duke@435: /* trims@1907: * Copyright (c) 1997, 2009, Oracle and/or its affiliates. All rights reserved. duke@435: * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. duke@435: * duke@435: * This code is free software; you can redistribute it and/or modify it duke@435: * under the terms of the GNU General Public License version 2 only, as duke@435: * published by the Free Software Foundation. duke@435: * duke@435: * This code is distributed in the hope that it will be useful, but WITHOUT duke@435: * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or duke@435: * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License duke@435: * version 2 for more details (a copy is included in the LICENSE file that duke@435: * accompanied this code). duke@435: * duke@435: * You should have received a copy of the GNU General Public License version duke@435: * 2 along with this work; if not, write to the Free Software Foundation, duke@435: * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. duke@435: * trims@1907: * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA trims@1907: * or visit www.oracle.com if you need additional information or have any trims@1907: * questions. duke@435: * duke@435: */ duke@435: duke@435: #include "incls/_precompiled.incl" duke@435: #include "incls/_live.cpp.incl" duke@435: duke@435: duke@435: duke@435: //============================================================================= duke@435: //------------------------------PhaseLive-------------------------------------- duke@435: // Compute live-in/live-out. We use a totally incremental algorithm. The LIVE duke@435: // problem is monotonic. The steady-state solution looks like this: pull a duke@435: // block from the worklist. It has a set of delta's - values which are newly duke@435: // live-in from the block. Push these to the live-out sets of all predecessor duke@435: // blocks. At each predecessor, the new live-out values are ANDed with what is duke@435: // already live-out (extra stuff is added to the live-out sets). Then the duke@435: // remaining new live-out values are ANDed with what is locally defined. duke@435: // Leftover bits become the new live-in for the predecessor block, and the pred duke@435: // block is put on the worklist. duke@435: // The locally live-in stuff is computed once and added to predecessor twisti@1040: // live-out sets. This separate compilation is done in the outer loop below. duke@435: PhaseLive::PhaseLive( const PhaseCFG &cfg, LRG_List &names, Arena *arena ) : Phase(LIVE), _cfg(cfg), _names(names), _arena(arena), _live(0) { duke@435: } duke@435: duke@435: void PhaseLive::compute(uint maxlrg) { duke@435: _maxlrg = maxlrg; duke@435: _worklist = new (_arena) Block_List(); duke@435: duke@435: // Init the sparse live arrays. This data is live on exit from here! duke@435: // The _live info is the live-out info. duke@435: _live = (IndexSet*)_arena->Amalloc(sizeof(IndexSet)*_cfg._num_blocks); duke@435: uint i; duke@435: for( i=0; i<_cfg._num_blocks; i++ ) { duke@435: _live[i].initialize(_maxlrg); duke@435: } duke@435: duke@435: // Init the sparse arrays for delta-sets. duke@435: ResourceMark rm; // Nuke temp storage on exit duke@435: duke@435: // Does the memory used by _defs and _deltas get reclaimed? Does it matter? TT duke@435: duke@435: // Array of values defined locally in blocks duke@435: _defs = NEW_RESOURCE_ARRAY(IndexSet,_cfg._num_blocks); duke@435: for( i=0; i<_cfg._num_blocks; i++ ) { duke@435: _defs[i].initialize(_maxlrg); duke@435: } duke@435: duke@435: // Array of delta-set pointers, indexed by block pre_order-1. duke@435: _deltas = NEW_RESOURCE_ARRAY(IndexSet*,_cfg._num_blocks); duke@435: memset( _deltas, 0, sizeof(IndexSet*)* _cfg._num_blocks); duke@435: duke@435: _free_IndexSet = NULL; duke@435: duke@435: // Blocks having done pass-1 duke@435: VectorSet first_pass(Thread::current()->resource_area()); duke@435: duke@435: // Outer loop: must compute local live-in sets and push into predecessors. duke@435: