duke@435: /* twisti@1700: * Copyright 1997-2010 Sun Microsystems, Inc. All Rights Reserved. duke@435: * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. duke@435: * duke@435: * This code is free software; you can redistribute it and/or modify it duke@435: * under the terms of the GNU General Public License version 2 only, as duke@435: * published by the Free Software Foundation. duke@435: * duke@435: * This code is distributed in the hope that it will be useful, but WITHOUT duke@435: * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or duke@435: * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License duke@435: * version 2 for more details (a copy is included in the LICENSE file that duke@435: * accompanied this code). duke@435: * duke@435: * You should have received a copy of the GNU General Public License version duke@435: * 2 along with this work; if not, write to the Free Software Foundation, duke@435: * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. duke@435: * duke@435: * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, duke@435: * CA 95054 USA or visit www.sun.com if you need additional information or duke@435: * have any questions. duke@435: * duke@435: */ duke@435: duke@435: class Block; duke@435: class Bundle; duke@435: class C2Compiler; duke@435: class CallGenerator; duke@435: class ConnectionGraph; duke@435: class InlineTree; duke@435: class Int_Array; duke@435: class Matcher; duke@435: class MachNode; kvn@473: class MachSafePointNode; duke@435: class Node; duke@435: class Node_Array; duke@435: class Node_Notes; duke@435: class OptoReg; duke@435: class PhaseCFG; duke@435: class PhaseGVN; cfang@1607: class PhaseIterGVN; duke@435: class PhaseRegAlloc; duke@435: class PhaseCCP; duke@435: class PhaseCCP_DCE; duke@435: class RootNode; duke@435: class relocInfo; duke@435: class Scope; duke@435: class StartNode; duke@435: class SafePointNode; duke@435: class JVMState; duke@435: class TypeData; duke@435: class TypePtr; duke@435: class TypeFunc; duke@435: class Unique_Node_List; duke@435: class nmethod; duke@435: class WarmCallInfo; duke@435: duke@435: //------------------------------Compile---------------------------------------- duke@435: // This class defines a top-level Compiler invocation. duke@435: duke@435: class Compile : public Phase { duke@435: public: duke@435: // Fixed alias indexes. (See also MergeMemNode.) duke@435: enum { duke@435: AliasIdxTop = 1, // pseudo-index, aliases to nothing (used as sentinel value) duke@435: AliasIdxBot = 2, // pseudo-index, aliases to everything duke@435: AliasIdxRaw = 3 // hard-wired index for TypeRawPtr::BOTTOM duke@435: }; duke@435: duke@435: // Variant of TraceTime(NULL, &_t_accumulator, TimeCompiler); duke@435: // Integrated with logging. If logging is turned on, and dolog is true, duke@435: // then brackets are put into the log, with time stamps and node counts. duke@435: // (The time collection itself is always conditionalized on TimeCompiler.) duke@435: class TracePhase : public TraceTime { duke@435: private: duke@435: Compile* C; duke@435: CompileLog* _log; duke@435: public: duke@435: TracePhase(const char* name, elapsedTimer* accumulator, bool dolog); duke@435: ~TracePhase(); duke@435: }; duke@435: duke@435: // Information per category of alias (memory slice) duke@435: class AliasType { duke@435: private: duke@435: friend class Compile; duke@435: duke@435: int _index; // unique index, used with MergeMemNode duke@435: const TypePtr* _adr_type; // normalized address type duke@435: ciField* _field; // relevant instance field, or null if none duke@435: bool _is_rewritable; // false if the memory is write-once only duke@435: int _general_index; // if this is type is an instance, the general duke@435: // type that this is an instance of duke@435: duke@435: void Init(int i, const TypePtr* at); duke@435: duke@435: public: duke@435: int index() const { return _index; } duke@435: const TypePtr* adr_type() const { return _adr_type; } duke@435: ciField* field() const { return _field; } duke@435: bool is_rewritable() const { return _is_rewritable; } duke@435: bool is_volatile() const { return (_field ? _field->is_volatile() : false); } duke@435: int general_index() const { return (_general_index != 0) ? _general_index : _index; } duke@435: duke@435: void set_rewritable(bool z) { _is_rewritable = z; } duke@435: void set_field(ciField* f) { duke@435: assert(!