64_operand || format == disp32_operand, "format ok"); duke@435: opnd = locate_operand(inst, (WhichOperand) format); duke@435: } else { duke@435: assert(format == 0, "cannot specify a format"); duke@435: return; duke@435: } duke@435: assert(opnd == pc(), "must put operand where relocs can find it"); duke@435: } duke@435: #endif duke@435: duke@435: int Assembler::prefix_and_encode(int reg_enc, bool byteinst) { duke@435: if (reg_enc >= 8) { duke@435: prefix(REX_B); duke@435: reg_enc -= 8; duke@435: } else if (byteinst && reg_enc >= 4) { duke@435: prefix(REX); duke@435: } duke@435: return reg_enc; duke@435: } duke@435: duke@435: int Assembler::prefixq_and_encode(int reg_enc) { duke@435: if (reg_enc < 8) { duke@435: prefix(REX_W); duke@435: } else { duke@435: prefix(REX_WB); duke@435: reg_enc -= 8; duke@435: } duke@435: return reg_enc; duke@435: } duke@435: duke@435: int Assembler::prefix_and_encode(int dst_enc, int src_enc, bool byteinst) { duke@435: if (dst_enc < 8) { duke@435: if (src_enc >= 8) { duke@435: prefix(REX_B); duke@435: src_enc -= 8; duke@435: } else if (byteinst && src_enc >= 4) { duke@435: prefix(REX); duke@435: } duke@435: } else { duke@435: if (src_enc < 8) { duke@435: prefix(REX_R); duke@435: } else { duke@435: prefix(REX_RB); duke@435: src_enc -= 8; duke@435: } duke@435: dst_enc -= 8; duke@435: } duke@435: return dst_enc << 3 | src_enc; duke@435: } duke@435: duke@435: int Assembler::prefixq_and_encode(int dst_enc, int src_enc) { duke@435: if (dst_enc < 8) { duke@435: if (src_enc < 8) { duke@435: prefix(REX_W); duke@435: } else { duke@435: prefix(REX_WB); duke@435: src_enc -= 8; duke@435: } duke@435: } else { duke@435: if (src_enc < 8) { duke@435: prefix(REX_WR); duke@435: } else { duke@435: prefix(REX_WRB); duke@435: src_enc -= 8; duke@435: } duke@435: dst_enc -= 8; duke@435: } duke@435: return dst_enc << 3 | src_enc; duke@435: } duke@435: duke@435: void Assembler::prefix(Register reg) { duke@435: if (reg->encoding() >= 8) { duke@435: prefix(REX_B); duke@435: } duke@435: } duke@435: duke@435: void Assembler::prefix(Address adr) { duke@435: if (adr.base_needs_rex()) { duke@435: if (adr.index_needs_rex()) { duke@435: prefix(REX_XB); duke@435: } else { duke@435: prefix(REX_B); duke@435: } duke@435: } else { duke@435: if (adr.index_needs_rex()) { duke@435: prefix(REX_X); duke@435: } duke@435: } duke@435: } duke@435: duke@435: void Assembler::prefixq(Address adr) { duke@435: if (adr.base_needs_rex()) { duke@435: if (adr.index_needs_rex()) { duke@435: prefix(REX_WXB); duke@435: } else { duke@435: prefix(REX_WB); duke@435: } duke@435: } else { duke@435: if (adr.index_needs_rex()) { duke@435: prefix(REX_WX); duke@435: } else { duke@435: prefix(REX_W); duke@435: } duke@435: } duke@435: } duke@435: duke@435: duke@435: void Assembler::prefix(Address adr, Register reg, bool byteinst) { duke@435: if (reg->encoding() < 8) { duke@435: if (adr.base_needs_rex()) { duke@435: if (adr.index_needs_rex()) { duke@435: prefix(REX_XB); duke@435: } else { duke@435: prefix(REX_B); duke@435: } duke@435: } else { duke@435: if (adr.index_needs_rex()) { duke@435: prefix(REX_X); duke@435: } else if (reg->encoding() >= 4 ) { duke@435: prefix(REX); duke@435: } duke@435: } duke@435: } else { duke@435: if (adr.base_needs_rex()) { duke@435: if (adr.index_needs_rex()) { duke@435: prefix(REX_RXB); duke@435: } else { duke@435: prefix(REX_RB); duke@435: } duke@435: } else { duke@435: if (adr.index_needs_rex()) { duke@435: prefix(REX_RX); duke@435: } else { duke@435: prefix(REX_R); duke@435: } duke@435: } duke@435: } duke@435: } duke@435: duke@435: void Assembler::prefixq(Address adr, Register src) { duke@435: if (src->encoding() < 8) { duke@435: if (adr.base_needs_rex()) { duke@435: if (adr.index_needs_rex()) { duke@435: prefix(REX_WXB); duke@435: } else { duke@435: prefix(REX_WB); duke@435: } duke@435: } else { duke@435: if (adr.index_needs_rex()) { duke@435: prefix(REX_WX); duke@435: } else { duke@435: prefix(REX_W); duke@435: } duke@435: } duke@435: } else { duke@435: if (adr.base_needs_rex()) { duke@435: if (adr.index_needs_rex()) { duke@435: prefix(REX_WRXB); duke@435: } else { duke@435: prefix(REX_WRB); duke@435: } duke@435: } else { duke@435: if (adr.index_needs_rex()) { duke@435: prefix(REX_WRX); duke@435: } else { duke@435: prefix(REX_WR); duke@435: } duke@435: } duke@435: } duke@435: } duke@435: duke@435: void Assembler::prefix(Address adr, XMMRegister reg) { duke@435: if (reg->encoding() < 8) { duke@435: if (adr.base_needs_rex()) { duke@435: if (adr.index_needs_rex()) { duke@435: prefix(REX_XB); duke@435: } else { duke@435: prefix(REX_B); duke@435: } duke@435: } else { duke@435: if (adr.index_needs_rex()) { duke@435: prefix(REX_X); duke@435: } duke@435: } duke@435: } else { duke@435: if (adr.base_needs_rex()) { duke@435: if (adr.index_needs_rex()) { duke@435: prefix(REX_RXB); duke@435: } else { duke@435: prefix(REX_RB); duke@435: } duke@435: } else { duke@435: if (adr.index_needs_rex()) { duke@435: prefix(REX_RX); duke@435: } else { duke@435: prefix(REX_R); duke@435: } duke@435: } duke@435: } duke@435: } duke@435: duke@435: void Assembler::emit_operand(Register reg, Address adr, duke@435: int rip_relative_correction) { duke@435: emit_operand(reg, adr._base, adr._index, adr._scale, adr._disp, duke@435: adr._rspec, duke@435: rip_relative_correction); duke@435: } duke@435: duke@435: void Assembler::emit_operand(XMMRegister reg, Address adr, duke@435: int rip_relative_correction) { duke@435: emit_operand(reg, adr._base, adr._index, adr._scale, adr._disp, duke@435: adr._rspec, duke@435: rip_relative_correction); duke@435: } duke@435: duke@435: void Assembler::emit_farith(int b1, int b2, int i) { duke@435: assert(isByte(b1) && isByte(b2), "wrong opcode"); duke@435: assert(0 <= i && i < 8, "illegal stack offset"); duke@435: emit_byte(b1); duke@435: emit_byte(b2 + i); duke@435: } duke@435: duke@435: // pushad is invalid, use this instead. duke@435: // NOTE: Kills flags!! duke@435: void Assembler::pushaq() { duke@435: // we have to store original rsp. ABI says that 128 bytes duke@435: // below rsp are local scratch. duke@435: movq(Address(rsp, -5 * wordSize), rsp); duke@435: duke@435: subq(rsp, 16 * wordSize); duke@435: duke@435: movq(Address(rsp, 15 * wordSize), rax); duke@435: movq(Address(rsp, 14 * wordSize), rcx); duke@435: movq(Address(rsp, 13 * wordSize), rdx); duke@435: movq(Address(rsp, 12 * wordSize), rbx); duke@435: // skip rsp duke@435: movq(Address(rsp, 10 * wordSize), rbp); duke@435: movq(Address(rsp, 9 * wordSize), rsi); duke@435: movq(Address(rsp, 8 * wordSize), rdi); duke@435: movq(Address(rsp, 7 * wordSize), r8); duke@435: movq(Address(rsp, 6 * wordSize), r9); duke@435: movq(Address(rsp, 5 * wordSize), r10); duke@435: movq(Address(rsp, 4 * wordSize), r11); duke@435: movq(Address(rsp, 3 * wordSize), r12); duke@435: movq(Address(rsp, 2 * wordSize), r13); duke@435: movq(Address(rsp, wordSize), r14); duke@435: movq(Address(rsp, 0), r15); duke@435: } duke@435: duke@435: // popad is invalid, use this instead duke@435: // NOTE: Kills flags!! duke@435: void Assembler::popaq() { duke@435: movq(r15, Address(rsp, 0)); duke@435: movq(r14, Address(rsp, wordSize)); duke@435: movq(r13, Address(rsp, 2 * wordSize)); duke@435: movq(r12, Address(rsp, 3 * wordSize)); duke@435: movq(r11, Address(rsp, 4 * wordSize)); duke@435: movq(r10, Address(rsp, 5 * wordSize)); duke@435: movq(r9, Address(rsp, 6 * wordSize)); duke@435: movq(r8, Address(rsp, 7 * wordSize)); duke@435: movq(rdi, Address(rsp, 8 * wordSize)); duke@435: movq(rsi, Address(rsp, 9 * wordSize)); duke@435: movq(rbp, Address(rsp, 10 * wordSize)); duke@435: // skip rsp duke@435: movq(rbx, Address(rsp, 12 * wordSize)); duke@435: movq(rdx, Address(rsp, 13 * wordSize)); duke@435: movq(rcx, Address(rsp, 14 * wordSize)); duke@435: movq(rax, Address(rsp, 15 * wordSize)); duke@435: duke@435: addq(rsp, 16 * wordSize); duke@435: } duke@435: duke@435: void Assembler::pushfq() { duke@435: emit_byte(0x9C); duke@435: } duke@435: duke@435: void Assembler::popfq() { duke@435: emit_byte(0x9D); duke@435: } duke@435: duke@435: void Assembler::pushq(int imm32) { duke@435: emit_byte(0x68); duke@435: emit_long(imm32); duke@435: } duke@435: duke@435: void Assembler::pushq(Register src) { duke@435: int encode = prefix_and_encode(src->encoding()); duke@435: duke@435: emit_byte(0x50 | encode); duke@435: } duke@435: duke@435: void Assembler::pushq(Address src) { duke@435: InstructionMark im(this); duke@435: prefix(src); duke@435: emit_byte(0xFF); duke@435: emit_operand(rsi, src); duke@435: } duke@435: duke@435: void Assembler::popq(Register dst) { duke@435: int encode = prefix_and_encode(dst->encoding()); duke@435: emit_byte(0x58 | encode); duke@435: } duke@435: duke@435: void Assembler::popq(Address dst) { duke@435: InstructionMark im(this); duke@435: prefix(dst); duke@435: emit_byte(0x8F); duke@435: emit_operand(rax, dst); duke@435: } duke@435: duke@435: void Assembler::prefix(Prefix p) { duke@435: a_byte(p); duke@435: } duke@435: duke@435: void Assembler::movb(Register dst, Address src) { duke@435: InstructionMark im(this); duke@435: prefix(src, dst, true); duke@435: emit_byte(0x8A); duke@435: emit_operand(dst, src); duke@435: } duke@435: duke@435: void Assembler::movb(Address dst, int imm8) { duke@435: InstructionMark im(this); duke@435: prefix(dst); duke@435: emit_byte(0xC6); duke@435: emit_operand(rax, dst, 1); duke@435: emit_byte(imm8); duke@435: } duke@435: duke@435: void Assembler::movb(Address dst, Register src) { duke@435: InstructionMark im(this); duke@435: prefix(dst, src, true); duke@435: emit_byte(0x88); duke@435: emit_operand(src, dst); duke@435: } duke@435: duke@435: void Assembler::movw(Address dst, int imm16) { duke@435: InstructionMark im(this); duke@435: emit_byte(0x66); // switch to 16-bit mode duke@435: prefix(dst); duke@435: emit_byte(0xC7); duke@435: emit_operand(rax, dst, 2); duke@435: emit_word(imm16); duke@435: } duke@435: duke@435: void Assembler::movw(Register dst, Address src) { duke@435: InstructionMark im(this); duke@435: emit_byte(0x66); duke@435: prefix(src, dst); duke@435: emit_byte(0x8B); duke@435: emit_operand(dst, src); duke@435: } duke@435: duke@435: void Assembler::movw(Address dst, Register src) { duke@435: InstructionMark im(this); duke@435: emit_byte(0x66); duke@435: prefix(dst, src); duke@435: emit_byte(0x89); duke@435: emit_operand(src, dst); duke@435: } duke@435: duke@435: // Uses zero extension. duke@435: void Assembler::movl(Register dst, int imm32) { duke@435: int encode = prefix_and_encode(dst->encoding()); duke@435: emit_byte(0xB8 | encode); duke@435: emit_long(imm32); duke@435: } duke@435: duke@435: void Assembler::movl(Register dst, Register src) { duke@435: int encode = prefix_and_encode(dst->encoding(), src->encoding()); duke@435: emit_byte(0x8B); duke@435: emit_byte(0xC0 | encode); duke@435: } duke@435: duke@435: void Assembler::movl(Register dst, Address src) { duke@435: InstructionMark im(this); duke@435: prefix(src, dst); duke@435: emit_byte(0x8B); duke@435: emit_operand(dst, src); duke@435: } duke@435: duke@435: void Assembler::movl(Address dst, int imm32) { duke@435: InstructionMark im(this); duke@435: prefix(dst); duke@435: emit_byte(0xC7); duke@435: emit_operand(rax, dst, 4); duke@435: emit_long(imm32); duke@435: } duke@435: duke@435: void Assembler::movl(Address dst, Register src) { duke@435: InstructionMark im(this); duke@435: prefix(dst, src); duke@435: emit_byte(0x89); duke@435: emit_operand(src, dst); duke@435: } duke@435: dcubed@485: void Assembler::mov64(Register dst, intptr_t imm64) { duke@435: InstructionMark im(this); duke@435: int encode = prefixq_and_encode(dst->encoding()); duke@435: emit_byte(0xB8 | encode); duke@435: emit_long64(imm64); duke@435: } duke@435: duke@435: void Assembler::mov_literal64(Register dst, intptr_t imm64, RelocationHolder const& rspec) { duke@435: InstructionMark im(this); duke@435: int encode = prefixq_and_encode(dst->encoding()); duke@435: emit_byte(0xB8 | encode); duke@435: emit_data64(imm64, rspec); duke@435: } duke@435: duke@435: void Assembler::movq(Register dst, Register src) { duke@435: int encode = prefixq_and_encode(dst->encoding(), src->encoding()); duke@435: emit_byte(0x8B); duke@435: emit_byte(0xC0 | encode); duke@435: } duke@435: duke@435: void Assembler::movq(Register dst, Address src) { duke@435: InstructionMark im(this); duke@435: prefixq(src, dst); duke@435: emit_byte(0x8B); duke@435: emit_operand(dst, src); duke@435: } duke@435: dcubed@485: void Assembler::mov64(Address dst, intptr_t imm32) { duke@435: assert(is_simm32(imm32), "lost bits"); duke@435: InstructionMark im(this); duke@435: prefixq(dst); duke@435: emit_byte(0xC7); duke@435: emit_operand(rax, dst, 4); duke@435: emit_long(imm32); duke@435: } duke@435: duke@435: void Assembler::movq(Address dst, Register src) { duke@435: InstructionMark im(this); duke@435: prefixq(dst, src); duke@435: emit_byte(0x89); duke@435: emit_operand(src, dst); duke@435: } duke@435: duke@435: void Assembler::movsbl(Register dst, Address src) { duke@435: InstructionMark im(this); duke@435: prefix(src, dst); duke@435: emit_byte(0x0F); duke@435: emit_byte(0xBE); duke@435: emit_operand(dst, src); duke@435: } duke@435: duke@435: void Assembler::movsbl(Register dst, Register src) { duke@435: int encode = prefix_and_encode(dst->encoding(), src->encoding(), true); duke@435: emit_byte(0x0F); duke@435: emit_byte(0xBE); duke@435: emit_byte(0xC0 | encode); duke@435: } duke@435: duke@435: void Assembler::movswl(Register dst, Address src) { duke@435: InstructionMark im(this); duke@435: prefix(src, dst); duke@435: emit_byte(0x0F); duke@435: emit_byte(0xBF); duke@435: emit_operand(dst, src); duke@435: } duke@435: duke@435: void Assembler::movswl(Register dst, Register src) { duke@435: int encode = prefix_and_encode(dst->encoding(), src->encoding()); duke@435: emit_byte(0x0F); duke@435: emit_byte(0xBF); duke@435: emit_byte(0xC0 | encode); duke@435: } duke@435: duke@435: void Assembler::movslq(Register dst, Address src) { duke@435: InstructionMark im(this); duke@435: prefixq(src, dst); duke@435: emit_byte(0x63); duke@435: emit_operand(dst, src); duke@435: } duke@435: duke@435: void Assembler::movslq(Register dst, Register src) { duke@435: int encode = prefixq_and_encode(dst->encoding(), src->encoding()); duke@435: emit_byte(0x63); duke@435: emit_byte(0xC0 | encode); duke@435: } duke@435: duke@435: void Assembler::movzbl(Register dst, Address src) { duke@435: InstructionMark im(this); duke@435: prefix(src, dst); duke@435: emit_byte(0x0F); duke@435: emit_byte(0xB6); duke@435: emit_operand(dst, src); duke@435: } duke@435: duke@435: void Assembler::movzbl(Register dst, Register src) { duke@435: int encode = prefix_and_encode(dst->encoding(), src->encoding(), true); duke@435: emit_byte(0x0F); duke@435: emit_byte(0xB6); duke@435: emit_byte(0xC0 | encode); duke@435: } duke@435: duke@435: void Assembler::movzwl(Register dst, Address src) { duke@435: InstructionMark im(this); duke@435: prefix(src, dst); duke@435: emit_byte(0x0F); duke@435: emit_byte(0xB7); duke@435: emit_operand(dst, src); duke@435: } duke@435: duke@435: void Assembler::movzwl(Register dst, Register src) { duke@435: int encode = prefix_and_encode(dst->encoding(), src->encoding()); duke@435: emit_byte(0x0F); duke@435: emit_byte(0xB7); duke@435: emit_byte(0xC0 | encode); duke@435: } duke@435: duke@435: void Assembler::movss(XMMRegister dst, XMMRegister src) { duke@435: emit_byte(0xF3); duke@435: int encode = prefix_and_encode(dst->encoding(), src->encoding()); duke@435: emit_byte(0x0F); duke@435: emit_byte(0x10); duke@435: emit_byte(0xC0 | encode); duke@435: } duke@435: duke@435: void Assembler::movss(XMMRegister dst, Address src) { duke@435: InstructionMark im(this); duke@435: emit_byte(0xF3); duke@435: prefix(src, dst); duke@435: emit_byte(0x0F); duke@435: emit_byte(0x10); duke@435: emit_operand(dst, src); duke@435: } duke@435: duke@435: void Assembler::movss(Address dst, XMMRegister src) { duke@435: InstructionMark im(this); duke@435: emit_byte(0xF3); duke@435: prefix(dst, src); duke@435: emit_byte(0x0F); duke@435: emit_byte(0x11); duke@435: emit_operand(src, dst); duke@435: } duke@435: duke@435: void Assembler::movsd(XMMRegister dst, XMMRegister src) { duke@435: emit_byte(0xF2); duke@435: int encode = prefix_and_encode(dst->encoding(), src->encoding()); duke@435: emit_byte(0x0F); duke@435: emit_byte(0x10); duke@435: emit_byte(0xC0 | encode); duke@435: } duke@435: duke@435: void Assembler::movsd(XMMRegister dst, Address src) { duke@435: InstructionMark im(this); duke@435: emit_byte(0xF2); duke@435: prefix(src, dst); duke@435: emit_byte(0x0F); duke@435: emit_byte(0x10); duke@435: emit_operand(dst, src); duke@435: } duke@435: duke@435: void Assembler::movsd(Address dst, XMMRegister src) { duke@435: InstructionMark im(this); duke@435: emit_byte(0xF2); duke@435: prefix(dst, src); duke@435: emit_byte(0x0F); duke@435: emit_byte(0x11); duke@435: emit_operand(src, dst); duke@435: } duke@435: duke@435: // New cpus require to use movsd and movss to avoid partial register stall duke@435: // when loading from memory. But for old Opteron use movlpd instead of movsd. duke@435: // The selection is done in MacroAssembler::movdbl() and movflt(). duke@435: void Assembler::movlpd(XMMRegister dst, Address src) { duke@435: InstructionMark im(this); duke@435: emit_byte(0x66); duke@435: prefix(src, dst); duke@435: emit_byte(0x0F); duke@435: emit_byte(0x12); duke@435: emit_operand(dst, src); duke@435: } duke@435: duke@435: void Assembler::movapd(XMMRegister dst, XMMRegister src) { duke@435: int dstenc = dst->encoding(); duke@435: int srcenc = src->encoding(); duke@435: emit_byte(0x66); duke@435: if (dstenc < 8) { duke@435: if (srcenc >= 8) { duke@435: prefix(REX_B); duke@435: srcenc -= 8; duke@435: } duke@435: } else { duke@435: if (srcenc < 8) { duke@435: prefix(REX_R); duke@435: } else { duke@435: prefix(REX_RB); duke@435: srcenc -= 8; duke@435: } duke@435: dstenc -= 8; duke@435: } duke@435: emit_byte(0x0F); duke@435: emit_byte(0x28); duke@435: emit_byte(0xC0 | dstenc << 3 | srcenc); duke@435: } duke@435: duke@435: void Assembler::movaps(XMMRegister dst, XMMRegister src) { duke@435: int dstenc = dst->encoding(); duke@435: int srcenc = src->encoding(); duke@435: if (dstenc < 8) { duke@435: if (srcenc >= 8) { duke@435: prefix(REX_B); duke@435: srcenc -= 8; duke@435: } duke@435: } else { duke@435: if (srcenc < 8) { duke@435: prefix(REX_R); duke@435: } else { duke@435: prefix(REX_RB); duke@435: srcenc -= 8; duke@435: } duke@435: dstenc -= 8; duke@435: } duke@435: emit_byte(0x0F); duke@435: emit_byte(0x28); duke@435: emit_byte(0xC0 | dstenc << 3 | srcenc); duke@435: } duke@435: duke@435: void Assembler::movdl(XMMRegister dst, Register src) { duke@435: emit_byte(0x66); duke@435: int encode = prefix_and_encode(dst->encoding(), src->encoding()); duke@435: emit_byte(0x0F); duke@435: emit_byte(0x6E); duke@435: emit_byte(0xC0 | encode); duke@435: } duke@435: duke@435: void Assembler::movdl(Register dst, XMMRegister src) { duke@435: emit_byte(0x66); duke@435: // swap src/dst to get correct prefix duke@435: int encode = prefix_and_encode(src->encoding(), dst->encoding()); duke@435: emit_byte(0x0F); duke@435: emit_byte(0x7E); duke@435: emit_byte(0xC0 | encode); duke@435: } duke@435: duke@435: void Assembler::movdq(XMMRegister dst, Register src) { duke@435: emit_byte(0x66); duke@435: int encode = prefixq_and_encode(dst->encoding(), src->encoding()); duke@435: emit_byte(0x0F); duke@435: emit_byte(0x6E); duke@435: emit_byte(0xC0 | encode); duke@435: } duke@435: duke@435: void Assembler::movdq(Register dst, XMMRegister src) { duke@435: emit_byte(0x66); duke@435: // swap src/dst to get correct prefix duke@435: int encode = prefixq_and_encode(src->encoding(), dst->encoding()); duke@435: emit_byte(0x0F); duke@435: emit_byte(0x7E); duke@435: emit_byte(0xC0 | encode); duke@435: } duke@435: duke@435: void Assembler::pxor(XMMRegister dst, Address src) { duke@435: InstructionMark im(this); duke@435: emit_byte(0x66); duke@435: prefix(src, dst); duke@435: emit_byte(0x0F); duke@435: emit_byte(0xEF); duke@435: emit_operand(dst, src); duke@435: } duke@435: duke@435: void Assembler::pxor(XMMRegister dst, XMMRegister src) { duke@435: InstructionMark im(this); duke@435: emit_byte(0x66); duke@435: int encode = prefix_and_encode(dst->encoding(), src->encoding()); duke@435: emit_byte(0x0F); duke@435: emit_byte(0xEF); duke@435: emit_byte(0xC0 | encode); duke@435: } duke@435: duke@435: void Assembler::movdqa(XMMRegister dst, Address src) { duke@435: InstructionMark im(this); duke@435: emit_byte(0x66); duke@435: prefix(src, dst); duke@435: emit_byte(0x0F); duke@435: emit_byte(0x6F); duke@435: emit_operand(dst, src); duke@435: } duke@435: duke@435: void Assembler::movdqa(XMMRegister dst, XMMRegister src) { duke@435: emit_byte(0x66); duke@435: int encode = prefixq_and_encode(dst->encoding(), src->encoding()); duke@435: emit_byte(0x0F); duke@435: emit_byte(0x6F); duke@435: emit_byte(0xC0 | encode); duke@435: } duke@435: duke@435: void Assembler::movdqa(Address dst, XMMRegister src) { duke@435: InstructionMark im(this); duke@435: emit_byte(0x66); duke@435: prefix(dst, src); duke@435: emit_byte(0x0F); duke@435: emit_byte(0x7F); duke@435: emit_operand(src, dst); duke@435: } duke@435: duke@435: void Assembler::movq(XMMRegister dst, Address src) { duke@435: InstructionMark im(this); duke@435: emit_byte(0xF3); duke@435: prefix(src, dst); duke@435: emit_byte(0x0F); duke@435: emit_byte(0x7E); duke@435: emit_operand(dst, src); duke@435: } duke@435: duke@435: void Assembler::movq(Address dst, XMMRegister src) { duke@435: InstructionMark im(this); duke@435: emit_byte(0x66); duke@435: prefix(dst, src); duke@435: emit_byte(0x0F); duke@435: emit_byte(0xD6); duke@435: emit_operand(src, dst); duke@435: } duke@435: duke@435: void Assembler::pshufd(XMMRegister dst, XMMRegister src, int mode) { duke@435: assert(isByte(mode), "invalid value"); duke@435: emit_byte(0x66); duke@435: int encode = prefix_and_encode(dst->encoding(), src->encoding()); duke@435: emit_byte(0x0F); duke@435: emit_byte(0x70); duke@435: emit_byte(0xC0 | encode); duke@435: emit_byte(mode & 0xFF); duke@435: } duke@435: duke@435: void Assembler::pshufd(XMMRegister dst, Address src, int mode) { duke@435: assert(isByte(mode), "invalid value"); duke@435: InstructionMark im(this); duke@435: emit_byte(0x66); duke@435: emit_byte(0x0F); duke@435: emit_byte(0x70); duke@435: emit_operand(dst, src); duke@435: emit_byte(mode & 0xFF); duke@435: } duke@435: duke@435: void Assembler::pshuflw(XMMRegister dst, XMMRegister src, int mode) { duke@435: assert(isByte(mode), "invalid value"); duke@435: emit_byte(0xF2); duke@435: int encode = prefix_and_encode(dst->encoding(), src->encoding()); duke@435: emit_byte(0x0F); duke@435: emit_byte(0x70); duke@435: emit_byte(0xC0 | encode); duke@435: emit_byte(mode & 0xFF); duke@435: } duke@435: duke@435: void Assembler::pshuflw(XMMRegister dst, Address src, int mode) { duke@435: assert(isByte(mode), "invalid value"); duke@435: InstructionMark im(this); duke@435: emit_byte(0xF2); duke@435: emit_byte(0x0F); duke@435: emit_byte(0x70); duke@435: emit_operand(dst, src); duke@435: emit_byte(mode & 0xFF); duke@435: } duke@435: duke@435: void Assembler::cmovl(Condition cc, Register dst, Register src) { duke@435: int encode = prefix_and_encode(dst->encoding(), src->encoding()); duke@435: emit_byte(0x0F); duke@435: emit_byte(0x40 | cc); duke@435: emit_byte(0xC0 | encode); duke@435: } duke@435: duke@435: void Assembler::cmovl(Condition cc, Register dst, Address src) { duke@435: InstructionMark im(this); duke@435: prefix(src, dst); duke@435: emit_byte(0x0F); duke@435: emit_byte(0x40 | cc); duke@435: emit_operand(dst, src); duke@435: } duke@435: duke@435: void Assembler::cmovq(Condition cc, Register dst, Register src) { duke@435: int encode = prefixq_and_encode(dst->encoding(), src->encoding()); duke@435: emit_byte(0x0F); duke@435: emit_byte(0x40 | cc); duke@435: emit_byte(0xC0 | encode); duke@435: } duke@435: duke@435: void Assembler::cmovq(Condition cc, Register dst, Address src) { duke@435: InstructionMark im(this); duke@435: prefixq(src, dst); duke@435: emit_byte(0x0F); duke@435: emit_byte(0x40 | cc); duke@435: emit_operand(dst, src); duke@435: } duke@435: duke@435: void Assembler::prefetch_prefix(Address src) { duke@435: prefix(src); duke@435: emit_byte(0x0F); duke@435: } duke@435: duke@435: void Assembler::prefetcht0(Address src) { duke@435: InstructionMark im(this); duke@435: prefetch_prefix(src); duke@435: emit_byte(0x18); duke@435: emit_operand(rcx, src); // 1, src duke@435: } duke@435: duke@435: void Assembler::prefetcht1(Address src) { duke@435: InstructionMark im(this); duke@435: prefetch_prefix(src); duke@435: emit_byte(0x18); duke@435: emit_operand(rdx, src); // 2, src duke@435: } duke@435: duke@435: void Assembler::prefetcht2(Address src) { duke@435: InstructionMark im(this); duke@435: prefetch_prefix(src); duke@435: emit_byte(0x18); duke@435: emit_operand(rbx, src); // 3, src duke@435: } duke@435: duke@435: void Assembler::prefetchnta(Address src) { duke@435: InstructionMark im(this); duke@435: prefetch_prefix(src); duke@435: emit_byte(0x18); duke@435: emit_operand(rax, src); // 0, src duke@435: } duke@435: duke@435: void Assembler::prefetchw(Address src) { duke@435: InstructionMark im(this); duke@435: prefetch_prefix(src); duke@435: emit_byte(0x0D); duke@435: emit_operand(rcx, src); // 1, src duke@435: } duke@435: duke@435: void Assembler::adcl(Register dst, int imm32) { duke@435: prefix(dst); duke@435: emit_arith(0x81, 0xD0, dst, imm32); duke@435: } duke@435: duke@435: void Assembler::adcl(Register dst, Address src) { duke@435: InstructionMark im(this); duke@435: prefix(src, dst); duke@435: emit_byte(0x13); duke@435: emit_operand(dst, src); duke@435: } duke@435: duke@435: void Assembler::adcl(Register dst, Register src) { duke@435: (void) prefix_and_encode(dst->encoding(), src->encoding()); duke@435: emit_arith(0x13, 0xC0, dst, src); duke@435: } duke@435: duke@435: void Assembler::adcq(Register dst, int imm32) { duke@435: (void) prefixq_and_encode(dst->encoding()); duke@435: emit_arith(0x81, 0xD0, dst, imm32); duke@435: } duke@435: duke@435: void Assembler::adcq(Register dst, Address src) { duke@435: InstructionMark im(this); duke@435: prefixq(src, dst); duke@435: emit_byte(0x13); duke@435: emit_operand(dst, src); duke@435: } duke@435: duke@435: void Assembler::adcq(Register dst, Register src) { duke@435: (int) prefixq_and_encode(dst->encoding(), src->encoding()); duke@435: emit_arith(0x13, 0xC0, dst, src); duke@435: } duke@435: duke@435: void Assembler::addl(Address dst, int imm32) { duke@435: InstructionMark im(this); duke@435: prefix(dst); duke@435: emit_arith_operand(0x81, rax, dst,imm32); duke@435: } duke@435: duke@435: void Assembler::addl(Address dst, Register src) { duke@435: InstructionMark im(this); duke@435: prefix(dst, src); duke@435: emit_byte(0x01); duke@435: emit_operand(src, dst); duke@435: } duke@435: duke@435: void Assembler::addl(Register dst, int imm32) { duke@435: prefix(dst); duke@435: emit_arith(0x81, 0xC0, dst, imm32); duke@435: } duke@435: duke@435: void Assembler::addl(Register dst, Address src) { duke@435: InstructionMark im(this); duke@435: prefix(src, dst); duke@435: emit_byte(0x03); duke@435: emit_operand(dst, src); duke@435: } duke@435: duke@435: void Assembler::addl(Register dst, Register src) { duke@435: (void) prefix_and_encode(dst->encoding(), src->encoding()); duke@435: emit_arith(0x03, 0xC0, dst, src); duke@435: } duke@435: duke@435: void Assembler::addq(Address dst, int imm32) { duke@435: InstructionMark im(this); duke@435: prefixq(dst); duke@435: emit_arith_operand(0x81, rax, dst,imm32); duke@435: } duke@435: duke@435: void Assembler::addq(Address dst, Register src) { duke@435: InstructionMark im(this); duke@435: prefixq(dst, src); duke@435: emit_byte(0x01); duke@435: emit_operand(src, dst); duke@435: } duke@435: duke@435: void Assembler::addq(Register dst, int imm32) { duke@435: (void) prefixq_and_encode(dst->encoding()); duke@435: emit_arith(0x81, 0xC0, dst, imm32); duke@435: } duke@435: duke@435: void Assembler::addq(Register dst, Address src) { duke@435: InstructionMark im(this); duke@435: prefixq(src, dst); duke@435: emit_byte(0x03); duke@435: emit_operand(dst, src); duke@435: } duke@435: duke@435: void Assembler::addq(Register dst, Register src) { duke@435: (void) prefixq_and_encode(dst->encoding(), src->encoding()); duke@435: emit_arith(0x03, 0xC0, dst, src); duke@435: } duke@435: duke@435: void Assembler::andl(Register dst, int imm32) { duke@435: prefix(dst); duke@435: emit_arith(0x81, 0xE0, dst, imm32); duke@435: } duke@435: duke@435: void Assembler::andl(Register dst, Address src) { duke@435: InstructionMark im(this); duke@435: prefix(src, dst); duke@435: emit_byte(0x23); duke@435: emit_operand(dst, src); duke@435: } duke@435: duke@435: void Assembler::andl(Register dst, Register src) { duke@435: (void) prefix_and_encode(dst->encoding(), src->encoding()); duke@435: emit_arith(0x23, 0xC0, dst, src); duke@435: } duke@435: duke@435: void Assembler::andq(Register dst, int imm32) { duke@435: (void) prefixq_and_encode(dst->encoding()); duke@435: emit_arith(0x81, 0xE0, dst, imm32); duke@435: } duke@435: duke@435: void Assembler::andq(Register dst, Address src) { duke@435: InstructionMark im(this); duke@435: prefixq(src, dst); duke@435: emit_byte(0x23); duke@435: emit_operand(dst, src); duke@435: } duke@435: duke@435: void Assembler::andq(Register dst, Register src) { duke@435: (int) prefixq_and_encode(dst->encoding(), src->encoding()); duke@435: emit_arith(0x23, 0xC0, dst, src); duke@435: } duke@435: duke@435: void Assembler::cmpb(Address dst, int imm8) { duke@435: InstructionMark im(this); duke@435: prefix(dst); duke@435: emit_byte(0x80); duke@435: emit_operand(rdi, dst, 1); duke@435: emit_byte(imm8); duke@435: } duke@435: duke@435: void Assembler::cmpl(Address dst, int imm32) { duke@435: InstructionMark im(this); duke@435: prefix(dst); duke@435: emit_byte(0x81); duke@435: emit_operand(rdi, dst, 4); duke@435: emit_long(imm32); duke@435: } duke@435: duke@435: void Assembler::cmpl(Register dst, int imm32) { duke@435: prefix(dst); duke@435: emit_arith(0x81, 0xF8, dst, imm32); duke@435: } duke@435: duke@435: void Assembler::cmpl(Register dst, Register src) { duke@435: (void) prefix_and_encode(dst->encoding(), src->encoding()); duke@435: emit_arith(0x3B, 0xC0, dst, src); duke@435: } duke@435: duke@435: void Assembler::cmpl(Register dst, Address src) { duke@435: InstructionMark im(this); duke@435: prefix(src, dst); duke@435: emit_byte(0x3B); duke@435: emit_operand(dst, src); duke@435: } duke@435: duke@435: void Assembler::cmpq(Address dst, int imm32) { duke@435: InstructionMark im(this); duke@435: prefixq(dst); duke@435: emit_byte(0x81); duke@435: emit_operand(rdi, dst, 4); duke@435: emit_long(imm32); duke@435: } duke@435: duke@435: void Assembler::cmpq(Register dst, int imm32) { duke@435: (void) prefixq_and_encode(dst->encoding()); duke@435: emit_arith(0x81, 0xF8, dst, imm32); duke@435: } duke@435: duke@435: void Assembler::cmpq(Address dst, Register src) { duke@435: prefixq(dst, src); duke@435: emit_byte(0x3B); duke@435: emit_operand(src, dst); duke@435: } duke@435: duke@435: void Assembler::cmpq(Register dst, Register src) { duke@435: (void) prefixq_and_encode(dst->encoding(), src->encoding()); duke@435: emit_arith(0x3B, 0xC0, dst, src); duke@435: } duke@435: duke@435: void Assembler::cmpq(Register dst, Address src) { duke@435: InstructionMark im(this); duke@435: prefixq(src, dst); duke@435: emit_byte(0x3B); duke@435: emit_operand(dst, src); duke@435: } duke@435: duke@435: void Assembler::ucomiss(XMMRegister dst, XMMRegister src) { duke@435: int encode = prefix_and_encode(dst->encoding(), src->encoding()); duke@435: emit_byte(0x0F); duke@435: emit_byte(0x2E); duke@435: emit_byte(0xC0 | encode); duke@435: } duke@435: duke@435: void Assembler::ucomisd(XMMRegister dst, XMMRegister src) { duke@435: emit_byte(0x66); duke@435: ucomiss(dst, src); duke@435: } duke@435: duke@435: void Assembler::decl(Register dst) { duke@435: // Don't use it directly. Use MacroAssembler::decrementl() instead. duke@435: // Use two-byte form (one-byte from is a REX prefix in 64-bit mode) duke@435: int encode = prefix_and_encode(dst->encoding()); duke@435: emit_byte(0xFF); duke@435: emit_byte(0xC8 | encode); duke@435: } duke@435: duke@435: void Assembler::decl(Address dst) { duke@435: // Don't use it directly. Use MacroAssembler::decrementl() instead. duke@435: InstructionMark im(this); duke@435: prefix(dst); duke@435: emit_byte(0xFF); duke@435: emit_operand(rcx, dst); duke@435: } duke@435: duke@435: void Assembler::decq(Register dst) { duke@435: // Don't use it directly. Use MacroAssembler::decrementq() instead. duke@435: // Use two-byte form (one-byte from is a REX prefix in 64-bit mode) duke@435: int encode = prefixq_and_encode(dst->encoding()); duke@435: emit_byte(0xFF); duke@435: emit_byte(0xC8 | encode); duke@435: } duke@435: duke@435: void Assembler::decq(Address dst) { duke@435: // Don't use it directly. Use MacroAssembler::decrementq() instead. duke@435: InstructionMark im(this); duke@435: prefixq(dst); duke@435: emit_byte(0xFF); duke@435: emit_operand(rcx, dst); duke@435: } duke@435: duke@435: void Assembler::idivl(Register src) { duke@435: int encode = prefix_and_encode(src->encoding()); duke@435: emit_byte(0xF7); duke@435: emit_byte(0xF8 | encode); duke@435: } duke@435: duke@435: void Assembler::idivq(Register src) { duke@435: int encode = prefixq_and_encode(src->encoding()); duke@435: emit_byte(0xF7); duke@435: emit_byte(0xF8 | encode); duke@435: } duke@435: duke@435: void Assembler::cdql() { duke@435: emit_byte(0x99); duke@435: } duke@435: duke@435: void Assembler::cdqq() { duke@435: prefix(REX_W); duke@435: emit_byte(0x99); duke@435: } duke@435: duke@435: void Assembler::imull(Register dst, Register src) { duke@435: int encode = prefix_and_encode(dst->encoding(), src->encoding()); duke@435: emit_byte(0x0F); duke@435: emit_byte(0xAF); duke@435: emit_byte(0xC0 | encode); duke@435: } duke@435: duke@435: void Assembler::imull(Register dst, Register src, int value) { duke@435: int encode = prefix_and_encode(dst->encoding(), src->encoding()); duke@435: if (is8bit(value)) { duke@435: emit_byte(0x6B); duke@435: emit_byte(0xC0 | encode); duke@435: emit_byte(value); duke@435: } else { duke@435: emit_byte(0x69); duke@435: emit_byte(0xC0 | encode); duke@435: emit_long(value); duke@435: } duke@435: } duke@435: duke@435: void Assembler::imulq(Register dst, Register src) { duke@435: int encode = prefixq_and_encode(dst->encoding(), src->encoding()); duke@435: emit_byte(0x0F); duke@435: emit_byte(0xAF); duke@435: emit_byte(0xC0 | encode); duke@435: } duke@435: duke@435: void Assembler::imulq(Register dst, Register src, int value) { duke@435: int encode = prefixq_and_encode(dst->encoding(), src->encoding()); duke@435: if (is8bit(value)) { duke@435: emit_byte(0x6B); duke@435: emit_byte(0xC0 | encode); duke@435: emit_byte(value); duke@435: } else { duke@435: emit_byte(0x69); duke@435: emit_byte(0xC0 | encode); duke@435: emit_long(value); duke@435: } duke@435: } duke@435: duke@435: void Assembler::incl(Register dst) { duke@435: // Don't use it directly. Use MacroAssembler::incrementl() instead. duke@435: // Use two-byte form (one-byte from is a REX prefix in 64-bit mode) duke@435: int encode = prefix_and_encode(dst->encoding()); duke@435: emit_byte(0xFF); duke@435: emit_byte(0xC0 | encode); duke@435: } duke@435: duke@435: void Assembler::incl(Address dst) { duke@435: // Don't use it directly. Use MacroAssembler::incrementl() instead. duke@435: InstructionMark im(this); duke@435: prefix(dst); duke@435: emit_byte(0xFF); duke@435: emit_operand(rax, dst); duke@435: } duke@435: duke@435: void Assembler::incq(Register dst) { duke@435: // Don't use it directly. Use MacroAssembler::incrementq() instead. duke@435: // Use two-byte form (one-byte from is a REX prefix in 64-bit mode) duke@435: int encode = prefixq_and_encode(dst->encoding()); duke@435: emit_byte(0xFF); duke@435: emit_byte(0xC0 | encode); duke@435: } duke@435: duke@435: void Assembler::incq(Address dst) { duke@435: // Don't use it directly. Use MacroAssembler::incrementq() instead. duke@435: InstructionMark im(this); duke@435: prefixq(dst); duke@435: emit_byte(0xFF); duke@435: emit_operand(rax, dst); duke@435: } duke@435: duke@435: void Assembler::leal(Register dst, Address src) { duke@435: InstructionMark im(this); duke@435: emit_byte(0x67); // addr32 duke@435: prefix(src, dst); duke@435: emit_byte(0x8D); duke@435: emit_operand(dst, src); duke@435: } duke@435: duke@435: void Assembler::leaq(Register dst, Address src) { duke@435: InstructionMark