uint iters = _cfg._num_blocks; // stat counters duke@435: for( uint j=_cfg._num_blocks; j>0; j-- ) { duke@435: Block *b = _cfg._blocks[j-1]; duke@435: duke@435: // Compute the local live-in set. Start with any new live-out bits. duke@435: IndexSet *use = getset( b ); duke@435: IndexSet *def = &_defs[b->_pre_order-1]; duke@435: DEBUG_ONLY(IndexSet *def_outside = getfreeset();) duke@435: uint i; duke@435: for( i=b->_nodes.size(); i>1; i-- ) { duke@435: Node *n = b->_nodes[i-1]; duke@435: if( n->is_Phi() ) break; duke@435: duke@435: uint r = _names[n->_idx]; duke@435: assert(!def_outside->member(r), "Use of external LRG overlaps the same LRG defined in this block"); duke@435: def->insert( r ); duke@435: use->remove( r ); duke@435: uint cnt = n->req(); duke@435: for( uint k=1; kin(k); duke@435: uint nkidx = nk->_idx; duke@435: if( _cfg._bbs[nkidx] != b ) { duke@435: uint u = _names[nkidx]; duke@435: use->insert( u ); duke@435: DEBUG_ONLY(def_outside->insert( u );) duke@435: } duke@435: } duke@435: } duke@435: #ifdef ASSERT duke@435: def_outside->set_next(_free_IndexSet); duke@435: _free_IndexSet = def_outside; // Drop onto free list duke@435: #endif duke@435: // Remove anything defined by Phis and the block start instruction duke@435: for( uint k=i; k>0; k-- ) { duke@435: uint r = _names[b->_nodes[k-1]->_idx]; duke@435: def->insert( r ); duke@435: use->remove( r ); duke@435: } duke@435: duke@435: // Push these live-in things to predecessors duke@435: for( uint l=1; lnum_preds(); l++ ) { duke@435: Block *p = _cfg._bbs[b->pred(l)->_idx]; duke@435: add_liveout( p, use, first_pass ); duke@435: duke@435: // PhiNode uses go in the live-out set of prior blocks. duke@435: for( uint k=i; k>0; k-- ) duke@435: add_liveout( p, _names[b->_nodes[k-1]->in(l)->_idx], first_pass ); duke@435: } duke@435: freeset( b ); duke@435: first_pass.set(b->_pre_order); duke@435: duke@435: // Inner loop: blocks that picked up new live-out values to be propagated duke@435: while( _worklist->size() ) { duke@435: // !!!!! duke@435: // #ifdef ASSERT duke@435: iters++; duke@435: // #endif duke@435: Block *b = _worklist->pop(); duke@435: IndexSet *delta = getset(b); duke@435: assert( delta->count(), "missing delta set" ); duke@435: duke@435: // Add new-live-in to predecessors live-out sets duke@435: for( uint l=1; lnum_preds(); l++ ) duke@435: add_liveout( _cfg._bbs[b->pred(l)->_idx], delta, first_pass ); duke@435: duke@435: freeset(b); duke@435: } // End of while-worklist-not-empty duke@435: duke@435: } // End of for-all-blocks-outer-loop duke@435: duke@435: // We explicitly clear all of the IndexSets which we are about to release. duke@435: // This allows us to recycle their internal memory into IndexSet's free list. duke@435: duke@435: for( i=0; i<_cfg._num_blocks; i++ ) { duke@435: _defs[i].clear(); duke@435: if (_deltas[i]) { duke@435: // Is this always true? duke@435: _deltas[i]->clear(); duke@435: } duke@435: } duke@435: IndexSet *free = _free_IndexSet; duke@435: while (free != NULL) { duke@435: IndexSet *temp = free; duke@435: free = free->next(); duke@435: temp->clear(); duke@435: } duke@435: duke@435: } duke@435: duke@435: //------------------------------stats------------------------------------------ duke@435: #ifndef PRODUCT duke@435: void PhaseLive::stats(uint iters) const { duke@435: } duke@435: #endif duke@435: duke@435: //------------------------------getset----------------------------------------- duke@435: // Get an IndexSet for a block. Return existing one, if any. Make a new duke@435: // empty one if a prior one does not exist. duke@435: IndexSet *PhaseLive::getset( Block *p ) { duke@435: IndexSet *delta = _deltas[p->_pre_order-1]; duke@435: if( !delta ) // Not on worklist? duke@435: // Get a free set; flag as being on worklist duke@435: delta = _deltas[p->_pre_order-1] = getfreeset(); duke@435: return delta; // Return set of new live-out items duke@435: } duke@435: duke@435: //------------------------------getfreeset------------------------------------- duke@435: // Pull from free list, or allocate. Internal allocation on the returned set duke@435: // is always from thread local storage. duke@435: IndexSet *PhaseLive::getfreeset( ) { duke@435: IndexSet *f = _free_IndexSet; duke@435: if( !f ) { duke@435: f = new IndexSet; duke@435: // f->set_arena(Thread::current()->resource_area()); duke@435: f->initialize(_maxlrg, Thread::current()->resource_area()); duke@435: } else { duke@435: // Pull from free list duke@435: _free_IndexSet = f->next(); duke@435: //f->_cnt = 0; // Reset to empty duke@435: // f->set_arena(Thread::current()->resource_area()); duke@435: f->initialize(_maxlrg, Thread::current()->resource_area()); duke@435: } duke@435: return f; duke@435: } duke@435: duke@435: //------------------------------freeset---------------------------------------- duke@435: // Free an IndexSet from a block. duke@435: void PhaseLive::freeset( const Block *p ) { duke@435: IndexSet *f = _deltas[p->_pre_order-1]; duke@435: f->set_next(_free_IndexSet); duke@435: _free_IndexSet = f; // Drop onto free list duke@435: _deltas[p->_pre_order-1] = NULL; duke@435: } duke@435: duke@435: //------------------------------add_liveout------------------------------------ duke@435: // Add a live-out value to a given blocks live-out set. If it is new, then duke@435: // also add it to the delta set and stick the block on the worklist. duke@435: void PhaseLive::add_liveout( Block *p, uint r, VectorSet &first_pass ) { duke@435: IndexSet *live = &_live[p->_pre_order-1]; duke@435: if( live->insert(r) ) { // If actually inserted... duke@435: // We extended the live-out set. See if the value is generated locally. duke@435: // If it is not, then we must extend the live-in set. duke@435: if( !_defs[p->_pre_order-1].member( r ) ) { duke@435: if( !_deltas[p->_pre_order-1] && // Not on worklist? duke@435: first_pass.test(p->_pre_order) ) duke@435: _worklist->push(p); // Actually go on worklist if already 1st pass duke@435: getset(p)->insert(r); duke@435: } duke@435: } duke@435: } duke@435: duke@435: duke@435: //------------------------------add_liveout------------------------------------ duke@435: // Add a vector of live-out values to a given blocks live-out set. duke@435: void PhaseLive::add_liveout( Block *p, IndexSet *lo, VectorSet &first_pass ) { duke@435: IndexSet *live = &_live[p->_pre_order-1]; duke@435: IndexSet *defs = &_defs[p->_pre_order-1]; duke@435: IndexSet *on_worklist = _deltas[p->_pre_order-1]; duke@435: IndexSet *delta = on_worklist ? on_worklist : getfreeset(); duke@435: duke@435: IndexSetIterator elements(lo); duke@435: uint r; duke@435: while ((r = elements.next()) != 0) { duke@435: if( live->insert(r) && // If actually inserted... duke@435: !defs->member( r ) ) // and not defined locally duke@435: delta->insert(r); // Then add to live-in set duke@435: } duke@435: duke@435: if( delta->count() ) { // If actually added things duke@435: _deltas[p->_pre_order-1] = delta; // Flag as on worklist now duke@435: if( !on_worklist && // Not on worklist? duke@435: first_pass.test(p->_pre_order) ) duke@435: _worklist->push(p); // Actually go on worklist if already 1st pass duke@435: } else { // Nothing there; just free it duke@435: delta->set_next(_free_IndexSet); duke@435: _free_IndexSet = delta; // Drop onto free list duke@435: } duke@435: } duke@435: duke@435: #ifndef PRODUCT duke@435: //------------------------------dump------------------------------------------- duke@435: // Dump the live-out set for a block duke@435: void PhaseLive::dump( const Block *b ) const { duke@435: tty->print("Block %d: ",b->_pre_order); duke@435: tty->print("LiveOut: "); _live[b->_pre_order-1].dump(); duke@435: uint cnt = b->_nodes.size(); duke@435: for( uint i=0; iprint("L%d/", _names[b->_nodes[i]->_idx] ); duke@435: b->_nodes[i]->dump(); duke@435: } duke@435: tty->print("\n"); duke@435: } duke@435: duke@435: //------------------------------verify_base_ptrs------------------------------- duke@435: // Verify that base