_field,""); duke@435: _field = f; duke@435: if (f->is_final()) _is_rewritable = false; duke@435: } duke@435: duke@435: void print_on(outputStream* st) PRODUCT_RETURN; duke@435: }; duke@435: duke@435: enum { duke@435: logAliasCacheSize = 6, duke@435: AliasCacheSize = (1<* _intrinsics; // List of intrinsics. duke@435: GrowableArray* _macro_nodes; // List of nodes which need to be expanded before matching. cfang@1607: GrowableArray* _predicate_opaqs; // List of Opaque1 nodes for the loop predicates. duke@435: ConnectionGraph* _congraph; duke@435: #ifndef PRODUCT duke@435: IdealGraphPrinter* _printer; duke@435: #endif duke@435: duke@435: // Node management duke@435: uint _unique; // Counter for unique Node indices duke@435: debug_only(static int _debug_idx;) // Monotonic counter (not reset), use -XX:BreakAtNode= duke@435: Arena _node_arena; // Arena for new-space Nodes duke@435: Arena _old_arena; // Arena for old-space Nodes, lifetime during xform duke@435: RootNode* _root; // Unique root of compilation, or NULL after bail-out. duke@435: Node* _top; // Unique top node. (Reset by various phases.) duke@435: duke@435: Node* _immutable_memory; // Initial memory state duke@435: duke@435: Node* _recent_alloc_obj; duke@435: Node* _recent_alloc_ctl; duke@435: duke@435: // Blocked array of debugging and profiling information, duke@435: // tracked per node. duke@435: enum { _log2_node_notes_block_size = 8, duke@435: _node_notes_block_size = (1<<_log2_node_notes_block_size) duke@435: }; duke@435: GrowableArray* _node_note_array; duke@435: Node_Notes* _default_node_notes; // default notes for new nodes duke@435: duke@435: // After parsing and every bulk phase we hang onto the Root instruction. duke@435: // The RootNode instruction is where the whole program begins. It produces duke@435: // the initial Control and BOTTOM for everybody else. duke@435: duke@435: // Type management duke@435: Arena _Compile_types; // Arena for all types duke@435: Arena* _type_arena; // Alias for _Compile_types except in Initialize_shared() duke@435: Dict* _type_dict; // Intern table duke@435: void* _type_hwm; // Last allocation (see Type::operator new/delete) duke@435: size_t _type_last_size; // Last allocation size (see Type::operator new/delete) duke@435: ciMethod* _last_tf_m; // Cache for duke@435: const TypeFunc* _last_tf; // TypeFunc::make duke@435: AliasType** _alias_types; // List of alias types seen so far. duke@435: int _num_alias_types; // Logical length of _alias_types duke@435: int _max_alias_types; // Physical length of _alias_types duke@435: AliasCacheEntry _alias_cache[AliasCacheSize]; // Gets aliases w/o data structure walking duke@435: duke@435: // Parsing, optimization duke@435: PhaseGVN* _initial_gvn; // Results of parse-time PhaseGVN duke@435: Unique_Node_List* _for_igvn; // Initial work-list for next round of Iterative GVN duke@435: WarmCallInfo* _warm_calls; // Sorted work-list for heat-based inlining. duke@435: never@1515: GrowableArray _late_inlines; // List of CallGenerators to be revisited after never@1515: // main parsing has finished. never@1515: duke@435: // Matching, CFG layout, allocation, code generation duke@435: PhaseCFG* _cfg; // Results of CFG finding duke@435: bool _select_24_bit_instr; // We selected an instruction with a 24-bit result duke@435: bool _in_24_bit_fp_mode; // We are emitting instructions with 24-bit results kvn@1294: int _java_calls; // Number of java calls in the method kvn@1294: int _inner_loops; // Number of inner loops in the method duke@435: Matcher* _matcher; // Engine to map ideal to machine instructions duke@435: PhaseRegAlloc* _regalloc; // Results of register allocation. duke@435: int _frame_slots; // Size of total frame in stack slots duke@435: CodeOffsets _code_offsets; // Offsets into the code for various interesting entries duke@435: RegMask _FIRST_STACK_mask; // All stack slots usable for spills (depends on frame layout) duke@435: Arena* _indexSet_arena; // control IndexSet allocation within PhaseChaitin duke@435: void* _indexSet_free_block_list; // free list of IndexSet bit blocks duke@435: duke@435: uint _node_bundling_limit; duke@435: Bundle* _node_bundling_base; // Information for instruction bundling duke@435: duke@435: // Instruction bits passed off to the VM duke@435: int _method_size; // Size of nmethod code segment in bytes duke@435: CodeBuffer _code_buffer; // Where the code is assembled duke@435: int _first_block_size; // Size of unvalidated entry point code / OSR poison code duke@435: ExceptionHandlerTable _handler_table; // Table of native-code exception handlers duke@435: ImplicitExceptionTable _inc_table; // Table of implicit null checks