duke@435: /* xdono@631: * Copyright 1997-2008 Sun Microsystems, Inc. All Rights Reserved. duke@435: * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. duke@435: * duke@435: * This code is free software; you can redistribute it and/or modify it duke@435: * under the terms of the GNU General Public License version 2 only, as duke@435: * published by the Free Software Foundation. duke@435: * duke@435: * This code is distributed in the hope that it will be useful, but WITHOUT duke@435: * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or duke@435: * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License duke@435: * version 2 for more details (a copy is included in the LICENSE file that duke@435: * accompanied this code). duke@435: * duke@435: * You should have received a copy of the GNU General Public License version duke@435: * 2 along with this work; if not, write to the Free Software Foundation, duke@435: * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. duke@435: * duke@435: * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, duke@435: * CA 95054 USA or visit www.sun.com if you need additional information or duke@435: * have any questions. duke@435: * duke@435: */ duke@435: duke@435: # include "incls/_precompiled.incl" duke@435: # include "incls/_vm_version_x86_32.cpp.incl" duke@435: duke@435: duke@435: int VM_Version::_cpu; duke@435: int VM_Version::_model; duke@435: int VM_Version::_stepping; duke@435: int VM_Version::_cpuFeatures; duke@435: const char* VM_Version::_features_str = ""; duke@435: VM_Version::CpuidInfo VM_Version::_cpuid_info = { 0, }; duke@435: duke@435: static BufferBlob* stub_blob; duke@435: static const int stub_size = 300; duke@435: duke@435: extern "C" { duke@435: typedef void (*getPsrInfo_stub_t)(void*); duke@435: } duke@435: static getPsrInfo_stub_t getPsrInfo_stub = NULL; duke@435: duke@435: duke@435: class VM_Version_StubGenerator: public StubCodeGenerator { duke@435: public: duke@435: duke@435: VM_Version_StubGenerator(CodeBuffer *c) : StubCodeGenerator(c) {} duke@435: duke@435: address generate_getPsrInfo() { duke@435: // Flags to test CPU type. duke@435: const uint32_t EFL_AC = 0x40000; duke@435: const uint32_t EFL_ID = 0x200000; duke@435: // Values for when we don't have a CPUID instruction. duke@435: const int CPU_FAMILY_SHIFT = 8; duke@435: const uint32_t CPU_FAMILY_386 = (3 << CPU_FAMILY_SHIFT); duke@435: const uint32_t CPU_FAMILY_486 = (4 << CPU_FAMILY_SHIFT); duke@435: duke@435: Label detect_486, cpu486, detect_586, std_cpuid1; duke@435: Label ext_cpuid1, ext_cpuid5, done; duke@435: duke@435: StubCodeMark mark(this, "VM_Version", "getPsrInfo_stub"); duke@435: # define __ _masm-> duke@435: duke@435: address start = __ pc(); duke@435: duke@435: // duke@435: // void getPsrInfo(VM_Version::CpuidInfo* cpuid_info); duke@435: // duke@435: __ pushl(rbp); duke@435: __ movl(rbp, Address(rsp, 8)); // cpuid_info address duke@435: __ pushl(rbx); duke@435: __ pushl(rsi); duke@435: __ pushfd(); // preserve rbx, and flags duke@435: __ popl(rax); duke@435: __ pushl(rax); duke@435: __ movl(rcx, rax); duke@435: // duke@435: // if we are unable to change the AC flag, we have a 386 duke@435: // duke@435: __ xorl(rax, EFL_AC); duke@435: __ pushl(rax); duke@435: __ popfd(); duke@435: __ pushfd(); duke@435: __ popl(rax); duke@435: __ cmpl(rax, rcx); duke@435: __ jccb(Assembler::notEqual, detect_486); duke@435: duke@435: __ movl(rax, CPU_FAMILY_386); duke@435: __ movl(Address(rbp, in_bytes(VM_Version::std_cpuid1_offset())), rax); duke@435: __ jmp(done); duke@435: duke@435: // duke@435: // If we are unable to