duke@435: /* xdono@631: * Copyright 2005-2008 Sun Microsystems, Inc. All Rights Reserved. duke@435: * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. duke@435: * duke@435: * This code is free software; you can redistribute it and/or modify it duke@435: * under the terms of the GNU General Public License version 2 only, as duke@435: * published by the Free Software Foundation. duke@435: * duke@435: * This code is distributed in the hope that it will be useful, but WITHOUT duke@435: * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or duke@435: * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License duke@435: * version 2 for more details (a copy is included in the LICENSE file that duke@435: * accompanied this code). duke@435: * duke@435: * You should have received a copy of the GNU General Public License version duke@435: * 2 along with this work; if not, write to the Free Software Foundation, duke@435: * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. duke@435: * duke@435: * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, duke@435: * CA 95054 USA or visit www.sun.com if you need additional information or duke@435: * have any questions. duke@435: * duke@435: */ duke@435: duke@435: # include "incls/_precompiled.incl" duke@435: # include "incls/_c1_LIRGenerator_sparc.cpp.incl" duke@435: duke@435: #ifdef ASSERT duke@435: #define __ gen()->lir(__FILE__, __LINE__)-> duke@435: #else duke@435: #define __ gen()->lir()-> duke@435: #endif duke@435: duke@435: void LIRItem::load_byte_item() { duke@435: // byte loads use same registers as other loads duke@435: load_item(); duke@435: } duke@435: duke@435: duke@435: void LIRItem::load_nonconstant() { duke@435: LIR_Opr r = value()->operand(); duke@435: if (_gen->can_inline_as_constant(value())) { duke@435: if (!r->is_constant()) { duke@435: r = LIR_OprFact::value_type(value()->type()); duke@435: } duke@435: _result = r; duke@435: } else { duke@435: load_item(); duke@435: } duke@435: } duke@435: duke@435: duke@435: //-------------------------------------------------------------- duke@435: // LIRGenerator duke@435: //-------------------------------------------------------------- duke@435: duke@435: LIR_Opr LIRGenerator::exceptionOopOpr() { return FrameMap::Oexception_opr; } duke@435: LIR_Opr LIRGenerator::exceptionPcOpr() { return FrameMap::Oissuing_pc_opr; } duke@435: LIR_Opr LIRGenerator::syncTempOpr() { return new_register(T_OBJECT); } duke@435: LIR_Opr LIRGenerator::getThreadTemp() { return rlock_callee_saved(T_INT); } duke@435: duke@435: LIR_Opr LIRGenerator::result_register_for(ValueType* type, bool callee) { duke@435: LIR_Opr opr; duke@435: switch (type->tag()) { duke@435: case intTag: opr = callee ? FrameMap::I0_opr : FrameMap::O0_opr; break; duke@435: case objectTag: opr = callee ? FrameMap::I0_oop_opr : FrameMap::O0_oop_opr; break; duke@435: case longTag: opr = callee ? FrameMap::in_long_opr : FrameMap::out_long_opr; break; duke@435: case floatTag: opr = FrameMap::F0_opr; break; duke@435: case doubleTag: opr = FrameMap::F0_double_opr; break; duke@435: duke@435: case addressTag: duke@435: default: ShouldNotReachHere(); return LIR_OprFact::illegalOpr; duke@435: } duke@435: duke@435: assert(opr->type_field() == as_OprType(as_BasicType(type)), "type mismatch"); duke@435: return opr; duke@435: } duke@435: duke@435: LIR_Opr LIRGenerator::rlock_callee_saved(BasicType type) { duke@435: LIR_Opr reg = new_register(type); duke@435: set_vreg_flag(reg, callee_saved); duke@435: return reg; duke@435: } duke@435: duke@435: duke@435: LIR_Opr LIRGenerator::rlock_byte(BasicType type) { duke@435: return new_register(T_INT); duke@435: } duke@435: duke@435: duke@435: duke@435: duke@435: duke@435: //--------- loading items into registers -------------------------------- duke@435: duke@435: // SPARC cannot inline all constants duke@435: bool LIRGenerator::can_store_as_constant(Value v, BasicType type) const { duke@435: if (v->type()->as_IntConstant() != NULL) { duke@435: return v->type()->as_IntConstant()->value() == 0; duke@435: } else if (v->type()->as_LongConstant() != NULL) { duke@435: return v->type()->as_LongConstant()->value() == 0L; duke@435: } else if (v->type()->as_ObjectConstant() != NULL) { duke@435: return v->type()->as_ObjectConstant()->value()->is_null_object(); duke@435: } else { duke@435: return false; duke@435: } duke@435: } duke@435: duke@435: duke@435: // only simm13 constants can be inlined duke@435: bool LIRGenerator:: can_inline_as_constant(Value i) const { duke@435: if (i->type()->as_IntConstant() != NULL) { duke@435: return Assembler::is_simm13(i->type()->as_IntConstant()->value()); duke@435: } else { duke@435: return can_store_as_constant(i, as_BasicType(i->type())); duke@435: } duke@435: } duke@435: duke@435: duke@435: bool LIRGenerator:: can_inline_as_constant(LIR_Const* c) const { duke@435: if (c->type() == T_INT) { duke@435: return Assembler::is_simm13(c->as_jint()); duke@435: } duke@435: return false; duke@435: } duke@435: duke@435: duke@435: LIR_Opr LIRGenerator::safepoint_poll_register() { duke@435: return new_register(T_INT); duke@435: } duke@435: duke@435: duke@435: duke@435: LIR_Address* LIRGenerator::generate_address(LIR_Opr base, LIR_Opr index, duke@435: int shift, int disp, BasicType type) { duke@435: assert(base->is_register(), "must be"); duke@435: duke@435: // accumulate fixed displacements duke@435: if (index->is_constant()) { duke@435: disp += index->as_constant_ptr()->as_jint() << shift; duke@435: index = LIR_OprFact::illegalOpr; duke@435: } duke@435: duke@435: if (index->is_register()) { duke@435: // apply the shift and accumulate the displacement duke@435: if (shift > 0) { duke@435: LIR_Opr tmp = new_register(T_INT); duke@435: __ shift_left(index, shift, tmp); duke@435: index = tmp; duke@435: } duke@435: if (disp != 0) { duke@435: LIR_Opr tmp = new_register(T_INT); duke@435: if (Assembler::is_simm13(disp)) { duke@435: __ add(tmp, LIR_OprFact::intConst(disp), tmp); duke@435: index = tmp; duke@435: } else { duke@435: __ move(LIR_OprFact::intConst(disp), tmp); duke@435: __ add(tmp, index, tmp); duke@435: index = tmp; duke@435: } duke@435: disp = 0; duke@435: } duke@435: } else if (disp != 0 && !Assembler::is_simm13(disp)) { duke@435: // index is illegal so replace it with the displacement loaded into a register duke@435: index = new_register(T_INT); duke@435: __ move(LIR_OprFact::intConst(disp), index); duke@435: disp = 0; duke@435: } duke@435: duke@435: // at this point we either have base + index or base + displacement duke@435: if (disp == 0) { duke@435: return new LIR_Address(base, index, type); duke@435: } else { duke@435: assert(Assembler::is_simm13(disp), "must be"); duke@435: return new LIR_Address(base, disp, type); duke@435: } duke@435: } duke@435: duke@435: duke@435: LIR_Address* LIRGenerator::emit_array_address(LIR_Opr array_opr, LIR_Opr index_opr, duke@435: BasicType type, bool needs_card_mark) { kvn@464: int elem_size = type2aelembytes(type); duke@435: int shift = exact_log2(elem_size); duke@435: duke@435: LIR_Opr base_opr; duke@435: int offset = arrayOopDesc::base_offset_in_bytes(type); duke@435: duke@435: if (index_opr->is_constant()) { duke@435: int i = index_opr->as_constant_ptr()->as_jint(); duke@435: int array_offset = i * elem_size; duke@435: if (Assembler::is_simm13(array_offset + offset)) { duke@435: base_opr = array_opr; duke@435: offset = array_offset + offset; duke@435: } else { duke@435: base_opr = new_pointer_register(); duke@435: if (Assembler::is_simm13(array_offset)) { duke@435: __ add(array_opr, LIR_OprFact::intptrConst(array_offset), base_opr); duke@435: } else { duke@435: __ move(LIR_OprFact::intptrConst(array_offset), base_opr); duke@435: __ add(base_opr, array_opr, base_opr); duke@435: } duke@435: } duke@435: } else { duke@435: #ifdef _LP64 duke@435: if (index_opr->type() == T_INT) { duke@435: LIR_Opr tmp = new_register(T_LONG); duke@435: __ convert(Bytecodes::_i2l, index_opr, tmp); duke@435: index_opr = tmp; duke@435: } duke@435: #endif duke@435: duke@435: base_opr = new_pointer_register(); duke@435: assert (index_opr->is_register(), "Must be register"); duke@435: if (shift > 0) { duke@435: __ shift_left(index_opr, shift, base_opr); duke@435: __ add(base_opr, array_opr, base_opr); duke@435: } else { duke@435: __ add(index_opr, array_opr, base_opr); duke@435: } duke@435: } duke@435: if (needs_card_mark) { duke@435: LIR_Opr ptr = new_pointer_register(); duke@435: __ add(base_opr, LIR_OprFact::intptrConst(offset), ptr); duke@435: return new LIR_Address(ptr, 0, type); duke@435: } else { duke@435: return new LIR_Address(base_opr, offset, type); duke@435: } duke@435: } duke@435: duke@435: duke@435: void LIRGenerator::increment_counter(address counter, int step) { duke@435: LIR_Opr pointer = new_pointer_register(); duke@435: __ move(LIR_OprFact::intptrConst(counter), pointer); duke@435: LIR_Address* addr = new LIR_Address(pointer, 0, T_INT); duke@435: increment_counter(addr, step); duke@435: } duke@435: duke@435: void LIRGenerator::increment_counter(LIR_Address* addr, int step) { duke@435: LIR_Opr temp = new_register(T_INT); duke@435: __ move(addr, temp); duke@435: LIR_Opr c = LIR_OprFact::intConst(step); duke@435: if (Assembler::is_simm13(step)) { duke@435: __ add(temp, c, temp); duke@435: } else { duke@435: LIR_Opr temp2 = new_register(T_INT); duke@435: __ move(c, temp2); duke@435: __ add(temp, temp2, temp); duke@435: } duke@435: __ move(temp, addr); duke@435: } duke@435: duke@435: duke@435: void LIRGenerator::cmp_mem_int(LIR_Condition condition, LIR_Opr base, int disp, int c, CodeEmitInfo* info) { duke@435: LIR_Opr o7opr = FrameMap::O7_opr; duke@435: __ load(new LIR_Address(base, disp, T_INT), o7opr, info); duke@435: __ cmp(condition, o7opr, c); duke@435: } duke@435: duke@435: duke@435: void LIRGenerator::cmp_reg_mem(LIR_Condition condition, LIR_Opr reg, LIR_Opr base, int disp, BasicType type, CodeEmitInfo* info) { duke@435: LIR_Opr o7opr = FrameMap::O7_opr; duke@435: __ load(new LIR_Address(base, disp, type), o7opr, info); duke@435: __ cmp(condition, reg, o7opr); duke@435: } duke@435: duke@435: duke@435: void LIRGenerator::cmp_reg_mem(LIR_Condition condition, LIR_Opr reg, LIR_Opr base, LIR_Opr disp, BasicType type, CodeEmitInfo* info) { duke@435: LIR_Opr o7opr = FrameMap::O7_opr; duke@435: __ load(new LIR_Address(base, disp, type), o7opr, info); duke@435: __ cmp(condition, reg, o7opr); duke@435: } duke@435: duke@435: duke@435: bool LIRGenerator::strength_reduce_multiply(LIR_Opr left, int c, LIR_Opr result, LIR_Opr tmp) { duke@435: assert(left != result, "should be different registers"); duke@435: if (is_power_of_2(c + 1)) { duke@435: __ shift_left(left, log2_intptr(c + 1), result); duke@435: __ sub(result, left, result); duke@435: return true; duke@435: } else if (is_power_of_2(c - 1)) { duke@435: __ shift_left(left, log2_intptr(c - 1), result); duke@435: __ add(result, left, result); duke@435: return true; duke@435: } duke@435: return false; duke@435: } duke@435: duke@435: duke@435: void LIRGenerator::store_stack_parameter (LIR_Opr item, ByteSize offset_from_sp) { duke@435: BasicType t = item->type(); duke@435: LIR_Opr sp_opr = FrameMap::SP_opr; duke@435: if ((t == T_LONG || t == T_DOUBLE) && duke@435: ((in_bytes(offset_from_sp) - STACK_BIAS) % 8 != 0)) { duke@435: __ unaligned_move(item, new LIR_Address(sp_opr, in_bytes(offset_from_sp), t)); duke@435: } else { duke@435: __ move(item, new LIR_Address(sp_opr, in_bytes(offset_from_sp), t)); duke@435: } duke@435: } duke@435: duke@435: //---------------------------------------------------------------------- duke@435: // visitor functions duke@435: //---------------------------------------------------------------------- duke@435: duke@435: duke@435: void LIRGenerator::do_StoreIndexed(StoreIndexed* x) { duke@435: assert(x->is_root(),""); duke@435: bool needs_range_check = true; duke@435: bool use_length = x->length() != NULL; duke@435: bool obj_store = x->elt_type() == T_ARRAY || x->elt_type() == T_OBJECT; duke@435: bool needs_store_check = obj_store && (x->value()->as_Constant() == NULL || duke@435: !get_jobject_constant(x->value())->is_null_object()); duke@435: duke@435: LIRItem array(x->array(), this); duke@435: LIRItem index(x->index(), this); duke@435: LIRItem value(x->value(), this); duke@435: LIRItem length(this); duke@435: duke@435: array.load_item(); duke@435: index.load_nonconstant(); duke@435: duke@435: if (use_length) { duke@435: needs_range_check = x->compute_needs_range_check(); duke@435: if (needs_range_check) { duke@435: length.set_instruction(x->length()); duke@435: length.load_item(); duke@435: } duke@435: } duke@435: if (needs_store_check) { duke@435: value.load_item(); duke@435: } else { duke@435: value.load_for_store(x->elt_type()); duke@435: } duke@435: duke@435: set_no_result(x); duke@435: duke@435: // the CodeEmitInfo must be duplicated for each different duke@435: // LIR-instruction because spilling can occur anywhere between two duke@435: // instructions and so the debug information must be different duke@435: CodeEmitInfo* range_check_info = state_for(x); duke@435: CodeEmitInfo* null_check_info = NULL; duke@435: if (x->needs_null_check()) { duke@435: null_check_info = new CodeEmitInfo(range_check_info); duke@435: } duke@435: duke@435: // emit array address setup early so it schedules better duke@435: LIR_Address* array_addr = emit_array_address(array.result(), index.result(), x->elt_type(), obj_store); duke@435: duke@435: if (GenerateRangeChecks && needs_range_check) { duke@435: if (use_length) { duke@435: __ cmp(lir_cond_belowEqual, length.result(), index.result()); duke@435: __ branch(lir_cond_belowEqual, T_INT, new RangeCheckStub(range_check_info, index.result())); duke@435: } else { duke@435: array_range_check(array.result(), index.result(), null_check_info, range_check_info); duke@435: // range_check also does the null check duke@435: null_check_info = NULL; duke@435: } duke@435: } duke@435: duke@435: if (GenerateArrayStoreCheck && needs_store_check) { duke@435: LIR_Opr tmp1 = FrameMap::G1_opr; duke@435: LIR_Opr tmp2 = FrameMap::G3_opr; duke@435: LIR_Opr tmp3 = FrameMap::G5_opr; duke@435: duke@435: CodeEmitInfo* store_check_info = new CodeEmitInfo(range_check_info); duke@435: __ store_check(value.result(), array.result(), tmp1, tmp2, tmp3, store_check_info); duke@435: } duke@435: ysr@777: if (obj_store) { ysr@777: // Needs GC write barriers. ysr@777: pre_barrier(LIR_OprFact::address(array_addr), false, NULL); ysr@777: } duke@435: __ move(value.result(), array_addr, null_check_info); duke@435: if (obj_store) { never@1254: // Precise card mark duke@435: post_barrier(LIR_OprFact::address(array_addr), value.result()); duke@435: } duke@435: } duke@435: duke@435: duke@435: void LIRGenerator::do_MonitorEnter(MonitorEnter* x) { duke@435: assert(x->is_root(),""); duke@435: LIRItem obj(x->obj(), this); duke@435: obj.load_item(); duke@435: duke@435: set_no_result(x); duke@435: duke@435: LIR_Opr lock = FrameMap::G1_opr; duke@435: LIR_Opr scratch = FrameMap::G3_opr; duke@435: LIR_Opr hdr = FrameMap::G4_opr; duke@435: duke@435: CodeEmitInfo* info_for_exception = NULL; duke@435: if (x->needs_null_check()) { duke@435: info_for_exception = state_for(x, x->lock_stack_before()); duke@435: } duke@435: duke@435: // this CodeEmitInfo must not have the xhandlers because here the duke@435: // object is already locked (xhandlers expects object to be unlocked) duke@435: CodeEmitInfo* info = state_for(x, x->state(), true); duke@435: monitor_enter(obj.result(), lock, hdr, scratch, x->monitor_no(), info_for_exception, info); duke@435: } duke@435: duke@435: duke@435: void LIRGenerator::do_MonitorExit(MonitorExit* x) { duke@435: assert(x->is_root(),""); duke@435: LIRItem obj(x->obj(), this); duke@435: obj.dont_load_item(); duke@435: duke@435: set_no_result(x); duke@435: LIR_Opr lock = FrameMap::G1_opr; duke@435: LIR_Opr hdr = FrameMap::G3_opr; duke@435: LIR_Opr obj_temp = FrameMap::G4_opr; duke@435: monitor_exit(obj_temp, lock, hdr, x->monitor_no()); duke@435: } duke@435: duke@435: duke@435: // _ineg, _lneg, _fneg, _dneg duke@435: void LIRGenerator::do_NegateOp(NegateOp* x) { duke@435: LIRItem value(x->x(), this); duke@435: value.load_item(); duke@435: LIR_Opr reg = rlock_result(x); duke@435: __ negate(value.result(), reg); duke@435: } duke@435: duke@435: duke@435: duke@435: // for _fadd, _fmul, _fsub, _fdiv, _frem duke@435: // _dadd, _dmul, _dsub, _ddiv, _drem duke@435: void LIRGenerator::do_ArithmeticOp_FPU(ArithmeticOp* x) { duke@435: switch (x->op()) { duke@435: case Bytecodes::_fadd: duke@435: case Bytecodes::_fmul: duke@435: case Bytecodes::_fsub: duke@435: case Bytecodes::_fdiv: duke@435: case Bytecodes::_dadd: duke@435: case Bytecodes::_dmul: duke@435: case Bytecodes::_dsub: duke@435: case Bytecodes::_ddiv: { duke@435: LIRItem left(x->x(), this); duke@435: LIRItem right(x->y(), this); duke@435: left.load_item(); duke@435: right.load_item(); duke@435: rlock_result(x); duke@435: arithmetic_op_fpu(x->op(), x->operand(), left.result(), right.result(), x->is_strictfp()); duke@435: } duke@435: break; duke@435: duke@435: case Bytecodes::_frem: duke@435: case Bytecodes::_drem: { duke@435: address entry; duke@435: switch (x->op()) { duke@435: case Bytecodes::_frem: duke@435: entry = CAST_FROM_FN_PTR(address, SharedRuntime::frem); duke@435: break; duke@435: case Bytecodes::_drem: duke@435: entry = CAST_FROM_FN_PTR(address, SharedRuntime::drem); duke@435: break; duke@435: default: duke@435: ShouldNotReachHere(); duke@435: } duke@435: LIR_Opr result = call_runtime(x->x(), x->y(), entry, x->type(), NULL); duke@435: set_result(x, result); duke@435: } duke@435: break; duke@435: duke@435: default: ShouldNotReachHere(); duke@435: } duke@435: } duke@435: duke@435: duke@435: // for _ladd, _lmul, _lsub, _ldiv, _lrem duke@435: void LIRGenerator::do_ArithmeticOp_Long(ArithmeticOp* x) { duke@435: switch (x->op()) { duke@435: case Bytecodes::_lrem: duke@435: case Bytecodes::_lmul: duke@435: case Bytecodes::_ldiv: { duke@435: duke@435: if (x->op() == Bytecodes::_ldiv || x->op() == Bytecodes::_lrem) { duke@435: LIRItem right(x->y(), this); duke@435: right.load_item(); duke@435: duke@435: CodeEmitInfo* info = state_for(x); duke@435: LIR_Opr item = right.result(); duke@435: assert(item->is_register(), "must be"); duke@435: __ cmp(lir_cond_equal, item, LIR_OprFact::longConst(0)); duke@435: __ branch(lir_cond_equal, T_LONG, new DivByZeroStub(info)); duke@435: } duke@435: duke@435: address entry; duke@435: switch (x->op()) { duke@435: case Bytecodes::_lrem: duke@435: entry = CAST_FROM_FN_PTR(address, SharedRuntime::lrem); duke@435: break; // check if dividend is 0 is done elsewhere duke@435: case Bytecodes::_ldiv: duke@435: entry = CAST_FROM_FN_PTR(address, SharedRuntime::ldiv); duke@435: break; // check if dividend is 0 is done elsewhere duke@435: case Bytecodes::_lmul: duke@435: entry = CAST_FROM_FN_PTR(address, SharedRuntime::lmul); duke@435: break; duke@435: default: duke@435: ShouldNotReachHere(); duke@435: } duke@435: duke@435: // order of arguments to runtime call is reversed. duke@435: LIR_Opr result = call_runtime(x->y(), x->x(), entry, x->type(), NULL); duke@435: set_result(x, result); duke@435: break; duke@435: } duke@435: case Bytecodes::_ladd: duke@435: case Bytecodes::_lsub: { duke@435: LIRItem left(x->x(), this); duke@435: LIRItem right(x->y(), this); duke@435: left.load_item(); duke@435: right.load_item(); duke@435: rlock_result(x); duke@435: duke@435: arithmetic_op_long(x->op(), x->operand(), left.result(), right.result(), NULL); duke@435: break; duke@435: } duke@435: default: ShouldNotReachHere(); duke@435: } duke@435: } duke@435: duke@435: duke@435: // Returns if item is an int constant that can be represented by a simm13 duke@435: static bool is_simm13(LIR_Opr item) { duke@435: if (item->is_constant() && item->type() == T_INT) { duke@435: return Assembler::is_simm13(item->as_constant_ptr()->as_jint()); duke@435: } else { duke@435: return false; duke@435: } duke@435: } duke@435: duke@435: duke@435: // for: _iadd, _imul, _isub, _idiv, _irem duke@435: void LIRGenerator::do_ArithmeticOp_Int(ArithmeticOp* x) { duke@435: bool is_div_rem = x->op() == Bytecodes::_idiv || x->op() == Bytecodes::_irem; duke@435: LIRItem left(x->x(), this); duke@435: LIRItem right(x->y(), this); duke@435: // missing test if instr is commutative and if we should swap duke@435: right.load_nonconstant(); duke@435: assert(right.is_constant() || right.is_register(), "wrong state of right"); duke@435: left.load_item(); duke@435: rlock_result(x); duke@435: if (is_div_rem) { duke@435: CodeEmitInfo* info = state_for(x); duke@435: LIR_Opr tmp = FrameMap::G1_opr; duke@435: if (x->op() == Bytecodes::_irem) { duke@435: __ irem(left.result(), right.result(), x->operand(), tmp, info); duke@435: } else if (x->op() == Bytecodes::_idiv) { duke@435: __ idiv(left.result(), right.result(), x->operand(), tmp, info); duke@435: } duke@435: } else { duke@435: arithmetic_op_int(x->op(), x->operand(), left.result(), right.result(), FrameMap::G1_opr); duke@435: } duke@435: } duke@435: duke@435: duke@435: void LIRGenerator::do_ArithmeticOp(ArithmeticOp* x) { duke@435: ValueTag tag = x->type()->tag(); duke@435: assert(x->x()->type()->tag() == tag && x->y()->type()->tag() == tag, "wrong parameters"); duke@435: switch (tag) { duke@435: case floatTag: duke@435: case doubleTag: do_ArithmeticOp_FPU(x); return; duke@435: case longTag: do_ArithmeticOp_Long(x); return; duke@435: case intTag: do_ArithmeticOp_Int(x); return; duke@435: } duke@435: ShouldNotReachHere(); duke@435: } duke@435: duke@435: duke@435: // _ishl, _lshl, _ishr, _lshr, _iushr, _lushr duke@435: void LIRGenerator::do_ShiftOp(ShiftOp* x) { duke@435: LIRItem value(x->x(), this); duke@435: LIRItem count(x->y(), this); duke@435: // Long shift destroys count register duke@435: if (value.type()->is_long()) { duke@435: count.set_destroys_register(); duke@435: } duke@435: value.load_item(); duke@435: // the old backend doesn't support this duke@435: if (count.is_constant() && count.type()->as_IntConstant() != NULL && value.type()->is_int()) { duke@435: jint c = count.get_jint_constant() & 0x1f; duke@435: assert(c >= 0 && c < 32, "should be small"); duke@435: count.dont_load_item(); duke@435: } else { duke@435: count.load_item(); duke@435: } duke@435: LIR_Opr reg = rlock_result(x); duke@435: shift_op(x->op(), reg, value.result(), count.result(), LIR_OprFact::illegalOpr); duke@435: } duke@435: duke@435: duke@435: // _iand, _land, _ior, _lor, _ixor, _lxor duke@435: void LIRGenerator::do_LogicOp(LogicOp* x) { duke@435: LIRItem left(x->x(), this); duke@435: LIRItem right(x->y(), this); duke@435: duke@435: left.load_item(); duke@435: right.load_nonconstant(); duke@435: LIR_Opr reg = rlock_result(x); duke@435: duke@435: logic_op(x->op(), reg, left.result(), right.result()); duke@435: } duke@435: duke@435: duke@435: duke@435: // _lcmp, _fcmpl, _fcmpg, _dcmpl, _dcmpg duke@435: void LIRGenerator::do_CompareOp(CompareOp* x) { duke@435: LIRItem left(x->x(), this); duke@435: LIRItem right(x->y(), this); duke@435: left.load_item(); duke@435: right.load_item(); duke@435: LIR_Opr reg = rlock_result(x); duke@435: duke@435: if (x->x()->type()->is_float_kind()) { duke@435: Bytecodes::Code code = x->op(); duke@435: __ fcmp2int(left.result(), right.result(), reg, (code == Bytecodes::_fcmpl || code == Bytecodes::_dcmpl)); duke@435: } else if (x->x()->type()->tag() == longTag) { duke@435: __ lcmp2int(left.result(), right.result(), reg); duke@435: } else { duke@435: Unimplemented(); duke@435: } duke@435: } duke@435: duke@435: duke@435: void LIRGenerator::do_AttemptUpdate(Intrinsic* x) { duke@435: assert(x->number_of_arguments() == 3, "wrong type"); duke@435: LIRItem obj (x->argument_at(0), this); // AtomicLong object duke@435: LIRItem cmp_value (x->argument_at(1), this); // value to compare with field duke@435: LIRItem new_value (x->argument_at(2), this); // replace field with new_value if it matches cmp_value duke@435: duke@435: obj.load_item(); duke@435: cmp_value.load_item(); duke@435: new_value.load_item(); duke@435: duke@435: // generate compare-and-swap and produce zero condition if swap occurs duke@435: int value_offset = sun_misc_AtomicLongCSImpl::value_offset(); duke@435: LIR_Opr addr = FrameMap::O7_opr; duke@435: __ add(obj.result(), LIR_OprFact::intConst(value_offset), addr); duke@435: LIR_Opr t1 = FrameMap::G1_opr; // temp for 64-bit value duke@435: LIR_Opr t2 = FrameMap::G3_opr; // temp for 64-bit value duke@435: __ cas_long(addr, cmp_value.result(), new_value.result(), t1, t2); duke@435: duke@435: // generate conditional move of boolean result duke@435: LIR_Opr result = rlock_result(x); duke@435: __ cmove(lir_cond_equal, LIR_OprFact::intConst(1), LIR_OprFact::intConst(0), result); duke@435: } duke@435: duke@435: duke@435: void LIRGenerator::do_CompareAndSwap(Intrinsic* x, ValueType* type) { duke@435: assert(x->number_of_arguments() == 4, "wrong type"); duke@435: LIRItem obj (x->argument_at(0), this); // object duke@435: LIRItem offset(x->argument_at(1), this); // offset of field duke@435: LIRItem cmp (x->argument_at(2), this); // value to compare with field duke@435: LIRItem val (x->argument_at(3), this); // replace field with val if matches cmp duke@435: duke@435: // Use temps to avoid kills duke@435: LIR_Opr t1 = FrameMap::G1_opr; duke@435: LIR_Opr t2 = FrameMap::G3_opr; duke@435: LIR_Opr addr = new_pointer_register(); duke@435: duke@435: // get address of field duke@435: obj.load_item(); duke@435: offset.load_item(); duke@435: cmp.load_item(); duke@435: val.load_item(); duke@435: duke@435: __ add(obj.result(), offset.result(), addr); duke@435: ysr@777: if (type == objectType) { // Write-barrier needed for Object fields. ysr@777: pre_barrier(obj.result(), false, NULL); ysr@777: } ysr@777: duke@435: if (type == objectType) duke@435: __ cas_obj(addr, cmp.result(), val.result(), t1, t2); duke@435: else if (type == intType) duke@435: __ cas_int(addr, cmp.result(), val.result(), t1, t2); duke@435: else if (type == longType) duke@435: __ cas_long(addr, cmp.result(), val.result(), t1, t2); duke@435: else { duke@435: ShouldNotReachHere(); duke@435: } duke@435: duke@435: // generate conditional move of boolean result duke@435: LIR_Opr result = rlock_result(x); duke@435: __ cmove(lir_cond_equal, LIR_OprFact::intConst(1), LIR_OprFact::intConst(0), result); duke@435: if (type == objectType) { // Write-barrier needed for Object fields. never@1254: // Precise card mark since could either be object or array ysr@777: post_barrier(addr, val.result()); duke@435: } duke@435: } duke@435: duke@435: duke@435: void LIRGenerator::do_MathIntrinsic(Intrinsic* x) { duke@435: switch (x->id()) { duke@435: case vmIntrinsics::_dabs: duke@435: case vmIntrinsics::_dsqrt: { duke@435: assert(x->number_of_arguments() == 1, "wrong type"); duke@435: LIRItem value(x->argument_at(0), this); duke@435: value.load_item(); duke@435: LIR_Opr dst = rlock_result(x); duke@435: duke@435: switch (x->id()) { duke@435: case vmIntrinsics::_dsqrt: { duke@435: __ sqrt(value.result(), dst, LIR_OprFact::illegalOpr); duke@435: break; duke@435: } duke@435: case vmIntrinsics::_dabs: { duke@435: __ abs(value.result(), dst, LIR_OprFact::illegalOpr); duke@435: break; duke@435: } duke@435: } duke@435: break; duke@435: } duke@435: case vmIntrinsics::_dlog10: // fall through duke@435: case vmIntrinsics::_dlog: // fall through duke@435: case vmIntrinsics::_dsin: // fall through duke@435: case vmIntrinsics::_dtan: // fall through duke@435: case vmIntrinsics::_dcos: { duke@435: assert(x->number_of_arguments() == 1, "wrong type"); duke@435: duke@435: address runtime_entry = NULL; duke@435: switch (x->id()) { duke@435: case vmIntrinsics::_dsin: duke@435: runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dsin); duke@435: break; duke@435: case vmIntrinsics::_dcos: duke@435: runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dcos); duke@435: break; duke@435: case vmIntrinsics::_dtan: duke@435: runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dtan); duke@435: break; duke@435: case vmIntrinsics::_dlog: duke@435: runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dlog); duke@435: break; duke@435: case vmIntrinsics::_dlog10: duke@435: runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dlog10); duke@435: break; duke@435: default: duke@435: ShouldNotReachHere(); duke@435: } duke@435: duke@435: LIR_Opr result = call_runtime(x->argument_at(0), runtime_entry, x->type(), NULL); duke@435: set_result(x, result); duke@435: } duke@435: } duke@435: } duke@435: duke@435: duke@435: void LIRGenerator::do_ArrayCopy(Intrinsic* x) { duke@435: assert(x->number_of_arguments() == 5, "wrong type"); duke@435: // Note: spill caller save before setting the item duke@435: LIRItem src (x->argument_at(0), this); duke@435: LIRItem src_pos (x->argument_at(1), this); duke@435: LIRItem dst (x->argument_at(2), this); duke@435: LIRItem dst_pos (x->argument_at(3), this); duke@435: LIRItem length (x->argument_at(4), this); duke@435: // load all values in callee_save_registers, as this makes the