im(this); duke@435: prefixq(src, dst); duke@435: emit_byte(0x8D); duke@435: emit_operand(dst, src); duke@435: } duke@435: duke@435: void Assembler::mull(Address src) { duke@435: InstructionMark im(this); duke@435: // was missing duke@435: prefix(src); duke@435: emit_byte(0xF7); duke@435: emit_operand(rsp, src); duke@435: } duke@435: duke@435: void Assembler::mull(Register src) { duke@435: // was missing duke@435: int encode = prefix_and_encode(src->encoding()); duke@435: emit_byte(0xF7); duke@435: emit_byte(0xE0 | encode); duke@435: } duke@435: duke@435: void Assembler::negl(Register dst) { duke@435: int encode = prefix_and_encode(dst->encoding()); duke@435: emit_byte(0xF7); duke@435: emit_byte(0xD8 | encode); duke@435: } duke@435: duke@435: void Assembler::negq(Register dst) { duke@435: int encode = prefixq_and_encode(dst->encoding()); duke@435: emit_byte(0xF7); duke@435: emit_byte(0xD8 | encode); duke@435: } duke@435: duke@435: void Assembler::notl(Register dst) { duke@435: int encode = prefix_and_encode(dst->encoding()); duke@435: emit_byte(0xF7); duke@435: emit_byte(0xD0 | encode); duke@435: } duke@435: duke@435: void Assembler::notq(Register dst) { duke@435: int encode = prefixq_and_encode(dst->encoding()); duke@435: emit_byte(0xF7); duke@435: emit_byte(0xD0 | encode); duke@435: } duke@435: duke@435: void Assembler::orl(Address dst, int imm32) { duke@435: InstructionMark im(this); duke@435: prefix(dst); duke@435: emit_byte(0x81); duke@435: emit_operand(rcx, dst, 4); duke@435: emit_long(imm32); duke@435: } duke@435: duke@435: void Assembler::orl(Register dst, int imm32) { duke@435: prefix(dst); duke@435: emit_arith(0x81, 0xC8, dst, imm32); duke@435: } duke@435: duke@435: void Assembler::orl(Register dst, Address src) { duke@435: InstructionMark im(this); duke@435: prefix(src, dst); duke@435: emit_byte(0x0B); duke@435: emit_operand(dst, src); duke@435: } duke@435: duke@435: void Assembler::orl(Register dst, Register src) { duke@435: (void) prefix_and_encode(dst->encoding(), src->encoding()); duke@435: emit_arith(0x0B, 0xC0, dst, src); duke@435: } duke@435: duke@435: void Assembler::orq(Address dst, int imm32) { duke@435: InstructionMark im(this); duke@435: prefixq(dst); duke@435: emit_byte(0x81); duke@435: emit_operand(rcx, dst, 4); duke@435: emit_long(imm32); duke@435: } duke@435: duke@435: void Assembler::orq(Register dst, int imm32) { duke@435: (void) prefixq_and_encode(dst->encoding()); duke@435: emit_arith(0x81, 0xC8, dst, imm32); duke@435: } duke@435: duke@435: void Assembler::orq(Register dst, Address src) { duke@435: InstructionMark im(this); duke@435: prefixq(src, dst); duke@435: emit_byte(0x0B); duke@435: emit_operand(dst, src); duke@435: } duke@435: duke@435: void Assembler::orq(Register dst, Register src) { duke@435: (void) prefixq_and_encode(dst->encoding(), src->encoding()); duke@435: emit_arith(0x0B, 0xC0, dst, src); duke@435: } duke@435: duke@435: void Assembler::rcll(Register dst, int imm8) { duke@435: assert(isShiftCount(imm8), "illegal shift count"); duke@435: int encode = prefix_and_encode(dst->encoding()); duke@435: if (imm8 == 1) { duke@435: emit_byte(0xD1); duke@435: emit_byte(0xD0 | encode); duke@435: } else { duke@435: emit_byte(0xC1); duke@435: emit_byte(0xD0 | encode); duke@435: emit_byte(imm8); duke@435: } duke@435: } duke@435: duke@435: void Assembler::rclq(Register dst, int imm8) { duke@435: assert(isShiftCount(imm8 >> 1), "illegal shift count"); duke@435: int encode = prefixq_and_encode(dst->encoding()); duke@435: if (imm8 == 1) { duke@435: emit_byte(0xD1); duke@435: emit_byte(0xD0 | encode); duke@435: } else { duke@435: emit_byte(0xC1); duke@435: emit_byte(0xD0 | encode); duke@435: emit_byte(imm8); duke@435: } duke@435: } duke@435: duke@435: void Assembler::sarl(Register dst, int imm8) { duke@435: int encode = prefix_and_encode(dst->encoding()); duke@435: assert(isShiftCount(imm8), "illegal shift count"); duke@435: if (imm8 == 1) { duke@435: emit_byte(0xD1); duke@435: emit_byte(0xF8 | encode); duke@435: } else { duke@435: emit_byte(0xC1); duke@435: emit_byte(0xF8 | encode); duke@435: emit_byte(imm8); duke@435: } duke@435: } duke@435: duke@435: void Assembler::sarl(Register dst) { duke@435: int encode = prefix_and_encode(dst->encoding()); duke@435: emit_byte(0xD3); duke@435: emit_byte(0xF8 | encode); duke@435: } duke@435: duke@435: void Assembler::sarq(Register dst, int imm8) { duke@435: assert(isShiftCount(imm8 >> 1), "illegal shift count"); duke@435: int encode = prefixq_and_encode(dst->encoding()); duke@435: if (imm8 == 1) { duke@435: emit_byte(0xD1); duke@435: emit_byte(0xF8 | encode); duke@435: } else { duke@435: emit_byte(0xC1); duke@435: emit_byte(0xF8 | encode); duke@435: emit_byte(imm8); duke@435: } duke@435: } duke@435: duke@435: void Assembler::sarq(Register dst) { duke@435: int encode = prefixq_and_encode(dst->encoding()); duke@435: emit_byte(0xD3); duke@435: emit_byte(0xF8 | encode); duke@435: } duke@435: duke@435: void Assembler::sbbl(Address dst, int imm32) { duke@435: InstructionMark im(this); duke@435: prefix(dst); duke@435: emit_arith_operand(0x81, rbx, dst, imm32); duke@435: } duke@435: duke@435: void Assembler::sbbl(Register dst, int imm32) { duke@435: prefix(dst); duke@435: emit_arith(0x81, 0xD8, dst, imm32); duke@435: } duke@435: duke@435: void Assembler::sbbl(Register dst, Address src) { duke@435: InstructionMark im(this); duke@435: prefix(src, dst); duke@435: emit_byte(0x1B); duke@435: emit_operand(dst, src); duke@435: } duke@435: duke@435: void Assembler::sbbl(Register dst, Register src) { duke@435: (void) prefix_and_encode(dst->encoding(), src->encoding()); duke@435: emit_arith(0x1B, 0xC0, dst, src); duke@435: } duke@435: duke@435: void Assembler::sbbq(Address dst, int imm32) { duke@435: InstructionMark im(this); duke@435: prefixq(dst); duke@435: emit_arith_operand(0x81, rbx, dst, imm32); duke@435: } duke@435: duke@435: void Assembler::sbbq(Register dst, int imm32) { duke@435: (void) prefixq_and_encode(dst->encoding()); duke@435: emit_arith(0x81, 0xD8, dst, imm32); duke@435: } duke@435: duke@435: void Assembler::sbbq(Register dst, Address src) { duke@435: InstructionMark im(this); duke@435: prefixq(src, dst); duke@435: emit_byte(0x1B); duke@435: emit_operand(dst, src); duke@435: } duke@435: duke@435: void Assembler::sbbq(Register dst, Register src) { duke@435: (void) prefixq_and_encode(dst->encoding(), src->encoding()); duke@435: emit_arith(0x1B, 0xC0, dst, src); duke@435: } duke@435: duke@435: void Assembler::shll(Register dst, int imm8) { duke@435: assert(isShiftCount(imm8), "illegal shift count"); duke@435: int encode = prefix_and_encode(dst->encoding()); duke@435: if (imm8 == 1 ) { duke@435: emit_byte(0xD1); duke@435: emit_byte(0xE0 | encode); duke@435: } else { duke@435: emit_byte(0xC1); duke@435: emit_byte(0xE0 | encode); duke@435: emit_byte(imm8); duke@435: } duke@435: } duke@435: duke@435: void Assembler::shll(Register dst) { duke@435: int encode = prefix_and_encode(dst->encoding()); duke@435: emit_byte(0xD3); duke@435: emit_byte(0xE0 | encode); duke@435: } duke@435: duke@435: void Assembler::shlq(Register dst, int imm8) { duke@435: assert(isShiftCount(imm8 >> 1), "illegal shift count"); duke@435: int encode = prefixq_and_encode(dst->encoding()); duke@435: if (imm8 == 1) { duke@435: emit_byte(0xD1); duke@435: emit_byte(0xE0 | encode); duke@435: } else { duke@435: emit_byte(0xC1); duke@435: emit_byte(0xE0 | encode); duke@435: emit_byte(imm8); duke@435: } duke@435: } duke@435: duke@435: void Assembler::shlq(Register dst) { duke@435: int encode = prefixq_and_encode(dst->encoding()); duke@435: emit_byte(0xD3); duke@435: emit_byte(0xE0 | encode); duke@435: } duke@435: duke@435: void Assembler::shrl(Register dst, int imm8) { duke@435: assert(isShiftCount(imm8), "illegal shift count"); duke@435: int encode = prefix_and_encode(dst->encoding()); duke@435: emit_byte(0xC1); duke@435: emit_byte(0xE8 | encode); duke@435: emit_byte(imm8); duke@435: } duke@435: duke@435: void Assembler::shrl(Register dst) { duke@435: int encode = prefix_and_encode(dst->encoding()); duke@435: emit_byte(0xD3); duke@435: emit_byte(0xE8 | encode); duke@435: } duke@435: duke@435: void Assembler::shrq(Register dst, int imm8) { duke@435: assert(isShiftCount(imm8 >> 1), "illegal shift count"); duke@435: int encode = prefixq_and_encode(dst->encoding()); duke@435: emit_byte(0xC1); duke@435: emit_byte(0xE8 | encode); duke@435: emit_byte(imm8); duke@435: } duke@435: duke@435: void Assembler::shrq(Register dst) { duke@435: int encode = prefixq_and_encode(dst->encoding()); duke@435: emit_byte(0xD3); duke@435: emit_byte(0xE8 | encode); duke@435: } duke@435: duke@435: void Assembler::subl(Address dst, int imm32) { duke@435: InstructionMark im(this); duke@435: prefix(dst); duke@435: if (is8bit(imm32)) { duke@435: emit_byte(0x83); duke@435: emit_operand(rbp, dst, 1); duke@435: emit_byte(imm32 & 0xFF); duke@435: } else { duke@435: emit_byte(0x81); duke@435: emit_operand(rbp, dst, 4); duke@435: emit_long(imm32); duke@435: } duke@435: } duke@435: duke@435: void Assembler::subl(Register dst, int imm32) { duke@435: prefix(dst); duke@435: emit_arith(0x81, 0xE8, dst, imm32); duke@435: } duke@435: duke@435: void Assembler::subl(Address dst, Register src) { duke@435: InstructionMark im(this); duke@435: prefix(dst, src); duke@435: emit_byte(0x29); duke@435: emit_operand(src, dst); duke@435: } duke@435: duke@435: void Assembler::subl(Register dst, Address src) { duke@435: InstructionMark im(this); duke@435: prefix(src, dst); duke@435: emit_byte(0x2B); duke@435: emit_operand(dst, src); duke@435: } duke@435: duke@435: void Assembler::subl(Register dst, Register src) { duke@435: (void) prefix_and_encode(dst->encoding(), src->encoding()); duke@435: emit_arith(0x2B, 0xC0, dst, src); duke@435: } duke@435: duke@435: void Assembler::subq(Address dst, int imm32) { duke@435: InstructionMark im(this); duke@435: prefixq(dst); duke@435: if (is8bit(imm32)) { duke@435: emit_byte(0x83); duke@435: emit_operand(rbp, dst, 1); duke@435: emit_byte(imm32 & 0xFF); duke@435: } else { duke@435: emit_byte(0x81); duke@435: emit_operand(rbp, dst, 4); duke@435: emit_long(imm32); duke@435: } duke@435: } duke@435: duke@435: void Assembler::subq(Register dst, int imm32) { duke@435: (void) prefixq_and_encode(dst->encoding()); duke@435: emit_arith(0x81, 0xE8, dst, imm32); duke@435: } duke@435: duke@435: void Assembler::subq(Address dst, Register src) { duke@435: InstructionMark im(this); duke@435: prefixq(dst, src); duke@435: emit_byte(0x29); duke@435: emit_operand(src, dst); duke@435: } duke@435: duke@435: void Assembler::subq(Register dst, Address src) { duke@435: InstructionMark im(this); duke@435: prefixq(src, dst); duke@435: emit_byte(0x2B); duke@435: emit_operand(dst, src); duke@435: } duke@435: duke@435: void Assembler::subq(Register dst, Register src) { duke@435: (void) prefixq_and_encode(dst->encoding(), src->encoding()); duke@435: emit_arith(0x2B, 0xC0, dst, src); duke@435: } duke@435: duke@435: void Assembler::testb(Register dst, int imm8) { duke@435: (void) prefix_and_encode(dst->encoding(), true); duke@435: emit_arith_b(0xF6, 0xC0, dst, imm8); duke@435: } duke@435: duke@435: void Assembler::testl(Register dst, int imm32) { duke@435: // not using emit_arith because test duke@435: // doesn't support sign-extension of duke@435: // 8bit operands duke@435: int encode = dst->encoding(); duke@435: if (encode == 0) { duke@435: emit_byte(0xA9); duke@435: } else { duke@435: encode = prefix_and_encode(encode); duke@435: emit_byte(0xF7); duke@435: emit_byte(0xC0 | encode); duke@435: } duke@435: emit_long(imm32); duke@435: } duke@435: duke@435: void Assembler::testl(Register dst, Register src) { duke@435: (void) prefix_and_encode(dst->encoding(), src->encoding()); duke@435: emit_arith(0x85, 0xC0, dst, src); duke@435: } duke@435: duke@435: void Assembler::testq(Register dst, int imm32) { duke@435: // not using emit_arith because test duke@435: // doesn't support sign-extension of duke@435: // 8bit operands duke@435: int encode = dst->encoding(); duke@435: if (encode == 0) { duke@435: prefix(REX_W); duke@435: emit_byte(0xA9); duke@435: } else { duke@435: encode = prefixq_and_encode(encode); duke@435: emit_byte(0xF7); duke@435: emit_byte(0xC0 | encode); duke@435: } duke@435: emit_long(imm32); duke@435: } duke@435: duke@435: void Assembler::testq(Register dst, Register src) { duke@435: (void) prefixq_and_encode(dst->encoding(), src->encoding()); duke@435: emit_arith(0x85, 0xC0, dst, src); duke@435: } duke@435: duke@435: void Assembler::xaddl(Address dst, Register src) { duke@435: InstructionMark im(this); duke@435: prefix(dst, src); duke@435: emit_byte(0x0F); duke@435: emit_byte(0xC1); duke@435: emit_operand(src, dst); duke@435: } duke@435: duke@435: void Assembler::xaddq(Address dst, Register src) { duke@435: InstructionMark im(this); duke@435: prefixq(dst, src); duke@435: emit_byte(0x0F); duke@435: emit_byte(0xC1); duke@435: emit_operand(src, dst); duke@435: } duke@435: duke@435: void Assembler::xorl(Register dst, int imm32) { duke@435: prefix(dst); duke@435: emit_arith(0x81, 0xF0, dst, imm32); duke@435: } duke@435: duke@435: void Assembler::xorl(Register dst, Register src) { duke@435: (void) prefix_and_encode(dst->encoding(), src->encoding()); duke@435: emit_arith(0x33, 0xC0, dst, src); duke@435: } duke@435: duke@435: void Assembler::xorl(Register dst, Address src) { duke@435: InstructionMark im(this); duke@435: prefix(src, dst); duke@435: emit_byte(0x33); duke@435: emit_operand(dst, src); duke@435: } duke@435: duke@435: void Assembler::xorq(Register dst, int imm32) { duke@435: (void) prefixq_and_encode(dst->encoding()); duke@435: emit_arith(0x81, 0xF0, dst, imm32); duke@435: } duke@435: duke@435: void Assembler::xorq(Register dst, Register src) { duke@435: (void) prefixq_and_encode(dst->encoding(), src->encoding()); duke@435: emit_arith(0x33, 0xC0, dst, src); duke@435: } duke@435: duke@435: void Assembler::xorq(Register dst, Address src) { duke@435: InstructionMark im(this); duke@435: prefixq(src, dst); duke@435: emit_byte(0x33); duke@435: emit_operand(dst, src); duke@435: } duke@435: duke@435: void Assembler::bswapl(Register reg) { duke@435: int encode = prefix_and_encode(reg->encoding()); duke@435: emit_byte(0x0F); duke@435: emit_byte(0xC8 | encode); duke@435: } duke@435: duke@435: void Assembler::bswapq(Register reg) { duke@435: int encode = prefixq_and_encode(reg->encoding()); duke@435: emit_byte(0x0F); duke@435: emit_byte(0xC8 | encode); duke@435: } duke@435: duke@435: void Assembler::lock() { duke@435: emit_byte(0xF0); duke@435: } duke@435: duke@435: void Assembler::xchgl(Register dst, Address src) { duke@435: InstructionMark im(this); duke@435: prefix(src, dst); duke@435: emit_byte(0x87); duke@435: emit_operand(dst, src); duke@435: } duke@435: duke@435: void Assembler::xchgl(Register dst, Register src) { duke@435: int encode = prefix_and_encode(dst->encoding(), src->encoding()); duke@435: emit_byte(0x87); duke@435: emit_byte(0xc0 | encode); duke@435: } duke@435: duke@435: void Assembler::xchgq(Register dst, Address src) { duke@435: InstructionMark im(this); duke@435: prefixq(src, dst); duke@435: emit_byte(0x87); duke@435: emit_operand(dst, src); duke@435: } duke@435: duke@435: void Assembler::xchgq(Register dst, Register src) { duke@435: int encode = prefixq_and_encode(dst->encoding(), src->encoding()); duke@435: emit_byte(0x87); duke@435: emit_byte(0xc0 | encode); duke@435: } duke@435: duke@435: void Assembler::cmpxchgl(Register reg, Address adr) { duke@435: InstructionMark im(this); duke@435: prefix(adr, reg); duke@435: emit_byte(0x0F); duke@435: emit_byte(0xB1); duke@435: emit_operand(reg, adr); duke@435: } duke@435: duke@435: void Assembler::cmpxchgq(Register reg, Address adr) { duke@435: InstructionMark im(this); duke@435: prefixq(adr, reg); duke@435: emit_byte(0x0F); duke@435: emit_byte(0xB1); duke@435: emit_operand(reg, adr); duke@435: } duke@435: duke@435: void Assembler::hlt() { duke@435: emit_byte(0xF4); duke@435: } duke@435: duke@435: duke@435: void Assembler::addr_nop_4() { duke@435: // 4 bytes: NOP DWORD PTR [EAX+0] duke@435: emit_byte(0x0F); duke@435: emit_byte(0x1F); duke@435: emit_byte(0x40); // emit_rm(cbuf, 0x1, EAX_enc, EAX_enc); duke@435: emit_byte(0); // 8-bits offset (1 byte) duke@435: } duke@435: duke@435: void Assembler::addr_nop_5() { duke@435: // 5 bytes: NOP DWORD PTR [EAX+EAX*0+0] 8-bits offset duke@435: emit_byte(0x0F); duke@435: emit_byte(0x1F); duke@435: emit_byte(0x44); // emit_rm(cbuf, 0x1, EAX_enc, 0x4); duke@435: emit_byte(0x00); // emit_rm(cbuf, 0x0, EAX_enc, EAX_enc); duke@435: emit_byte(0); // 8-bits offset (1 byte) duke@435: } duke@435: duke@435: void Assembler::addr_nop_7() { duke@435: // 7 bytes: NOP DWORD PTR [EAX+0] 32-bits offset duke@435: emit_byte(0x0F); duke@435: emit_byte(0x1F); duke@435: emit_byte(0x80); // emit_rm(cbuf, 0x2, EAX_enc, EAX_enc); duke@435: emit_long(0); // 32-bits offset (4 bytes) duke@435: } duke@435: duke@435: void Assembler::addr_nop_8() { duke@435: // 8 bytes: NOP DWORD PTR [EAX+EAX*0+0] 32-bits offset duke@435: emit_byte(0x0F); duke@435: emit_byte(0x1F); duke@435: emit_byte(0x84); // emit_rm(cbuf, 0x2, EAX_enc, 0x4); duke@435: emit_byte(0x00); // emit_rm(cbuf, 0x0, EAX_enc, EAX_enc); duke@435: emit_long(0); // 32-bits offset (4 bytes) duke@435: } duke@435: duke@435: void Assembler::nop(int i) { duke@435: assert(i > 0, " "); duke@435: if (UseAddressNop && VM_Version::is_intel()) { duke@435: // duke@435: // Using multi-bytes nops "0x0F 0x1F [address]" for Intel duke@435: // 1: 0x90 duke@435: // 2: 0x66 0x90 duke@435: // 3: 0x66 0x66 0x90 (don't use "0x0F 0x1F 0x00" - need patching safe padding) duke@435: // 4: 0x0F 0x1F 0x40 0x00 duke@435: // 5: 0x0F 0x1F 0x44 0x00 0x00 duke@435: // 6: 0x66 0x0F 0x1F 0x44 0x00 0x00 duke@435: // 7: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00 duke@435: // 8: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 duke@435: // 9: 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 duke@435: // 10: 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 duke@435: // 11: 0x66 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 duke@435: duke@435: // The rest coding is Intel specific - don't use consecutive address nops duke@435: duke@435: // 12: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90 duke@435: // 13: 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90 