change the ID flag, we have a 486 which does duke@435: // not support the "cpuid" instruction. duke@435: // duke@435: __ bind(detect_486); duke@435: __ movl(rax, rcx); duke@435: __ xorl(rax, EFL_ID); duke@435: __ pushl(rax); duke@435: __ popfd(); duke@435: __ pushfd(); duke@435: __ popl(rax); duke@435: __ cmpl(rcx, rax); duke@435: __ jccb(Assembler::notEqual, detect_586); duke@435: duke@435: __ bind(cpu486); duke@435: __ movl(rax, CPU_FAMILY_486); duke@435: __ movl(Address(rbp, in_bytes(VM_Version::std_cpuid1_offset())), rax); duke@435: __ jmp(done); duke@435: duke@435: // duke@435: // at this point, we have a chip which supports the "cpuid" instruction duke@435: // duke@435: __ bind(detect_586); duke@435: __ xorl(rax, rax); duke@435: __ cpuid(); duke@435: __ orl(rax, rax); duke@435: __ jcc(Assembler::equal, cpu486); // if cpuid doesn't support an input duke@435: // value of at least 1, we give up and duke@435: // assume a 486 duke@435: __ leal(rsi, Address(rbp, in_bytes(VM_Version::std_cpuid0_offset()))); duke@435: __ movl(Address(rsi, 0), rax); duke@435: __ movl(Address(rsi, 4), rbx); duke@435: __ movl(Address(rsi, 8), rcx); duke@435: __ movl(Address(rsi,12), rdx); duke@435: duke@435: __ cmpl(rax, 3); // Is cpuid(0x4) supported? duke@435: __ jccb(Assembler::belowEqual, std_cpuid1); duke@435: duke@435: // duke@435: // cpuid(0x4) Deterministic cache params duke@435: // duke@435: __ movl(rax, 4); // and rcx already set to 0x0 duke@435: __ xorl(rcx, rcx); duke@435: __ cpuid(); duke@435: __ pushl(rax); duke@435: __ andl(rax, 0x1f); // Determine if valid cache parameters used duke@435: __ orl(rax, rax); // rax,[4:0] == 0 indicates invalid cache duke@435: __ popl(rax); duke@435: __ jccb(Assembler::equal, std_cpuid1); duke@435: duke@435: __ leal(rsi, Address(rbp, in_bytes(VM_Version::dcp_cpuid4_offset()))); duke@435: __ movl(Address(rsi, 0), rax); duke@435: __ movl(Address(rsi, 4), rbx); duke@435: __ movl(Address(rsi, 8), rcx); duke@435: __ movl(Address(rsi,12), rdx); duke@435: duke@435: // duke@435: // Standard cpuid(0x1) duke@435: // duke@435: __ bind(std_cpuid1); duke@435: __ movl(rax, 1); duke@435: __ cpuid(); duke@435: __ leal(rsi, Address(rbp, in_bytes(VM_Version::std_cpuid1_offset()))); duke@435: __ movl(Address(rsi, 0), rax); duke@435: __ movl(Address(rsi, 4), rbx); duke@435: __ movl(Address(rsi, 8), rcx); duke@435: __ movl(Address(rsi,12), rdx); duke@435: duke@435: __ movl(rax, 0x80000000); duke@435: __ cpuid(); duke@435: __ cmpl(rax, 0x80000000); // Is cpuid(0x80000001) supported? duke@435: __ jcc(Assembler::belowEqual, done); duke@435: __ cmpl(rax, 0x80000004); // Is cpuid(0x80000005) supported? duke@435: __ jccb(Assembler::belowEqual, ext_cpuid1); duke@435: __ cmpl(rax, 0x80000007); // Is cpuid(0x80000008) supported? duke@435: __ jccb(Assembler::belowEqual, ext_cpuid5); duke@435: // duke@435: // Extended cpuid(0x80000008) duke@435: // duke@435: __ movl(rax, 0x80000008); duke@435: __ cpuid(); duke@435: __ leal(rsi, Address(rbp, in_bytes(VM_Version::ext_cpuid8_offset()))); duke@435: __ movl(Address(rsi, 0), rax); duke@435: __ movl(Address(rsi, 4), rbx); duke@435: __ movl(Address(rsi, 8), rcx); duke@435: __ movl(Address(rsi,12), rdx); duke@435: duke@435: // duke@435: // Extended cpuid(0x80000005) duke@435: // duke@435: __ bind(ext_cpuid5); duke@435: __ movl(rax, 0x80000005); duke@435: __ cpuid(); duke@435: __ leal(rsi, Address(rbp, in_bytes(VM_Version::ext_cpuid5_offset()))); duke@435: __ movl(Address(rsi, 0), rax); duke@435: __ movl(Address(rsi, 4), rbx); duke@435: __ movl(Address(rsi, 8), rcx); duke@435: __ movl(Address(rsi,12), rdx); duke@435: duke@435: // duke@435: // Extended cpuid(0x80000001) duke@435: // duke@435: __ bind(ext_cpuid1); duke@435: __ movl(rax, 0x80000001); duke@435: __ cpuid(); duke@435: __ leal(rsi, Address(rbp, in_bytes(VM_Version::ext_cpuid1_offset()))); duke@435: __ movl(Address(rsi, 0), rax); duke@435: __ movl(Address(rsi, 4), rbx); duke@435: __ movl(Address(rsi, 8), rcx); duke@435: __ movl(Address(rsi,12), rdx); duke@435: duke@435: // duke@435: // return duke@435: // duke@435: __ bind(done); duke@435: __ popfd(); duke@435: __ popl(rsi); duke@435: __ popl(rbx); duke@435: __ popl(rbp); duke@435: __ ret(0); duke@435: duke@435: # undef __ duke@435: duke@435: return start; duke@435: }; duke@435: }; duke@435: duke@435: duke@435: void VM_Version::get_processor_features() { duke@435: duke@435: _cpu = 4; // 486 by default duke@435: _model = 0; duke@435: _stepping = 0; duke@435: _cpuFeatures = 0; duke@435: _logical_processors_per_package = 1; duke@435: if (!Use486InstrsOnly) { duke@435: // Get raw processor info duke@435: getPsrInfo_stub(&_cpuid_info); duke@435: assert_is_initialized(); duke@435: _cpu = extended_cpu_family(); duke@435: _model = extended_cpu_model(); duke@435: _stepping = cpu_stepping(); duke@435: if (cpu_family() > 4) { // it supports CPUID duke@435: _cpuFeatures = feature_flags(); duke@435: // Logical processors are only available on P4s and above, duke@435: // and only if hyperthreading is available. duke@435: _logical_processors_per_package = logical_processor_count(); duke@435: } duke@435: } duke@435: _supports_cx8 = supports_cmpxchg8(); duke@435: // if the OS doesn't support SSE, we can't use this feature even if the HW does duke@435: if( !os::supports_sse()) duke@435: _cpuFeatures &= ~(CPU_SSE|CPU_SSE2|CPU_SSE3|CPU_SSSE3|CPU_SSE4|CPU_SSE4A); duke@435: if (UseSSE < 4) duke@435: _cpuFeatures &= ~CPU_SSE4; duke@435: if (UseSSE < 3) { duke@435: _cpuFeatures &= ~CPU_SSE3; duke@435: _cpuFeatures &= ~CPU_SSSE3; duke@435: _cpuFeatures &= ~CPU_SSE4A; duke@435: } duke@435: if (UseSSE < 2) duke@435: _cpuFeatures &= ~CPU_SSE2; duke@435: if (UseSSE < 1) duke@435: _cpuFeatures &= ~CPU_SSE; duke@435: duke@435: if (logical_processors_per_package() == 1) { duke@435: // HT processor could be installed on a system which doesn't support HT. duke@435: _cpuFeatures &= ~CPU_HT; duke@435: } duke@435: duke@435: char buf[256]; duke@435: jio_snprintf(buf, sizeof(buf), "(%u cores per cpu, %u threads per core) family %d model %d stepping %d%s%s%s%s%s%s%s%s%s%s%s%s%s%s", duke@435: cores_per_cpu(), threads_per_core(), duke@435: cpu_family(), _model, _stepping, duke@435: (supports_cmov() ? ", cmov" : ""), duke@435: (supports_cmpxchg8() ? ", cx8" : ""), duke@435: (supports_fxsr() ? ", fxsr" : ""), duke@435: (supports_mmx() ? ", mmx" : ""), duke@435: (supports_sse() ? ", sse" : ""), duke@435: (supports_sse2() ? ", sse2" : ""), duke@435: (supports_sse3() ? ", sse3" : ""), duke@435: (supports_ssse3()? ", ssse3": ""), duke@435: (supports_sse4() ? ", sse4" : ""), duke@435: (supports_mmx_ext() ? ", mmxext" : ""), duke@435: (supports_3dnow() ? ", 3dnow" : ""), duke@435: (supports_3dnow2() ? ", 3dnowext" : ""), duke@435: (supports_sse4a() ? ", sse4a": ""), duke@435: (supports_ht() ? ", ht": "")); duke@435: _features_str = strdup(buf); duke@435: duke@435: // UseSSE is set to the smaller of what hardware supports and what duke@435: // the command line requires. I.e., you cannot set UseSSE to 2 on duke@435: // older Pentiums which do not support it. duke@435: if( UseSSE > 4 ) UseSSE=4; duke@435: if( UseSSE < 0 ) UseSSE=0; duke@435: if( !supports_sse4() ) // Drop to 3 if no SSE4 