duke@435: // parameter passing to the fast case simpler duke@435: src.load_item_force (rlock_callee_saved(T_OBJECT)); duke@435: src_pos.load_item_force (rlock_callee_saved(T_INT)); duke@435: dst.load_item_force (rlock_callee_saved(T_OBJECT)); duke@435: dst_pos.load_item_force (rlock_callee_saved(T_INT)); duke@435: length.load_item_force (rlock_callee_saved(T_INT)); duke@435: duke@435: int flags; duke@435: ciArrayKlass* expected_type; duke@435: arraycopy_helper(x, &flags, &expected_type); duke@435: duke@435: CodeEmitInfo* info = state_for(x, x->state()); duke@435: __ arraycopy(src.result(), src_pos.result(), dst.result(), dst_pos.result(), duke@435: length.result(), rlock_callee_saved(T_INT), duke@435: expected_type, flags, info); duke@435: set_no_result(x); duke@435: } duke@435: duke@435: // _i2l, _i2f, _i2d, _l2i, _l2f, _l2d, _f2i, _f2l, _f2d, _d2i, _d2l, _d2f duke@435: // _i2b, _i2c, _i2s duke@435: void LIRGenerator::do_Convert(Convert* x) { duke@435: duke@435: switch (x->op()) { duke@435: case Bytecodes::_f2l: duke@435: case Bytecodes::_d2l: duke@435: case Bytecodes::_d2i: duke@435: case Bytecodes::_l2f: duke@435: case Bytecodes::_l2d: { duke@435: duke@435: address entry; duke@435: switch (x->op()) { duke@435: case Bytecodes::_l2f: duke@435: entry = CAST_FROM_FN_PTR(address, SharedRuntime::l2f); duke@435: break; duke@435: case Bytecodes::_l2d: duke@435: entry = CAST_FROM_FN_PTR(address, SharedRuntime::l2d); duke@435: break; duke@435: case Bytecodes::_f2l: duke@435: entry = CAST_FROM_FN_PTR(address, SharedRuntime::f2l); duke@435: break; duke@435: case Bytecodes::_d2l: duke@435: entry = CAST_FROM_FN_PTR(address, SharedRuntime::d2l); duke@435: break; duke@435: case Bytecodes::_d2i: duke@435: entry = CAST_FROM_FN_PTR(address, SharedRuntime::d2i); duke@435: break; duke@435: default: duke@435: ShouldNotReachHere(); duke@435: } duke@435: LIR_Opr result = call_runtime(x->value(), entry, x->type(), NULL); duke@435: set_result(x, result); duke@435: break; duke@435: } duke@435: duke@435: case Bytecodes::_i2f: duke@435: case Bytecodes::_i2d: { duke@435: LIRItem value(x->value(), this); duke@435: duke@435: LIR_Opr reg = rlock_result(x); duke@435: // To convert an int to double, we need to load the 32-bit int duke@435: // from memory into a single precision floating point register duke@435: // (even numbered). Then the sparc fitod instruction takes care duke@435: // of the conversion. This is a bit ugly, but is the best way to duke@435: // get the int value in a single precision floating point register duke@435: value.load_item(); duke@435: LIR_Opr tmp = force_to_spill(value.result(), T_FLOAT); duke@435: __ convert(x->op(), tmp, reg); duke@435: break; duke@435: } duke@435: break; duke@435: duke@435: case Bytecodes::_i2l: duke@435: case Bytecodes::_i2b: duke@435: case Bytecodes::_i2c: duke@435: case Bytecodes::_i2s: duke@435: case Bytecodes::_l2i: duke@435: case Bytecodes::_f2d: duke@435: case Bytecodes::_d2f: { // inline code duke@435: LIRItem value(x->value(), this); duke@435: duke@435: value.load_item(); duke@435: LIR_Opr reg = rlock_result(x); duke@435: __ convert(x->op(), value.result(), reg, false); duke@435: } duke@435: break; duke@435: duke@435: case Bytecodes::_f2i: { duke@435: LIRItem value (x->value(), this); duke@435: value.set_destroys_register(); duke@435: value.load_item(); duke@435: LIR_Opr reg = rlock_result(x); duke@435: set_vreg_flag(reg, must_start_in_memory); duke@435: __ convert(x->op(), value.result(), reg, false); duke@435: } duke@435: break; duke@435: duke@435: default: ShouldNotReachHere(); duke@435: } duke@435: } duke@435: duke@435: duke@435: void LIRGenerator::do_NewInstance(NewInstance* x) { duke@435: // This instruction can be deoptimized in the slow path : use duke@435: // O0 as result register. duke@435: const LIR_Opr reg = result_register_for(x->type()); duke@435: duke@435: if (PrintNotLoaded && !x->klass()->is_loaded()) { duke@435: tty->print_cr(" ###class not loaded at new bci %d", x->bci()); duke@435: } duke@435: CodeEmitInfo* info = state_for(x, x->state()); duke@435: LIR_Opr tmp1 = FrameMap::G1_oop_opr; duke@435: LIR_Opr tmp2 = FrameMap::G3_oop_opr; duke@435: LIR_Opr tmp3 = FrameMap::G4_oop_opr; duke@435: LIR_Opr tmp4 = FrameMap::O1_oop_opr; duke@435: LIR_Opr klass_reg = FrameMap::G5_oop_opr; duke@435: new_instance(reg, x->klass(), tmp1, tmp2, tmp3, tmp4, klass_reg, info); duke@435: LIR_Opr result = rlock_result(x); duke@435: __ move(reg, result); duke@435: } duke@435: duke@435: duke@435: void LIRGenerator::do_NewTypeArray(NewTypeArray* x) { duke@435: LIRItem length(x->length(), this); duke@435: length.load_item(); duke@435: duke@435: LIR_Opr reg = result_register_for(x->type()); duke@435: LIR_Opr tmp1 = FrameMap::G1_oop_opr; duke@435: LIR_Opr tmp2 = FrameMap::G3_oop_opr; duke@435: LIR_Opr tmp3 = FrameMap::G4_oop_opr; duke@435: LIR_Opr tmp4 = FrameMap::O1_oop_opr; duke@435: LIR_Opr klass_reg = FrameMap::G5_oop_opr; duke@435: LIR_Opr len = length.result(); duke@435: BasicType elem_type = x->elt_type(); duke@435: duke@435: __ oop2reg(ciTypeArrayKlass::make(elem_type)->encoding(), klass_reg); duke@435: duke@435: CodeEmitInfo* info = state_for(x, x->state()); duke@435: CodeStub* slow_path = new NewTypeArrayStub(klass_reg, len, reg, info); duke@435: __ allocate_array(reg, len, tmp1, tmp2, tmp3, tmp4, elem_type, klass_reg, slow_path); duke@435: duke@435: LIR_Opr result = rlock_result(x); duke@435: __ move(reg, result); duke@435: } duke@435: duke@435: duke@435: void LIRGenerator::do_NewObjectArray(NewObjectArray* x) { duke@435: LIRItem length(x->length(), this); duke@435: // in case of patching (i.e., object class is not yet loaded), we need to reexecute the instruction duke@435: // and therefore provide the state before the parameters have been consumed duke@435: CodeEmitInfo* patching_info = NULL; duke@435: if (!x->klass()->is_loaded() || PatchALot) { duke@435: patching_info = state_for(x, x->state_before()); duke@435: } duke@435: duke@435: length.load_item(); duke@435: duke@435: const LIR_Opr reg = result_register_for(x->type()); duke@435: LIR_Opr tmp1 = FrameMap::G1_oop_opr; duke@435: LIR_Opr tmp2 = FrameMap::G3_oop_opr; duke@435: LIR_Opr tmp3 = FrameMap::G4_oop_opr; duke@435: LIR_Opr tmp4 = FrameMap::O1_oop_opr; duke@435: LIR_Opr klass_reg = FrameMap::G5_oop_opr; duke@435: LIR_Opr len = length.result(); duke@435: CodeEmitInfo* info = state_for(x, x->state()); duke@435: duke@435: CodeStub* slow_path = new NewObjectArrayStub(klass_reg, len, reg, info); duke@435: ciObject* obj = (ciObject*) ciObjArrayKlass::make(x->klass()); duke@435: if (obj == ciEnv::unloaded_ciobjarrayklass()) { duke@435: BAILOUT("encountered unloaded_ciobjarrayklass due to out of memory error"); duke@435: } duke@435: jobject2reg_with_patching(klass_reg, obj, patching_info); duke@435: __ allocate_array(reg, len, tmp1, tmp2, tmp3, tmp4, T_OBJECT, klass_reg, slow_path); duke@435: duke@435: LIR_Opr result = rlock_result(x); duke@435: __ move(reg, result); duke@435: } duke@435: duke@435: duke@435: void LIRGenerator::do_NewMultiArray(NewMultiArray* x) { duke@435: Values* dims = x->dims(); duke@435: int i = dims->length(); duke@435: LIRItemList* items = new LIRItemList(dims->length(), NULL); duke@435: while (i-- > 0) { duke@435: LIRItem* size = new LIRItem(dims->at(i), this); duke@435: items->at_put(i, size); duke@435: } duke@435: duke@435: // need to get the info before, as the items may become invalid through item_free duke@435: CodeEmitInfo* patching_info = NULL; duke@435: if (!x->klass()->is_loaded() || PatchALot) { duke@435: patching_info = state_for(x, x->state_before()); duke@435: duke@435: // cannot re-use same xhandlers for multiple CodeEmitInfos, so duke@435: // clone all handlers duke@435: x->set_exception_handlers(new XHandlers(x->exception_handlers())); duke@435: } duke@435: duke@435: i = dims->length(); duke@435: while (i-- > 0) { duke@435: LIRItem* size = items->at(i); duke@435: // if a patching_info was generated above then debug information for the state before duke@435: // the call is going to be emitted. The LIRGenerator calls above may have left some values duke@435: // in registers and that's been recorded in the CodeEmitInfo. In that case the items duke@435: // for those values can't simply be freed if they are registers because the values duke@435: // might be destroyed by store_stack_parameter. So in the case of patching, delay the duke@435: // freeing of the items that already were in registers duke@435: size->load_item(); duke@435: store_stack_parameter (size->result(), duke@435: in_ByteSize(STACK_BIAS + never@739: frame::memory_parameter_word_sp_offset * wordSize + never@739: i * sizeof(jint))); duke@435: } duke@435: duke@435: // This instruction can be deoptimized in the slow path : use duke@435: // O0 as result register. duke@435: const LIR_Opr reg = result_register_for(x->type()); duke@435: CodeEmitInfo* info = state_for(x, x->state()); duke@435: duke@435: jobject2reg_with_patching(reg, x->klass(), patching_info); duke@435: LIR_Opr rank = FrameMap::O1_opr; duke@435: __ move(LIR_OprFact::intConst(x->rank()), rank); duke@435: LIR_Opr varargs = FrameMap::as_pointer_opr(O2); duke@435: int offset_from_sp = (frame::memory_parameter_word_sp_offset * wordSize) + STACK_BIAS; duke@435: __ add(FrameMap::SP_opr, duke@435: LIR_OprFact::intptrConst(offset_from_sp), duke@435: varargs); duke@435: LIR_OprList* args = new LIR_OprList(3); duke@435: args->append(reg); duke@435: args->append(rank); duke@435: args->append(varargs); duke@435: __ call_runtime(Runtime1::entry_for(Runtime1::new_multi_array_id), duke@435: LIR_OprFact::illegalOpr, duke@435: reg, args, info); duke@435: duke@435: LIR_Opr result = rlock_result(x); duke@435: __ move(reg, result); duke@435: } duke@435: duke@435: duke@435: void LIRGenerator::do_BlockBegin(BlockBegin* x) { duke@435: } duke@435: duke@435: duke@435: void LIRGenerator::do_CheckCast(CheckCast* x) { duke@435: LIRItem obj(x->obj(), this); duke@435: CodeEmitInfo* patching_info = NULL; duke@435: if (!x->klass()->is_loaded() || (PatchALot && !x->is_incompatible_class_change_check())) { duke@435: // must do this before locking the destination register as an oop register, duke@435: // and before the obj is loaded (so x->obj()->item() is valid for creating a debug info location) duke@435: patching_info = state_for(x, x->state_before()); duke@435: } duke@435: obj.load_item(); duke@435: LIR_Opr out_reg = rlock_result(x); duke@435: CodeStub* stub; duke@435: CodeEmitInfo* info_for_exception = state_for(x, x->state()->copy_locks()); duke@435: duke@435: if (x->is_incompatible_class_change_check()) { duke@435: assert(patching_info == NULL, "can't patch this"); duke@435: stub = new SimpleExceptionStub(Runtime1::throw_incompatible_class_change_error_id, LIR_OprFact::illegalOpr, info_for_exception); duke@435: } else { duke@435: stub = new SimpleExceptionStub(Runtime1::throw_class_cast_exception_id, obj.result(), info_for_exception); duke@435: } duke@435: LIR_Opr tmp1 = FrameMap::G1_oop_opr; duke@435: LIR_Opr tmp2 = FrameMap::G3_oop_opr; duke@435: LIR_Opr tmp3 = FrameMap::G4_oop_opr; duke@435: __ checkcast(out_reg, obj.result(), x->klass(), tmp1, tmp2, tmp3, duke@435: x->direct_compare(), info_for_exception, patching_info, stub, duke@435: x->profiled_method(), x->profiled_bci()); duke@435: } duke@435: duke@435: duke@435: void LIRGenerator::do_InstanceOf(InstanceOf* x) { duke@435: LIRItem obj(x->obj(), this); duke@435: CodeEmitInfo* patching_info = NULL; duke@435: if (!x->klass()->is_loaded() || PatchALot) { duke@435: patching_info = state_for(x, x->state_before()); duke@435: } duke@435: // ensure the result register is not