pointers and derived pointers are still sane. duke@435: void PhaseChaitin::verify_base_ptrs( ResourceArea *a ) const { kvn@985: #ifdef ASSERT kvn@985: Unique_Node_List worklist(a); duke@435: for( uint i = 0; i < _cfg._num_blocks; i++ ) { duke@435: Block *b = _cfg._blocks[i]; duke@435: for( uint j = b->end_idx() + 1; j > 1; j-- ) { duke@435: Node *n = b->_nodes[j-1]; duke@435: if( n->is_Phi() ) break; duke@435: // Found a safepoint? duke@435: if( n->is_MachSafePoint() ) { duke@435: MachSafePointNode *sfpt = n->as_MachSafePoint(); duke@435: JVMState* jvms = sfpt->jvms(); duke@435: if (jvms != NULL) { duke@435: // Now scan for a live derived pointer duke@435: if (jvms->oopoff() < sfpt->req()) { duke@435: // Check each derived/base pair kvn@985: for (uint idx = jvms->oopoff(); idx < sfpt->req(); idx++) { duke@435: Node *check = sfpt->in(idx); kvn@985: bool is_derived = ((idx - jvms->oopoff()) & 1) == 0; duke@435: // search upwards through spills and spill phis for AddP kvn@985: worklist.clear(); kvn@985: worklist.push(check); kvn@985: uint k = 0; kvn@985: while( k < worklist.size() ) { kvn@985: check = worklist.at(k); kvn@985: assert(check,"Bad base or derived pointer"); kvn@985: // See PhaseChaitin::find_base_for_derived() for all cases. kvn@985: int isc = check->is_Copy(); kvn@985: if( isc ) { kvn@985: worklist.push(check->in(isc)); kvn@985: } else if( check->is_Phi() ) { kvn@985: for (uint m = 1; m < check->req(); m++) kvn@985: worklist.push(check->in(m)); kvn@985: } else if( check->is_Con() ) { kvn@985: if (is_derived) { kvn@985: // Derived is NULL+offset kvn@985: assert(!is_derived || check->bottom_type()->is_ptr()->ptr() == TypePtr::Null,"Bad derived pointer"); kvn@985: } else { kvn@985: assert(check->bottom_type()->is_ptr()->_offset == 0,"Bad base pointer"); kvn@985: // Base either ConP(NULL) or loadConP kvn@985: if (check->is_Mach()) { kvn@985: assert(check->as_Mach()->ideal_Opcode() == Op_ConP,"Bad base pointer"); kvn@985: } else { kvn@985: assert(check->Opcode() == Op_ConP && kvn@985: check->bottom_type()->is_ptr()->ptr() == TypePtr::Null,"Bad base pointer"); kvn@985: } kvn@985: } kvn@985: } else if( check->bottom_type()->is_ptr()->_offset == 0 ) { kvn@985: if(check->is_Proj() || check->is_Mach() && kvn@985: (check->as_Mach()->ideal_Opcode() == Op_CreateEx || kvn@985: check->as_Mach()->ideal_Opcode() == Op_ThreadLocal || kvn@985: check->as_Mach()->ideal_Opcode() == Op_CMoveP || kvn@985: check->as_Mach()->ideal_Opcode() == Op_CheckCastPP || kvn@985: #ifdef _LP64 kvn@985: UseCompressedOops && check->as_Mach()->ideal_Opcode() == Op_CastPP || kvn@985: UseCompressedOops && check->as_Mach()->ideal_Opcode() == Op_DecodeN || kvn@985: #endif kvn@985: check->as_Mach()->ideal_Opcode() == Op_LoadP || kvn@1001: check->as_Mach()->ideal_Opcode() == Op_LoadKlass)) { kvn@1001: // Valid nodes kvn@1001: } else { kvn@1001: check->dump(); kvn@985: assert(false,"Bad base or derived pointer"); kvn@1001: } kvn@985: } else { kvn@985: assert(is_derived,"Bad base pointer"); kvn@985: assert(check->is_Mach() && check->as_Mach()->ideal_Opcode() == Op_AddP,"Bad derived pointer"); kvn@985: } kvn@985: k++; kvn@985: assert(k < 100000,"Derived pointer checking in infinite loop"); duke@435: } // End while duke@435: } duke@435: } // End of check for derived pointers duke@435: } // End of Kcheck for debug info duke@435: } // End of if found a safepoint duke@435: } // End of forall instructions in block duke@435: } // End of forall blocks kvn@985: #endif duke@435: } kvn@1001: kvn@1001: //------------------------------verify------------------------------------- kvn@1001: // Verify that graphs and base pointers are still sane. kvn@1001: void PhaseChaitin::verify( ResourceArea *a, bool verify_ifg ) const { kvn@1001: #ifdef ASSERT kvn@1001: if( VerifyOpto || VerifyRegisterAllocator ) { kvn@1001: _cfg.verify(); kvn@1001: verify_base_ptrs(a); kvn@1001: if(verify_ifg) kvn@1001: _ifg->verify(this); kvn@1001: } duke@435: #endif kvn@1001: } kvn@1001: kvn@1001: #endif