support duke@435: UseSSE = MIN2((intx)3,UseSSE); duke@435: if( !supports_sse3() ) // Drop to 2 if no SSE3 support duke@435: UseSSE = MIN2((intx)2,UseSSE); duke@435: if( !supports_sse2() ) // Drop to 1 if no SSE2 support duke@435: UseSSE = MIN2((intx)1,UseSSE); duke@435: if( !supports_sse () ) // Drop to 0 if no SSE support duke@435: UseSSE = 0; duke@435: duke@435: // On new cpus instructions which update whole XMM register should be used duke@435: // to prevent partial register stall due to dependencies on high half. duke@435: // duke@435: // UseXmmLoadAndClearUpper == true --> movsd(xmm, mem) duke@435: // UseXmmLoadAndClearUpper == false --> movlpd(xmm, mem) duke@435: // UseXmmRegToRegMoveAll == true --> movaps(xmm, xmm), movapd(xmm, xmm). duke@435: // UseXmmRegToRegMoveAll == false --> movss(xmm, xmm), movsd(xmm, xmm). duke@435: duke@435: if( is_amd() ) { // AMD cpus specific settings duke@435: if( supports_sse2() && FLAG_IS_DEFAULT(UseAddressNop) ) { duke@435: // Use it on new AMD cpus starting from Opteron. duke@435: UseAddressNop = true; duke@435: } duke@435: if( FLAG_IS_DEFAULT(UseXmmLoadAndClearUpper) ) { duke@435: if( supports_sse4a() ) { duke@435: UseXmmLoadAndClearUpper = true; // use movsd only on '10h' Opteron duke@435: } else { duke@435: UseXmmLoadAndClearUpper = false; duke@435: } duke@435: } duke@435: if( FLAG_IS_DEFAULT(UseXmmRegToRegMoveAll) ) { duke@435: if( supports_sse4a() ) { duke@435: UseXmmRegToRegMoveAll = true; // use movaps, movapd only on '10h' duke@435: } else { duke@435: UseXmmRegToRegMoveAll = false; duke@435: } duke@435: } kvn@506: if( FLAG_IS_DEFAULT(UseXmmI2F) ) { kvn@506: if( supports_sse4a() ) { kvn@506: UseXmmI2F = true; kvn@506: } else { kvn@506: UseXmmI2F = false; kvn@506: } kvn@506: } kvn@506: if( FLAG_IS_DEFAULT(UseXmmI2D) ) { kvn@506: if( supports_sse4a() ) { kvn@506: UseXmmI2D = true; kvn@506: } else { kvn@506: UseXmmI2D = false; kvn@506: } kvn@506: } duke@435: } duke@435: duke@435: if( is_intel() ) { // Intel cpus specific settings duke@435: if( FLAG_IS_DEFAULT(UseStoreImmI16) ) { duke@435: UseStoreImmI16 = false; // don't use it on Intel cpus duke@435: } duke@435: if( cpu_family() == 6 || cpu_family() == 15 ) { duke@435: if( FLAG_IS_DEFAULT(UseAddressNop) ) { duke@435: // Use it on all Intel cpus starting from PentiumPro duke@435: UseAddressNop = true; duke@435: } duke@435: } duke@435: if( FLAG_IS_DEFAULT(UseXmmLoadAndClearUpper) ) { duke@435: UseXmmLoadAndClearUpper = true; // use movsd on all Intel cpus duke@435: } duke@435: if( FLAG_IS_DEFAULT(UseXmmRegToRegMoveAll) ) { duke@435: if( supports_sse3() ) { duke@435: UseXmmRegToRegMoveAll = true; // use movaps, movapd on new Intel cpus duke@435: } else { duke@435: UseXmmRegToRegMoveAll = false; duke@435: } duke@435: } duke@435: if( cpu_family() == 6 && supports_sse3() ) { // New Intel cpus duke@435: #ifdef COMPILER2 duke@435: if( FLAG_IS_DEFAULT(MaxLoopPad) ) { duke@435: // For new Intel cpus do the next optimization: duke@435: // don't align the beginning of a loop if there are enough instructions duke@435: // left (NumberOfLoopInstrToAlign defined in c2_globals.hpp) duke@435: // in current fetch line (OptoLoopAlignment) or the padding duke@435: // is big (> MaxLoopPad). duke@435: // Set MaxLoopPad to 11 for new Intel cpus to reduce number of duke@435: // generated NOP instructions. 