duke@435: /* trims@1907: * Copyright (c) 1999, 2010, Oracle and/or its affiliates. All rights reserved. duke@435: * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. duke@435: * duke@435: * This code is free software; you can redistribute it and/or modify it duke@435: * under the terms of the GNU General Public License version 2 only, as duke@435: * published by the Free Software Foundation. duke@435: * duke@435: * This code is distributed in the hope that it will be useful, but WITHOUT duke@435: * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or duke@435: * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License duke@435: * version 2 for more details (a copy is included in the LICENSE file that duke@435: * accompanied this code). duke@435: * duke@435: * You should have received a copy of the GNU General Public License version duke@435: * 2 along with this work; if not, write to the Free Software Foundation, duke@435: * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. duke@435: * trims@1907: * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA trims@1907: * or visit www.oracle.com if you need additional information or have any trims@1907: * questions. duke@435: * duke@435: */ duke@435: duke@435: #include "incls/_precompiled.incl" duke@435: #include "incls/_c1_Instruction.cpp.incl" duke@435: duke@435: duke@435: // Implementation of Instruction duke@435: duke@435: duke@435: int Instruction::_next_id = 0; duke@435: duke@435: #ifdef ASSERT duke@435: void Instruction::create_hi_word() { duke@435: assert(type()->is_double_word() && _hi_word == NULL, "only double word has high word"); duke@435: _hi_word = new HiWord(this); duke@435: } duke@435: #endif duke@435: duke@435: Instruction::Condition Instruction::mirror(Condition cond) { duke@435: switch (cond) { duke@435: case eql: return eql; duke@435: case neq: return neq; duke@435: case lss: return gtr; duke@435: case leq: return geq; duke@435: case gtr: return lss; duke@435: case geq: return leq; duke@435: } duke@435: ShouldNotReachHere(); duke@435: return eql; duke@435: } duke@435: duke@435: duke@435: Instruction::Condition Instruction::negate(Condition cond) { duke@435: switch (cond) { duke@435: case eql: return neq; duke@435: case neq: return eql; duke@435: case lss: return geq; duke@435: case leq: return gtr; duke@435: case gtr: return leq; duke@435: case geq: return lss; duke@435: } duke@435: ShouldNotReachHere(); duke@435: return eql; duke@435: } duke@435: duke@435: duke@435: Instruction* Instruction::prev(BlockBegin* block) { duke@435: Instruction* p = NULL; duke@435: Instruction* q = block; duke@435: while (q != this) { duke@435: assert(q != NULL, "this is not in the block's instruction list"); duke@435: p = q; q = q->next(); duke@435: } duke@435: return p; duke@435: } duke@435: duke@435: duke@435: #ifndef PRODUCT duke@435: void Instruction::print() { duke@435: InstructionPrinter ip; duke@435: print(ip); duke@435: } duke@435: duke@435: duke@435: void Instruction::print_line() { duke@435: InstructionPrinter ip; duke@435: ip.print_line(this); duke@435: } duke@435: duke@435: duke@435: void Instruction::print(InstructionPrinter& ip) { duke@435: ip.print_head(); duke@435: ip.print_line(this); duke@435: tty->cr(); duke@435: } duke@435: #endif // PRODUCT duke@435: duke@435: duke@435: // perform constant and interval tests on index value duke@435: bool AccessIndexed::compute_needs_range_check() { duke@435: Constant* clength = length()->as_Constant(); duke@435: Constant* cindex = index()->as_Constant(); duke@435: if (clength && cindex) { duke@435: IntConstant* l = clength->type()->as_IntConstant(); duke@435: IntConstant* i = cindex->type()->as_IntConstant(); duke@435: if (l && i && i->value() < l->value() && i->value() >= 0) { duke@435: return false; duke@435: } duke@435: } duke@435: return true; duke@435: } duke@435: duke@435: duke@435: ciType* LoadIndexed::exact_type() const { duke@435: ciType* array_type = array()->exact_type(); duke@435: if (array_type == NULL) { duke@435: return NULL; duke@435: } duke@435: assert(array_type->is_array_klass(), "what else?"); duke@435: ciArrayKlass* ak = (ciArrayKlass*)array_type; duke@435: duke@435: if (ak->element_type()->is_instance_klass()) { duke@435: ciInstanceKlass* ik = (ciInstanceKlass*)ak->element_type(); duke@435: if (ik->is_loaded() && ik->is_final()) { duke@435: return ik; duke@435: } duke@435: } duke@435: return NULL; duke@435: } duke@435: duke@435: duke@435: ciType* LoadIndexed::declared_type() const { duke@435: ciType* array_type = array()->declared_type(); duke@435: if (array_type == NULL) { duke@435: return NULL; duke@435: } duke@435: assert(array_type->is_array_klass(), "what else?"); duke@435: ciArrayKlass* ak = (ciArrayKlass*)array_type; duke@435: return ak->element_type(); duke@435: } duke@435: duke@435: duke@435: ciType* LoadField::declared_type() const { duke@435: return field()->type(); duke@435: } duke@435: duke@435: duke@435: ciType* LoadField::exact_type() const { duke@435: ciType* type = declared_type(); duke@435: // for primitive arrays, the declared type is the exact type duke@435: if (type->is_type_array_klass()) { duke@435: return type; duke@435: } duke@435: if (type->is_instance_klass()) { duke@435: ciInstanceKlass* ik = (ciInstanceKlass*)type; duke@435: if (ik->is_loaded() && ik->is_final()) { duke@435: return type; duke@435: } duke@435: } duke@435: return NULL; duke@435: } duke@435: duke@435: duke@435: ciType* NewTypeArray::exact_type() const { duke@435: return ciTypeArrayKlass::make(elt_type()); duke@435: } duke@435: duke@435: duke@435: ciType* NewObjectArray::exact_type() const { duke@435: return ciObjArrayKlass::make(klass()); duke@435: } duke@435: duke@435: duke@435: ciType* NewInstance::exact_type() const { duke@435: return klass(); duke@435: } duke@435: duke@435: duke@435: ciType* CheckCast::declared_type() const { duke@435: return klass(); duke@435: } duke@435: duke@435: ciType* CheckCast::exact_type() const { duke@435: if (klass()->is_instance_klass()) { duke@435: ciInstanceKlass* ik = (ciInstanceKlass*)klass(); duke@435: if (ik->is_loaded() && ik->is_final()) { duke@435: return ik; duke@435: } duke@435: } duke@435: return NULL; duke@435: } duke@435: duke@435: duke@435: void ArithmeticOp::other_values_do(void f(Value*)) { duke@435: if (lock_stack() != NULL) lock_stack()->values_do(f); duke@435: } duke@435: duke@435: void NullCheck::other_values_do(void f(Value*)) { duke@435: lock_stack()->values_do(f); duke@435: } duke@435: duke@435: void AccessArray::other_values_do(void f(Value*)) { duke@435: if (lock_stack() != NULL) lock_stack()->values_do(f); duke@435: } duke@435: duke@435: duke@435: // Implementation of AccessField duke@435: duke@435: void AccessField::other_values_do(void f(Value*)) { duke@435: if (state_before() != NULL) state_before()->values_do(f); duke@435: if (lock_stack() != NULL) lock_stack()->values_do(f); duke@435: } duke@435: duke@435: duke@435: // Implementation of StoreIndexed duke@435: duke@435: IRScope* StoreIndexed::scope() const { duke@435: return lock_stack()->scope(); duke@435: } duke@435: duke@435: duke@435: // Implementation of ArithmeticOp duke@435: duke@435: bool ArithmeticOp::is_commutative() const { duke@435: switch (op()) { duke@435: case Bytecodes::_iadd: // fall through duke@435: case Bytecodes::_ladd: // fall through duke@435: case Bytecodes::_fadd: // fall through duke@435: case Bytecodes::_dadd: // fall through duke@435: case Bytecodes::_imul: // fall through duke@435: case Bytecodes::_lmul: // fall through duke@435: case Bytecodes::_fmul: // fall through duke@435: case Bytecodes::_dmul: return true; duke@435: } duke@435: return false; duke@435: } duke@435: duke@435: duke@435: bool ArithmeticOp::can_trap() const { duke@435: switch (op()) { duke@435: case Bytecodes::_idiv: // fall through duke@435: case Bytecodes::_ldiv: // fall through duke@435: case Bytecodes::_irem: // fall through duke@435: case Bytecodes::_lrem: return true; duke@435: } duke@435: return false; duke@435: } duke@435: duke@435: duke@435: // Implementation of LogicOp duke@435: duke@435: bool LogicOp::is_commutative() const { duke@435: #ifdef ASSERT duke@435: switch (op()) { duke@435: case Bytecodes::_iand: // fall through duke@435: case Bytecodes::_land: // fall through duke@435: case Bytecodes::_ior : // fall through duke@435: case Bytecodes::_lor : // fall through duke@435: case Bytecodes::_ixor: // fall through duke@435: case Bytecodes::_lxor: break; duke@435: default : ShouldNotReachHere(); duke@435: } duke@435: #endif duke@435: // all LogicOps are commutative duke@435: return true; duke@435: } duke@435: duke@435: duke@435: // Implementation of CompareOp duke@435: duke@435: void CompareOp::other_values_do(void f(Value*)) { duke@435: if (state_before() != NULL) state_before()->values_do(f); duke@435: } duke@435: duke@435: duke@435: // Implementation of IfOp duke@435: duke@435: bool IfOp::is_commutative() const { duke@435: return cond() == eql || cond() == neq; duke@435: } duke@435: duke@435: duke@435: // Implementation of StateSplit duke@435: duke@435: void StateSplit::substitute(BlockList& list, BlockBegin* old_block, BlockBegin* new_block) { duke@435: NOT_PRODUCT(bool assigned = false;) duke@435: for (int i = 