in native code duke@435: OopMapSet* _oop_map_set; // Table of oop maps (one for each safepoint location) duke@435: static int _CompiledZap_count; // counter compared against CompileZap[First/Last] duke@435: BufferBlob* _scratch_buffer_blob; // For temporary code buffers. duke@435: relocInfo* _scratch_locs_memory; // For temporary code buffers. duke@435: duke@435: public: duke@435: // Accessors duke@435: duke@435: // The Compile instance currently active in this (compiler) thread. duke@435: static Compile* current() { duke@435: return (Compile*) ciEnv::current()->compiler_data(); duke@435: } duke@435: duke@435: // ID for this compilation. Useful for setting breakpoints in the debugger. duke@435: int compile_id() const { return _compile_id; } duke@435: duke@435: // Does this compilation allow instructions to subsume loads? User duke@435: // instructions that subsume a load may result in an unschedulable duke@435: // instruction sequence. duke@435: bool subsume_loads() const { return _subsume_loads; } kvn@473: // Do escape analysis. kvn@473: bool do_escape_analysis() const { return _do_escape_analysis; } duke@435: bool save_argument_registers() const { return _save_argument_registers; } duke@435: duke@435: duke@435: // Other fixed compilation parameters. duke@435: ciMethod* method() const { return _method; } duke@435: int entry_bci() const { return _entry_bci; } duke@435: bool is_osr_compilation() const { return _entry_bci != InvocationEntryBci; } duke@435: bool is_method_compilation() const { return (_method != NULL && !_method->flags().is_native()); } duke@435: const TypeFunc* tf() const { assert(_tf!=NULL, ""); return _tf; } duke@435: void init_tf(const TypeFunc* tf) { assert(_tf==NULL, ""); _tf = tf; } duke@435: InlineTree* ilt() const { return _ilt; } duke@435: address stub_function() const { return _stub_function; } duke@435: const char* stub_name() const { return _stub_name; } duke@435: address stub_entry_point() const { return _stub_entry_point; } duke@435: duke@435: // Control of this compilation. duke@435: int fixed_slots() const { assert(_fixed_slots >= 0, ""); return _fixed_slots; } duke@435: void set_fixed_slots(int n) { _fixed_slots = n; } duke@435: int major_progress() const { return _major_progress; } duke@435: void set_major_progress() { _major_progress++; } duke@435: void clear_major_progress() { _major_progress = 0; } duke@435: int num_loop_opts() const { return _num_loop_opts; } duke@435: void set_num_loop_opts(int n) { _num_loop_opts = n; } duke@435: int max_inline_size() const { return _max_inline_size; } duke@435: void set_freq_inline_size(int n) { _freq_inline_size = n; } duke@435: int freq_inline_size() const { return _freq_inline_size; } duke@435: void set_max_inline_size(int n) { _max_inline_size = n; } duke@435: bool has_loops() const { return _has_loops; } duke@435: void set_has_loops(bool z) { _has_loops = z; } duke@435: bool has_split_ifs() const { return _has_split_ifs; } duke@435: void set_has_split_ifs(bool z) { _has_split_ifs = z; } duke@435: bool has_unsafe_access() const { return _has_unsafe_access; } duke@435: void set_has_unsafe_access(bool z) { _has_unsafe_access = z; } never@1515: bool has_stringbuilder() const { return _has_stringbuilder; } never@1515: void set_has_stringbuilder(bool z) { _has_stringbuilder = z; } duke@435: void set_trap_count(uint r, uint c) { assert(r < trapHistLength, "oob"); _trap_hist[r] = c; } duke@435: uint trap_count(uint r) const { assert(r < trapHistLength, "oob"); return _trap_hist[r]; } duke@435: bool trap_can_recompile() const { return _trap_can_recompile; } duke@435: void set_trap_can_recompile(bool z) { _trap_can_recompile = z; } duke@435: uint decompile_count() const { return _decompile_count; } duke@435: void set_decompile_count(uint c) { _decompile_count = c; } duke@435: bool allow_range_check_smearing() const; duke@435: bool do_inlining() const { return _do_inlining; } duke@435: void set_do_inlining(bool z) { _do_inlining = z; } duke@435: bool do_scheduling() const { return _do_scheduling; } duke@435: void set_do_scheduling(bool z) { _do_scheduling = z; } rasbold@853: bool do_freq_based_layout() const{ return _do_freq_based_layout; } rasbold@853: void set_do_freq_based_layout(bool z){ _do_freq_based_layout = z; } duke@435: bool do_count_invocations() const{ return _do_count_invocations; } duke@435: void set_do_count_invocations(bool z){ _do_count_invocations = z; } duke@435: bool do_method_data_update() const { return _do_method_data_update; } duke@435: void set_do_method_data_update(bool