duke@435: /* trims@1907: * Copyright (c) 2001, 2008, Oracle and/or its affiliates. All rights reserved. duke@435: * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. duke@435: * duke@435: * This code is free software; you can redistribute it and/or modify it duke@435: * under the terms of the GNU General Public License version 2 only, as duke@435: * published by the Free Software Foundation. duke@435: * duke@435: * This code is distributed in the hope that it will be useful, but WITHOUT duke@435: * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or duke@435: * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License duke@435: * version 2 for more details (a copy is included in the LICENSE file that duke@435: * accompanied this code). duke@435: * duke@435: * You should have received a copy of the GNU General Public License version duke@435: * 2 along with this work; if not, write to the Free Software Foundation, duke@435: * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. duke@435: * trims@1907: * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA trims@1907: * or visit www.oracle.com if you need additional information or have any trims@1907: * questions. duke@435: * duke@435: */ duke@435: duke@435: # include "incls/_precompiled.incl" duke@435: # include "incls/_cardTableExtension.cpp.incl" duke@435: duke@435: // Checks an individual oop for missing precise marks. Mark duke@435: // may be either dirty or newgen. duke@435: class CheckForUnmarkedOops : public OopClosure { coleenp@548: private: coleenp@548: PSYoungGen* _young_gen; duke@435: CardTableExtension* _card_table; coleenp@548: HeapWord* _unmarked_addr; coleenp@548: jbyte* _unmarked_card; duke@435: coleenp@548: protected: coleenp@548: template void do_oop_work(T* p) { coleenp@548: oop obj = oopDesc::load_decode_heap_oop_not_null(p); coleenp@548: if (_young_gen->is_in_reserved(obj) && duke@435: !_card_table->addr_is_marked_imprecise(p)) { duke@435: // Don't overwrite the first missing card mark duke@435: if (_unmarked_addr == NULL) { duke@435: _unmarked_addr = (HeapWord*)p; duke@435: _unmarked_card = _card_table->byte_for(p); duke@435: } duke@435: } duke@435: } duke@435: coleenp@548: public: coleenp@548: CheckForUnmarkedOops(PSYoungGen* young_gen, CardTableExtension* card_table) : coleenp@548: _young_gen(young_gen), _card_table(card_table), _unmarked_addr(NULL) { } coleenp@548: coleenp@548: virtual void do_oop(oop* p) { CheckForUnmarkedOops::do_oop_work(p); } coleenp@548: virtual void do_oop(narrowOop* p) { CheckForUnmarkedOops::do_oop_work(p); } coleenp@548: duke@435: bool has_unmarked_oop() { duke@435: return _unmarked_addr != NULL; duke@435: } duke@435: }; duke@435: duke@435: // Checks all objects for the existance of some type of mark, duke@435: // precise or imprecise, dirty or newgen. duke@435: class CheckForUnmarkedObjects : public ObjectClosure { coleenp@548: private: coleenp@548: PSYoungGen* _young_gen; duke@435: CardTableExtension* _card_table; duke@435: duke@435: public: duke@435: CheckForUnmarkedObjects() { duke@435: ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap(); duke@435: assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity"); duke@435: duke@435: _young_gen = heap->young_gen(); duke@435: _card_table = (CardTableExtension*)heap->barrier_set(); duke@435: // No point in asserting barrier set type here. Need to make CardTableExtension duke@435: // a unique barrier set type. duke@435: } duke@435: duke@435: // Card marks are not precise. The current system can leave us with twisti@1040: // a mismash of precise marks and beginning of object marks. This means duke@435: // we test for missing precise marks first. If any are found, we don't duke@435: // fail unless the object head is also unmarked. duke@435: virtual void do_object(oop obj) { coleenp@548: CheckForUnmarkedOops object_check(_young_gen, _card_table); duke@435: obj->oop_iterate(&object_check); duke@435: if (object_check.has_unmarked_oop()) { duke@435: assert(_card_table->addr_is_marked_imprecise(obj), "Found unmarked young_gen object"); duke@435: } duke@435: } duke@435: }; duke@435: duke@435: // Checks for precise marking of oops as newgen. duke@435: class CheckForPreciseMarks : public OopClosure { coleenp@548: private: coleenp@548: PSYoungGen* _young_gen; duke@435: CardTableExtension* _card_table; duke@435: coleenp@548: protected: coleenp@548: template void do_oop_work(T* p) { coleenp@548: oop obj = oopDesc::load_decode_heap_oop_not_null(p); coleenp@548: if (_young_gen->is_in_reserved(obj)) { coleenp@548: assert(_card_table->addr_is_marked_precise(p), "Found unmarked precise oop"); coleenp@548: _card_table->set_card_newgen(p); coleenp@548: } coleenp@548: } coleenp@548: duke@435: public: duke@435: CheckForPreciseMarks( PSYoungGen* young_gen, CardTableExtension* card_table ) : duke@435: _young_gen(young_gen), _card_table(card_table) { } duke@435: coleenp@548: virtual void do_oop(oop* p) { CheckForPreciseMarks::do_oop_work(p); } coleenp@548: virtual void do_oop(narrowOop* p) { CheckForPreciseMarks::do_oop_work(p); } duke@435: }; duke@435: duke@435: // We get passed the space_top value to prevent us from traversing into duke@435: // the old_gen promotion labs, which cannot be safely parsed. duke@435: void CardTableExtension::scavenge_contents(ObjectStartArray* start_array, duke@435: MutableSpace* sp, duke@435: HeapWord* space_top, duke@435: PSPromotionManager* pm) duke@435: { duke@435: assert(start_array != NULL && sp != NULL && pm != NULL, "Sanity"); duke@435: assert(start_array->covered_region().contains(sp->used_region()), duke@435: "ObjectStartArray does not cover space"); duke@435: bool depth_first = pm->depth_first(); duke@435: duke@435: if (sp->not_empty()) { duke@435: oop* sp_top = (oop*)space_top; duke@435: oop* prev_top = NULL; duke@435: jbyte* current_card = byte_for(sp->bottom()); duke@435: jbyte* end_card = byte_for(sp_top - 1); // sp_top is exclusive duke@435: // scan card marking array duke@435: while (current_card <= end_card) { duke@435: jbyte value = *current_card; duke@435: // skip clean cards duke@435: if (card_is_clean(value)) { duke@435: current_card++; duke@435: } else { duke@435: // we found a non-clean card duke@435: jbyte* first_nonclean_card = current_card++; duke@435: oop* bottom = (oop*)addr_for(first_nonclean_card); duke@435: // find object starting on card duke@435: oop* bottom_obj = (oop*)start_array->object_start((HeapWord*)bottom); duke@435: // bottom_obj = (oop*)start_array->object_start((HeapWord*)bottom); duke@435: assert(bottom_obj <= bottom, "just checking"); duke@435: // make sure we don't scan oops we already looked at duke@435: if (bottom < prev_top) bottom = prev_top; duke@435: // figure out when to stop scanning duke@435: jbyte* first_clean_card; duke@435: oop* top; duke@435: bool restart_scanning; duke@435: do { duke@435: restart_scanning = false; duke@435: // find a clean card duke@435: while (current_card <= end_card) { duke@435: value = *current_card; duke@435: if (card_is_clean(value)) break; duke@435: current_card++; duke@435: } duke@435: // check if we reached the end, if so we are done duke@435: if (current_card >= end_card) { duke@435: first_clean_card = end_card + 1; duke@435: current_card++; duke@435: top = sp_top; duke@435: } else { duke@435: // we have a clean card, find object starting on that card duke@435: first_clean_card = current_card++; duke@435: top = (oop*)addr_for(first_clean_card); duke@435: oop* top_obj = (oop*)start_array->object_start((HeapWord*)top); duke@435: // top_obj = (oop*)start_array->object_start((HeapWord*)top); duke@435: assert(top_obj <= top, "just checking"); duke@435: if (oop(top_obj)->is_objArray() || oop(top_obj)->is_typeArray()) { duke@435: // an arrayOop is starting on the clean card - since we do exact store duke@435: // checks for objArrays we are done duke@435: } else { duke@435: // otherwise, it is possible that the object starting on the clean card duke@435: // spans the entire card, and that the store happened on a later card. duke@435: // figure out where the object ends duke@435: top = top_obj + oop(top_obj)->size(); duke@435: jbyte* top_card = CardTableModRefBS::byte_for(top - 1); // top is exclusive duke@435: if (top_card > first_clean_card) { duke@435: // object ends a different card duke@435: current_card = top_card + 1; duke@435: if (card_is_clean(*top_card)) { duke@435: // the ending card is clean, we are done duke@435: first_clean_card = top_card; duke@435: } else { duke@435: // the ending card is not clean, continue scanning at start of do-while duke@435: restart_scanning = true; duke@435: } duke@435: } else { duke@435: // object ends on the clean card, we are done. duke@435: assert(first_clean_card == top_card, "just checking"); duke@435: } duke@435: } duke@435: } duke@435: } while (restart_scanning); duke@435: // we know which cards to scan, now clear them duke@435: while (first_nonclean_card < first_clean_card) { duke@435: *first_nonclean_card++ = clean_card; duke@435: } duke@435: // scan oops in objects duke@435: // hoisted the if (depth_first) check out of the loop duke@435: if (depth_first){ duke@435: do { duke@435: oop(bottom_obj)->push_contents(pm); duke@435: bottom_obj += oop(bottom_obj)->size(); duke@435: assert(bottom_obj <= sp_top, "just checking"); duke@435: } while (bottom_obj < top); duke@435: pm->drain_stacks_cond_depth(); duke@435: } else { duke@435: do { duke@435: oop(bottom_obj)->copy_contents(pm); duke@435: bottom_obj += oop(bottom_obj)->size(); duke@435: assert(bottom_obj <= sp_top, "just checking"); duke@435: } while (bottom_obj < top); duke@435: } duke@435: // remember top oop* scanned duke@435: prev_top = top; duke@435: } duke@435: } duke@435: } duke@435: } duke@435: duke@435: void CardTableExtension::scavenge_contents_parallel(ObjectStartArray* start_array, duke@435: MutableSpace* sp, duke@435: HeapWord* space_top, duke@435: PSPromotionManager* pm, duke@435: uint stripe_number) { duke@435: int ssize = 128; // Naked constant! Work unit = 64k. duke@435: int dirty_card_count = 0; duke@435: bool depth_first = pm->depth_first(); duke@435: duke@435: oop* sp_top = (oop*)space_top; duke@435: jbyte* start_card = byte_for(sp->bottom()); duke@435: jbyte* end_card = byte_for(sp_top - 1) + 1; duke@435: oop* last_scanned = NULL; // Prevent scanning objects more than once duke@435: for (jbyte* slice = start_card; slice < end_card; slice += ssize*ParallelGCThreads) { duke@435: jbyte* worker_start_card = slice + stripe_number * ssize; duke@435: if (worker_start_card >= end_card) duke@435: return; // We're done. duke@435: duke@435: jbyte* worker_end_card = worker_start_card + ssize; duke@435: if (worker_end_card > end_card) duke@435: worker_end_card = end_card; duke@435: duke@435: // We do not want to scan objects more than once. In order to accomplish duke@435: // this, we assert that any object with an object head inside our 'slice' duke@435: // belongs to us. We may need to extend the range of scanned cards if the duke@435: // last object continues into the next 'slice'. duke@435: // duke@435: // Note! ending cards are exclusive! duke@435: HeapWord* slice_start = addr_for(worker_start_card); duke@435: HeapWord* slice_end = MIN2((HeapWord*) sp_top, addr_for(worker_end_card)); duke@435: duke@435: // If there are not objects starting within the chunk, skip it. duke@435: if (!start_array->object_starts_in_range(slice_start, slice_end)) { duke@435: continue; duke@435: } twisti@1040: // Update our beginning addr duke@435: HeapWord* first_object = start_array->object_start(slice_start); duke@435: debug_only(oop* first_object_within_slice = (oop*) first_object;) duke@435: if (first_object < slice_start) { duke@435: last_scanned = (oop*)(first_object + oop(first_object)->size()); duke@435: debug_only(first_object_within_slice = last_scanned;) duke@435: worker_start_card = byte_for(last_scanned); duke@435: } duke@435: duke@435: // Update the ending addr duke@435: if (slice_end < (HeapWord*)sp_top) { duke@435: // The subtraction is important! An object may start precisely at slice_end. duke@435: HeapWord* last_object = start_array->object_start(slice_end - 1); duke@435: slice_end = last_object + oop(last_object)->size(); duke@435: // worker_end_card is exclusive, so bump it one past the end of last_object's duke@435: // covered span. duke@435: worker_end_card = byte_for(slice_end) + 1; duke@435: duke@435: if (worker_end_card > end_card) duke@435: worker_end_card = end_card; duke@435: } duke@435: duke@435: assert(slice_end <= (HeapWord*)sp_top, "Last object in slice crosses space boundary"); duke@435: assert(is_valid_card_address(worker_start_card), "Invalid worker start card"); duke@435: assert(is_valid_card_address(worker_end_card), "Invalid worker end card"); duke@435: // Note that worker_start_card >= worker_end_card is legal, and happens when duke@435: // an object spans an entire slice. duke@435: assert(worker_start_card <= end_card, "worker start card beyond end card"); duke@435: assert(worker_end_card <= end_card, "worker end card beyond end card"); duke@435: duke@435: jbyte* current_card = worker_start_card; duke@435: while (current_card < worker_end_card) { duke@435: // Find an unclean card. duke@435: while (current_card < worker_end_card && card_is_clean(*current_card)) { duke@435: current_card++; duke@435: } duke@435: jbyte* first_unclean_card = current_card; duke@435: duke@435: // Find the end of a run of contiguous unclean cards duke@435: while (current_card < worker_end_card && !card_is_clean(*current_card)) { duke@435: while (current_card < worker_end_card && !card_is_clean(*current_card)) { duke@435: current_card++; duke@435: } duke@435: duke@435: if (current_card < worker_end_card) { duke@435: // Some objects may be large enough to span several cards. If such duke@435: // an object has more than one dirty card, separated by a clean card, duke@435: // we will attempt to scan it twice. The test against "last_scanned" duke@435: // prevents the redundant object scan, but it does not prevent newly duke@435: // marked cards from being cleaned. duke@435: HeapWord* last_object_in_dirty_region = start_array->object_start(addr_for(current_card)-1); duke@435: size_t size_of_last_object = oop(last_object_in_dirty_region)->size(); duke@435: HeapWord* end_of_last_object = last_object_in_dirty_region + size_of_last_object; duke@435: jbyte* ending_card_of_last_object = byte_for(end_of_last_object); duke@435: assert(ending_card_of_last_object <= worker_end_card, "ending_card_of_last_object is greater than worker_end_card"); duke@435: if (ending_card_of_last_object > current_card) { duke@435: // This means the object spans the next complete card. duke@435: // We need to bump the current_card to ending_card_of_last_object duke@435: current_card = ending_card_of_last_object; duke@435: } duke@435: } duke@435: } duke@435: jbyte* following_clean_card = current_card; duke@435: duke@435: if (first_unclean_card < worker_end_card) { duke@435: oop* p = (oop*) start_array->object_start(addr_for(first_unclean_card)); duke@435: assert((HeapWord*)p <= addr_for(first_unclean_card), "checking"); duke@435: // "p" should always be >= "last_scanned" because newly GC dirtied duke@435: // cards are no longer scanned again (see comment at end duke@435: // of loop on the increment of "current_card"). Test that duke@435: // hypothesis before removing this code. duke@435: // If this code is removed, deal with the first time through duke@435: // the loop when the last_scanned is the object starting in duke@435: // the previous slice. duke@435: assert((p >= last_scanned) || duke@435: (last_scanned == first_object_within_slice), duke@435: "Should no longer be possible"); duke@435: if (p < last_scanned) { duke@435: // Avoid scanning more than once; this can happen because duke@435: // newgen cards set by GC may a different set than the duke@435: // originally dirty set duke@435: p = last_scanned; duke@435: } duke@435: oop* to = (oop*)addr_for(following_clean_card); duke@435: duke@435: // Test slice_end first! duke@435: if ((HeapWord*)to > slice_end) { duke@435: to = (oop*)slice_end; duke@435: } else if (to > sp_top) { duke@435: to = sp_top; duke@435: } duke@435: duke@435: // we know which cards to scan, now clear them duke@435: if (first_unclean_card <= worker_start_card+1) duke@435: first_unclean_card = worker_start_card+1; duke@435: if (following_clean_card >= worker_end_card-1) duke@435: following_clean_card = worker_end_card-1; duke@435: duke@435: while (first_unclean_card < following_clean_card) { duke@435: *first_unclean_card++ = clean_card; duke@435: } duke@435: duke@435: const int interval = PrefetchScanIntervalInBytes; duke@435: // scan all objects in the range duke@435: if (interval != 0) { duke@435: // hoisted the if (depth_first) check out of the loop duke@435: if (depth_first) { duke@435: while (p < to) { duke@435: Prefetch::write(p, interval); duke@435: oop m = oop(p); duke@435: assert(m->is_oop_or_null(), "check for header"); duke@435: m->push_contents(pm); duke@435: p += m->size(); duke@435: } duke@435: pm->drain_stacks_cond_depth(); duke@435: } else { duke@435: while (p < to) { duke@435: Prefetch::write(p, interval); duke@435: oop m = oop(p); duke@435: assert(m->is_oop_or_null(), "check for header"); duke@435: m->copy_contents(pm); duke@435: p += m->size(); duke@435: } duke@435: } duke@435: } else { duke@435: // hoisted the if (depth_first) check out of the loop duke@435: if (depth_first) { duke@435: while (p < to) { duke@435: oop m = oop(p); duke@435: assert(m->is_oop_or_null(), "check for header"); duke@435: m->push_contents(pm); duke@435: p += m->size(); duke@435: } duke@435: pm->drain_stacks_cond_depth(); duke@435: } else { duke@435: while (p < to) { duke@435: oop m = oop(p); duke@435: assert(m->is_oop_or_null(), "check for header"); duke@435: m->copy_contents(pm); duke@435: p += m->size(); duke@435: } duke@435: } duke@435: } duke@435: last_scanned = p; duke@435: } duke@435: // "current_card" is still the "following_clean_card" or duke@435: // the current_card is >= the worker_end_card so the duke@435: // loop will not execute again. duke@435: assert((current_card == following_clean_card) || duke@435: (current_card >= worker_end_card), duke@435: "current_card should only be incremented if it still equals " duke@435: "following_clean_card"); duke@435: // Increment current_card so that it is not processed again. duke@435: // It may now be dirty because a old-to-young pointer was duke@435: // found on it an updated. If it is now dirty, it cannot be duke@435: // be safely cleaned in the next iteration. duke@435: current_card++; duke@435: } duke@435: } duke@435: } duke@435: duke@435: // This should be called before a scavenge. duke@435: void CardTableExtension::verify_all_young_refs_imprecise() { duke@435: CheckForUnmarkedObjects check; duke@435: duke@435: ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap(); duke@435: assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity"); duke@435: duke@435: PSOldGen* old_gen = heap->old_gen(); duke@435: PSPermGen* perm_gen = heap->perm_gen(); duke@435: duke@435: old_gen->object_iterate(&check); duke@435: perm_gen->object_iterate(&check); duke@435: } duke@435: duke@435: // This should be called immediately after a scavenge, before mutators resume. duke@435: void CardTableExtension::verify_all_young_refs_precise() { duke@435: ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap(); duke@435: assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity"); duke@435: duke@435: PSOldGen* old_gen = heap->old_gen(); duke@435: PSPermGen* perm_gen = heap->perm_gen(); duke@435: duke@435: CheckForPreciseMarks check(heap->young_gen(), (CardTableExtension*)heap->barrier_set()); duke@435: duke@435: old_gen->oop_iterate(&check); duke@435: perm_gen->oop_iterate(&check); duke@435: duke@435: verify_all_young_refs_precise_helper(old_gen->object_space()->used_region()); duke@435: verify_all_young_refs_precise_helper(perm_gen->object_space()->used_region()); duke@435: } duke@435: duke@435: void CardTableExtension::verify_all_young_refs_precise_helper(MemRegion mr) { duke@435: CardTableExtension* card_table = (CardTableExtension*)Universe::heap()->barrier_set(); duke@435: // FIX ME ASSERT HERE duke@435: duke@435: jbyte* bot = card_table->byte_for(mr.start()); duke@435: jbyte* top = card_table->byte_for(mr.end()); duke@435: while(bot <= top) { duke@435: assert(*bot == clean_card || *bot == verify_card, "Found unwanted or unknown card mark"); duke@435: if (*bot == verify_card) duke@435: *bot = youngergen_card; duke@435: bot++; duke@435: } duke@435: } duke@435: duke@435: bool CardTableExtension::addr_is_marked_imprecise(void *addr) { duke@435: jbyte* p = byte_for(addr); duke@435: jbyte val = *p; duke@435: duke@435: if (card_is_dirty(val)) duke@435: return true; duke@435: duke@435: if (card_is_newgen(val)) duke@435: return true; duke@435: duke@435: if (card_is_clean(val)) duke@435: return false; duke@435: duke@435: assert(false, "Found unhandled card mark type"); duke@435: duke@435: return false; duke@435: } duke@435: duke@435: // Also includes verify_card duke@435: bool CardTableExtension::addr_is_marked_precise(void *addr) { duke@435: jbyte* p = byte_for(addr); duke@435: jbyte val = *p; duke@435: duke@435: if (card_is_newgen(val)) duke@435: return true; duke@435: duke@435: if (card_is_verify(val)) duke@435: return true; duke@435: duke@435: if (card_is_clean(val)) duke@435: return false; duke@435: duke@435: if (card_is_dirty(val)) duke@435: return false; duke@435: duke@435: assert(false, "Found unhandled card mark type"); duke@435: duke@435: return false; duke@435: } duke@435: duke@435: // Assumes that only the base or the end changes. This allows indentification duke@435: // of the region that is being resized. The duke@435: // CardTableModRefBS::resize_covered_region() is used for the normal case duke@435: // where the covered regions are growing or shrinking at the high end. duke@435: // The method resize_covered_region_by_end() is analogous to duke@435: // CardTableModRefBS::resize_covered_region() but duke@435: // for regions that grow or shrink at the low end. duke@435: void CardTableExtension::resize_covered_region(MemRegion new_region) { duke@435: duke@435: for (int i = 0; i < _cur_covered_regions; i++) { duke@435: if (_covered[i].start() == new_region.start()) { duke@435: // Found a covered region with the same start as the duke@435: // new region. The region is growing or shrinking duke@435: // from the start of the region. duke@435: resize_covered_region_by_start(new_region); duke@435: return; duke@435: } duke@435: if (_covered[i].start() > new_region.start()) { duke@435: break; duke@435: } duke@435: } duke@435: duke@435: int changed_region = -1; duke@435: for (int j = 0; j < _cur_covered_regions; j++) { duke@435: if (_covered[j].end() == new_region.end()) { duke@435: changed_region = j; duke@435: // This is a case where the covered region is growing or shrinking duke@435: // at the start of the region. duke@435: assert(changed_region != -1, "Don't expect to add a covered region"); duke@435: assert(_covered[changed_region].byte_size() != new_region.byte_size(), duke@435: "The sizes should be different here"); duke@435: resize_covered_region_by_end(changed_region, new_region); duke@435: return; duke@435: } duke@435: } duke@435: // This should only be a new covered region (where no existing duke@435: // covered region matches at the start or the end). duke@435: assert(_cur_covered_regions < _max_covered_regions, duke@435: "An existing region should have been found"); duke@435: resize_covered_region_by_start(new_region); duke@435: } duke@435: duke@435: void CardTableExtension::resize_covered_region_by_start(MemRegion new_region) { duke@435: CardTableModRefBS::resize_covered_region(new_region); duke@435: debug_only(verify_guard();) duke@435: } duke@435: duke@435: void CardTableExtension::resize_covered_region_by_end(int changed_region, duke@435: MemRegion new_region) { duke@435: assert(SafepointSynchronize::is_at_safepoint(), duke@435: "Only expect an expansion at the low end at a GC"); duke@435: debug_only(verify_guard();) duke@435: #ifdef ASSERT duke@435: for (int k = 0; k < _cur_covered_regions; k++) { duke@435: if (_covered[k].end() == new_region.end()) { duke@435: assert(changed_region == k, "Changed region is incorrect"); duke@435: break; duke@435: } duke@435: } duke@435: #endif duke@435: duke@435: // Commit new or uncommit old pages, if necessary. duke@435: resize_commit_uncommit(changed_region, new_region); duke@435: duke@435: // Update card table entries duke@435: resize_update_card_table_entries(changed_region, new_region); duke@435: duke@435: // Set the new start of the committed region duke@435: resize_update_committed_table(changed_region, new_region); duke@435: duke@435: // Update the covered region duke@435: resize_update_covered_table(changed_region, new_region); duke@435: duke@435: if (TraceCardTableModRefBS) { duke@435: int ind = changed_region; duke@435: gclog_or_tty->print_cr("CardTableModRefBS::resize_covered_region: "); duke@435: gclog_or_tty->print_cr(" " duke@435: " _covered[%d].start(): " INTPTR_FORMAT duke@435: " _covered[%d].last(): " INTPTR_FORMAT, duke@435: ind, _covered[ind].start(), duke@435: ind, _covered[ind].last()); duke@435: gclog_or_tty->print_cr(" " duke@435: " _committed[%d].start(): " INTPTR_FORMAT duke@435: " _committed[%d].last(): " INTPTR_FORMAT, duke@435: ind, _committed[ind].start(), duke@435: ind, _committed[ind].last()); duke@435: gclog_or_tty->print_cr(" " duke@435: " byte_for(start): " INTPTR_FORMAT duke@435: " byte_for(last): " INTPTR_FORMAT, duke@435: byte_for(_covered[ind].start()), duke@435: byte_for(_covered[ind].last())); duke@435: gclog_or_tty->print_cr(" " duke@435: " addr_for(start): " INTPTR_FORMAT duke@435: " addr_for(last): " INTPTR_FORMAT, duke@435: addr_for((jbyte*) _committed[ind].start()), duke@435: addr_for((jbyte*) _committed[ind].last())); duke@435: } duke@435: debug_only(verify_guard();) duke@435: } duke@435: duke@435: void CardTableExtension::resize_commit_uncommit(int changed_region, duke@435: MemRegion new_region) { duke@435: // Commit new or uncommit old pages, if necessary. duke@435: MemRegion cur_committed = _committed[changed_region]; duke@435: assert(_covered[changed_region].end() == new_region.end(), duke@435: "The ends of the regions are expected to match"); duke@435: // Extend the start of this _committed region to duke@435: // to cover the start of any previous _committed region. duke@435: // This forms overlapping regions, but never interior regions. duke@435: HeapWord* min_prev_start = lowest_prev_committed_start(changed_region); duke@435: if (min_prev_start < cur_committed.start()) { duke@435: // Only really need to set start of "cur_committed" to duke@435: // the new start (min_prev_start) but assertion checking code duke@435: // below use cur_committed.end() so make it correct. duke@435: MemRegion new_committed = duke@435: MemRegion(min_prev_start, cur_committed.end()); duke@435: cur_committed = new_committed; duke@435: } duke@435: #ifdef ASSERT duke@435: ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap(); duke@435: assert(cur_committed.start() == duke@435: (HeapWord*) align_size_up((uintptr_t) cur_committed.start(), duke@435: os::vm_page_size()), duke@435: "Starts should have proper alignment"); duke@435: #endif duke@435: duke@435: jbyte* new_start = byte_for(new_region.start()); duke@435: // Round down because this is for the start address duke@435: HeapWord* new_start_aligned = duke@435: (HeapWord*)align_size_down((uintptr_t)new_start, os::vm_page_size()); duke@435: // The guard page is always committed and should not be committed over. duke@435: // This method is used in cases where the generation is growing toward duke@435: // lower addresses but the guard region is still at the end of the duke@435: // card table. That still makes sense when looking for writes duke@435: // off the end of the card table. duke@435: if (new_start_aligned < cur_committed.start()) { duke@435: // Expand the committed region duke@435: // duke@435: // Case A duke@435: // |+ guard +| duke@435: // |+ cur committed +++++++++| duke@435: // |+ new committed +++++++++++++++++| duke@435: // duke@435: // Case B duke@435: // |+ guard +| duke@435: // |+ cur committed +| duke@435: // |+ new committed +++++++| duke@435: // duke@435: // These are not expected because the calculation of the duke@435: // cur committed region and the new committed region duke@435: // share the same end for the covered region. duke@435: // Case C duke@435: // |+ guard +| duke@435: // |+ cur committed +| duke@435: // |+ new committed +++++++++++++++++| duke@435: // Case D duke@435: // |+ guard +| duke@435: // |+ cur committed +++++++++++| duke@435: // |+ new committed +++++++| duke@435: duke@435: HeapWord* new_end_for_commit = duke@435: MIN2(cur_committed.end(), _guard_region.start()); jmasa@698: if(new_start_aligned < new_end_for_commit) { jmasa@698: MemRegion new_committed = jmasa@698: MemRegion(new_start_aligned, new_end_for_commit); duke@435: if (!os::commit_memory((char*)new_committed.start(), duke@435: new_committed.byte_size())) { duke@435: vm_exit_out_of_memory(new_committed.byte_size(), duke@435: "card table expansion"); duke@435: } duke@435: } duke@435: } else if (new_start_aligned > cur_committed.start()) { duke@435: // Shrink the committed region duke@435: MemRegion uncommit_region = committed_unique_to_self(changed_region, duke@435: MemRegion(cur_committed.start(), new_start_aligned)); duke@435: if (!uncommit_region.is_empty()) { duke@435: if (!os::uncommit_memory((char*)uncommit_region.start(), duke@435: uncommit_region.byte_size())) { duke@435: vm_exit_out_of_memory(uncommit_region.byte_size(), duke@435: "card table contraction"); duke@435: } duke@435: } duke@435: } duke@435: assert(_committed[changed_region].end() == cur_committed.end(), duke@435: "end should not change"); duke@435: } duke@435: duke@435: void CardTableExtension::resize_update_committed_table(int changed_region, duke@435: MemRegion new_region) { duke@435: duke@435: jbyte* new_start = byte_for(new_region.start()); duke@435: // Set the new start of the committed region duke@435: HeapWord* new_start_aligned = duke@435: (HeapWord*)align_size_down((uintptr_t)new_start, duke@435: os::vm_page_size()); duke@435: MemRegion new_committed = MemRegion(new_start_aligned, duke@435: _committed[changed_region].end()); duke@435: _committed[changed_region] = new_committed; duke@435: _committed[changed_region].set_start(new_start_aligned); duke@435: } duke@435: duke@435: void CardTableExtension::resize_update_card_table_entries(int changed_region, duke@435: MemRegion new_region) { duke@435: debug_only(verify_guard();) duke@435: MemRegion original_covered = _covered[changed_region]; duke@435: // Initialize the card entries. Only consider the duke@435: // region covered by the card table (_whole_heap) duke@435: jbyte* entry; duke@435: if (new_region.start() < _whole_heap.start()) { duke@435: entry = byte_for(_whole_heap.start()); duke@435: } else { duke@435: entry = byte_for(new_region.start()); duke@435: } duke@435: jbyte* end = byte_for(original_covered.start()); duke@435: // If _whole_heap starts at the original covered regions start, duke@435: // this loop will not execute. duke@435: while (entry < end) { *entry++ = clean_card; } duke@435: } duke@435: duke@435: void CardTableExtension::resize_update_covered_table(int changed_region, duke@435: MemRegion new_region) { duke@435: // Update the covered region duke@435: _covered[changed_region].set_start(new_region.start()); duke@435: _covered[changed_region].set_word_size(new_region.word_size()); duke@435: duke@435: // reorder regions. There should only be at most 1 out duke@435: // of order. duke@435: for (int i = _cur_covered_regions-1 ; i > 0; i--) { duke@435: if (_covered[i].start() < _covered[i-1].start()) { duke@435: MemRegion covered_mr = _covered[i-1]; duke@435: _covered[i-1] = _covered[i]; duke@435: _covered[i] = covered_mr; duke@435: MemRegion committed_mr = _committed[i-1]; duke@435: _committed[i-1] = _committed[i]; duke@435: _committed[i] = committed_mr; duke@435: break; duke@435: } duke@435: } duke@435: #ifdef ASSERT duke@435: for (int m = 0; m < _cur_covered_regions-1; m++) { duke@435: assert(_covered[m].start() <= _covered[m+1].start(), duke@435: "Covered regions out of order"); duke@435: assert(_committed[m].start() <= _committed[m+1].start(), duke@435: "Committed regions out of order"); duke@435: } duke@435: #endif duke@435: } duke@435: duke@435: // Returns the start of any committed region that is lower than duke@435: // the target committed region (index ind) and that intersects the duke@435: // target region. If none, return start of target region. duke@435: // duke@435: // ------------- duke@435: // | | duke@435: // ------------- duke@435: // ------------ duke@435: // | target | duke@435: // ------------ duke@435: // ------------- duke@435: // | | duke@435: // ------------- duke@435: // ^ returns this duke@435: // duke@435: // ------------- duke@435: // | | duke@435: // ------------- duke@435: // ------------ duke@435: // | target | duke@435: // ------------ duke@435: // ------------- duke@435: // | | duke@435: // ------------- duke@435: // ^ returns this duke@435: duke@435: HeapWord* CardTableExtension::lowest_prev_committed_start(int ind) const { duke@435: assert(_cur_covered_regions >= 0, "Expecting at least on region"); duke@435: HeapWord* min_start = _committed[ind].start(); duke@435: for (int j = 0; j < ind; j++) { duke@435: HeapWord* this_start = _committed[j].start(); duke@435: if ((this_start < min_start) && duke@435: !(_committed[j].intersection(_committed[ind])).is_empty()) { duke@435: min_start = this_start; duke@435: } duke@435: } duke@435: return min_start; duke@435: }