0; i < list.length(); i++) { duke@435: BlockBegin** b = list.adr_at(i); duke@435: if (*b == old_block) { duke@435: *b = new_block; duke@435: NOT_PRODUCT(assigned = true;) duke@435: } duke@435: } duke@435: assert(assigned == true, "should have assigned at least once"); duke@435: } duke@435: duke@435: duke@435: IRScope* StateSplit::scope() const { duke@435: return _state->scope(); duke@435: } duke@435: duke@435: duke@435: void StateSplit::state_values_do(void f(Value*)) { duke@435: if (state() != NULL) state()->values_do(f); duke@435: } duke@435: duke@435: duke@435: void BlockBegin::state_values_do(void f(Value*)) { duke@435: StateSplit::state_values_do(f); duke@435: duke@435: if (is_set(BlockBegin::exception_entry_flag)) { duke@435: for (int i = 0; i < number_of_exception_states(); i++) { duke@435: exception_state_at(i)->values_do(f); duke@435: } duke@435: } duke@435: } duke@435: duke@435: duke@435: void MonitorEnter::state_values_do(void f(Value*)) { duke@435: StateSplit::state_values_do(f); duke@435: _lock_stack_before->values_do(f); duke@435: } duke@435: duke@435: duke@435: void Intrinsic::state_values_do(void f(Value*)) { duke@435: StateSplit::state_values_do(f); duke@435: if (lock_stack() != NULL) lock_stack()->values_do(f); duke@435: } duke@435: duke@435: duke@435: // Implementation of Invoke duke@435: duke@435: duke@435: Invoke::Invoke(Bytecodes::Code code, ValueType* result_type, Value recv, Values* args, twisti@1730: int vtable_index, ciMethod* target, ValueStack* state_before) duke@435: : StateSplit(result_type) duke@435: , _code(code) duke@435: , _recv(recv) duke@435: , _args(args) duke@435: , _vtable_index(vtable_index) duke@435: , _target(target) twisti@1730: , _state_before(state_before) duke@435: { duke@435: set_flag(TargetIsLoadedFlag, target->is_loaded()); duke@435: set_flag(TargetIsFinalFlag, target_is_loaded() && target->is_final_method()); duke@435: set_flag(TargetIsStrictfpFlag, target_is_loaded() && target->is_strict()); duke@435: duke@435: assert(args != NULL, "args must exist"); duke@435: #ifdef ASSERT duke@435: values_do(assert_value); duke@435: #endif // ASSERT duke@435: duke@435: // provide an initial guess of signature size. duke@435: _signature = new BasicTypeList(number_of_arguments() + (has_receiver() ? 1 : 0)); duke@435: if (has_receiver()) { duke@435: _signature->append(as_BasicType(receiver()->type())); twisti@1730: } else if (is_invokedynamic()) { twisti@1730: // Add the synthetic MethodHandle argument to the signature. twisti@1730: _signature->append(T_OBJECT); duke@435: } duke@435: for (int i = 0; i < number_of_arguments(); i++) { duke@435: ValueType* t = argument_at(i)->type(); duke@435: BasicType bt = as_BasicType(t); duke@435: _signature->append(bt); duke@435: } duke@435: } duke@435: duke@435: twisti@1730: void Invoke::state_values_do(void f(Value*)) { twisti@1730: StateSplit::state_values_do(f); twisti@1730: if (state_before() != NULL) state_before()->values_do(f); twisti@1730: if (state() != NULL) state()->values_do(f); twisti@1730: } twisti@1730: twisti@1730: duke@435: // Implementation of Contant duke@435: intx Constant::hash() const { duke@435: if (_state == NULL) { duke@435: switch (type()->tag()) { duke@435: case intTag: duke@435: return HASH2(name(), type()->as_IntConstant()->value()); duke@435: case longTag: duke@435: { duke@435: jlong temp = type()->as_LongConstant()->value(); duke@435: return HASH3(name(), high(temp), low(temp)); duke@435: } duke@435: case floatTag: duke@435: return HASH2(name(), jint_cast(type()->as_FloatConstant()->value())); duke@435: case doubleTag: duke@435: { duke@435: jlong temp = jlong_cast(type()->as_DoubleConstant()->value()); duke@435: return HASH3(name(), high(temp), low(temp)); duke@435: } duke@435: case objectTag: duke@435: assert(type()->as_ObjectType()->is_loaded(), "can't handle unloaded values"); duke@435: return HASH2(name(), type()->as_ObjectType()->constant_value()); duke@435: } duke@435: } duke@435: return 0; duke@435: } duke@435: duke@435: bool Constant::is_equal(Value v) const { duke@435: if (v->as_Constant() == NULL) return false; duke@435: duke@435: switch (type()->tag()) { duke@435: case intTag: duke@435: { duke@435: IntConstant* t1 = type()->as_IntConstant(); duke@435: IntConstant* t2 = v->type()->as_IntConstant(); duke@435: return (t1 != NULL && t2 != NULL && duke@435: t1->value() == t2->value()); duke@435: } duke@435: case longTag: duke@435: { duke@435: LongConstant* t1 = type()->as_LongConstant(); duke@435: LongConstant* t2 = v->type()->as_LongConstant(); duke@435: return (t1 != NULL && t2 != NULL && duke@435: t1->value() == t2->value()); duke@435: } duke@435: case floatTag: duke@435: { duke@435: FloatConstant* t1 = type()->as_FloatConstant(); duke@435: FloatConstant* t2 = v->type()->as_FloatConstant(); duke@435: return (t1 != NULL && t2 != NULL && duke@435: jint_cast(t1->value()) == jint_cast(t2->value())); duke@435: } duke@435: case doubleTag: duke@435: { duke@435: DoubleConstant* t1 = type()->as_DoubleConstant(); duke@435: DoubleConstant* t2 = v->type()->as_DoubleConstant(); duke@435: return (t1 != NULL && t2 != NULL && duke@435: jlong_cast(t1->value()) == jlong_cast(t2->value())); duke@435: } duke@435: case objectTag: duke@435: { duke@435: ObjectType* t1 = type()->as_ObjectType(); duke@435: ObjectType* t2 = v->type()->as_ObjectType(); duke@435: return (t1 != NULL && t2 != NULL && duke@435: t1->is_loaded() && t2->is_loaded() && duke@435: t1->constant_value() == t2->constant_value()); duke@435: } duke@435: } duke@435: return false; duke@435: } duke@435: duke@435: duke@435: BlockBegin* Constant::compare(Instruction::Condition cond, Value right, duke@435: BlockBegin* true_sux, BlockBegin* false_sux) { duke@435: Constant* rc = right->as_Constant(); duke@435: // other is not a constant duke@435: if (rc == NULL) return NULL; duke@435: duke@435: ValueType* lt = type(); duke@435: ValueType* rt = rc->type(); duke@435: // different types duke@435: if (lt->base() != rt->base()) return NULL; duke@435: switch (lt->tag()) { duke@435: case intTag: { duke@435: int x = lt->as_IntConstant()->value(); duke@435: int y = rt->as_IntConstant()->value(); duke@435: switch (cond) { duke@435: case If::eql: return x == y ? true_sux : false_sux; duke@435: case If::neq: return x != y ? true_sux : false_sux; duke@435: case If::lss: return x < y ? true_sux : false_sux; duke@435: case If::leq: return x <= y ? true_sux : false_sux; duke@435: case If::gtr: return x > y ? true_sux : false_sux; duke@435: case If::geq: return x >= y ? true_sux : false_sux; duke@435: } duke@435: break; duke@435: } duke@435: case longTag: { duke@435: jlong x = lt->as_LongConstant()->value(); duke@435: jlong y = rt->as_LongConstant()->value(); duke@435: switch (cond) { duke@435: case If::eql: return x == y ? true_sux : false_sux; duke@435: case If::neq: return x != y ? true_sux : false_sux; duke@435: case If::lss: return x < y ? true_sux : false_sux; duke@435: case If::leq: return x <= y ? true_sux : false_sux; duke@435: case If::gtr: return x > y ? true_sux : false_sux; duke@435: case If::geq: return x >= y ? true_sux : false_sux; duke@435: } duke@435: break; duke@435: } duke@435: case objectTag: { duke@435: ciObject* xvalue = lt->as_ObjectType()->constant_value(); duke@435: ciObject* yvalue = rt->as_ObjectType()->constant_value(); duke@435: assert(xvalue != NULL && yvalue != NULL, "not constants"); duke@435: if (xvalue->is_loaded() && yvalue->is_loaded()) { duke@435: switch (cond) { duke@435: case If::eql: return xvalue == yvalue ? true_sux : false_sux; duke@435: case If::neq: return xvalue != yvalue ? true_sux : false_sux; duke@435: } duke@435: } duke@435: break; duke@435: } duke@435: } duke@435: return NULL; duke@435: } duke@435: duke@435: duke@435: void Constant::other_values_do(void f(Value*)) { duke@435: if (state() != NULL) state()->values_do(f); duke@435: } duke@435: duke@435: duke@435: // Implementation of NewArray duke@435: duke@435: void NewArray::other_values_do(void f(Value*)) { duke@435: if (state_before() != NULL) state_before()->values_do(f); duke@435: } duke@435: duke@435: duke@435: // Implementation of TypeCheck duke@435: duke@435: void TypeCheck::other_values_do(void f(Value*)) { duke@435: if (state_before() != NULL) state_before()->values_do(f); duke@435: } duke@435: duke@435: duke@435: // Implementation of BlockBegin duke@435: duke@435: int BlockBegin::_next_block_id = 0; duke@435: duke@435: duke@435: void BlockBegin::set_end(BlockEnd* end) { duke@435: assert(end != NULL, "should not reset block end to NULL"); duke@435: BlockEnd* old_end = _end; duke@435: if (end == old_end) { duke@435: return; duke@435: } duke@435: // Must make the predecessors/successors match up with the duke@435: // BlockEnd's notion. duke@435: int i, n; duke@435: if (old_end != NULL) { duke@435: // disconnect from the old end duke@435: old_end->set_begin(NULL); duke@435: duke@435: // disconnect this block from it's current successors duke@435: for (i = 0; i < _successors.length(); i++) { duke@435: _successors.at(i)->remove_predecessor(this); duke@435: } duke@435: } duke@435: _end = end; duke@435: duke@435: _successors.clear(); duke@435: // Now reset successors list based on BlockEnd duke@435: n = end->number_of_sux(); duke@435: for (i = 0; i < n; i++) { duke@435: BlockBegin* sux = end->sux_at(i); duke@435: _successors.append(sux); duke@435: sux->_predecessors.append(this); duke@435: } duke@435: _end->set_begin(this); duke@435: } duke@435: duke@435: duke@435: void BlockBegin::disconnect_edge(BlockBegin* from, BlockBegin* to) { duke@435: // disconnect any edges between from and to duke@435: #ifndef PRODUCT duke@435: if (PrintIR && Verbose) { duke@435: tty->print_cr("Disconnected edge B%d -> B%d", from->block_id(), to->block_id()); duke@435: } duke@435: #endif duke@435: for (int s = 0; s < from->number_of_sux();) { duke@435: BlockBegin* sux = from->sux_at(s); duke@435: if (sux == to) { duke@435: int index = sux->_predecessors.index_of(from); duke@435: if (index >= 0) { duke@435: sux->_predecessors.remove_at(index); duke@435: } duke@435: from->_successors.remove_at(s); duke@435: } else { duke@435: s++; duke@435: } duke@435: } duke@435: } duke@435: duke@435: duke@435: void BlockBegin::disconnect_from_graph() { duke@435: // disconnect this block from all other blocks duke@435: for (int p = 0; p < number_of_preds(); p++) { duke@435: pred_at(p)->remove_successor(this); duke@435: } duke@435: for (int s = 0; s < number_of_sux(); s++) { duke@435: sux_at(s)->remove_predecessor(this); duke@435: } duke@435: } duke@435: duke@435: void BlockBegin::substitute_sux(BlockBegin* old_sux, BlockBegin* new_sux) { duke@435: // modify predecessors before substituting successors duke@435: for (int i = 0; i < number_of_sux(); i++) { duke@435: if (sux_at(i) == old_sux) { duke@435: // remove old predecessor before adding new predecessor duke@435: // otherwise there is a dead predecessor in the list duke@435: new_sux->remove_predecessor(old_sux); duke@435: new_sux->add_predecessor(this); duke@435: } duke@435: } duke@435: old_sux->remove_predecessor(this); duke@435: end()->substitute_sux(old_sux, new_sux); duke@435: } duke@435: duke@435: duke@435: duke@435: // In general it is not possible to calculate a value for the field "depth_first_number" duke@435: // of the inserted block, without recomputing the values of the other blocks duke@435: // in the CFG. Therefore the value of "depth_first_number" in BlockBegin becomes meaningless. duke@435: BlockBegin* BlockBegin::insert_block_between(BlockBegin* sux) { duke@435: // Try to make the bci close to a block with a single pred or sux, duke@435: // since this make the block layout algorithm work better. duke@435: int bci = -1; duke@435: if (sux->number_of_preds() == 1) { duke@435: bci = sux->bci(); duke@435: } else { duke@435: bci = end()->bci(); duke@435: } duke@435: duke@435: BlockBegin* new_sux = new BlockBegin(bci); duke@435: duke@435: // mark this block (special treatment when block order is computed) duke@435: new_sux->set(critical_edge_split_flag); duke@435: duke@435: // This goto is not a safepoint. duke@435: Goto* e = new Goto(sux, false); duke@435: new_sux->set_next(e, bci); duke@435: new_sux->set_end(e); duke@435: // setup states duke@435: ValueStack* s = end()->state(); duke@435: new_sux->set_state(s->copy()); duke@435: e->set_state(s->copy()); duke@435: assert(new_sux->state()->locals_size() == s->locals_size(), "local size mismatch!"); duke@435: assert(new_sux->state()->stack_size() == s->stack_size(), "stack size mismatch!"); duke@435: assert(new_sux->state()->locks_size() == s->locks_size(), "locks size mismatch!"); duke@435: duke@435: // link predecessor to new block duke@435: end()->substitute_sux(sux, new_sux); duke@435: duke@435: // The ordering needs to be the same, so remove the link that the duke@435: // set_end call above added and substitute the new_sux for this duke@435: // block. duke@435: sux->remove_predecessor(new_sux); duke@435: duke@435: // the successor could be the target of a switch so it might have duke@435: // multiple copies of this predecessor, so substitute the new_sux duke@435: // for the first and delete the rest. duke@435: bool assigned = false; duke@435: BlockList& list = sux->_predecessors; duke@435: for (int i = 0; i < list.length(); i++) { duke@435: BlockBegin** b = list.adr_at(i); duke@435: if (*b == this) { duke@435: if (assigned) { duke@435: list.remove_at(i); duke@435: // reprocess this index duke@435: i--; duke@435: } else { duke@435: assigned = true; duke@435: *b = new_sux; duke@435: } duke@435: // link the new block back to it's predecessors. duke@435: new_sux->add_predecessor(this); duke@435: } duke@435: } duke@435: assert(assigned == true, "should have assigned at least once"); duke@435: return new_sux; duke@435: } duke@435: duke@435: duke@435: void BlockBegin::remove_successor(BlockBegin* pred) { duke@435: int idx; duke@435: while ((idx = _successors.index_of(pred)) >= 0) { duke@435: _successors.remove_at(idx); duke@435: } duke@435: } duke@435: duke@435: duke@435: void BlockBegin::add_predecessor(BlockBegin* pred) { duke@435: _predecessors.append(pred); duke@435: } duke@435: duke@435: duke@435: void BlockBegin::remove_predecessor(BlockBegin* pred) { duke@435: int idx; duke@435: while ((idx = _predecessors.index_of(pred)) >= 0) { duke@435: _predecessors.remove_at(idx); duke@435: } duke@435: } duke@435: duke@435: duke@435: void BlockBegin::add_exception_handler(BlockBegin* b) { duke@435: assert(b != NULL && (b->is_set(exception_entry_flag)), "exception handler must exist"); duke@435: // add only if not in the list already duke@435: if (!_exception_handlers.contains(b)) _exception_handlers.append(b); duke@435: } duke@435: duke@435: int BlockBegin::add_exception_state(ValueStack* state) { duke@435: assert(is_set(exception_entry_flag), "only for xhandlers"); duke@435: if (_exception_states == NULL) { duke@435: _exception_states = new ValueStackStack(4); duke@435: } duke@435: _exception_states->append(state); duke@435: return _exception_states->length() - 1; duke@435: } duke@435: duke@435: duke@435: void BlockBegin::iterate_preorder(boolArray& mark, BlockClosure* closure) { duke@435: if (!mark.at(block_id())) { duke@435: mark.at_put(block_id(), true); duke@435: closure->block_do(this); duke@435: BlockEnd* e = end(); // must do this after block_do because block_do may change it! duke@435: { for (int i = number_of_exception_handlers() - 1; i >= 0; i--) exception_handler_at(i)->iterate_preorder(mark, closure); } duke@435: { for (int i = e->number_of_sux () - 1; i >= 0; i--) e->sux_at (i)->iterate_preorder(mark, closure); } duke@435: } duke@435: } duke@435: duke@435: duke@435: void BlockBegin::iterate_postorder(boolArray& mark, BlockClosure* closure) { duke@435: if (!mark.at(block_id())) { duke@435: mark.at_put(block_id(), true); duke@435: BlockEnd* e = end(); duke@435: { for (int i = number_of_exception_handlers() - 1; i >= 0; i--) exception_handler_at(i)->iterate_postorder(mark, closure); } duke@435: { for (int i = e->number_of_sux () - 1; i >= 0; i--) e->sux_at (i)->iterate_postorder(mark, closure); } duke@435: closure->block_do(this); duke@435: } duke@435: } duke@435: duke@435: duke@435: void BlockBegin::iterate_preorder(BlockClosure* closure) { duke@435: boolArray mark(number_of_blocks(), false); duke@435: iterate_preorder(mark, closure); duke@435: } duke@435: duke@435: duke@435: void BlockBegin::iterate_postorder(BlockClosure* closure) { duke@435: boolArray mark(number_of_blocks(), false); duke@435: iterate_postorder(mark, closure); duke@435: } duke@435: duke@435: duke@435: void BlockBegin::block_values_do(void f(Value*)) { duke@435: for (Instruction* n = this; n != NULL; n = n->next()) n->values_do(f); duke@435: } duke@435: duke@435: duke@435: #ifndef PRODUCT duke@435: #define TRACE_PHI(code) if (PrintPhiFunctions) { code; } duke@435: #else duke@435: #define TRACE_PHI(coce) duke@435: #endif duke@435: duke@435: duke@435: bool BlockBegin::try_merge(ValueStack* new_state) { duke@435: TRACE_PHI(tty->print_cr("********** try_merge for block B%d", block_id())); duke@435: duke@435: // local variables used for state iteration duke@435: int index; duke@435: Value new_value, existing_value; duke@435: duke@435: ValueStack* existing_state = state(); duke@435: if (existing_state == NULL) { duke@435: TRACE_PHI(tty->print_cr("first call of try_merge for this block")); duke@435: duke@435: if (is_set(BlockBegin::was_visited_flag)) { duke@435: // this actually happens for complicated jsr/ret structures duke@435: return false; // BAILOUT in caller duke@435: } duke@435: duke@435: // copy state because it is altered duke@435: new_state = new_state->copy(); duke@435: duke@435: // Use method liveness to invalidate dead locals duke@435: MethodLivenessResult liveness = new_state->scope()->method()->liveness_at_bci(bci()); duke@435: if (liveness.is_valid()) { duke@435: assert((int)liveness.size() == new_state->locals_size(), "error in use of liveness"); duke@435: duke@435: for_each_local_value(new_state, index, new_value) { duke@435: if (!liveness.at(index) || new_value->type()->is_illegal()) { duke@435: new_state->invalidate_local(index); duke@435: TRACE_PHI(tty->print_cr("invalidating dead local %d", index)); duke@435: } duke@435: } duke@435: } duke@435: duke@435: if (is_set(BlockBegin::parser_loop_header_flag)) { duke@435: TRACE_PHI(tty->print_cr("loop header block, initializing phi functions")); duke@435: duke@435: for_each_stack_value(new_state, index, new_value) { duke@435: new_state->setup_phi_for_stack(this, index); duke@435: TRACE_PHI(tty->print_cr("creating phi-function %c%d for stack %d", new_state->stack_at(index)->type()->tchar(), new_state->stack_at(index)->id(), index)); duke@435: } duke@435: duke@435: BitMap requires_phi_function = new_state->scope()->requires_phi_function(); duke@435: duke@435: for_each_local_value(new_state, index, new_value) { duke@435: bool requires_phi = requires_phi_function.at(index) || (new_value->type()->is_double_word() && requires_phi_function.at(index + 1)); duke@435: if (requires_phi || !SelectivePhiFunctions) { duke@435: new_state->setup_phi_for_local(this, index); duke@435: TRACE_PHI(tty->print_cr("creating phi-function %c%d for local %d", new_state->local_at(index)->type()->tchar(), new_state->local_at(index)->id(), index)); duke@435: } duke@435: } duke@435: } duke@435: duke@435: // initialize state of block duke@435: set_state(new_state); duke@435: duke@435: } else if (existing_state->is_same_across_scopes(new_state)) { duke@435: TRACE_PHI(tty->print_cr("exisiting state found")); duke@435: duke@435: // Inlining may cause the local state not to match up, so walk up duke@435: // the new state until we get to the same scope as the duke@435: // existing and then start processing from there. duke@435: while (existing_state->scope() != new_state->scope()) { duke@435: new_state = new_state->caller_state(); duke@435: assert(new_state != NULL, "could not match up scopes"); duke@435: duke@435: assert(false, "check if this is necessary"); duke@435: } duke@435: duke@435: assert(existing_state->scope() == new_state->scope(), "not matching"); duke@435: assert(existing_state->locals_size() == new_state->locals_size(), "not matching"); duke@435: assert(existing_state->stack_size() == new_state->stack_size(), "not matching"); duke@435: duke@435: if (is_set(BlockBegin::was_visited_flag)) { duke@435: TRACE_PHI(tty->print_cr("loop header block, phis must be present")); duke@435: duke@435: if (!is_set(BlockBegin::parser_loop_header_flag)) { duke@435: // this actually happens for complicated jsr/ret structures duke@435: return false; // BAILOUT in caller duke@435: } duke@435: duke@435: for_each_local_value(existing_state, index, existing_value) { duke@435: Value new_value = new_state->local_at(index); duke@435: if (new_value == NULL || new_value->type()->tag() != existing_value->type()->tag()) { duke@435: // The old code invalidated the phi function here duke@435: // Because dead locals are replaced with NULL, this is a very rare case now, so simply bail out duke@435: return false; // BAILOUT in caller duke@435: } duke@435: } duke@435: duke@435: #ifdef ASSERT duke@435: // check that all necessary phi functions are present duke@435: for_each_stack_value(existing_state, index, existing_value) { duke@435: assert(existing_value->as_Phi() != NULL && existing_value->as_Phi()->block() == this, "phi function required"); duke@435: } duke@435: for_each_local_value(existing_state, index, existing_value) { duke@435: assert(existing_value == new_state->local_at(index) || (existing_value->as_Phi() != NULL && existing_value->as_Phi()->as_Phi()->block() == this), "phi function required"); duke@435: } duke@435: #endif duke@435: duke@435: } else { duke@435: TRACE_PHI(tty->print_cr("creating phi functions on demand")); duke@435: duke@435: // create necessary phi functions for stack duke@435: for_each_stack_value(existing_state, index, existing_value) { duke@435: Value new_value = new_state->stack_at(index); duke@435: Phi* existing_phi = existing_value->as_Phi(); duke@435: duke@435: if (new_value != existing_value && (existing_phi == NULL || existing_phi->block() != this)) { duke@435: existing_state->setup_phi_for_stack(this, index); duke@435: TRACE_PHI(tty->print_cr("creating phi-function %c%d for stack %d", existing_state->stack_at(index)->type()->tchar(), existing_state->stack_at(index)->id(), index)); duke@435: } duke@435: } duke@435: duke@435: // create necessary phi functions for locals duke@435: for_each_local_value(existing_state, index, existing_value) { duke@435: Value new_value = new_state->local_at(index); duke@435: Phi* existing_phi = existing_value->as_Phi(); duke@435: duke@435: if (new_value == NULL || new_value->type()->tag() != existing_value->type()->tag()) { duke@435: existing_state->invalidate_local(index); duke@435: TRACE_PHI(tty->print_cr("invalidating local %d because of type mismatch", index)); duke@435: } else if (new_value != existing_value && (existing_phi == NULL || existing_phi->block() != this)) { duke@435: existing_state->setup_phi_for_local(this, index); duke@435: TRACE_PHI(tty->print_cr("creating phi-function %c%d for local %d", existing_state->local_at(index)->type()->tchar(), existing_state->local_at(index)->id(), index)); duke@435: } duke@435: } duke@435: } duke@435: duke@435: assert(existing_state->caller_state() == new_state->caller_state(), "caller states must be equal"); duke@435: duke@435: } else { duke@435: assert(false, "stack or locks not matching (invalid bytecodes)"); duke@435: return false; duke@435: } duke@435: duke@435: TRACE_PHI(tty->print_cr("********** try_merge for block B%d successful", block_id())); duke@435: duke@435: return true; duke@435: } duke@435: duke@435: duke@435: #ifndef PRODUCT duke@435: void BlockBegin::print_block() { duke@435: InstructionPrinter ip; duke@435: print_block(ip, false); duke@435: } duke@435: duke@435: duke@435: void BlockBegin::print_block(InstructionPrinter& ip, bool live_only) { duke@435: ip.print_instr(this); tty->cr(); duke@435: ip.print_stack(this->state()); tty->cr(); duke@435: ip.print_inline_level(this); duke@435: ip.print_head(); duke@435: for (Instruction* n = next(); n != NULL; n = n->next()) { duke@435: if (!live_only || n->is_pinned() || n->use_count() > 0) { duke@435: ip.print_line(n); duke@435: } duke@435: } duke@435: tty->cr(); duke@435: } duke@435: #endif // PRODUCT duke@435: duke@435: duke@435: // Implementation of BlockList duke@435: duke@435: void BlockList::iterate_forward (BlockClosure* closure) { duke@435: const int l = length(); duke@435: for (int i = 0; i < l; i++) closure->block_do(at(i)); duke@435: } duke@435: duke@435: duke@435: void BlockList::iterate_backward(BlockClosure* closure) { duke@435: for (int i = length() - 1; i >= 0; i--) closure->block_do(at(i)); duke@435: } duke@435: duke@435: duke@435: void BlockList::blocks_do(void f(BlockBegin*)) { duke@435: for (int i = length() - 1; i >= 0; i--) f(at(i)); duke@435: } duke@435: duke@435: duke@435: void BlockList::values_do(void f(Value*)) { duke@435: for (int i = length() - 1; i >= 0; i--) at(i)->block_values_do(f); duke@435: } duke@435: duke@435: duke@435: #ifndef PRODUCT duke@435: void BlockList::print(bool cfg_only, bool live_only) { duke@435: InstructionPrinter ip; duke@435: for (int i = 0; i < length(); i++) { duke@435: BlockBegin* block = at(i); duke@435: if (cfg_only) { duke@435: ip.print_instr(block); tty->cr(); duke@435: } else { duke@435: block->print_block(ip, live_only); duke@435: } duke@435: } duke@435: } duke@435: #endif // PRODUCT duke@435: duke@435: duke@435: // Implementation of BlockEnd duke@435: duke@435: void BlockEnd::set_begin(BlockBegin* begin) { duke@435: BlockList* sux = NULL; duke@435: if (begin != NULL) { duke@435: sux = begin->successors(); duke@435: } else if (_begin != NULL) { duke@435: // copy our sux list duke@435: BlockList* sux = new BlockList(_begin->number_of_sux()); duke@435: for (int i = 0; i < _begin->number_of_sux(); i++) { duke@435: sux->append(_begin->sux_at(i)); duke@435: } duke@435: } duke@435: _sux = sux; duke@435: _begin = begin; duke@435: } duke@435: duke@435: duke@435: void BlockEnd::substitute_sux(BlockBegin* old_sux, BlockBegin* new_sux) { duke@435: substitute(*_sux, old_sux, new_sux); duke@435: } duke@435: duke@435: duke@435: void BlockEnd::other_values_do(void f(Value*)) { duke@435: if (state_before() != NULL) state_before()->values_do(f); duke@435: } duke@435: duke@435: duke@435: // Implementation of Phi duke@435: duke@435: // Normal phi functions take their operands from the last instruction of the duke@435: // predecessor. Special handling is needed for xhanlder entries because there duke@435: // the state of arbitrary instructions are needed. duke@435: duke@435: Value Phi::operand_at(int i) const { duke@435: ValueStack* state; duke@435: if (_block->is_set(BlockBegin::exception_entry_flag)) { duke@435: state = _block->exception_state_at(i); duke@435: } else { duke@435: state = _block->pred_at(i)->end()->state(); duke@435: } duke@435: assert(state != NULL, ""); duke@435: duke@435: if (is_local()) { duke@435: return state->local_at(local_index()); duke@435: } else { duke@435: return state->stack_at(stack_index()); duke@435: } duke@435: } duke@435: duke@435: duke@435: int Phi::operand_count() const { duke@435: if (_block->is_set(BlockBegin::exception_entry_flag)) { duke@435: return _block->number_of_exception_states(); duke@435: } else { duke@435: return _block->number_of_preds(); duke@435: } duke@435: } duke@435: duke@435: duke@435: // Implementation of Throw duke@435: duke@435: void Throw::state_values_do(void f(Value*)) { duke@435: BlockEnd::state_values_do(f); duke@435: }