z) { _do_method_data_update = z; } duke@435: int AliasLevel() const { return _AliasLevel; } duke@435: bool print_assembly() const { return _print_assembly; } duke@435: void set_print_assembly(bool z) { _print_assembly = z; } duke@435: // check the CompilerOracle for special behaviours for this compile duke@435: bool method_has_option(const char * option) { duke@435: return method() != NULL && method()->has_option(option); duke@435: } duke@435: #ifndef PRODUCT duke@435: bool trace_opto_output() const { return _trace_opto_output; } never@802: bool parsed_irreducible_loop() const { return _parsed_irreducible_loop; } never@802: void set_parsed_irreducible_loop(bool z) { _parsed_irreducible_loop = z; } duke@435: #endif duke@435: twisti@1700: // JSR 292 twisti@1700: bool has_method_handle_invokes() const { return _has_method_handle_invokes; } twisti@1700: void set_has_method_handle_invokes(bool z) { _has_method_handle_invokes = z; } twisti@1700: duke@435: void begin_method() { duke@435: #ifndef PRODUCT duke@435: if (_printer) _printer->begin_method(this); duke@435: #endif duke@435: } duke@435: void print_method(const char * name, int level = 1) { duke@435: #ifndef PRODUCT duke@435: if (_printer) _printer->print_method(this, name, level); duke@435: #endif duke@435: } duke@435: void end_method() { duke@435: #ifndef PRODUCT duke@435: if (_printer) _printer->end_method(); duke@435: #endif duke@435: } duke@435: duke@435: int macro_count() { return _macro_nodes->length(); } cfang@1607: int predicate_count() { return _predicate_opaqs->length();} duke@435: Node* macro_node(int idx) { return _macro_nodes->at(idx); } cfang@1607: Node* predicate_opaque1_node(int idx) { return _predicate_opaqs->at(idx);} duke@435: ConnectionGraph* congraph() { return _congraph;} duke@435: void add_macro_node(Node * n) { duke@435: //assert(n->is_macro(), "must be a macro node"); duke@435: assert(!_macro_nodes->contains(n), " duplicate entry in expand list"); duke@435: _macro_nodes->append(n); duke@435: } duke@435: void remove_macro_node(Node * n) { duke@435: // this function may be called twice for a node so check duke@435: // that the node is in the array before attempting to remove it duke@435: if (_macro_nodes->contains(n)) duke@435: _macro_nodes->remove(n); cfang@1607: // remove from _predicate_opaqs list also if it is there cfang@1607: if (predicate_count() > 0 && _predicate_opaqs->contains(n)){ cfang@1607: _predicate_opaqs->remove(n); cfang@1607: } duke@435: } cfang@1607: void add_predicate_opaq(Node * n) { cfang@1607: assert(!_predicate_opaqs->contains(n), " duplicate entry in predicate opaque1"); cfang@1607: assert(_macro_nodes->contains(n), "should have already been in macro list"); cfang@1607: _predicate_opaqs->append(n); cfang@1607: } cfang@1607: // remove the opaque nodes that protect the predicates so that the unused checks and cfang@1607: // uncommon traps will be eliminated from the graph. cfang@1607: void cleanup_loop_predicates(PhaseIterGVN &igvn); duke@435: duke@435: // Compilation environment. duke@435: Arena* comp_arena() { return &_comp_arena; } duke@435: ciEnv* env() const { return _env; } duke@435: CompileLog* log() const { return _log; } duke@435: bool failing() const { return _env->failing() || _failure_reason != NULL; } duke@435: const char* failure_reason() { return _failure_reason; } duke@435: bool failure_reason_is(const char* r) { return (r==_failure_reason) || (r!=NULL && _failure_reason!=NULL && strcmp(r, _failure_reason)==0); } duke@435: duke@435: void record_failure(const char* reason); duke@435: void record_method_not_compilable(const char* reason, bool all_tiers = false) { duke@435: // All bailouts cover "all_tiers" when TieredCompilation is off. duke@435: if (!TieredCompilation) all_tiers = true; duke@435: env()->record_method_not_compilable(reason, all_tiers); duke@435: // Record failure reason. duke@435: record_failure(reason); duke@435: } duke@435: void record_method_not_compilable_all_tiers(const char* reason) { duke@435: record_method_not_compilable(reason, true); duke@435: } duke@435: bool check_node_count(uint margin, const char* reason) { duke@435: if (unique() + margin > (uint)MaxNodeLimit) { duke@435: record_method_not_compilable(reason); duke@435: return true; duke@435: } else { duke@435: return false; duke@435: } duke@435: } duke@435: duke@435: // Node management duke@435: uint unique() const { return _unique; } duke@435: uint next_unique() { return _unique++; } duke@435: void set_unique(uint i) { _unique = i; } duke@435: static