duke@435: // 14: 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90 duke@435: // 15: 0x66 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90 duke@435: duke@435: while(i >= 15) { duke@435: // For Intel don't generate consecutive addess nops (mix with regular nops) duke@435: i -= 15; duke@435: emit_byte(0x66); // size prefix duke@435: emit_byte(0x66); // size prefix duke@435: emit_byte(0x66); // size prefix duke@435: addr_nop_8(); duke@435: emit_byte(0x66); // size prefix duke@435: emit_byte(0x66); // size prefix duke@435: emit_byte(0x66); // size prefix duke@435: emit_byte(0x90); // nop duke@435: } duke@435: switch (i) { duke@435: case 14: duke@435: emit_byte(0x66); // size prefix duke@435: case 13: duke@435: emit_byte(0x66); // size prefix duke@435: case 12: duke@435: addr_nop_8(); duke@435: emit_byte(0x66); // size prefix duke@435: emit_byte(0x66); // size prefix duke@435: emit_byte(0x66); // size prefix duke@435: emit_byte(0x90); // nop duke@435: break; duke@435: case 11: duke@435: emit_byte(0x66); // size prefix duke@435: case 10: duke@435: emit_byte(0x66); // size prefix duke@435: case 9: duke@435: emit_byte(0x66); // size prefix duke@435: case 8: duke@435: addr_nop_8(); duke@435: break; duke@435: case 7: duke@435: addr_nop_7(); duke@435: break; duke@435: case 6: duke@435: emit_byte(0x66); // size prefix duke@435: case 5: duke@435: addr_nop_5(); duke@435: break; duke@435: case 4: duke@435: addr_nop_4(); duke@435: break; duke@435: case 3: duke@435: // Don't use "0x0F 0x1F 0x00" - need patching safe padding duke@435: emit_byte(0x66); // size prefix duke@435: case 2: duke@435: emit_byte(0x66); // size prefix duke@435: case 1: duke@435: emit_byte(0x90); // nop duke@435: break; duke@435: default: duke@435: assert(i == 0, " "); duke@435: } duke@435: return; duke@435: } duke@435: if (UseAddressNop && VM_Version::is_amd()) { duke@435: // duke@435: // Using multi-bytes nops "0x0F 0x1F [address]" for AMD. duke@435: // 1: 0x90 duke@435: // 2: 0x66 0x90 duke@435: // 3: 0x66 0x66 0x90 (don't use "0x0F 0x1F 0x00" - need patching safe padding) duke@435: // 4: 0x0F 0x1F 0x40 0x00 duke@435: // 5: 0x0F 0x1F 0x44 0x00 0x00 duke@435: // 6: 0x66 0x0F 0x1F 0x44 0x00 0x00 duke@435: // 7: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00 duke@435: // 8: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 duke@435: // 9: 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 duke@435: // 10: 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 duke@435: // 11: 0x66 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 duke@435: duke@435: // The rest coding is AMD specific - use consecutive address nops duke@435: duke@435: // 12: 0x66 0x0F 0x1F 0x44 0x00 0x00 0x66 0x0F 0x1F 0x44 0x00 0x00 duke@435: // 13: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00 0x66 0x0F 0x1F 0x44 0x00 0x00 duke@435: // 14: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00 duke@435: // 15: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00 duke@435: // 16: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 duke@435: // Size prefixes (0x66) are added for larger sizes duke@435: duke@435: while(i >= 22) { duke@435: i -= 11; duke@435: emit_byte(0x66); // size prefix duke@435: emit_byte(0x66); // size prefix duke@435: emit_byte(0x66); // size prefix duke@435: addr_nop_8(); duke@435: } duke@435: // Generate first nop for size between 21-12 duke@435: switch (i) { duke@435: case 21: duke@435: i -= 1; duke@435: emit_byte(0x66); // size prefix duke@435: case 20: duke@435: case 19: duke@435: i -= 1; duke@435: emit_byte(0x66); // size prefix duke@435: case 18: duke@435: case 17: duke@435: i -= 1; duke@435: emit_byte(0x66); // size prefix duke@435: case 16: duke@435: case 15: duke@435: i -= 8; duke@435: addr_nop_8(); duke@435: break; duke@435: case 14: duke@435: case 13: duke@435: i -= 7; duke@435: addr_nop_7(); duke@435: break; duke@435: case 12: duke@435: i -= 6; duke@435: emit_byte(0x66); // size prefix duke@435: addr_nop_5(); duke@435: break; duke@435: default: duke@435: assert(i < 12, " "); duke@435: } duke@435: duke@435: // Generate second nop for size between 11-1 duke@435: switch (i) { duke@435: case 11: duke@435: emit_byte(0x66); // size prefix duke@435: case 10: duke@435: emit_byte(0x66); // size prefix duke@435: case 9: duke@435: emit_byte(0x66); // size prefix duke@435: case 8: duke@435: addr_nop_8(); duke@435: break; duke@435: case 7: duke@435: addr_nop_7(); duke@435: break; duke@435: case 6: duke@435: emit_byte(0x66); // size prefix duke@435: case 5: duke@435: addr_nop_5(); duke@435: break; duke@435: case 4: duke@435: addr_nop_4(); duke@435: break; duke@435: case 3: duke@435: // Don't use "0x0F 0x1F 0x00" - need patching safe padding duke@435: emit_byte(0x66); // size prefix duke@435: case 2: duke@435: emit_byte(0x66); // size prefix duke@435: case 1: duke@435: emit_byte(0x90); // nop duke@435: break; duke@435: default: duke@435: assert(i == 0, " "); duke@435: } duke@435: return; duke@435: } duke@435: duke@435: // Using nops with size prefixes "0x66 0x90". duke@435: // From AMD Optimization Guide: duke@435: // 1: 0x90 duke@435: // 2: 0x66 0x90 duke@435: // 3: 0x66 0x66 0x90 duke@435: // 4: 0x66 0x66 0x66 0x90 duke@435: // 5: 0x66 0x66 0x90 0x66 0x90 duke@435: // 6: 0x66 0x66 0x90 0x66 0x66 0x90 duke@435: // 7: 0x66 0x66 0x66 0x90 0x66 0x66 0x90 duke@435: // 8: 0x66 0x66 0x66 0x90 0x66 0x66 0x66 0x90 duke@435: // 9: 0x66 0x66 0x90 0x66 0x66 0x90 0x66 0x66 0x90 duke@435: // 10: 0x66 0x66 0x66 0x90 0x66 0x66 0x90 0x66 0x66 0x90 duke@435: // duke@435: while(i > 12) { duke@435: i -= 4; duke@435: emit_byte(0x66); // size prefix duke@435: emit_byte(0x66); duke@435: emit_byte(0x66); duke@435: emit_byte(0x90); // nop duke@435: } duke@435: // 1 - 12 nops duke@435: if(i > 8) { duke@435: if(i > 9) { duke@435: i -= 1; duke@435: emit_byte(0x66); duke@435: } duke@435: i -= 3; duke@435: emit_byte(0x66); duke@435: emit_byte(0x66); duke@435: emit_byte(0x90); duke@435: } duke@435: // 1 - 8 nops duke@435: if(i > 4) { duke@435: if(i > 6) { duke@435: i -= 1; duke@435: emit_byte(0x66); duke@435: } duke@435: i -= 3; duke@435: emit_byte(0x66); duke@435: emit_byte(0x66); duke@435: emit_byte(0x90); duke@435: } duke@435: switch (i) { duke@435: case 4: duke@435: emit_byte(0x66); duke@435: case 3: duke@435: emit_byte(0x66); duke@435: case 2: duke@435: emit_byte(0x66); duke@435: case 1: duke@435: emit_byte(0x90); duke@435: break; duke@435: default: duke@435: assert(i == 0, " "); duke@435: } duke@435: } duke@435: duke@435: void Assembler::ret(int imm16) { duke@435: if (imm16 == 0) { duke@435: emit_byte(0xC3); duke@435: } else { duke@435: emit_byte(0xC2); duke@435: emit_word(imm16); duke@435: } duke@435: } duke@435: duke@435: // copies a single word from [esi] to [edi] duke@435: void Assembler::smovl() { duke@435: emit_byte(0xA5); duke@435: } duke@435: duke@435: // copies data from [rsi] to [rdi] using rcx words (m32) duke@435: void Assembler::rep_movl() { duke@435: // REP duke@435: emit_byte(0xF3); duke@435: // MOVSL duke@435: emit_byte(0xA5); duke@435: } duke@435: duke@435: // copies data from [rsi] to [rdi] using rcx double words (m64) duke@435: void Assembler::rep_movq() { duke@435: // REP duke@435: emit_byte(0xF3); duke@435: // MOVSQ duke@435: prefix(REX_W); duke@435: emit_byte(0xA5); duke@435: } duke@435: duke@435: // sets rcx double words (m64) with rax value at [rdi] duke@435: void Assembler::rep_set() { duke@435: // REP duke@435: emit_byte(0xF3); duke@435: // STOSQ duke@435: prefix(REX_W); duke@435: emit_byte(0xAB); duke@435: } duke@435: duke@435: // scans rcx double words (m64) at [rdi] for occurance of rax duke@435: void Assembler::repne_scan() { duke@435: // REPNE/REPNZ duke@435: emit_byte(0xF2); duke@435: // SCASQ duke@435: prefix(REX_W); duke@435: emit_byte(0xAF); duke@435: } duke@435: duke@435: void Assembler::setb(Condition cc, Register dst) { duke@435: assert(0 <= cc && cc < 16, "illegal cc"); duke@435: int encode = prefix_and_encode(dst->encoding(), true); duke@435: emit_byte(0x0F); duke@435: emit_byte(0x90 | cc); duke@435: emit_byte(0xC0 | encode); duke@435: } duke@435: duke@435: void Assembler::clflush(Address adr) { duke@435: prefix(adr); duke@435: emit_byte(0x0F); duke@435: emit_byte(0xAE); duke@435: emit_operand(rdi, adr); duke@435: } duke@435: duke@435: void Assembler::call(Label& L, relocInfo::relocType rtype) { duke@435: if (L.is_bound()) { duke@435: const int long_size = 5; duke@435: int offs = (int)( target(L) - pc() ); duke@435: assert(offs <= 0, "assembler error"); duke@435: InstructionMark im(this); duke@435: // 1110 1000 #32-bit disp duke@435: emit_byte(0xE8); duke@435: emit_data(offs - long_size, rtype, disp32_operand); duke@435: } else { duke@435: InstructionMark im(this); duke@435: // 1110 1000 #32-bit disp duke@435: L.add_patch_at(code(), locator()); duke@435: duke@435: emit_byte(0xE8); duke@435: emit_data(int(0), rtype, disp32_operand); duke@435: } duke@435: } duke@435: duke@435: void Assembler::call_literal(address entry, RelocationHolder const& rspec) { duke@435: assert(entry != NULL, "call most probably wrong"); duke@435: InstructionMark im(this); duke@435: emit_byte(0xE8); duke@435: intptr_t disp = entry - (_code_pos + sizeof(int32_t)); duke@435: assert(is_simm32(disp), "must be 32bit offset (call2)"); duke@435: // Technically, should use call32_operand, but this format is duke@435: // implied by the fact that we're emitting a call instruction. duke@435: emit_data((int) disp, rspec, disp32_operand); duke@435: } duke@435: duke@435: duke@435: void Assembler::call(Register dst) { duke@435: // This was originally using a 32bit register encoding duke@435: // and surely we want 64bit! duke@435: // this is a 32bit encoding but in 64bit mode the default duke@435: // operand size is 64bit so there is no need for the duke@435: // wide prefix. So prefix only happens if we use the duke@435: // new registers. Much like push/pop. duke@435: int encode = prefixq_and_encode(dst->encoding()); duke@435: emit_byte(0xFF); duke@435: emit_byte(0xD0 | encode); duke@435: } duke@435: duke@435: void Assembler::call(Address adr) { duke@435: InstructionMark im(this); duke@435: prefix(adr); duke@435: emit_byte(0xFF); duke@435: emit_operand(rdx, adr); duke@435: } duke@435: duke@435: void Assembler::jmp(Register reg) { duke@435: int encode = prefix_and_encode(reg->encoding()); duke@435: emit_byte(0xFF); duke@435: emit_byte(0xE0 | encode); duke@435: } duke@435: duke@435: void Assembler::jmp(Address adr) { duke@435: InstructionMark im(this); duke@435: prefix(adr); duke@435: emit_byte(0xFF); duke@435: emit_operand(rsp, adr); duke@435: } duke@435: duke@435: void Assembler::jmp_literal(address dest, RelocationHolder const& rspec) { duke@435: InstructionMark im(this); duke@435: emit_byte(0xE9); duke@435: assert(dest != NULL, "must have a target"); duke@435: intptr_t disp = dest - (_code_pos + sizeof(int32_t)); duke@435: assert(is_simm32(disp), "must be 32bit offset (jmp)"); duke@435: emit_data(disp, rspec.reloc(), call32_operand); duke@435: } duke@435: duke@435: void Assembler::jmp(Label& L, relocInfo::relocType rtype) { duke@435: if (L.is_bound()) { duke@435: address entry = target(L); duke@435: assert(entry != NULL, "jmp most probably wrong"); duke@435: InstructionMark im(this); duke@435: const int short_size = 2; duke@435: const int long_size = 5; duke@435: intptr_t offs = entry - _code_pos; duke@435: if (rtype == relocInfo::none && is8bit(offs - short_size)) { duke@435: emit_byte(0xEB); duke@435: emit_byte((offs - short_size) & 0xFF); duke@435: } else { duke@435: emit_byte(0xE9); duke@435: emit_long(offs - long_size); duke@435: } duke@435: } else { duke@435: // By default, forward jumps are always 32-bit displacements, since duke@435: // we can't yet know where the label will be bound. If you're sure that duke@435: // the forward jump will not run beyond 256 bytes, use jmpb to duke@435: // force an 8-bit displacement. duke@435: InstructionMark im(this); duke@435: relocate(rtype); duke@435: L.add_patch_at(code(), locator()); duke@435: emit_byte(0xE9); duke@435: emit_long(0); duke@435: } duke@435: } duke@435: duke@435: void Assembler::jmpb(Label& L) { duke@435: if (L.is_bound()) { duke@435: const int short_size = 2; duke@435: address entry = target(L); duke@435: assert(is8bit((entry - _code_pos) + short_size), duke@435: "Dispacement too large for a short jmp"); duke@435: assert(entry != NULL, "jmp most probably wrong"); duke@435: intptr_t offs = entry - _code_pos; duke@435: emit_byte(0xEB); duke@435: emit_byte((offs - short_size) & 0xFF); duke@435: } else { duke@435: InstructionMark im(this); duke@435: L.add_patch_at(code(), locator()); duke@435: emit_byte(0xEB); duke@435: emit_byte(0); duke@435: } duke@435: } duke@435: duke@435: void Assembler::jcc(Condition cc, Label& L, relocInfo::relocType rtype) { duke@435: InstructionMark im(this); duke@435: relocate(rtype); duke@435: assert((0 <= cc) && (cc < 16), "illegal cc"); duke@435: if (L.is_bound()) { duke@435: address dst = target(L); duke@435: assert(dst != NULL, "jcc most probably wrong"); duke@435: duke@435: const int short_size = 2; duke@435: const int long_size = 6; duke@435: intptr_t offs = (intptr_t)dst - (intptr_t)_code_pos; duke@435: if (rtype == relocInfo::none && is8bit(offs - short_size)) { duke@435: // 0111 tttn #8-bit disp duke@435: emit_byte(0x70 | cc); duke@435: emit_byte((offs - short_size) & 0xFF); duke@435: } else { duke@435: // 0000 1111 1000 tttn #32-bit disp duke@435: assert(is_simm32(offs - long_size), duke@435: "must be 32bit offset (call4)"); duke@435: emit_byte(0x0F); duke@435: emit_byte(0x80 | cc); duke@435: emit_long(offs - long_size); duke@435: } duke@435: } else { duke@435: // Note: could eliminate cond. jumps to this jump if condition duke@435: // is the same however, seems to be rather unlikely case. duke@435: // Note: use jccb() if label to be bound is very close to get duke@435: // an 8-bit displacement duke@435: L.add_patch_at(code(), locator()); duke@435: emit_byte(0x0F); duke@435: emit_byte(0x80 | cc); duke@435: emit_long(0); duke@435: } duke@435: } duke@435: duke@435: void Assembler::jccb(Condition cc, Label& L) { duke@435: if (L.is_bound()) { duke@435: const int short_size = 2; duke@435: const int long_size = 6; duke@435: address entry = target(L); duke@435: assert(is8bit((intptr_t)entry - ((intptr_t)_code_pos + short_size)), duke@435: "Dispacement too large for a short jmp"); duke@435: intptr_t offs = (intptr_t)entry - (intptr_t)_code_pos; duke@435: // 0111 tttn #8-bit disp duke@435: emit_byte(0x70 | cc); duke@435: emit_byte((offs - short_size) & 0xFF); duke@435: } else { duke@435: InstructionMark im(this); duke@435: L.add_patch_at(code(), locator()); duke@435: emit_byte(0x70 | cc); duke@435: emit_byte(0); duke@435: } duke@435: } duke@435: duke@435: // FP instructions duke@435: duke@435: void Assembler::fxsave(Address dst) { duke@435: prefixq(dst); duke@435: emit_byte(0x0F); duke@435: emit_byte(0xAE); duke@435: emit_operand(as_Register(0), dst); duke@435: } duke@435: duke@435: void Assembler::fxrstor(Address src) { duke@435: prefixq(src); duke@435: emit_byte(0x0F); duke@435: emit_byte(0xAE); duke@435: emit_operand(as_Register(1), src); duke@435: } duke@435: duke@435: void Assembler::ldmxcsr(Address src) { duke@435: InstructionMark im(this); duke@435: prefix(src); duke@435: emit_byte(0x0F); duke@435: emit_byte(0xAE); duke@435: emit_operand(as_Register(2), src); duke@435: } duke@435: duke@435: void Assembler::stmxcsr(Address dst) { duke@435: InstructionMark im(this); duke@435: prefix(dst); duke@435: emit_byte(0x0F); duke@435: emit_byte(0xAE); duke@435: emit_operand(as_Register(3), dst); duke@435: } duke@435: duke@435: void Assembler::addss(XMMRegister dst, XMMRegister src) { duke@435: emit_byte(0xF3); duke@435: int encode = prefix_and_encode(dst->encoding(), src->encoding()); duke@435: emit_byte(0x0F); duke@435: emit_byte(0x58); duke@435: emit_byte(0xC0 | encode); duke@435: } duke@435: duke@435: void Assembler::addss(XMMRegister dst, Address src) { duke@435: InstructionMark im(this); duke@435: emit_byte(0xF3); duke@435: prefix(src, dst); duke@435: emit_byte(0x0F); duke@435: emit_byte(0x58); duke@435: emit_operand(dst, src); duke@435: } duke@435: duke@435: void Assembler::subss(XMMRegister dst, XMMRegister src) { duke@435: emit_byte(0xF3); duke@435: int encode = prefix_and_encode(dst->encoding(), src->encoding()); duke@435: emit_byte(0x0F); duke@435: emit_byte(0x5C); duke@435: emit_byte(0xC0 | encode); duke@435: } duke@435: duke@435: void Assembler::subss(XMMRegister dst, Address src) { duke@435: InstructionMark im(this); duke@435: emit_byte(0xF3); duke@435: prefix(src, dst); duke@435: emit_byte(0x0F); duke@435: emit_byte(0x5C); duke@435: emit_operand(dst, src); duke@435: } duke@435: duke@435: void Assembler::mulss(XMMRegister dst, XMMRegister src) { duke@435: emit_byte(0xF3); duke@435: int encode = prefix_and_encode(dst->encoding(), src->encoding()); duke@435: emit_byte(0x0F); duke@435: emit_byte(0x59); duke@435: emit_byte(0xC0 | encode); duke@435: } duke@435: duke@435: void Assembler::mulss(XMMRegister dst, Address src) { duke@435: InstructionMark im(this); duke@435: emit_byte(0xF3); duke@435: prefix(src, dst); duke@435: emit_byte(0x0F); duke@435: emit_byte(0x59); duke@435: emit_operand(dst, src); duke@435: } duke@435: duke@435: void Assembler::divss(XMMRegister dst, XMMRegister src) { duke@435: emit_byte(0xF3); duke@435: int encode = prefix_and_encode(dst->encoding(), src->encoding()); duke@435: emit_byte(0x0F); duke@435: emit_byte(0x5E); duke@435: emit_byte(0xC0 | encode); duke@435: } duke@435: duke@435: void Assembler::divss(XMMRegister dst, Address src) { duke@435: InstructionMark im(this); duke@435: emit_byte(0xF3); duke@435: prefix(src, dst); duke@435: emit_byte(0x0F); duke@435: emit_byte(0x5E); duke@435: emit_operand(dst, src); duke@435: } duke@435: duke@435: void Assembler::addsd(XMMRegister dst, XMMRegister src) { duke@435: emit_byte(0xF2); duke@435: int encode = prefix_and_encode(dst->encoding(), src->encoding()); duke@435: emit_byte(0x0F); duke@435: emit_byte(0x58); duke@435: emit_byte(0xC0 | encode); duke@435: } duke@435: duke@435: void Assembler::addsd(XMMRegister dst, Address src) { duke@435: InstructionMark im(this); duke@435: emit_byte(0xF2); duke@435: prefix(src, dst); duke@435: emit_byte(0x0F); duke@435: emit_byte(0x58); duke@435: emit_operand(dst, src); duke@435: } duke@435: duke@435: void