the input register because the result is initialized before the patching safepoint duke@435: obj.load_item(); duke@435: LIR_Opr out_reg = rlock_result(x); duke@435: LIR_Opr tmp1 = FrameMap::G1_oop_opr; duke@435: LIR_Opr tmp2 = FrameMap::G3_oop_opr; duke@435: LIR_Opr tmp3 = FrameMap::G4_oop_opr; duke@435: __ instanceof(out_reg, obj.result(), x->klass(), tmp1, tmp2, tmp3, x->direct_compare(), patching_info); duke@435: } duke@435: duke@435: duke@435: void LIRGenerator::do_If(If* x) { duke@435: assert(x->number_of_sux() == 2, "inconsistency"); duke@435: ValueTag tag = x->x()->type()->tag(); duke@435: LIRItem xitem(x->x(), this); duke@435: LIRItem yitem(x->y(), this); duke@435: LIRItem* xin = &xitem; duke@435: LIRItem* yin = &yitem; duke@435: If::Condition cond = x->cond(); duke@435: duke@435: if (tag == longTag) { duke@435: // for longs, only conditions "eql", "neq", "lss", "geq" are valid; duke@435: // mirror for other conditions duke@435: if (cond == If::gtr || cond == If::leq) { duke@435: // swap inputs duke@435: cond = Instruction::mirror(cond); duke@435: xin = &yitem; duke@435: yin = &xitem; duke@435: } duke@435: xin->set_destroys_register(); duke@435: } duke@435: duke@435: LIR_Opr left = LIR_OprFact::illegalOpr; duke@435: LIR_Opr right = LIR_OprFact::illegalOpr; duke@435: duke@435: xin->load_item(); duke@435: left = xin->result(); duke@435: duke@435: if (is_simm13(yin->result())) { duke@435: // inline int constants which are small enough to be immediate operands duke@435: right = LIR_OprFact::value_type(yin->value()->type()); duke@435: } else if (tag == longTag && yin->is_constant() && yin->get_jlong_constant() == 0 && duke@435: (cond == If::eql || cond == If::neq)) { duke@435: // inline long zero duke@435: right = LIR_OprFact::value_type(yin->value()->type()); duke@435: } else if (tag == objectTag && yin->is_constant() && (yin->get_jobject_constant()->is_null_object())) { duke@435: right = LIR_OprFact::value_type(yin->value()->type()); duke@435: } else { duke@435: yin->load_item(); duke@435: right = yin->result(); duke@435: } duke@435: set_no_result(x); duke@435: duke@435: // add safepoint before generating condition code so it can be recomputed duke@435: if (x->is_safepoint()) { duke@435: // increment backedge counter if needed duke@435: increment_backedge_counter(state_for(x, x->state_before())); duke@435: duke@435: __ safepoint(new_register(T_INT), state_for(x, x->state_before())); duke@435: } duke@435: duke@435: __ cmp(lir_cond(cond), left, right); duke@435: profile_branch(x, cond); duke@435: move_to_phi(x->state()); duke@435: if (x->x()->type()->is_float_kind()) { duke@435: __ branch(lir_cond(cond), right->type(), x->tsux(), x->usux()); duke@435: } else { duke@435: __ branch(lir_cond(cond), right->type(), x->tsux()); duke@435: } duke@435: assert(x->default_sux() == x->fsux(), "wrong destination above"); duke@435: __ jump(x->default_sux()); duke@435: } duke@435: duke@435: duke@435: LIR_Opr LIRGenerator::getThreadPointer() { duke@435: return FrameMap::as_pointer_opr(G2); duke@435: } duke@435: duke@435: duke@435: void LIRGenerator::trace_block_entry(BlockBegin* block) { duke@435: __ move(LIR_OprFact::intConst(block->block_id()), FrameMap::O0_opr); duke@435: LIR_OprList* args = new LIR_OprList(1); duke@435: args->append(FrameMap::O0_opr); duke@435: address func = CAST_FROM_FN_PTR(address, Runtime1::trace_block_entry); duke@435: __ call_runtime_leaf(func, rlock_callee_saved(T_INT), LIR_OprFact::illegalOpr, args); duke@435: } duke@435: duke@435: duke@435: void LIRGenerator::volatile_field_store(LIR_Opr value, LIR_Address* address, duke@435: CodeEmitInfo* info) { duke@435: #ifdef _LP64 duke@435: __ store(value, address, info); duke@435: #else duke@435: __ volatile_store_mem_reg(value, address, info); duke@435: #endif duke@435: } duke@435: duke@435: void LIRGenerator::volatile_field_load(LIR_Address* address, LIR_Opr result, duke@435: CodeEmitInfo* info) { duke@435: #ifdef _LP64 duke@435: __ load(address, result, info); duke@435: #else duke@435: __ volatile_load_mem_reg(address, result, info); duke@435: #endif duke@435: } duke@435: duke@435: duke@435: void LIRGenerator::put_Object_unsafe(LIR_Opr src, LIR_Opr offset, LIR_Opr data, duke@435: BasicType type, bool is_volatile) { duke@435: LIR_Opr base_op = src; duke@435: LIR_Opr index_op = offset; duke@435: duke@435: bool is_obj = (type == T_ARRAY || type == T_OBJECT); duke@435: #ifndef _LP64 duke@435: if (is_volatile && type == T_LONG) { duke@435: __ volatile_store_unsafe_reg(data, src, offset, type, NULL, lir_patch_none); duke@435: } else duke@435: #endif duke@435: { duke@435: if (type == T_BOOLEAN) { duke@435: type = T_BYTE; duke@435: } duke@435: LIR_Address* addr; duke@435: if (type == T_ARRAY || type == T_OBJECT) { duke@435: LIR_Opr tmp = new_pointer_register(); duke@435: __ add(base_op, index_op, tmp); duke@435: addr = new LIR_Address(tmp, 0, type); duke@435: } else { duke@435: addr = new LIR_Address(base_op, index_op, type); duke@435: } duke@435: ysr@777: if (is_obj) { ysr@777: pre_barrier(LIR_OprFact::address(addr), false, NULL); ysr@777: // _bs->c1_write_barrier_pre(this, LIR_OprFact::address(addr)); ysr@777: } duke@435: __ move(data, addr); duke@435: if (is_obj) { duke@435: // This address is precise duke@435: post_barrier(LIR_OprFact::address(addr), data); duke@435: } duke@435: } duke@435: } duke@435: duke@435: duke@435: void LIRGenerator::get_Object_unsafe(LIR_Opr dst, LIR_Opr src, LIR_Opr offset, duke@435: BasicType type, bool is_volatile) { duke@435: #ifndef _LP64 duke@435: if (is_volatile && type == T_LONG) { duke@435: __ volatile_load_unsafe_reg(src, offset, dst, type, NULL, lir_patch_none); duke@435: } else duke@435: #endif duke@435: { duke@435: LIR_Address* addr = new LIR_Address(src, offset, type); duke@435: __ load(addr, dst); duke@435: } duke@435: }