int debug_idx() { return debug_only(_debug_idx)+0; } duke@435: static void set_debug_idx(int i) { debug_only(_debug_idx = i); } duke@435: Arena* node_arena() { return &_node_arena; } duke@435: Arena* old_arena() { return &_old_arena; } duke@435: RootNode* root() const { return _root; } duke@435: void set_root(RootNode* r) { _root = r; } duke@435: StartNode* start() const; // (Derived from root.) duke@435: void init_start(StartNode* s); duke@435: Node* immutable_memory(); duke@435: duke@435: Node* recent_alloc_ctl() const { return _recent_alloc_ctl; } duke@435: Node* recent_alloc_obj() const { return _recent_alloc_obj; } duke@435: void set_recent_alloc(Node* ctl, Node* obj) { duke@435: _recent_alloc_ctl = ctl; duke@435: _recent_alloc_obj = obj; duke@435: } duke@435: duke@435: // Handy undefined Node duke@435: Node* top() const { return _top; } duke@435: duke@435: // these are used by guys who need to know about creation and transformation of top: duke@435: Node* cached_top_node() { return _top; } duke@435: void set_cached_top_node(Node* tn); duke@435: duke@435: GrowableArray* node_note_array() const { return _node_note_array; } duke@435: void set_node_note_array(GrowableArray* arr) { _node_note_array = arr; } duke@435: Node_Notes* default_node_notes() const { return _default_node_notes; } duke@435: void set_default_node_notes(Node_Notes* n) { _default_node_notes = n; } duke@435: duke@435: Node_Notes* node_notes_at(int idx) { duke@435: return locate_node_notes(_node_note_array, idx, false); duke@435: } duke@435: inline bool set_node_notes_at(int idx, Node_Notes* value); duke@435: duke@435: // Copy notes from source to dest, if they exist. duke@435: // Overwrite dest only if source provides something. duke@435: // Return true if information was moved. duke@435: bool copy_node_notes_to(Node* dest, Node* source); duke@435: duke@435: // Workhorse function to sort out the blocked Node_Notes array: duke@435: inline Node_Notes* locate_node_notes(GrowableArray* arr, duke@435: int idx, bool can_grow = false); duke@435: duke@435: void grow_node_notes(GrowableArray* arr, int grow_by); duke@435: duke@435: // Type management duke@435: Arena* type_arena() { return _type_arena; } duke@435: Dict* type_dict() { return _type_dict; } duke@435: void* type_hwm() { return _type_hwm; } duke@435: size_t type_last_size() { return _type_last_size; } duke@435: int num_alias_types() { return _num_alias_types; } duke@435: duke@435: void init_type_arena() { _type_arena = &_Compile_types; } duke@435: void set_type_arena(Arena* a) { _type_arena = a; } duke@435: void set_type_dict(Dict* d) { _type_dict = d; } duke@435: void set_type_hwm(void* p) { _type_hwm = p; } duke@435: void set_type_last_size(size_t sz) { _type_last_size = sz; } duke@435: duke@435: const TypeFunc* last_tf(ciMethod* m) { duke@435: return (m == _last_tf_m) ? _last_tf : NULL; duke@435: } duke@435: void set_last_tf(ciMethod* m, const TypeFunc* tf) { duke@435: assert(m != NULL || tf == NULL, ""); duke@435: _last_tf_m = m; duke@435: _last_tf = tf; duke@435: } duke@435: duke@435: AliasType* alias_type(int idx) { assert(idx < num_alias_types(), "oob"); return _alias_types[idx]; } duke@435: AliasType* alias_type(const TypePtr* adr_type) { return find_alias_type(adr_type, false); } duke@435: bool have_alias_type(const TypePtr* adr_type); duke@435: AliasType* alias_type(ciField* field); duke@435: duke@435: int get_alias_index(const TypePtr* at) { return alias_type(at)->index(); } duke@435: const TypePtr* get_adr_type(uint aidx) { return alias_type(aidx)->adr_type(); } duke@435: int get_general_index(uint aidx) { return alias_type(aidx)->general_index(); } duke@435: duke@435: // Building nodes duke@435: void rethrow_exceptions(JVMState* jvms); duke@435: void return_values(JVMState* jvms); duke@435: JVMState* build_start_state(StartNode* start, const TypeFunc* tf); duke@435: duke@435: // Decide how to build a call. duke@435: // The profile factor is a discount to apply to this site's interp. profile. duke@435: CallGenerator* call_generator(ciMethod* call_method, int vtable_index, bool call_is_virtual, JVMState* jvms, bool allow_inline, float profile_factor); never@1515: bool should_delay_inlining(ciMethod* call_method, JVMState* jvms); duke@435: duke@435: // Report if there were too many traps at a current method and bci. duke@435: // Report if a trap was recorded, and/or PerMethodTrapLimit was exceeded. duke@435: // If there is no MDO at all, report no trap unless told to assume it. duke@435: bool too_many_traps(ciMethod* method, int