Assembler::subsd(XMMRegister dst, XMMRegister src) { duke@435: emit_byte(0xF2); duke@435: int encode = prefix_and_encode(dst->encoding(), src->encoding()); duke@435: emit_byte(0x0F); duke@435: emit_byte(0x5C); duke@435: emit_byte(0xC0 | encode); duke@435: } duke@435: duke@435: void Assembler::subsd(XMMRegister dst, Address src) { duke@435: InstructionMark im(this); duke@435: emit_byte(0xF2); duke@435: prefix(src, dst); duke@435: emit_byte(0x0F); duke@435: emit_byte(0x5C); duke@435: emit_operand(dst, src); duke@435: } duke@435: duke@435: void Assembler::mulsd(XMMRegister dst, XMMRegister src) { duke@435: emit_byte(0xF2); duke@435: int encode = prefix_and_encode(dst->encoding(), src->encoding()); duke@435: emit_byte(0x0F); duke@435: emit_byte(0x59); duke@435: emit_byte(0xC0 | encode); duke@435: } duke@435: duke@435: void Assembler::mulsd(XMMRegister dst, Address src) { duke@435: InstructionMark im(this); duke@435: emit_byte(0xF2); duke@435: prefix(src, dst); duke@435: emit_byte(0x0F); duke@435: emit_byte(0x59); duke@435: emit_operand(dst, src); duke@435: } duke@435: duke@435: void Assembler::divsd(XMMRegister dst, XMMRegister src) { duke@435: emit_byte(0xF2); duke@435: int encode = prefix_and_encode(dst->encoding(), src->encoding()); duke@435: emit_byte(0x0F); duke@435: emit_byte(0x5E); duke@435: emit_byte(0xC0 | encode); duke@435: } duke@435: duke@435: void Assembler::divsd(XMMRegister dst, Address src) { duke@435: InstructionMark im(this); duke@435: emit_byte(0xF2); duke@435: prefix(src, dst); duke@435: emit_byte(0x0F); duke@435: emit_byte(0x5E); duke@435: emit_operand(dst, src); duke@435: } duke@435: duke@435: void Assembler::sqrtsd(XMMRegister dst, XMMRegister src) { duke@435: emit_byte(0xF2); duke@435: int encode = prefix_and_encode(dst->encoding(), src->encoding()); duke@435: emit_byte(0x0F); duke@435: emit_byte(0x51); duke@435: emit_byte(0xC0 | encode); duke@435: } duke@435: duke@435: void Assembler::sqrtsd(XMMRegister dst, Address src) { duke@435: InstructionMark im(this); duke@435: emit_byte(0xF2); duke@435: prefix(src, dst); duke@435: emit_byte(0x0F); duke@435: emit_byte(0x51); duke@435: emit_operand(dst, src); duke@435: } duke@435: duke@435: void Assembler::xorps(XMMRegister dst, XMMRegister src) { duke@435: int encode = prefix_and_encode(dst->encoding(), src->encoding()); duke@435: emit_byte(0x0F); duke@435: emit_byte(0x57); duke@435: emit_byte(0xC0 | encode); duke@435: } duke@435: duke@435: void Assembler::xorps(XMMRegister dst, Address src) { duke@435: InstructionMark im(this); duke@435: prefix(src, dst); duke@435: emit_byte(0x0F); duke@435: emit_byte(0x57); duke@435: emit_operand(dst, src); duke@435: } duke@435: duke@435: void Assembler::xorpd(XMMRegister dst, XMMRegister src) { duke@435: emit_byte(0x66); duke@435: xorps(dst, src); duke@435: } duke@435: duke@435: void Assembler::xorpd(XMMRegister dst, Address src) { duke@435: InstructionMark im(this); duke@435: emit_byte(0x66); duke@435: prefix(src, dst); duke@435: emit_byte(0x0F); duke@435: emit_byte(0x57); duke@435: emit_operand(dst, src); duke@435: } duke@435: duke@435: void Assembler::cvtsi2ssl(XMMRegister dst, Register src) { duke@435: emit_byte(0xF3); duke@435: int encode = prefix_and_encode(dst->encoding(), src->encoding()); duke@435: emit_byte(0x0F); duke@435: emit_byte(0x2A); duke@435: emit_byte(0xC0 | encode); duke@435: } duke@435: duke@435: void Assembler::cvtsi2ssq(XMMRegister dst, Register src) { duke@435: emit_byte(0xF3); duke@435: int encode = prefixq_and_encode(dst->encoding(), src->encoding()); duke@435: emit_byte(0x0F); duke@435: emit_byte(0x2A); duke@435: emit_byte(0xC0 | encode); duke@435: } duke@435: duke@435: void Assembler::cvtsi2sdl(XMMRegister dst, Register src) { duke@435: emit_byte(0xF2); duke@435: int encode = prefix_and_encode(dst->encoding(), src->encoding()); duke@435: emit_byte(0x0F); duke@435: emit_byte(0x2A); duke@435: emit_byte(0xC0 | encode); duke@435: } duke@435: duke@435: void Assembler::cvtsi2sdq(XMMRegister dst, Register src) { duke@435: emit_byte(0xF2); duke@435: int encode = prefixq_and_encode(dst->encoding(), src->encoding()); duke@435: emit_byte(0x0F); duke@435: emit_byte(0x2A); duke@435: emit_byte(0xC0 | encode); duke@435: } duke@435: duke@435: void Assembler::cvttss2sil(Register dst, XMMRegister src) { duke@435: emit_byte(0xF3); duke@435: int encode = prefix_and_encode(dst->encoding(), src->encoding()); duke@435: emit_byte(0x0F); duke@435: emit_byte(0x2C); duke@435: emit_byte(0xC0 | encode); duke@435: } duke@435: duke@435: void Assembler::cvttss2siq(Register dst, XMMRegister src) { duke@435: emit_byte(0xF3); duke@435: int encode = prefixq_and_encode(dst->encoding(), src->encoding()); duke@435: emit_byte(0x0F); duke@435: emit_byte(0x2C); duke@435: emit_byte(0xC0 | encode); duke@435: } duke@435: duke@435: void Assembler::cvttsd2sil(Register dst, XMMRegister src) { duke@435: emit_byte(0xF2); duke@435: int encode = prefix_and_encode(dst->encoding(), src->encoding()); duke@435: emit_byte(0x0F); duke@435: emit_byte(0x2C); duke@435: emit_byte(0xC0 | encode); duke@435: } duke@435: duke@435: void Assembler::cvttsd2siq(Register dst, XMMRegister src) { duke@435: emit_byte(0xF2); duke@435: int encode = prefixq_and_encode(dst->encoding(), src->encoding()); duke@435: emit_byte(0x0F); duke@435: emit_byte(0x2C); duke@435: emit_byte(0xC0 | encode); duke@435: } duke@435: duke@435: void Assembler::cvtss2sd(XMMRegister dst, XMMRegister src) { duke@435: emit_byte(0xF3); duke@435: int encode = prefix_and_encode(dst->encoding(), src->encoding()); duke@435: emit_byte(0x0F); duke@435: emit_byte(0x5A); duke@435: emit_byte(0xC0 | encode); duke@435: } duke@435: kvn@506: void Assembler::cvtdq2pd(XMMRegister dst, XMMRegister src) { kvn@506: emit_byte(0xF3); kvn@506: int encode = prefix_and_encode(dst->encoding(), src->encoding()); kvn@506: emit_byte(0x0F); kvn@506: emit_byte(0xE6); kvn@506: emit_byte(0xC0 | encode); kvn@506: } kvn@506: kvn@506: void Assembler::cvtdq2ps(XMMRegister dst, XMMRegister src) { kvn@506: int encode = prefix_and_encode(dst->encoding(), src->encoding()); kvn@506: emit_byte(0x0F); kvn@506: emit_byte(0x5B); kvn@506: emit_byte(0xC0 | encode); kvn@506: } kvn@506: duke@435: void Assembler::cvtsd2ss(XMMRegister dst, XMMRegister src) { duke@435: emit_byte(0xF2); duke@435: int encode = prefix_and_encode(dst->encoding(), src->encoding()); duke@435: emit_byte(0x0F); duke@435: emit_byte(0x5A); duke@435: emit_byte(0xC0 | encode); duke@435: } duke@435: duke@435: void Assembler::punpcklbw(XMMRegister dst, XMMRegister src) { duke@435: emit_byte(0x66); duke@435: int encode = prefix_and_encode(dst->encoding(), src->encoding()); duke@435: emit_byte(0x0F); duke@435: emit_byte(0x60); duke@435: emit_byte(0xC0 | encode); duke@435: } duke@435: duke@435: // Implementation of MacroAssembler duke@435: duke@435: // On 32 bit it returns a vanilla displacement on 64 bit is a rip relative displacement duke@435: Address MacroAssembler::as_Address(AddressLiteral adr) { duke@435: assert(!adr.is_lval(), "must be rval"); duke@435: assert(reachable(adr), "must be"); duke@435: return Address((int)(intptr_t)(adr.target() - pc()), adr.target(), adr.reloc()); duke@435: } duke@435: duke@435: Address MacroAssembler::as_Address(ArrayAddress adr) { duke@435: #ifdef _LP64 duke@435: AddressLiteral base = adr.base(); duke@435: lea(rscratch1, base); duke@435: Address index = adr.index(); duke@435: assert(index._disp == 0, "must not have disp"); // maybe it can? duke@435: Address array(rscratch1, index._index, index._scale, index._disp); duke@435: return array; duke@435: #else duke@435: return Address::make_array(adr); duke@435: #endif // _LP64 duke@435: duke@435: } duke@435: duke@435: void MacroAssembler::fat_nop() { duke@435: // A 5 byte nop that is safe for patching (see patch_verified_entry) duke@435: // Recommened sequence from 'Software Optimization Guide for the AMD duke@435: // Hammer Processor' duke@435: emit_byte(0x66); duke@435: emit_byte(0x66); duke@435: emit_byte(0x90); duke@435: emit_byte(0x66); duke@435: emit_byte(0x90); duke@435: } duke@435: duke@435: static Assembler::Condition reverse[] = { duke@435: Assembler::noOverflow /* overflow = 0x0 */ , duke@435: Assembler::overflow /* noOverflow = 0x1 */ , duke@435: Assembler::aboveEqual /* carrySet = 0x2, below = 0x2 */ , duke@435: Assembler::below /* aboveEqual = 0x3, carryClear = 0x3 */ , duke@435: Assembler::notZero /* zero = 0x4, equal = 0x4 */ , duke@435: Assembler::zero /* notZero = 0x5, notEqual = 0x5 */ , duke@435: Assembler::above /* belowEqual = 0x6 */ , duke@435: Assembler::belowEqual /* above = 0x7 */ , duke@435: Assembler::positive /* negative = 0x8 */ , duke@435: Assembler::negative /* positive = 0x9 */ , duke@435: Assembler::noParity /* parity = 0xa */ , duke@435: Assembler::parity /* noParity = 0xb */ , duke@435: Assembler::greaterEqual /* less = 0xc */ , duke@435: Assembler::less /* greaterEqual = 0xd */ , duke@435: Assembler::greater /* lessEqual = 0xe */ , duke@435: Assembler::lessEqual /* greater = 0xf, */ duke@435: duke@435: }; duke@435: duke@435: // 32bit can do a case table jump in one instruction but we no longer allow the base duke@435: // to be installed in the Address class duke@435: void MacroAssembler::jump(ArrayAddress entry) { duke@435: #ifdef _LP64 duke@435: lea(rscratch1, entry.base()); duke@435: Address dispatch = entry.index(); duke@435: assert(dispatch._base == noreg, "must be"); duke@435: dispatch._base = rscratch1; duke@435: jmp(dispatch); duke@435: #else duke@435: jmp(as_Address(entry)); duke@435: #endif // _LP64 duke@435: } duke@435: duke@435: void MacroAssembler::jump(AddressLiteral dst) { duke@435: if (reachable(dst)) { duke@435: jmp_literal(dst.target(), dst.rspec()); duke@435: } else { duke@435: lea(rscratch1, dst); duke@435: jmp(rscratch1); duke@435: } duke@435: } duke@435: duke@435: void MacroAssembler::jump_cc(Condition cc, AddressLiteral dst) { duke@435: if (reachable(dst)) { duke@435: InstructionMark im(this); duke@435: relocate(dst.reloc()); duke@435: const int short_size = 2; duke@435: const int long_size = 6; duke@435: int offs = (intptr_t)dst.target() - ((intptr_t)_code_pos); duke@435: if (dst.reloc() == relocInfo::none && is8bit(offs - short_size)) { duke@435: // 0111 tttn #8-bit disp duke@435: emit_byte(0x70 | cc); duke@435: emit_byte((offs - short_size) & 0xFF); duke@435: } else { duke@435: // 0000 1111 1000 tttn #32-bit disp duke@435: emit_byte(0x0F); duke@435: emit_byte(0x80 | cc); duke@435: emit_long(offs - long_size); duke@435: } duke@435: } else { duke@435: #ifdef ASSERT duke@435: warning("reversing conditional branch"); duke@435: #endif /* ASSERT */ duke@435: Label skip; duke@435: jccb(reverse[cc], skip); duke@435: lea(rscratch1, dst); duke@435: Assembler::jmp(rscratch1); duke@435: bind(skip); duke@435: } duke@435: } duke@435: duke@435: // Wouldn't need if AddressLiteral version had new name duke@435: void MacroAssembler::call(Label& L, relocInfo::relocType rtype) { duke@435: Assembler::call(L, rtype); duke@435: } duke@435: duke@435: // Wouldn't need if AddressLiteral version had new name duke@435: void MacroAssembler::call(Register entry) { duke@435: Assembler::call(entry); duke@435: } duke@435: duke@435: void MacroAssembler::call(AddressLiteral entry) { duke@435: if (reachable(entry)) { duke@435: Assembler::call_literal(entry.target(), entry.rspec()); duke@435: } else { duke@435: lea(rscratch1, entry); duke@435: Assembler::call(rscratch1); duke@435: } duke@435: } duke@435: duke@435: void MacroAssembler::cmp8(AddressLiteral src1, int8_t src2) { duke@435: if (reachable(src1)) { duke@435: cmpb(as_Address(src1), src2); duke@435: } else { duke@435: lea(rscratch1, src1); duke@435: cmpb(Address(rscratch1, 0), src2); duke@435: } duke@435: } duke@435: duke@435: void MacroAssembler::cmp32(AddressLiteral src1, int32_t src2) { duke@435: if (reachable(src1)) { duke@435: cmpl(as_Address(src1), src2); duke@435: } else { duke@435: lea(rscratch1, src1); duke@435: cmpl(Address(rscratch1, 0), src2); duke@435: } duke@435: } duke@435: duke@435: void MacroAssembler::cmp32(Register src1, AddressLiteral src2) { duke@435: if (reachable(src2)) { duke@435: cmpl(src1, as_Address(src2)); duke@435: } else { duke@435: lea(rscratch1, src2); duke@435: cmpl(src1, Address(rscratch1, 0)); duke@435: } duke@435: } duke@435: duke@435: void MacroAssembler::cmpptr(Register src1, AddressLiteral src2) { duke@435: #ifdef _LP64 duke@435: if (src2.is_lval()) { duke@435: movptr(rscratch1, src2); duke@435: Assembler::cmpq(src1, rscratch1); duke@435: } else if (reachable(src2)) { duke@435: cmpq(src1, as_Address(src2)); duke@435: } else { duke@435: lea(rscratch1, src2); duke@435: Assembler::cmpq(src1, Address(rscratch1, 0)); duke@435: } duke@435: #else duke@435: if (src2.is_lval()) { duke@435: cmp_literal32(src1, (int32_t) src2.target(), src2.rspec()); duke@435: } else { duke@435: cmpl(src1, as_Address(src2)); duke@435: } duke@435: #endif // _LP64 duke@435: } duke@435: duke@435: void MacroAssembler::cmpptr(Address src1, AddressLiteral src2) { duke@435: assert(src2.is_lval(), "not a mem-mem compare"); duke@435: #ifdef _LP64 duke@435: // moves src2's literal address duke@435: movptr(rscratch1, src2); duke@435: Assembler::cmpq(src1, rscratch1); duke@435: #else duke@435: cmp_literal32(src1, (int32_t) src2.target(), src2.rspec()); duke@435: #endif // _LP64 duke@435: } duke@435: duke@435: void MacroAssembler::cmp64(Register src1, AddressLiteral src2) { duke@435: assert(!src2.is_lval(), "should use cmpptr"); duke@435: duke@435: if (reachable(src2)) { duke@435: #ifdef _LP64 duke@435: cmpq(src1, as_Address(src2)); duke@435: #else duke@435: ShouldNotReachHere(); duke@435: #endif // _LP64 duke@435: } else { duke@435: lea(rscratch1, src2); duke@435: Assembler::cmpq(src1, Address(rscratch1, 0)); duke@435: } duke@435: } duke@435: duke@435: void MacroAssembler::cmpxchgptr(Register reg, AddressLiteral adr) { duke@435: if (reachable(adr)) { duke@435: #ifdef _LP64 duke@435: cmpxchgq(reg, as_Address(adr)); duke@435: #else duke@435: cmpxchgl(reg, as_Address(adr)); duke@435: #endif // _LP64 duke@435: } else { duke@435: lea(rscratch1, adr); duke@435: cmpxchgq(reg, Address(rscratch1, 0)); duke@435: } duke@435: } duke@435: duke@435: void MacroAssembler::incrementl(AddressLiteral dst) { duke@435: if (reachable(dst)) { duke@435: incrementl(as_Address(dst)); duke@435: } else { duke@435: lea(rscratch1, dst); duke@435: incrementl(Address(rscratch1, 0)); duke@435: } duke@435: } duke@435: duke@435: void MacroAssembler::incrementl(ArrayAddress dst) { duke@435: incrementl(as_Address(dst)); duke@435: } duke@435: duke@435: void MacroAssembler::lea(Register dst, Address src) { duke@435: #ifdef _LP64 duke@435: leaq(dst, src); duke@435: #else duke@435: leal(dst, src); duke@435: #endif // _LP64 duke@435: } duke@435: duke@435: void MacroAssembler::lea(Register dst, AddressLiteral src) { duke@435: #ifdef _LP64 duke@435: mov_literal64(dst, (intptr_t)src.target(), src.rspec()); duke@435: #else duke@435: mov_literal32(dst, (intptr_t)src.target(), src.rspec()); duke@435: #endif // _LP64 duke@435: } duke@435: duke@435: void MacroAssembler::mov32(AddressLiteral dst, Register src) { duke@435: if (reachable(dst)) { duke@435: movl(as_Address(dst), src); duke@435: } else { duke@435: lea(rscratch1, dst); duke@435: movl(Address(rscratch1, 0), src); duke@435: } duke@435: } duke@435: duke@435: void MacroAssembler::mov32(Register dst, AddressLiteral src) { duke@435: if (reachable(src)) { duke@435: movl(dst, as_Address(src)); duke@435: } else { duke@435: lea(rscratch1, src); duke@435: movl(dst, Address(rscratch1, 0)); duke@435: } duke@435: } duke@435: duke@435: void MacroAssembler::movdbl(XMMRegister dst, AddressLiteral src) { duke@435: if (reachable(src)) { duke@435: if (UseXmmLoadAndClearUpper) { duke@435: movsd (dst, as_Address(src)); duke@435: } else { duke@435: movlpd(dst, as_Address(src)); duke@435: } duke@435: } else { duke@435: lea(rscratch1, src); duke@435: if (UseXmmLoadAndClearUpper) { duke@435: movsd (dst, Address(rscratch1, 0)); duke@435: } else { duke@435: movlpd(dst, Address(rscratch1, 0)); duke@435: } duke@435: } duke@435: } duke@435: duke@435: void MacroAssembler::movflt(XMMRegister dst, AddressLiteral src) { duke@435: if (reachable(src)) { duke@435: movss(dst, as_Address(src)); duke@435: } else { duke@435: lea(rscratch1, src); duke@435: movss(dst, Address(rscratch1, 0)); duke@435: } duke@435: } duke@435: duke@435: void MacroAssembler::movoop(Register dst, jobject obj) { duke@435: mov_literal64(dst, (intptr_t)obj, oop_Relocation::spec_for_immediate()); duke@435: } duke@435: duke@435: void MacroAssembler::movoop(Address dst, jobject obj) { duke@435: mov_literal64(rscratch1, (intptr_t)obj, oop_Relocation::spec_for_immediate()); duke@435: movq(dst, rscratch1); duke@435: } duke@435: duke@435: void MacroAssembler::movptr(Register dst, AddressLiteral src) { duke@435: #ifdef _LP64 duke@435: if (src.is_lval()) { duke@435: mov_literal64(dst, (intptr_t)src.target(), src.rspec()); duke@435: } else { duke@435: if (reachable(src)) { duke@435: movq(dst, as_Address(src)); duke@435: } else { duke@435: lea(rscratch1, src); duke@435: movq(dst, Address(rscratch1,0)); duke@435: } duke@435: } duke@435: #else duke@435: if (src.is_lval()) { duke@435: mov_literal32(dst, (intptr_t)src.target(), src.rspec()); duke@435: } else { duke@435: movl(dst, as_Address(src)); duke@435: } duke@435: #endif // LP64 duke@435: } duke@435: duke@435: void MacroAssembler::movptr(ArrayAddress dst, Register src) { duke@435: #ifdef _LP64 duke@435: movq(as_Address(dst), src); duke@435: #else duke@435: movl(as_Address(dst), src); duke@435: #endif // _LP64 duke@435: } duke@435: duke@435: void MacroAssembler::pushoop(jobject obj) { duke@435: #ifdef _LP64 duke@435: movoop(rscratch1, obj); duke@435: pushq(rscratch1); duke@435: #else duke@435: push_literal32((int32_t)obj, oop_Relocation::spec_for_immediate()); duke@435: #endif // _LP64 duke@435: } duke@435: duke@435: void MacroAssembler::pushptr(AddressLiteral src) { duke@435: #ifdef _LP64 duke@435: lea(rscratch1, src); duke@435: if (src.is_lval()) { duke@435: pushq(rscratch1); duke@435: } else { duke@435: pushq(Address(rscratch1, 0)); duke@435: } duke@435: #else duke@435: if (src.is_lval()) { duke@435: push_literal((int32_t)src.target(), src.rspec()); duke@435: else { duke@435: pushl(as_Address(src)); duke@435: } duke@435: #endif // _LP64 duke@435: } duke@435: duke@435: void