11 is the largest size of one duke@435: // address NOP instruction '0F 1F' (see Assembler::nop(i)). duke@435: MaxLoopPad = 11; duke@435: } duke@435: #endif // COMPILER2 duke@435: } duke@435: } duke@435: duke@435: assert(0 <= ReadPrefetchInstr && ReadPrefetchInstr <= 3, "invalid value"); duke@435: assert(0 <= AllocatePrefetchInstr && AllocatePrefetchInstr <= 3, "invalid value"); duke@435: duke@435: // set valid Prefetch instruction duke@435: if( ReadPrefetchInstr < 0 ) ReadPrefetchInstr = 0; duke@435: if( ReadPrefetchInstr > 3 ) ReadPrefetchInstr = 3; duke@435: if( ReadPrefetchInstr == 3 && !supports_3dnow() ) ReadPrefetchInstr = 0; duke@435: if( !supports_sse() && supports_3dnow() ) ReadPrefetchInstr = 3; duke@435: duke@435: if( AllocatePrefetchInstr < 0 ) AllocatePrefetchInstr = 0; duke@435: if( AllocatePrefetchInstr > 3 ) AllocatePrefetchInstr = 3; duke@435: if( AllocatePrefetchInstr == 3 && !supports_3dnow() ) AllocatePrefetchInstr=0; duke@435: if( !supports_sse() && supports_3dnow() ) AllocatePrefetchInstr = 3; duke@435: duke@435: // Allocation prefetch settings duke@435: intx cache_line_size = L1_data_cache_line_size(); duke@435: if( cache_line_size > AllocatePrefetchStepSize ) duke@435: AllocatePrefetchStepSize = cache_line_size; duke@435: if( FLAG_IS_DEFAULT(AllocatePrefetchLines) ) duke@435: AllocatePrefetchLines = 3; // Optimistic value duke@435: assert(AllocatePrefetchLines > 0, "invalid value"); duke@435: if( AllocatePrefetchLines < 1 ) // set valid value in product VM duke@435: AllocatePrefetchLines = 1; // Conservative value duke@435: duke@435: AllocatePrefetchDistance = allocate_prefetch_distance(); duke@435: AllocatePrefetchStyle = allocate_prefetch_style(); duke@435: duke@435: if( AllocatePrefetchStyle == 2 && is_intel() && duke@435: cpu_family() == 6 && supports_sse3() ) { // watermark prefetching on Core duke@435: AllocatePrefetchDistance = 320; duke@435: } duke@435: assert(AllocatePrefetchDistance % AllocatePrefetchStepSize == 0, "invalid value"); duke@435: duke@435: #ifndef PRODUCT duke@435: if (PrintMiscellaneous && Verbose) { duke@435: tty->print_cr("Logical CPUs per package: %u", duke@435: logical_processors_per_package()); duke@435: tty->print_cr("UseSSE=%d",UseSSE); duke@435: tty->print("Allocation: "); duke@435: if (AllocatePrefetchStyle <= 0 || UseSSE == 0 && !supports_3dnow()) { duke@435: tty->print_cr("no prefetching"); duke@435: } else { duke@435: if (UseSSE == 0 && supports_3dnow()) { duke@435: tty->print("PREFETCHW"); duke@435: } else if (UseSSE >= 1) { duke@435: if (AllocatePrefetchInstr == 0) { duke@435: tty->print("PREFETCHNTA"); duke@435: } else if (AllocatePrefetchInstr == 1) { duke@435: tty->print("PREFETCHT0"); duke@435: } else if (AllocatePrefetchInstr == 2) { duke@435: tty->print("PREFETCHT2"); duke@435: } else if (AllocatePrefetchInstr == 3) { duke@435: tty->print("PREFETCHW"); duke@435: } duke@435: } duke@435: if (AllocatePrefetchLines > 1) { duke@435: tty->print_cr(" %d, %d lines with step %d bytes", AllocatePrefetchDistance, AllocatePrefetchLines, AllocatePrefetchStepSize); duke@435: } else { duke@435: tty->print_cr(" %d, one line", AllocatePrefetchDistance); duke@435: } duke@435: } duke@435: } duke@435: #endif // !PRODUCT duke@435: } duke@435: duke@435: void VM_Version::initialize() { duke@435: ResourceMark rm; duke@435: // Making this stub must be FIRST use of assembler duke@435: duke@435: stub_blob = BufferBlob::create("getPsrInfo_stub", stub_size); duke@435: if (stub_blob == NULL) { duke@435: vm_exit_during_initialization("Unable to allocate getPsrInfo_stub"); duke@435: } duke@435: CodeBuffer c(stub_blob->instructions_begin(), duke@435: stub_blob->instructions_size()); duke@435: VM_Version_StubGenerator g(&c); duke@435: getPsrInfo_stub = CAST_TO_FN_PTR(getPsrInfo_stub_t, duke@435: g.generate_getPsrInfo()); duke@435: duke@435: get_processor_features(); duke@435: }