bci, Deoptimization::DeoptReason reason); duke@435: // This version, unspecific to a particular bci, asks if duke@435: // PerMethodTrapLimit was exceeded for all inlined methods seen so far. duke@435: bool too_many_traps(Deoptimization::DeoptReason reason, duke@435: // Privately used parameter for logging: duke@435: ciMethodData* logmd = NULL); duke@435: // Report if there were too many recompiles at a method and bci. duke@435: bool too_many_recompiles(ciMethod* method, int bci, Deoptimization::DeoptReason reason); duke@435: duke@435: // Parsing, optimization duke@435: PhaseGVN* initial_gvn() { return _initial_gvn; } duke@435: Unique_Node_List* for_igvn() { return _for_igvn; } duke@435: inline void record_for_igvn(Node* n); // Body is after class Unique_Node_List. duke@435: void set_initial_gvn(PhaseGVN *gvn) { _initial_gvn = gvn; } duke@435: void set_for_igvn(Unique_Node_List *for_igvn) { _for_igvn = for_igvn; } duke@435: never@1515: // Replace n by nn using initial_gvn, calling hash_delete and never@1515: // record_for_igvn as needed. never@1515: void gvn_replace_by(Node* n, Node* nn); never@1515: never@1515: duke@435: void identify_useful_nodes(Unique_Node_List &useful); duke@435: void remove_useless_nodes (Unique_Node_List &useful); duke@435: duke@435: WarmCallInfo* warm_calls() const { return _warm_calls; } duke@435: void set_warm_calls(WarmCallInfo* l) { _warm_calls = l; } duke@435: WarmCallInfo* pop_warm_call(); duke@435: never@1515: // Record this CallGenerator for inlining at the end of parsing. never@1515: void add_late_inline(CallGenerator* cg) { _late_inlines.push(cg); } never@1515: duke@435: // Matching, CFG layout, allocation, code generation duke@435: PhaseCFG* cfg() { return _cfg; } duke@435: bool select_24_bit_instr() const { return _select_24_bit_instr; } duke@435: bool in_24_bit_fp_mode() const { return _in_24_bit_fp_mode; } kvn@1294: bool has_java_calls() const { return _java_calls > 0; } kvn@1294: int java_calls() const { return _java_calls; } kvn@1294: int inner_loops() const { return _inner_loops; } duke@435: Matcher* matcher() { return _matcher; } duke@435: PhaseRegAlloc* regalloc() { return _regalloc; } duke@435: int frame_slots() const { return _frame_slots; } duke@435: int frame_size_in_words() const; // frame_slots in units of the polymorphic 'words' duke@435: RegMask& FIRST_STACK_mask() { return _FIRST_STACK_mask; } duke@435: Arena* indexSet_arena() { return _indexSet_arena; } duke@435: void* indexSet_free_block_list() { return _indexSet_free_block_list; } duke@435: uint node_bundling_limit() { return _node_bundling_limit; } duke@435: Bundle* node_bundling_base() { return _node_bundling_base; } duke@435: void set_node_bundling_limit(uint n) { _node_bundling_limit = n; } duke@435: void set_node_bundling_base(Bundle* b) { _node_bundling_base = b; } duke@435: bool starts_bundle(const Node *n) const; duke@435: bool need_stack_bang(int frame_size_in_bytes) const; duke@435: bool need_register_stack_bang() const; duke@435: duke@435: void set_matcher(Matcher* m) { _matcher = m; } duke@435: //void set_regalloc(PhaseRegAlloc* ra) { _regalloc = ra; } duke@435: void set_indexSet_arena(Arena* a) { _indexSet_arena = a; } duke@435: void set_indexSet_free_block_list(void* p) { _indexSet_free_block_list = p; } duke@435: duke@435: // Remember if this compilation changes hardware mode to 24-bit precision duke@435: void set_24_bit_selection_and_mode(bool selection, bool mode) { duke@435: _select_24_bit_instr = selection; duke@435: _in_24_bit_fp_mode = mode; duke@435: } duke@435: kvn@1294: void set_java_calls(int z) { _java_calls = z; } kvn@1294: void set_inner_loops(int z) { _inner_loops = z; } duke@435: duke@435: // Instruction bits passed off to the VM duke@435: int code_size() { return _method_size; } duke@435: CodeBuffer* code_buffer() { return &_code_buffer; } duke@435: int first_block_size() { return _first_block_size; } duke@435: void set_frame_complete(int off) { _code_offsets.set_value(CodeOffsets::Frame_Complete, off); } duke@435: ExceptionHandlerTable* handler_table() { return &_handler_table; } duke@435: ImplicitExceptionTable* inc_table() { return &_inc_table; } duke@435: OopMapSet* oop_map_set() { return _oop_map_set; } duke@435: DebugInformationRecorder* debug_info() { return env()->debug_info(); } duke@435: Dependencies* dependencies() { return env()->dependencies(); } duke@435: static int CompiledZap_count() { return _CompiledZap_count; } duke@435: BufferBlob* scratch_buffer_blob() { return _scratch_buffer_blob; } duke@435: void init_scratch_buffer_blob(); duke@435: void set_scratch_buffer_blob(BufferBlob* b) { _scratch_buffer_blob = b; } duke@435: relocInfo* scratch_locs_memory() { return _scratch_locs_memory; } duke@435: void set_scratch_locs_memory(relocInfo* b) { _scratch_locs_memory = b; } duke@435: duke@435: // emit to scratch blob, report resulting size duke@435: uint scratch_emit_size(const Node* n); duke@435: duke@435: enum ScratchBufferBlob { duke@435: MAX_inst_size = 1024, duke@435: MAX_locs_size = 128, // number of relocInfo elements duke@435: MAX_const_size = 128, duke@435: MAX_stubs_size = 128 duke@435: }; duke@435: duke@435: // Major entry point. Given a Scope, compile the associated method. duke@435: // For normal compilations, entry_bci is InvocationEntryBci. For on stack duke@435: // replacement, entry_bci indicates the bytecode for which to compile a duke@435: // continuation. duke@435: Compile(ciEnv* ci_env, C2Compiler* compiler, ciMethod* target, kvn@473: int entry_bci, bool subsume_loads, bool do_escape_analysis); duke@435: duke@435: // Second major entry point. From the TypeFunc signature, generate code duke@435: // to pass arguments from the Java calling convention to the C calling duke@435: // convention. duke@435: Compile(ciEnv* ci_env, const TypeFunc *(*gen)(), duke@435: address stub_function, const char *stub_name, duke@435: int is_fancy_jump, bool pass_tls, duke@435: bool save_arg_registers, bool return_pc); duke@435: duke@435: // From the TypeFunc signature, generate code to pass arguments duke@435: // from Compiled calling convention to Interpreter's calling convention duke@435: void Generate_Compiled_To_Interpreter_Graph(const TypeFunc *tf, address interpreter_entry); duke@435: duke@435: // From the TypeFunc signature, generate code to pass arguments duke@435: // from Interpreter's calling convention to Compiler's calling convention duke@435: void Generate_Interpreter_To_Compiled_Graph(const TypeFunc *tf); duke@435: duke@435: // Are we compiling a method? duke@435: bool has_method() { return method() != NULL; } duke@435: duke@435: // Maybe print some information about this compile. duke@435: void print_compile_messages(); duke@435: duke@435: // Final graph reshaping, a post-pass after the regular optimizer is done. duke@435: bool final_graph_reshaping(); duke@435: duke@435: // returns true if adr is completely contained in the given alias category duke@435: bool must_alias(const TypePtr* adr, int alias_idx); duke@435: duke@435: // returns true if adr overlaps with the given alias category duke@435: bool can_alias(const TypePtr* adr, int alias_idx); duke@435: duke@435: // Driver for converting compiler's IR into machine code bits duke@435: void Output(); duke@435: duke@435: // Accessors for node bundling info. duke@435: Bundle* node_bundling(const Node *n); duke@435: bool valid_bundle_info(const Node *n); duke@435: duke@435: // Schedule and Bundle the instructions duke@435: void ScheduleAndBundle(); duke@435: duke@435: // Build OopMaps for each GC point duke@435: void BuildOopMaps(); kvn@498: kvn@498: // Append debug info for the node "local" at safepoint node "sfpt" to the kvn@498: // "array", May also consult and add to "objs", which describes the kvn@498: // scalar-replaced objects. kvn@498: void FillLocArray( int idx, MachSafePointNode* sfpt, kvn@498: Node *local, GrowableArray *array, kvn@498: GrowableArray *objs ); kvn@498: kvn@498: // If "objs" contains an ObjectValue whose id is "id", returns it, else NULL. kvn@498: static ObjectValue* sv_for_node_id(GrowableArray *objs, int id); kvn@498: // Requres that "objs" does not contains an ObjectValue whose id matches kvn@498: // that of "sv. Appends "sv". kvn@498: static void set_sv_for_object_node(GrowableArray *objs, kvn@498: ObjectValue* sv ); duke@435: duke@435: // Process an OopMap Element while emitting nodes duke@435: void Process_OopMap_Node(MachNode *mach, int code_offset); duke@435: duke@435: // Write out basic block data to code buffer duke@435: void Fill_buffer(); duke@435: duke@435: // Determine which variable sized branches can be shortened duke@435: void Shorten_branches(Label *labels, int& code_size, int& reloc_size, int& stub_size, int& const_size); duke@435: duke@435: // Compute the size of first NumberOfLoopInstrToAlign instructions duke@435: // at the head of a loop. duke@435: void compute_loop_first_inst_sizes(); duke@435: duke@435: // Compute the information for the exception tables duke@435: void FillExceptionTables(uint cnt, uint *call_returns, uint *inct_starts, Label *blk_labels); duke@435: duke@435: // Stack slots that may be unused by the calling convention but must duke@435: // otherwise be preserved. On Intel this includes the return address. duke@435: // On PowerPC it includes the 4 words holding the old TOC & LR glue. duke@435: uint in_preserve_stack_slots(); duke@435: duke@435: // "Top of Stack" slots that may be unused by the calling convention but must duke@435: // otherwise be preserved. duke@435: // On Intel these are not necessary and the value can be zero. duke@435: // On Sparc this describes the words reserved for storing a register window duke@435: // when an interrupt occurs. duke@435: static uint out_preserve_stack_slots(); duke@435: duke@435: // Number of outgoing stack slots killed above the out_preserve_stack_slots duke@435: // for calls to C. Supports the var-args backing area for register parms. duke@435: uint varargs_C_out_slots_killed() const; duke@435: duke@435: // Number of Stack Slots consumed by a synchronization entry duke@435: int sync_stack_slots() const; duke@435: duke@435: // Compute the name of old_SP. See .ad for frame layout. duke@435: OptoReg::Name compute_old_SP(); duke@435: duke@435: #ifdef ENABLE_ZAP_DEAD_LOCALS duke@435: static bool is_node_getting_a_safepoint(Node*); duke@435: void Insert_zap_nodes(); duke@435: Node* call_zap_node(MachSafePointNode* n, int block_no); duke@435: #endif duke@435: duke@435: private: duke@435: // Phase control: duke@435: void Init(int aliaslevel); // Prepare for a single compilation duke@435: int Inline_Warm(); // Find more inlining work. duke@435: void Finish_Warm(); // Give up on further inlines. duke@435: void Optimize(); // Given a graph, optimize it duke@435: void Code_Gen(); // Generate code from a graph duke@435: duke@435: // Management of the AliasType table. duke@435: void grow_alias_types(); duke@435: AliasCacheEntry* probe_alias_cache(const TypePtr* adr_type); duke@435: const TypePtr *flatten_alias_type(const TypePtr* adr_type) const; duke@435: AliasType* find_alias_type(const TypePtr* adr_type, bool no_create); duke@435: duke@435: void verify_top(Node*) const PRODUCT_RETURN; duke@435: duke@435: // Intrinsic setup. duke@435: void register_library_intrinsics(); // initializer duke@435: CallGenerator* make_vm_intrinsic(ciMethod* m, bool is_virtual); // constructor duke@435: int intrinsic_insertion_index(ciMethod* m, bool is_virtual); // helper duke@435: CallGenerator* find_intrinsic(ciMethod* m, bool is_virtual); // query fn duke@435: void register_intrinsic(CallGenerator* cg); // update fn duke@435: duke@435: #ifndef PRODUCT duke@435: static juint _intrinsic_hist_count[vmIntrinsics::ID_LIMIT]; duke@435: static jubyte _intrinsic_hist_flags[vmIntrinsics::ID_LIMIT]; duke@435: #endif duke@435: duke@435: public: duke@435: duke@435: // Note: Histogram array size is about 1 Kb. duke@435: enum { // flag bits: duke@435: _intrinsic_worked = 1, // succeeded at least once duke@435: _intrinsic_failed = 2, // tried it but it failed duke@435: _intrinsic_disabled = 4, // was requested but disabled (e.g., -XX:-InlineUnsafeOps) duke@435: _intrinsic_virtual = 8, // was seen in the virtual form (rare) duke@435: _intrinsic_both = 16 // was seen in the non-virtual form (usual) duke@435: }; duke@435: // Update histogram. Return boolean if this is a first-time occurrence. duke@435: static bool gather_intrinsic_statistics(vmIntrinsics::ID id, duke@435: bool is_virtual, int flags) PRODUCT_RETURN0; duke@435: static void print_intrinsic_statistics() PRODUCT_RETURN; duke@435: duke@435: // Graph verification code duke@435: // Walk the node list, verifying that there is a one-to-one duke@435: // correspondence between Use-Def edges and Def-Use edges duke@435: // The option no_dead_code enables stronger checks that the duke@435: // graph is strongly connected from root in both directions. duke@435: void verify_graph_edges(bool no_dead_code = false) PRODUCT_RETURN; duke@435: duke@435: // Print bytecodes, including the scope inlining tree duke@435: void print_codes(); duke@435: duke@435: // End-of-run dumps. duke@435: static void print_statistics() PRODUCT_RETURN; duke@435: duke@435: // Dump formatted assembly duke@435: void dump_asm(int *pcs = NULL, uint pc_limit = 0) PRODUCT_RETURN; duke@435: void dump_pc(int *pcs, int pc_limit, Node *n); duke@435: duke@435: // Verify ADLC assumptions during startup duke@435: static void adlc_verification() PRODUCT_RETURN; duke@435: duke@435: // Definitions of pd methods duke@435: static void pd_compiler2_init(); duke@435: };