MacroAssembler::ldmxcsr(AddressLiteral src) { duke@435: if (reachable(src)) { duke@435: Assembler::ldmxcsr(as_Address(src)); duke@435: } else { duke@435: lea(rscratch1, src); duke@435: Assembler::ldmxcsr(Address(rscratch1, 0)); duke@435: } duke@435: } duke@435: duke@435: void MacroAssembler::movlpd(XMMRegister dst, AddressLiteral src) { duke@435: if (reachable(src)) { duke@435: movlpd(dst, as_Address(src)); duke@435: } else { duke@435: lea(rscratch1, src); duke@435: movlpd(dst, Address(rscratch1, 0)); duke@435: } duke@435: } duke@435: duke@435: void MacroAssembler::movss(XMMRegister dst, AddressLiteral src) { duke@435: if (reachable(src)) { duke@435: movss(dst, as_Address(src)); duke@435: } else { duke@435: lea(rscratch1, src); duke@435: movss(dst, Address(rscratch1, 0)); duke@435: } duke@435: } duke@435: void MacroAssembler::xorpd(XMMRegister dst, AddressLiteral src) { duke@435: if (reachable(src)) { duke@435: xorpd(dst, as_Address(src)); duke@435: } else { duke@435: lea(rscratch1, src); duke@435: xorpd(dst, Address(rscratch1, 0)); duke@435: } duke@435: } duke@435: duke@435: void MacroAssembler::xorps(XMMRegister dst, AddressLiteral src) { duke@435: if (reachable(src)) { duke@435: xorps(dst, as_Address(src)); duke@435: } else { duke@435: lea(rscratch1, src); duke@435: xorps(dst, Address(rscratch1, 0)); duke@435: } duke@435: } duke@435: duke@435: void MacroAssembler::null_check(Register reg, int offset) { duke@435: if (needs_explicit_null_check(offset)) { duke@435: // provoke OS NULL exception if reg = NULL by duke@435: // accessing M[reg] w/o changing any (non-CC) registers duke@435: cmpq(rax, Address(reg, 0)); duke@435: // Note: should probably use testl(rax, Address(reg, 0)); duke@435: // may be shorter code (however, this version of duke@435: // testl needs to be implemented first) duke@435: } else { duke@435: // nothing to do, (later) access of M[reg + offset] duke@435: // will provoke OS NULL exception if reg = NULL duke@435: } duke@435: } duke@435: duke@435: int MacroAssembler::load_unsigned_byte(Register dst, Address src) { duke@435: int off = offset(); duke@435: movzbl(dst, src); duke@435: return off; duke@435: } duke@435: duke@435: int MacroAssembler::load_unsigned_word(Register dst, Address src) { duke@435: int off = offset(); duke@435: movzwl(dst, src); duke@435: return off; duke@435: } duke@435: duke@435: int MacroAssembler::load_signed_byte(Register dst, Address src) { duke@435: int off = offset(); duke@435: movsbl(dst, src); duke@435: return off; duke@435: } duke@435: duke@435: int MacroAssembler::load_signed_word(Register dst, Address src) { duke@435: int off = offset(); duke@435: movswl(dst, src); duke@435: return off; duke@435: } duke@435: duke@435: void MacroAssembler::incrementl(Register reg, int value) { duke@435: if (value == min_jint) { addl(reg, value); return; } duke@435: if (value < 0) { decrementl(reg, -value); return; } duke@435: if (value == 0) { ; return; } duke@435: if (value == 1 && UseIncDec) { incl(reg) ; return; } duke@435: /* else */ { addl(reg, value) ; return; } duke@435: } duke@435: duke@435: void MacroAssembler::decrementl(Register reg, int value) { duke@435: if (value == min_jint) { subl(reg, value); return; } duke@435: if (value < 0) { incrementl(reg, -value); return; } duke@435: if (value == 0) { ; return; } duke@435: if (value == 1 && UseIncDec) { decl(reg) ; return; } duke@435: /* else */ { subl(reg, value) ; return; } duke@435: } duke@435: duke@435: void MacroAssembler::incrementq(Register reg, int value) { duke@435: if (value == min_jint) { addq(reg, value); return; } duke@435: if (value < 0) { decrementq(reg, -value); return; } duke@435: if (value == 0) { ; return; } duke@435: if (value == 1 && UseIncDec) { incq(reg) ; return; } duke@435: /* else */ { addq(reg, value) ; return; } duke@435: } duke@435: duke@435: void MacroAssembler::decrementq(Register reg, int value) { duke@435: if (value == min_jint) { subq(reg, value); return; } duke@435: if (value < 0) { incrementq(reg, -value); return; } duke@435: if (value == 0) { ; return; } duke@435: if (value == 1 && UseIncDec) { decq(reg) ; return; } duke@435: /* else */ { subq(reg, value) ; return; } duke@435: } duke@435: duke@435: void MacroAssembler::incrementl(Address dst, int value) { duke@435: if (value == min_jint) { addl(dst, value); return; } duke@435: if (value < 0) { decrementl(dst, -value); return; } duke@435: if (value == 0) { ; return; } duke@435: if (value == 1 && UseIncDec) { incl(dst) ; return; } duke@435: /* else */ { addl(dst, value) ; return; } duke@435: } duke@435: duke@435: void MacroAssembler::decrementl(Address dst, int value) { duke@435: if (value == min_jint) { subl(dst, value); return; } duke@435: if (value < 0) { incrementl(dst, -value); return; } duke@435: if (value == 0) { ; return; } duke@435: if (value == 1 && UseIncDec) { decl(dst) ; return; } duke@435: /* else */ { subl(dst, value) ; return; } duke@435: } duke@435: duke@435: void MacroAssembler::incrementq(Address dst, int value) { duke@435: if (value == min_jint) { addq(dst, value); return; } duke@435: if (value < 0) { decrementq(dst, -value); return; } duke@435: if (value == 0) { ; return; } duke@435: if (value == 1 && UseIncDec) { incq(dst) ; return; } duke@435: /* else */ { addq(dst, value) ; return; } duke@435: } duke@435: duke@435: void MacroAssembler::decrementq(Address dst, int value) { duke@435: if (value == min_jint) { subq(dst, value); return; } duke@435: if (value < 0) { incrementq(dst, -value); return; } duke@435: if (value == 0) { ; return; } duke@435: if (value == 1 && UseIncDec) { decq(dst) ; return; } duke@435: /* else */ { subq(dst, value) ; return; } duke@435: } duke@435: duke@435: void MacroAssembler::align(int modulus) { duke@435: if (offset() % modulus != 0) { duke@435: nop(modulus - (offset() % modulus)); duke@435: } duke@435: } duke@435: duke@435: void MacroAssembler::enter() { duke@435: pushq(rbp); duke@435: movq(rbp, rsp); duke@435: } duke@435: duke@435: void MacroAssembler::leave() { duke@435: emit_byte(0xC9); // LEAVE duke@435: } duke@435: duke@435: // C++ bool manipulation duke@435: duke@435: void MacroAssembler::movbool(Register dst, Address src) { duke@435: if(sizeof(bool) == 1) duke@435: movb(dst, src); duke@435: else if(sizeof(bool) == 2) duke@435: movw(dst, src); duke@435: else if(sizeof(bool) == 4) duke@435: movl(dst, src); duke@435: else { duke@435: // unsupported duke@435: ShouldNotReachHere(); duke@435: } duke@435: } duke@435: duke@435: void MacroAssembler::movbool(Address dst, bool boolconst) { duke@435: if(sizeof(bool) == 1) duke@435: movb(dst, (int) boolconst); duke@435: else if(sizeof(bool) == 2) duke@435: movw(dst, (int) boolconst); duke@435: else if(sizeof(bool) == 4) duke@435: movl(dst, (int) boolconst); duke@435: else { duke@435: // unsupported duke@435: ShouldNotReachHere(); duke@435: } duke@435: } duke@435: duke@435: void MacroAssembler::movbool(Address dst, Register src) { duke@435: if(sizeof(bool) == 1) duke@435: movb(dst, src); duke@435: else if(sizeof(bool) == 2) duke@435: movw(dst, src); duke@435: else if(sizeof(bool) == 4) duke@435: movl(dst, src); duke@435: else { duke@435: // unsupported duke@435: ShouldNotReachHere(); duke@435: } duke@435: } duke@435: duke@435: void MacroAssembler::testbool(Register dst) { duke@435: if(sizeof(bool) == 1) duke@435: testb(dst, (int) 0xff); duke@435: else if(sizeof(bool) == 2) { duke@435: // need testw impl duke@435: ShouldNotReachHere(); duke@435: } else if(sizeof(bool) == 4) duke@435: testl(dst, dst); duke@435: else { duke@435: // unsupported duke@435: ShouldNotReachHere(); duke@435: } duke@435: } duke@435: duke@435: void MacroAssembler::set_last_Java_frame(Register last_java_sp, duke@435: Register last_java_fp, duke@435: address last_java_pc) { duke@435: // determine last_java_sp register duke@435: if (!last_java_sp->is_valid()) { duke@435: last_java_sp = rsp; duke@435: } duke@435: duke@435: // last_java_fp is optional duke@435: if (last_java_fp->is_valid()) { duke@435: movq(Address(r15_thread, JavaThread::last_Java_fp_offset()), duke@435: last_java_fp); duke@435: } duke@435: duke@435: // last_java_pc is optional duke@435: if (last_java_pc != NULL) { duke@435: Address java_pc(r15_thread, duke@435: JavaThread::frame_anchor_offset() + JavaFrameAnchor::last_Java_pc_offset()); duke@435: lea(rscratch1, InternalAddress(last_java_pc)); duke@435: movq(java_pc, rscratch1); duke@435: } duke@435: duke@435: movq(Address(r15_thread, JavaThread::last_Java_sp_offset()), last_java_sp); duke@435: } duke@435: duke@435: void MacroAssembler::reset_last_Java_frame(bool clear_fp, duke@435: bool clear_pc) { duke@435: // we must set sp to zero to clear frame duke@435: movptr(Address(r15_thread, JavaThread::last_Java_sp_offset()), NULL_WORD); duke@435: // must clear fp, so that compiled frames are not confused; it is duke@435: // possible that we need it only for debugging duke@435: if (clear_fp) { duke@435: movptr(Address(r15_thread, JavaThread::last_Java_fp_offset()), NULL_WORD); duke@435: } duke@435: duke@435: if (clear_pc) { duke@435: movptr(Address(r15_thread, JavaThread::last_Java_pc_offset()), NULL_WORD); duke@435: } duke@435: } duke@435: duke@435: duke@435: // Implementation of call_VM versions duke@435: duke@435: void MacroAssembler::call_VM_leaf_base(address entry_point, int num_args) { duke@435: Label L, E; duke@435: duke@435: #ifdef _WIN64 duke@435: // Windows always allocates space for it's register args duke@435: assert(num_args <= 4, "only register arguments supported"); duke@435: subq(rsp, frame::arg_reg_save_area_bytes); duke@435: #endif duke@435: duke@435: // Align stack if necessary duke@435: testl(rsp, 15); duke@435: jcc(Assembler::zero, L); duke@435: duke@435: subq(rsp, 8); duke@435: { duke@435: call(RuntimeAddress(entry_point)); duke@435: } duke@435: addq(rsp, 8); duke@435: jmp(E); duke@435: duke@435: bind(L); duke@435: { duke@435: call(RuntimeAddress(entry_point)); duke@435: } duke@435: duke@435: bind(E); duke@435: duke@435: #ifdef _WIN64 duke@435: // restore stack pointer duke@435: addq(rsp, frame::arg_reg_save_area_bytes); duke@435: #endif duke@435: duke@435: } duke@435: duke@435: duke@435: void MacroAssembler::call_VM_base(Register oop_result, duke@435: Register java_thread, duke@435: Register last_java_sp, duke@435: address entry_point, duke@435: int num_args, duke@435: bool check_exceptions) { duke@435: // determine last_java_sp register duke@435: if (!last_java_sp->is_valid()) { duke@435: last_java_sp = rsp; duke@435: } duke@435: duke@435: // debugging support duke@435: assert(num_args >= 0, "cannot have negative number of arguments"); duke@435: assert(r15_thread != oop_result, duke@435: "cannot use the same register for java_thread & oop_result"); duke@435: assert(r15_thread != last_java_sp, duke@435: "cannot use the same register for java_thread & last_java_sp"); duke@435: duke@435: // set last Java frame before call duke@435: duke@435: // This sets last_Java_fp which is only needed from interpreted frames duke@435: // and should really be done only from the interp_masm version before duke@435: // calling the underlying call_VM. That doesn't happen yet so we set duke@435: // last_Java_fp here even though some callers don't need it and duke@435: // also clear it below. duke@435: set_last_Java_frame(last_java_sp, rbp, NULL); duke@435: duke@435: { duke@435: Label L, E; duke@435: duke@435: // Align stack if necessary duke@435: #ifdef _WIN64 duke@435: assert(num_args <= 4, "only register arguments supported"); duke@435: // Windows always allocates space for it's register args duke@435: subq(rsp, frame::arg_reg_save_area_bytes); duke@435: #endif duke@435: testl(rsp, 15); duke@435: jcc(Assembler::zero, L); duke@435: duke@435: subq(rsp, 8); duke@435: { duke@435: call(RuntimeAddress(entry_point)); duke@435: } duke@435: addq(rsp, 8); duke@435: jmp(E); duke@435: duke@435: duke@435: bind(L); duke@435: { duke@435: call(RuntimeAddress(entry_point)); duke@435: } duke@435: duke@435: bind(E); duke@435: duke@435: #ifdef _WIN64 duke@435: // restore stack pointer duke@435: addq(rsp, frame::arg_reg_save_area_bytes); duke@435: #endif duke@435: } duke@435: duke@435: #ifdef ASSERT duke@435: pushq(rax); duke@435: { duke@435: Label L; duke@435: get_thread(rax); duke@435: cmpq(r15_thread, rax); duke@435: jcc(Assembler::equal, L); duke@435: stop("MacroAssembler::call_VM_base: register not callee saved?"); duke@435: bind(L); duke@435: } duke@435: popq(rax); duke@435: #endif duke@435: duke@435: // reset last Java frame duke@435: // This really shouldn't have to clear fp set note above at the duke@435: // call to set_last_Java_frame duke@435: reset_last_Java_frame(true, false); duke@435: duke@435: check_and_handle_popframe(noreg); duke@435: check_and_handle_earlyret(noreg); duke@435: duke@435: if (check_exceptions) { duke@435: cmpq(Address(r15_thread, Thread::pending_exception_offset()), (int) NULL); duke@435: // This used to conditionally jump to forward_exception however it is duke@435: // possible if we relocate that the branch will not reach. So we must jump duke@435: // around so we can always reach duke@435: Label ok; duke@435: jcc(Assembler::equal, ok); duke@435: jump(RuntimeAddress(StubRoutines::forward_exception_entry())); duke@435: bind(ok); duke@435: } duke@435: duke@435: // get oop result if there is one and reset the value in the thread duke@435: if (oop_result->is_valid()) { duke@435: movq(oop_result, Address(r15_thread, JavaThread::vm_result_offset())); duke@435: movptr(Address(r15_thread, JavaThread::vm_result_offset()), NULL_WORD); duke@435: verify_oop(oop_result); duke@435: } duke@435: } duke@435: duke@435: void MacroAssembler::check_and_handle_popframe(Register java_thread) {} duke@435: void MacroAssembler::check_and_handle_earlyret(Register java_thread) {} duke@435: duke@435: void MacroAssembler::call_VM_helper(Register oop_result, duke@435: address entry_point, duke@435: int num_args, duke@435: bool check_exceptions) { duke@435: // Java thread becomes first argument of C function duke@435: movq(c_rarg0, r15_thread); duke@435: duke@435: // We've pushed one address, correct last_Java_sp duke@435: leaq(rax, Address(rsp, wordSize)); duke@435: duke@435: call_VM_base(oop_result, noreg, rax, entry_point, num_args, duke@435: check_exceptions); duke@435: } duke@435: duke@435: duke@435: void MacroAssembler::call_VM(Register oop_result, duke@435: address entry_point, duke@435: bool check_exceptions) { duke@435: Label C, E; duke@435: Assembler::call(C, relocInfo::none); duke@435: jmp(E); duke@435: duke@435: bind(C); duke@435: call_VM_helper(oop_result, entry_point, 0, check_exceptions); duke@435: ret(0); duke@435: duke@435: bind(E); duke@435: } duke@435: duke@435: duke@435: void MacroAssembler::call_VM(Register oop_result, duke@435: address entry_point, duke@435: Register arg_1, duke@435: bool check_exceptions) { duke@435: assert(rax != arg_1, "smashed argument"); duke@435: assert(c_rarg0 != arg_1, "smashed argument"); duke@435: duke@435: Label C, E; duke@435: Assembler::call(C, relocInfo::none); duke@435: jmp(E); duke@435: duke@435: bind(C); duke@435: // c_rarg0 is reserved for thread duke@435: if (c_rarg1 != arg_1) { duke@435: movq(c_rarg1, arg_1); duke@435: } duke@435: call_VM_helper(oop_result, entry_point, 1, check_exceptions); duke@435: ret(0); duke@435: duke@435: bind(E); duke@435: } duke@435: duke@435: void MacroAssembler::call_VM(Register oop_result, duke@435: address entry_point, duke@435: Register arg_1, duke@435: Register arg_2, duke@435: bool check_exceptions) { duke@435: assert(rax != arg_1, "smashed argument"); duke@435: assert(rax != arg_2, "smashed argument"); duke@435: assert(c_rarg0 != arg_1, "smashed argument"); duke@435: assert(c_rarg0 != arg_2, "smashed argument"); duke@435: assert(c_rarg1 != arg_2, "smashed argument"); duke@435: assert(c_rarg2 != arg_1, "smashed argument"); duke@435: duke@435: Label C, E; duke@435: Assembler::call(C, relocInfo::none); duke@435: jmp(E); duke@435: duke@435: bind(C); duke@435: // c_rarg0 is reserved for thread duke@435: if (c_rarg1 != arg_1) { duke@435: movq(c_rarg1, arg_1); duke@435: } duke@435: if (c_rarg2 != arg_2) { duke@435: movq(c_rarg2, arg_2); duke@435: } duke@435: call_VM_helper(oop_result, entry_point, 2, check_exceptions); duke@435: ret(0); duke@435: duke@435: bind(E); duke@435: } duke@435: duke@435: duke@435: void MacroAssembler::call_VM(Register oop_result, duke@435: address entry_point, duke@435: Register arg_1, duke@435: Register arg_2, duke@435: Register arg_3, duke@435: bool check_exceptions) { duke@435: assert(rax != arg_1, "smashed argument"); duke@435: assert(rax != arg_2, "smashed argument"); duke@435: assert(rax != arg_3, "smashed argument"); duke@435: assert(c_rarg0 != arg_1, "smashed argument"); duke@435: assert(c_rarg0 != arg_2, "smashed argument"); duke@435: assert(c_rarg0 != arg_3, "smashed argument"); duke@435: assert(c_rarg1 != arg_2, "smashed argument"); duke@435: assert(c_rarg1 != arg_3, "smashed argument"); duke@435: assert(c_rarg2 != arg_1, "smashed argument"); duke@435: assert(c_rarg2 != arg_3, "smashed argument"); duke@435: assert(c_rarg3 != arg_1, "smashed argument"); duke@435: assert(c_rarg3 != arg_2, "smashed argument"); duke@435: duke@435: Label C, E; duke@435: Assembler::call(C, relocInfo::none); duke@435: jmp(E); duke@435: duke@435: bind(C); duke@435: // c_rarg0 is reserved for thread duke@435: if (c_rarg1 != arg_1) { duke@435: movq(c_rarg1, arg_1); duke@435: } duke@435: if (c_rarg2 != arg_2) { duke@435: movq(c_rarg2, arg_2); duke@435: } duke@435: if (c_rarg3 != arg_3) { duke@435: movq(c_rarg3, arg_3); duke@435: } duke@435: call_VM_helper(oop_result, entry_point, 3, check_exceptions); duke@435: ret(0); duke@435: duke@435: bind(E); duke@435: } duke@435: duke@435: void MacroAssembler::call_VM(Register oop_result, duke@435: Register last_java_sp, duke@435: address entry_point, duke@435: int num_args, duke@435: bool check_exceptions) { duke@435: call_VM_base(oop_result, noreg, last_java_sp, entry_point, num_args, duke@435: check_exceptions); duke@435: } duke@435: duke@435: void MacroAssembler::call_VM(Register oop_result, duke@435: Register last_java_sp, duke@435: address entry_point, duke@435: Register arg_1, duke@435: bool check_exceptions) { duke@435: assert(c_rarg0 != arg_1, "smashed argument"); duke@435: assert(c_rarg1 != last_java_sp, "smashed argument"); duke@435: // c_rarg0 is reserved for thread duke@435: if (c_rarg1 != arg_1) { duke@435: movq(c_rarg1, arg_1); duke@435: } duke@435: call_VM(oop_result, last_java_sp, entry_point, 1, check_exceptions); duke@435: } duke@435: duke@435: void MacroAssembler::call_VM(Register oop_result, duke@435: Register last_java_sp, duke@435: address entry_point, duke@435: Register arg_1, duke@435: Register arg_2, duke@435: bool check_exceptions) { duke@435: assert(c_rarg0 != arg_1, "smashed argument"); duke@435: assert(c_rarg0 != arg_2, "smashed argument"); duke@435: assert(c_rarg1 != arg_2, "smashed argument"); duke@435: assert(c_rarg1 != last_java_sp, "smashed argument"); duke@435: assert(c_rarg2 != arg_1, "smashed argument"); duke@435: assert(c_rarg2 != last_java_sp, "smashed argument"); duke@435: // c_rarg0 is reserved for thread duke@435: if (c_rarg1 != arg_1) { duke@435: movq(c_rarg1, arg_1); duke@435: } duke@435: if (c_rarg2 != arg_2) { duke@435: movq(c_rarg2, arg_2); duke@435: } duke@435: call_VM(oop_result, last_java_sp, entry_point, 2, check_exceptions); duke@435: } duke@435: duke@435: duke@435: void MacroAssembler::call_VM(Register oop_result, duke@435: Register last_java_sp, duke@435: address entry_point, duke@435: Register arg_1, duke@435: Register arg_2, duke@435: Register arg_3, duke@435: bool check_exceptions) { duke@435: assert(c_rarg0 != arg_1, "smashed argument"); duke@435: assert(c_rarg0 != arg_2, "smashed argument"); duke@435: assert(c_rarg0 != arg_3, "smashed argument"); duke@435: assert(c_rarg1 != arg_2, "smashed argument"); duke@435: assert(c_rarg1 != arg_3, "smashed argument"); duke@435: assert(c_rarg1 != last_java_sp, "smashed argument"); duke@435: assert(c_rarg2 != arg_1, "smashed argument"); duke@435: assert(c_rarg2 != arg_3, "smashed argument"); duke@435: assert(c_rarg2 != last_java_sp, "smashed argument"); duke@435: assert(c_rarg3 != arg_1, "smashed argument"); duke@435: assert(c_rarg3 != arg_2, "smashed argument"); duke@435: assert(c_rarg3 != last_java_sp, "smashed argument"); duke@435: // c_rarg0 is reserved for thread duke@435: if (c_rarg1 != arg_1) { duke@435: movq(c_rarg1, arg_1); duke@435: } duke@435: if (c_rarg2 != arg_2) { duke@435: movq(c_rarg2, arg_2); duke@435: } duke@435: if (c_rarg3 != arg_3) { duke@435: movq(c_rarg2, arg_3); duke@435: } duke@435: call_VM(oop_result, last_java_sp, entry_point, 3, check_exceptions); duke@435: } duke@435: duke@435: void MacroAssembler::call_VM_leaf(address entry_point, int num_args) { duke@435: call_VM_leaf_base(entry_point, num_args); duke@435: } duke@435: duke@435: void MacroAssembler::call_VM_leaf(address entry_point, Register arg_1) { duke@435: if (c_rarg0 != arg_1) { duke@435: movq(c_rarg0, arg_1); duke@435: } duke@435: call_VM_leaf(entry_point, 1); duke@435: } duke@435: duke@435: void MacroAssembler::call_VM_leaf(address entry_point, duke@435: Register arg_1, duke@435: Register arg_2) { duke@435: assert(c_rarg0 != arg_2, "smashed argument"); duke@435: assert(c_rarg1 != arg_1, "smashed argument"); duke@435: if (c_rarg0 != arg_1) { duke@435: movq(c_rarg0, arg_1); duke@435: } duke@435: if (c_rarg1 != arg_2) { duke@435: movq(c_rarg1, arg_2); duke@435: } duke@435: call_VM_leaf(entry_point, 2); duke@435: } duke@435: duke@435: void MacroAssembler::call_VM_leaf(address entry_point, duke@435: Register arg_1, duke@435: Register arg_2, duke@435: Register arg_3) { duke@435: assert(c_rarg0 != arg_2, "smashed argument"); duke@435: assert(c_rarg0 != arg_3, "smashed argument"); duke@435: assert(c_rarg1 != arg_1, "smashed argument"); duke@435: assert(c_rarg1 != arg_3, "smashed argument"); duke@435: assert(c_rarg2 != arg_1, "smashed argument"); duke@435: assert(c_rarg2 != arg_2, "smashed argument"); duke@435: if (c_rarg0 != arg_1) { duke@435: movq(c_rarg0, arg_1); duke@435: } duke@435: if (c_rarg1 != arg_2) { duke@435: movq(c_rarg1, arg_2); duke@435: } duke@435: if (c_rarg2 != arg_3) { duke@435: movq(c_rarg2, arg_3); duke@435: } duke@435: call_VM_leaf(entry_point, 3); duke@435: } duke@435: duke@435: duke@435: // Calls to C land duke@435: // duke@435: // When entering C land, the rbp & rsp of the last Java frame have to duke@435: // be recorded in the (thread-local) JavaThread object. When leaving C duke@435: // land, the last Java fp has to be reset to 0. This is required to duke@435: // allow proper stack traversal. duke@435: void MacroAssembler::store_check(Register obj) { duke@435: // Does a store check for the oop in register obj. The content of duke@435: // register obj is destroyed afterwards. duke@435: store_check_part_1(obj); duke@435: store_check_part_2(obj); duke@435: } duke@435: duke@435: void MacroAssembler::store_check(Register obj, Address dst) { duke@435: store_check(obj); duke@435: } duke@435: duke@435: // split the store check operation so that other instructions can be duke@435: // scheduled inbetween duke@435: void MacroAssembler::store_check_part_1(Register obj) { duke@435: BarrierSet* bs = Universe::heap()->barrier_set(); duke@435: assert(bs->kind() == BarrierSet::CardTableModRef, "Wrong barrier set kind"); duke@435: shrq(obj, CardTableModRefBS::card_shift); duke@435: } duke@435: duke@435: void MacroAssembler::store_check_part_2(Register obj) { duke@435: BarrierSet* bs = Universe::heap()->barrier_set(); duke@435: assert(bs->kind() == BarrierSet::CardTableModRef, "Wrong barrier set kind"); duke@435: CardTableModRefBS* ct = (CardTableModRefBS*)bs; duke@435: assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust this code"); duke@435: ExternalAddress cardtable((address)ct->byte_map_base); duke@435: Address index(noreg, obj, Address::times_1); duke@435: movb(as_Address(ArrayAddress(cardtable, index)), 0); duke@435: } duke@435: duke@435: void MacroAssembler::c2bool(Register x) { duke@435: // implements x == 0 ? 0 : 1 duke@435: // note: must only look at least-significant byte of x duke@435: // since C-style booleans are stored in one byte duke@435: // only! (was bug) duke@435: andl(x, 0xFF); duke@435: setb(Assembler::notZero, x); duke@435: } duke@435: duke@435: int MacroAssembler::corrected_idivl(Register reg) { duke@435: // Full implementation of Java idiv and irem; checks for special duke@435: // case as described in JVM spec., p.243 & p.271. The function duke@435: // returns the (pc) offset of the idivl instruction - may be needed duke@435: // for implicit exceptions. duke@435: // duke@435: // normal case special case duke@435: // duke@435: // input : eax: dividend min_int duke@435: // reg: divisor (may not be eax/edx) -1 duke@435: // duke@435: // output: eax: quotient (= eax idiv reg) min_int duke@435: // edx: remainder (= eax irem reg) 0 duke@435: assert(reg != rax && reg != rdx, "reg cannot be rax or rdx register"); duke@435: const int min_int = 0x80000000; duke@435: Label normal_case, special_case; duke@435: duke@435: // check for special case duke@435: cmpl(rax, min_int); duke@435: jcc(Assembler::notEqual, normal_case); duke@435: xorl(rdx, rdx); // prepare edx for possible special case (where duke@435: // remainder = 0) duke@435: cmpl(reg, -1); duke@435: jcc(Assembler::equal, special_case); duke@435: duke@435: // handle normal case duke@435: bind(normal_case); duke@435: cdql(); duke@435: int idivl_offset = offset(); duke@435: idivl(reg); duke@435: duke@435: // normal and special case exit duke@435: bind(special_case); duke@435: duke@435: return idivl_offset; duke@435: } duke@435: duke@435: int MacroAssembler::corrected_idivq(Register reg) { duke@435: // Full implementation of Java ldiv and lrem; checks for special duke@435: // case as described in JVM spec., p.243 & p.271. The function duke@435: // returns the (pc) offset of the idivl instruction - may be needed duke@435: // for implicit exceptions. duke@435: // duke@435: // normal case special case duke@435: // duke@435: // input : rax: dividend min_long duke@435: // reg: divisor (may not be eax/edx) -1 duke@435: // duke@435: // output: rax: quotient (= rax idiv reg) min_long duke@435: // rdx: remainder (= rax irem reg) 0 duke@435: assert(reg != rax && reg != rdx, "reg cannot be rax or rdx register"); duke@435: static const int64_t min_long = 0x8000000000000000; duke@435: Label normal_case, special_case; duke@435: duke@435: // check for special case duke@435: cmp64(rax, ExternalAddress((address) &min_long)); duke@435: jcc(Assembler::notEqual, normal_case); duke@435: xorl(rdx, rdx); // prepare rdx for possible special case (where duke@435: // remainder = 0) duke@435: cmpq(reg, -1); duke@435: jcc(Assembler::equal, special_case); duke@435: duke@435: // handle normal case duke@435: bind(normal_case); duke@435: cdqq(); duke@435: int idivq_offset = offset(); duke@435: idivq(reg); duke@435: duke@435: // normal and special case exit duke@435: bind(special_case); duke@435: duke@435: return idivq_offset; duke@435: } duke@435: duke@435: void MacroAssembler::push_IU_state() { duke@435: pushfq(); // Push flags first because pushaq kills them duke@435: subq(rsp, 8); // Make sure rsp stays 16-byte aligned duke@435: pushaq(); duke@435: } duke@435: duke@435: void MacroAssembler::pop_IU_state() { duke@435: popaq(); duke@435: addq(rsp, 8); duke@435: popfq(); duke@435: } duke@435: duke@435: void MacroAssembler::push_FPU_state() { duke@435: subq(rsp, FPUStateSizeInWords * wordSize); duke@435: fxsave(Address(rsp, 0)); duke@435: } duke@435: duke@435: void MacroAssembler::pop_FPU_state() { duke@435: fxrstor(Address(rsp, 0)); duke@435: addq(rsp, FPUStateSizeInWords * wordSize); duke@435: } duke@435: duke@435: // Save Integer and Float state duke@435: // Warning: Stack must be 16 byte aligned duke@435: void MacroAssembler::push_CPU_state() { duke@435: push_IU_state(); duke@435: push_FPU_state(); duke@435: } duke@435: duke@435: void MacroAssembler::pop_CPU_state() { duke@435: pop_FPU_state(); duke@435: pop_IU_state(); duke@435: } duke@435: duke@435: void MacroAssembler::sign_extend_short(Register reg) { duke@435: movswl(reg, reg); duke@435: } duke@435: duke@435: void MacroAssembler::sign_extend_byte(Register reg) { duke@435: movsbl(reg, reg); duke@435: } duke@435: duke@435: void MacroAssembler::division_with_shift(Register reg, int shift_value) { duke@435: assert (shift_value > 0, "illegal shift value"); duke@435: Label _is_positive; duke@435: testl (reg, reg); duke@435: jcc (Assembler::positive, _is_positive); duke@435: int offset = (1 << shift_value) - 1 ; duke@435: duke@435: if (offset == 1) { duke@435: incrementl(reg); duke@435: } else { duke@435: addl(reg, offset); duke@435: } duke@435: duke@435: bind (_is_positive); duke@435: sarl(reg, shift_value); duke@435: } duke@435: duke@435: void MacroAssembler::round_to_l(Register reg, int modulus) { duke@435: addl(reg, modulus - 1); duke@435: andl(reg, -modulus); duke@435: } duke@435: duke@435: void MacroAssembler::round_to_q(Register reg, int modulus) { duke@435: addq(reg, modulus - 1); duke@435: andq(reg, -modulus); duke@435: } duke@435: duke@435: void MacroAssembler::verify_oop(Register reg, const char* s) { duke@435: if (!VerifyOops) { duke@435: return; duke@435: } duke@435: duke@435: // Pass register number to verify_oop_subroutine duke@435: char* b = new char[strlen(s) + 50]; duke@435: sprintf(b, "verify_oop: %s: %s", reg->name(), s); duke@435: duke@435: pushq(rax); // save rax, restored by receiver duke@435: duke@435: // pass args on stack, only touch rax duke@435: pushq(reg); duke@435: duke@435: // avoid using pushptr, as it modifies scratch registers duke@435: // and our contract is not to modify anything duke@435: ExternalAddress buffer((address)b); duke@435: movptr(rax, buffer.addr()); duke@435: pushq(rax); duke@435: duke@435: // call indirectly to solve generation ordering problem duke@435: movptr(rax, ExternalAddress(StubRoutines::verify_oop_subroutine_entry_address())); duke@435: call(rax); // no alignment requirement duke@435: // everything popped by receiver duke@435: } duke@435: duke@435: void MacroAssembler::verify_oop_addr(Address addr, const char* s) { duke@435: if (!VerifyOops) return; duke@435: // Pass register number to verify_oop_subroutine duke@435: char* b = new char[strlen(s) + 50]; duke@435: sprintf(b, "verify_oop_addr: %s", s); duke@435: pushq(rax); // save rax duke@435: movq(addr, rax); duke@435: pushq(rax); // pass register argument duke@435: duke@435: duke@435: // avoid using pushptr, as it modifies scratch registers duke@435: // and our contract is not to modify anything duke@435: ExternalAddress buffer((address)b); duke@435: movptr(rax, buffer.addr()); duke@435: pushq(rax); duke@435: duke@435: // call indirectly to solve generation ordering problem duke@435: movptr(rax, ExternalAddress(StubRoutines::verify_oop_subroutine_entry_address())); duke@435: call(rax); // no alignment requirement duke@435: // everything popped by receiver duke@435: } duke@435: duke@435: duke@435: void MacroAssembler::stop(const char* msg) { duke@435: address rip = pc(); duke@435: pushaq(); // get regs on stack duke@435: lea(c_rarg0, ExternalAddress((address) msg)); duke@435: lea(c_rarg1, InternalAddress(rip)); duke@435: movq(c_rarg2, rsp); // pass pointer to regs array duke@435: andq(rsp, -16); // align stack as required by ABI duke@435: call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::debug))); duke@435: hlt(); duke@435: } duke@435: duke@435: void MacroAssembler::warn(const char* msg) { duke@435: pushq(r12); duke@435: movq(r12, rsp); duke@435: andq(rsp, -16); // align stack as required by push_CPU_state and call duke@435: duke@435: push_CPU_state(); // keeps alignment at 16 bytes duke@435: lea(c_rarg0, ExternalAddress((address) msg)); duke@435: call_VM_leaf(CAST_FROM_FN_PTR(address, warning), c_rarg0); duke@435: pop_CPU_state(); duke@435: duke@435: movq(rsp, r12); duke@435: popq(r12); duke@435: } duke@435: duke@435: void MacroAssembler::debug(char* msg, int64_t pc, int64_t regs[]) { duke@435: // In order to get locks to work, we need to fake a in_VM state duke@435: if (ShowMessageBoxOnError ) { duke@435: JavaThread* thread = JavaThread::current(); duke@435: JavaThreadState saved_state = thread->thread_state(); duke@435: thread->set_thread_state(_thread_in_vm); duke@435: ttyLocker ttyl; duke@435: #ifndef PRODUCT duke@435: if (CountBytecodes || TraceBytecodes || StopInterpreterAt) { duke@435: BytecodeCounter::print(); duke@435: } duke@435: #endif duke@435: // To see where a verify_oop failed, get $ebx+40/X for this frame. duke@435: // XXX correct this offset for amd64 duke@435: // This is the value of eip which points to where verify_oop will return. duke@435: if (os::message_box(msg, "Execution stopped, print registers?")) { duke@435: tty->print_cr("rip = 0x%016lx", pc); duke@435: tty->print_cr("rax = 0x%016lx", regs[15]); duke@435: tty->print_cr("rbx = 0x%016lx", regs[12]); duke@435: tty->print_cr("rcx = 0x%016lx", regs[14]); duke@435: tty->print_cr("rdx = 0x%016lx", regs[13]); duke@435: tty->print_cr("rdi = 0x%016lx", regs[8]); duke@435: tty->print_cr("rsi = 0x%016lx", regs[9]); duke@435: tty->print_cr("rbp = 0x%016lx", regs[10]); duke@435: tty->print_cr("rsp = 0x%016lx", regs[11]); duke@435: tty->print_cr("r8 = 0x%016lx", regs[7]); duke@435: tty->print_cr("r9 = 0x%016lx", regs[6]); duke@435: tty->print_cr("r10 = 0x%016lx", regs[5]); duke@435: tty->print_cr("r11 = 0x%016lx", regs[4]); duke@435: tty->print_cr("r12 = 0x%016lx", regs[3]); duke@435: tty->print_cr("r13 = 0x%016lx", regs[2]); duke@435: tty->print_cr("r14 = 0x%016lx", regs[1]); duke@435: tty->print_cr("r15 = 0x%016lx", regs[0]); duke@435: BREAKPOINT; duke@435: } duke@435: ThreadStateTransition::transition(thread, _thread_in_vm, saved_state); duke@435: } else { duke@435: ::tty->print_cr("=============== DEBUG MESSAGE: %s ================\n", duke@435: msg); duke@435: } duke@435: } duke@435: duke@435: void MacroAssembler::os_breakpoint() { duke@435: // instead of directly emitting a breakpoint, call os:breakpoint for duke@435: // better debugability duke@435: // This shouldn't need alignment, it's an empty function duke@435: call(RuntimeAddress(CAST_FROM_FN_PTR(address, os::breakpoint))); duke@435: } duke@435: duke@435: // Write serialization page so VM thread can do a pseudo remote membar. duke@435: // We use the current thread pointer to calculate a thread specific duke@435: // offset to write to within the page. This minimizes bus traffic duke@435: // due to cache line collision. duke@435: void MacroAssembler::serialize_memory(Register thread, duke@435: Register tmp) { duke@435: duke@435: movl(tmp, thread); duke@435: shrl(tmp, os::get_serialize_page_shift_count()); duke@435: andl(tmp, (os::vm_page_size() - sizeof(int))); duke@435: duke@435: Address index(noreg, tmp, Address::times_1); duke@435: ExternalAddress page(os::get_memory_serialize_page()); duke@435: duke@435: movptr(ArrayAddress(page, index), tmp); duke@435: } duke@435: duke@435: void MacroAssembler::verify_tlab() { duke@435: #ifdef ASSERT duke@435: if (UseTLAB) { duke@435: Label next, ok; duke@435: Register t1 = rsi; duke@435: duke@435: pushq(t1); duke@435: duke@435: movq(t1, Address(r15_thread, in_bytes(JavaThread::tlab_top_offset()))); duke@435: cmpq(t1, Address(r15_thread, in_bytes(JavaThread::tlab_start_offset()))); duke@435: jcc(Assembler::aboveEqual, next); duke@435: stop("assert(top >= start)"); duke@435: should_not_reach_here(); duke@435: duke@435: bind(next); duke@435: movq(t1, Address(r15_thread, in_bytes(JavaThread::tlab_end_offset()))); duke@435: cmpq(t1, Address(r15_thread, in_bytes(JavaThread::tlab_top_offset()))); duke@435: jcc(Assembler::aboveEqual, ok); duke@435: stop("assert(top <= end)"); duke@435: should_not_reach_here(); duke@435: duke@435: bind(ok); duke@435: duke@435: popq(t1); duke@435: } duke@435: #endif duke@435: } duke@435: duke@435: // Defines obj, preserves var_size_in_bytes duke@435: void MacroAssembler::eden_allocate(Register obj, duke@435: Register var_size_in_bytes, duke@435: int con_size_in_bytes, duke@435: Register t1, duke@435: Label& slow_case) { duke@435: assert(obj == rax, "obj must be in rax for cmpxchg"); duke@435: assert_different_registers(obj, var_size_in_bytes, t1); duke@435: Register end = t1; duke@435: Label retry; duke@435: bind(retry); duke@435: ExternalAddress heap_top((address) Universe::heap()->top_addr()); duke@435: movptr(obj, heap_top); duke@435: if (var_size_in_bytes == noreg) { duke@435: leaq(end, Address(obj, con_size_in_bytes)); duke@435: } else { duke@435: leaq(end, Address(obj, var_size_in_bytes, Address::times_1)); duke@435: } duke@435: // if end < obj then we wrapped around => object too long => slow case duke@435: cmpq(end, obj); duke@435: jcc(Assembler::below, slow_case); duke@435: cmpptr(end, ExternalAddress((address) Universe::heap()->end_addr())); duke@435: duke@435: jcc(Assembler::above, slow_case); duke@435: // Compare obj with the top addr, and if still equal, store the new duke@435: // top addr in end at the address of the top addr pointer. Sets ZF duke@435: // if was equal, and clears it otherwise. Use lock prefix for duke@435: // atomicity on MPs. duke@435: if (os::is_MP()) { duke@435: lock(); duke@435: } duke@435: cmpxchgptr(end, heap_top); duke@435: // if someone beat us on the allocation, try again, otherwise continue duke@435: jcc(Assembler::notEqual, retry); duke@435: } duke@435: duke@435: // Defines obj, preserves var_size_in_bytes, okay for t2 == var_size_in_bytes. duke@435: void MacroAssembler::tlab_allocate(Register obj, duke@435: Register var_size_in_bytes, duke@435: int con_size_in_bytes, duke@435: Register t1, duke@435: Register t2, duke@435: Label& slow_case) { duke@435: assert_different_registers(obj, t1, t2); duke@435: assert_different_registers(obj, var_size_in_bytes, t1); duke@435: Register end = t2; duke@435: duke@435: verify_tlab(); duke@435: duke@435: movq(obj, Address(r15_thread, JavaThread::tlab_top_offset())); duke@435: if (var_size_in_bytes == noreg) { duke@435: leaq(end, Address(obj, con_size_in_bytes)); duke@435: } else { duke@435: leaq(end, Address(obj, var_size_in_bytes, Address::times_1)); duke@435: } duke@435: cmpq(end, Address(r15_thread, JavaThread::tlab_end_offset())); duke@435: jcc(Assembler::above, slow_case); duke@435: duke@435: // update the tlab top pointer duke@435: movq(Address(r15_thread, JavaThread::tlab_top_offset()), end); duke@435: duke@435: // recover var_size_in_bytes if necessary duke@435: if (var_size_in_bytes == end) { duke@435: subq(var_size_in_bytes, obj); duke@435: } duke@435: verify_tlab(); duke@435: } duke@435: duke@435: // Preserves rbx and rdx. duke@435: void MacroAssembler::tlab_refill(Label& retry, duke@435: Label& try_eden, duke@435: Label& slow_case) { duke@435: Register top = rax; duke@435: Register t1 = rcx; duke@435: Register t2 = rsi; duke@435: Register t3 = r10; duke@435: Register thread_reg = r15_thread; duke@435: assert_different_registers(top, thread_reg, t1, t2, t3, duke@435: /* preserve: */ rbx, rdx); duke@435: Label do_refill, discard_tlab; duke@435: duke@435: if (CMSIncrementalMode || !Universe::heap()->supports_inline_contig_alloc()) { duke@435: // No allocation in the shared eden. duke@435: jmp(slow_case); duke@435: } duke@435: duke@435: movq(top, Address(thread_reg, in_bytes(JavaThread::tlab_top_offset()))); duke@435: movq(t1, Address(thread_reg, in_bytes(JavaThread::tlab_end_offset()))); duke@435: duke@435: // calculate amount of free space duke@435: subq(t1, top); duke@435: shrq(t1, LogHeapWordSize); duke@435: duke@435: // Retain tlab and allocate object in shared space if duke@435: // the amount free in the tlab is too large to discard. duke@435: cmpq(t1, Address(thread_reg, // size_t duke@435: in_bytes(JavaThread::tlab_refill_waste_limit_offset()))); duke@435: jcc(Assembler::lessEqual, discard_tlab); duke@435: duke@435: // Retain duke@435: mov64(t2, ThreadLocalAllocBuffer::refill_waste_limit_increment()); duke@435: addq(Address(thread_reg, // size_t duke@435: in_bytes(JavaThread::tlab_refill_waste_limit_offset())), duke@435: t2); duke@435: if (TLABStats) { duke@435: // increment number of slow_allocations duke@435: addl(Address(thread_reg, // unsigned int duke@435: in_bytes(JavaThread::tlab_slow_allocations_offset())), duke@435: 1); duke@435: } duke@435: jmp(try_eden); duke@435: duke@435: bind(discard_tlab); duke@435: if (TLABStats) { duke@435: // increment number of refills duke@435: addl(Address(thread_reg, // unsigned int duke@435: in_bytes(JavaThread::tlab_number_of_refills_offset())), duke@435: 1); duke@435: // accumulate wastage -- t1 is amount free in tlab duke@435: addl(Address(thread_reg, // unsigned int duke@435: in_bytes(JavaThread::tlab_fast_refill_waste_offset())), duke@435: t1); duke@435: } duke@435: duke@435: // if tlab is currently allocated (top or end != null) then duke@435: // fill [top, end + alignment_reserve) with array object duke@435: testq(top, top); duke@435: jcc(Assembler::zero, do_refill); duke@435: duke@435: // set up the mark word duke@435: mov64(t3, (int64_t) markOopDesc::prototype()->copy_set_hash(0x2)); duke@435: movq(Address(top, oopDesc::mark_offset_in_bytes()), t3); duke@435: // set the length to the remaining space duke@435: subq(t1, typeArrayOopDesc::header_size(T_INT)); duke@435: addq(t1, (int)ThreadLocalAllocBuffer::alignment_reserve()); duke@435: shlq(t1, log2_intptr(HeapWordSize / sizeof(jint))); duke@435: movq(Address(top, arrayOopDesc::length_offset_in_bytes()), t1); duke@435: // set klass to intArrayKlass duke@435: movptr(t1, ExternalAddress((address) Universe::intArrayKlassObj_addr())); duke@435: movq(Address(top, oopDesc::klass_offset_in_bytes()), t1); duke@435: duke@435: // refill the tlab with an eden allocation duke@435: bind(do_refill); duke@435: movq(t1, Address(thread_reg, in_bytes(JavaThread::tlab_size_offset()))); duke@435: shlq(t1, LogHeapWordSize); duke@435: // add object_size ?? duke@435: eden_allocate(top, t1, 0, t2, slow_case); duke@435: duke@435: // Check that t1 was preserved in eden_allocate. duke@435: #ifdef ASSERT duke@435: if (UseTLAB) { duke@435: Label ok; duke@435: Register tsize = rsi; duke@435: assert_different_registers(tsize, thread_reg, t1); duke@435: pushq(tsize); duke@435: movq(tsize, Address(thread_reg, in_bytes(JavaThread::tlab_size_offset()))); duke@435: shlq(tsize, LogHeapWordSize); duke@435: cmpq(t1, tsize); duke@435: jcc(Assembler::equal, ok); duke@435: stop("assert(t1 != tlab size)"); duke@435: should_not_reach_here(); duke@435: duke@435: bind(ok); duke@435: popq(tsize); duke@435: } duke@435: #endif duke@435: movq(Address(thread_reg, in_bytes(JavaThread::tlab_start_offset())), top); duke@435: movq(Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())), top); duke@435: addq(top, t1); duke@435: subq(top, (int)ThreadLocalAllocBuffer::alignment_reserve_in_bytes()); duke@435: movq(Address(thread_reg, in_bytes(JavaThread::tlab_end_offset())), top); duke@435: verify_tlab(); duke@435: jmp(retry); duke@435: } duke@435: duke@435: duke@435: int MacroAssembler::biased_locking_enter(Register lock_reg, Register obj_reg, Register swap_reg, Register tmp_reg, duke@435: bool swap_reg_contains_mark, duke@435: Label& done, Label* slow_case, duke@435: BiasedLockingCounters* counters) { duke@435: assert(UseBiasedLocking, "why call this otherwise?"); duke@435: assert(swap_reg == rax, "swap_reg must be rax for cmpxchgq"); duke@435: assert(tmp_reg != noreg, "tmp_reg must be supplied"); duke@435: assert_different_registers(lock_reg, obj_reg, swap_reg, tmp_reg); duke@435: assert(markOopDesc::age_shift == markOopDesc::lock_bits + markOopDesc::biased_lock_bits, "biased locking makes assumptions about bit layout"); duke@435: Address mark_addr (obj_reg, oopDesc::mark_offset_in_bytes()); duke@435: Address klass_addr (obj_reg, oopDesc::klass_offset_in_bytes()); duke@435: Address saved_mark_addr(lock_reg, 0); duke@435: duke@435: if (PrintBiasedLockingStatistics && counters == NULL) duke@435: counters = BiasedLocking::counters(); duke@435: duke@435: // Biased locking duke@435: // See whether the lock is currently biased toward our thread and duke@435: // whether the epoch is still valid duke@435: // Note that the runtime guarantees sufficient alignment of JavaThread duke@435: // pointers to allow age to be placed into low bits duke@435: // First check to see whether biasing is even enabled for this object duke@435: Label cas_label; duke@435: int null_check_offset = -1; duke@435: if (!swap_reg_contains_mark) { duke@435: null_check_offset = offset(); duke@435: movq(swap_reg, mark_addr); duke@435: } duke@435: movq(tmp_reg, swap_reg); duke@435: andq(tmp_reg, markOopDesc::biased_lock_mask_in_place); duke@435: cmpq(tmp_reg, markOopDesc::biased_lock_pattern); duke@435: jcc(Assembler::notEqual, cas_label); duke@435: // The bias pattern is present in the object's header. Need to check duke@435: // whether the bias owner and the epoch are both still current. duke@435: movq(tmp_reg, klass_addr); duke@435: movq(tmp_reg, Address(tmp_reg, Klass::prototype_header_offset_in_bytes() + klassOopDesc::klass_part_offset_in_bytes())); duke@435: orq(tmp_reg, r15_thread); duke@435: xorq(tmp_reg, swap_reg); duke@435: andq(tmp_reg, ~((int) markOopDesc::age_mask_in_place)); duke@435: if (counters != NULL) { duke@435: cond_inc32(Assembler::zero, duke@435: ExternalAddress((address) counters->anonymously_biased_lock_entry_count_addr())); duke@435: } duke@435: jcc(Assembler::equal, done); duke@435: duke@435: Label try_revoke_bias; duke@435: Label try_rebias; duke@435: duke@435: // At this point we know that the header has the bias pattern and duke@435: // that we are not the bias owner in the current epoch. We need to duke@435: // figure out more details about the state of the header in order to duke@435: // know what operations can be legally performed on the object's duke@435: // header. duke@435: duke@435: // If the low three bits in the xor result aren't clear, that means duke@435: // the prototype header is no longer biased and we have to revoke duke@435: // the bias on this object. duke@435: testq(tmp_reg, markOopDesc::biased_lock_mask_in_place); duke@435: jcc(Assembler::notZero, try_revoke_bias); duke@435: duke@435: // Biasing is still enabled for this data type. See whether the duke@435: // epoch of the current bias is still valid, meaning that the epoch duke@435: // bits of the mark word are equal to the epoch bits of the duke@435: // prototype header. (Note that the prototype header's epoch bits duke@435: // only change at a safepoint.) If not, attempt to rebias the object duke@435: // toward the current thread. Note that we must be absolutely sure duke@435: // that the current epoch is invalid in order to do this because duke@435: // otherwise the manipulations it performs on the mark word are duke@435: // illegal. duke@435: testq(tmp_reg, markOopDesc::epoch_mask_in_place); duke@435: jcc(Assembler::notZero, try_rebias); duke@435: duke@435: // The epoch of the current bias is still valid but we know nothing duke@435: // about the owner; it might be set or it might be clear. Try to duke@435: // acquire the bias of the object using an atomic operation. If this duke@435: // fails we will go in to the runtime to revoke the object's bias. duke@435: // Note that we first construct the presumed unbiased header so we duke@435: // don't accidentally blow away another thread's valid bias. duke@435: andq(swap_reg, duke@435: markOopDesc::biased_lock_mask_in_place | markOopDesc::age_mask_in_place | markOopDesc::epoch_mask_in_place); duke@435: movq(tmp_reg, swap_reg); duke@435: orq(tmp_reg, r15_thread); duke@435: if (os::is_MP()) { duke@435: lock(); duke@435: } duke@435: cmpxchgq(tmp_reg, Address(obj_reg, 0)); duke@435: // If the biasing toward our thread failed, this means that duke@435: // another thread succeeded in biasing it toward itself and we duke@435: // need to revoke that bias. The revocation will occur in the duke@435: // interpreter runtime in the slow case. duke@435: if (counters != NULL) { duke@435: cond_inc32(Assembler::zero, duke@435: ExternalAddress((address) counters->anonymously_biased_lock_entry_count_addr())); duke@435: } duke@435: if (slow_case != NULL) { duke@435: jcc(Assembler::notZero, *slow_case); duke@435: } duke@435: jmp(done); duke@435: duke@435: bind(try_rebias); duke@435: // At this point we know the epoch has expired, meaning that the duke@435: // current "bias owner", if any, is actually invalid. Under these duke@435: // circumstances _only_, we are allowed to use the current header's duke@435: // value as the comparison value when doing the cas to acquire the duke@435: // bias in the current epoch. In other words, we allow transfer of duke@435: // the bias from one thread to another directly in this situation. duke@435: // duke@435: // FIXME: due to a lack of registers we currently blow away the age duke@435: // bits in this situation. Should attempt to preserve them. duke@435: movq(tmp_reg, klass_addr); duke@435: movq(tmp_reg, Address(tmp_reg, Klass::prototype_header_offset_in_bytes() + klassOopDesc::klass_part_offset_in_bytes())); duke@435: orq(tmp_reg, r15_thread); duke@435: if (os::is_MP()) { duke@435: lock(); duke@435: } duke@435: cmpxchgq(tmp_reg, Address(obj_reg, 0)); duke@435: // If the biasing toward our thread failed, then another thread duke@435: // succeeded in biasing it toward itself and we need to revoke that duke@435: // bias. The revocation will occur in the runtime in the slow case. duke@435: if (counters != NULL) { duke@435: cond_inc32(Assembler::zero, duke@435: ExternalAddress((address) counters->rebiased_lock_entry_count_addr())); duke@435: } duke@435: if (slow_case != NULL) { duke@435: jcc(Assembler::notZero, *slow_case); duke@435: } duke@435: jmp(done); duke@435: duke@435: bind(try_revoke_bias); duke@435: // The prototype mark in the klass doesn't have the bias bit set any duke@435: // more, indicating that objects of this data type are not supposed duke@435: // to be biased any more. We are going to try to reset the mark of duke@435: // this object to the prototype value and fall through to the duke@435: // CAS-based locking scheme. Note that if our CAS fails, it means duke@435: // that another thread raced us for the privilege of revoking the duke@435: // bias of this particular object, so it's okay to continue in the duke@435: // normal locking code. duke@435: // duke@435: // FIXME: due to a lack of registers we currently blow away the age duke@435: // bits in this situation. Should attempt to preserve them. duke@435: movq(tmp_reg, klass_addr); duke@435: movq(tmp_reg, Address(tmp_reg, Klass::prototype_header_offset_in_bytes() + klassOopDesc::klass_part_offset_in_bytes())); duke@435: if (os::is_MP()) { duke@435: lock(); duke@435: } duke@435: cmpxchgq(tmp_reg, Address(obj_reg, 0)); duke@435: // Fall through to the normal CAS-based lock, because no matter what duke@435: // the result of the above CAS, some thread must have succeeded in duke@435: // removing the bias bit from the object's header. duke@435: if (counters != NULL) { duke@435: cond_inc32(Assembler::zero, duke@435: ExternalAddress((address) counters->revoked_lock_entry_count_addr())); duke@435: } duke@435: duke@435: bind(cas_label); duke@435: duke@435: return null_check_offset; duke@435: } duke@435: duke@435: duke@435: void MacroAssembler::biased_locking_exit(Register obj_reg, Register temp_reg, Label& done) { duke@435: assert(UseBiasedLocking, "why call this otherwise?"); duke@435: duke@435: // Check for biased locking unlock case, which is a no-op duke@435: // Note: we do not have to check the thread ID for two reasons. duke@435: // First, the interpreter checks for IllegalMonitorStateException at duke@435: // a higher level. Second, if the bias was revoked while we held the duke@435: // lock, the object could not be rebiased toward another thread, so duke@435: // the bias bit would be clear. duke@435: movq(temp_reg, Address(obj_reg, oopDesc::mark_offset_in_bytes())); duke@435: andq(temp_reg, markOopDesc::biased_lock_mask_in_place); duke@435: cmpq(temp_reg, markOopDesc::biased_lock_pattern); duke@435: jcc(Assembler::equal, done); duke@435: } duke@435: duke@435: duke@435: Assembler::Condition MacroAssembler::negate_condition(Assembler::Condition cond) { duke@435: switch (cond) { duke@435: // Note some conditions are synonyms for others duke@435: case Assembler::zero: return Assembler::notZero; duke@435: case Assembler::notZero: return Assembler::zero; duke@435: case Assembler::less: return Assembler::greaterEqual; duke@435: case Assembler::lessEqual: return Assembler::greater; duke@435: case Assembler::greater: return Assembler::lessEqual; duke@435: case Assembler::greaterEqual: return Assembler::less; duke@435: case Assembler::below: return Assembler::aboveEqual; duke@435: case Assembler::belowEqual: return Assembler::above; duke@435: case Assembler::above: return Assembler::belowEqual; duke@435: case Assembler::aboveEqual: return Assembler::below; duke@435: case Assembler::overflow: return Assembler::noOverflow; duke@435: case Assembler::noOverflow: return Assembler::overflow; duke@435: case Assembler::negative: return Assembler::positive; duke@435: case Assembler::positive: return Assembler::negative; duke@435: case Assembler::parity: return Assembler::noParity; duke@435: case Assembler::noParity: return Assembler::parity; duke@435: } duke@435: ShouldNotReachHere(); return Assembler::overflow; duke@435: } duke@435: duke@435: duke@435: void MacroAssembler::cond_inc32(Condition cond, AddressLiteral counter_addr) { duke@435: Condition negated_cond = negate_condition(cond); duke@435: Label L; duke@435: jcc(negated_cond, L); duke@435: atomic_incl(counter_addr); duke@435: bind(L); duke@435: } duke@435: duke@435: void MacroAssembler::atomic_incl(AddressLiteral counter_addr) { duke@435: pushfq(); duke@435: if (os::is_MP()) duke@435: lock(); duke@435: incrementl(counter_addr); duke@435: popfq(); duke@435: } duke@435: duke@435: SkipIfEqual::SkipIfEqual( duke@435: MacroAssembler* masm, const bool* flag_addr, bool value) { duke@435: _masm = masm; duke@435: _masm->cmp8(ExternalAddress((address)flag_addr), value); duke@435: _masm->jcc(Assembler::equal, _label); duke@435: } duke@435: duke@435: SkipIfEqual::~SkipIfEqual() { duke@435: _masm->bind(_label); duke@435: } duke@435: duke@435: void MacroAssembler::bang_stack_size(Register size, Register tmp) { duke@435: movq(tmp, rsp); duke@435: // Bang stack for total size given plus shadow page size. duke@435: // Bang one page at a time because large size can bang beyond yellow and duke@435: // red zones. duke@435: Label loop; duke@435: bind(loop); duke@435: movl(Address(tmp, (-os::vm_page_size())), size ); duke@435: subq(tmp, os::vm_page_size()); duke@435: subl(size, os::vm_page_size()); duke@435: jcc(Assembler::greater, loop); duke@435: duke@435: // Bang down shadow pages too. duke@435: // The -1 because we already subtracted 1 page. duke@435: for (int i = 0; i< StackShadowPages-1; i++) { duke@435: movq(Address(tmp, (-i*os::vm_page_size())), size ); duke@435: } duke@435: }