duke@435: /* brutisso@3711: * Copyright (c) 2001, 2012, Oracle and/or its affiliates. All rights reserved. duke@435: * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. duke@435: * duke@435: * This code is free software; you can redistribute it and/or modify it duke@435: * under the terms of the GNU General Public License version 2 only, as duke@435: * published by the Free Software Foundation. duke@435: * duke@435: * This code is distributed in the hope that it will be useful, but WITHOUT duke@435: * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or duke@435: * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License duke@435: * version 2 for more details (a copy is included in the LICENSE file that duke@435: * accompanied this code). duke@435: * duke@435: * You should have received a copy of the GNU General Public License version duke@435: * 2 along with this work; if not, write to the Free Software Foundation, duke@435: * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. duke@435: * trims@1907: * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA trims@1907: * or visit www.oracle.com if you need additional information or have any trims@1907: * questions. duke@435: * duke@435: */ duke@435: stefank@2314: #include "precompiled.hpp" stefank@2314: #include "gc_implementation/parallelScavenge/parallelScavengeHeap.hpp" stefank@2314: #include "gc_implementation/parallelScavenge/psMarkSweepDecorator.hpp" stefank@2314: #include "gc_implementation/parallelScavenge/psScavenge.hpp" stefank@2314: #include "gc_implementation/parallelScavenge/psYoungGen.hpp" stefank@2314: #include "gc_implementation/shared/gcUtil.hpp" stefank@2314: #include "gc_implementation/shared/mutableNUMASpace.hpp" stefank@2314: #include "gc_implementation/shared/spaceDecorator.hpp" stefank@2314: #include "oops/oop.inline.hpp" stefank@2314: #include "runtime/java.hpp" duke@435: duke@435: PSYoungGen::PSYoungGen(size_t initial_size, duke@435: size_t min_size, duke@435: size_t max_size) : duke@435: _init_gen_size(initial_size), duke@435: _min_gen_size(min_size), duke@435: _max_gen_size(max_size) duke@435: {} duke@435: duke@435: void PSYoungGen::initialize_virtual_space(ReservedSpace rs, size_t alignment) { duke@435: assert(_init_gen_size != 0, "Should have a finite size"); duke@435: _virtual_space = new PSVirtualSpace(rs, alignment); jmasa@698: if (!virtual_space()->expand_by(_init_gen_size)) { duke@435: vm_exit_during_initialization("Could not reserve enough space for " duke@435: "object heap"); duke@435: } duke@435: } duke@435: duke@435: void PSYoungGen::initialize(ReservedSpace rs, size_t alignment) { duke@435: initialize_virtual_space(rs, alignment); duke@435: initialize_work(); duke@435: } duke@435: duke@435: void PSYoungGen::initialize_work() { duke@435: jmasa@698: _reserved = MemRegion((HeapWord*)virtual_space()->low_boundary(), jmasa@698: (HeapWord*)virtual_space()->high_boundary()); duke@435: jmasa@698: MemRegion cmr((HeapWord*)virtual_space()->low(), jmasa@698: (HeapWord*)virtual_space()->high()); duke@435: Universe::heap()->barrier_set()->resize_covered_region(cmr); duke@435: jmasa@698: if (ZapUnusedHeapArea) { jmasa@698: // Mangle newly committed space immediately because it jmasa@698: // can be done here more simply that after the new jmasa@698: // spaces have been computed. jmasa@698: SpaceMangler::mangle_region(cmr); jmasa@698: } jmasa@698: duke@435: if (UseNUMA) { iveresov@970: _eden_space = new MutableNUMASpace(virtual_space()->alignment()); duke@435: } else { iveresov@970: _eden_space = new MutableSpace(virtual_space()->alignment()); duke@435: } iveresov@970: _from_space = new MutableSpace(virtual_space()->alignment()); iveresov@970: _to_space = new MutableSpace(virtual_space()->alignment()); duke@435: duke@435: if (_eden_space == NULL || _from_space == NULL || _to_space == NULL) { duke@435: vm_exit_during_initialization("Could not allocate a young gen space"); duke@435: } duke@435: duke@435: // Allocate the mark sweep views of spaces duke@435: _eden_mark_sweep = duke@435: new PSMarkSweepDecorator(_eden_space, NULL, MarkSweepDeadRatio); duke@435: _from_mark_sweep = duke@435: new PSMarkSweepDecorator(_from_space, NULL, MarkSweepDeadRatio); duke@435: _to_mark_sweep = duke@435: new PSMarkSweepDecorator(_to_space, NULL, MarkSweepDeadRatio); duke@435: duke@435: if (_eden_mark_sweep == NULL || duke@435: _from_mark_sweep == NULL || duke@435: _to_mark_sweep == NULL) { duke@435: vm_exit_during_initialization("Could not complete allocation" duke@435: " of the young generation"); duke@435: } duke@435: duke@435: // Generation Counters - generation 0, 3 subspaces duke@435: _gen_counters = new PSGenerationCounters("new", 0, 3, _virtual_space); duke@435: duke@435: // Compute maximum space sizes for performance counters duke@435: ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap(); jmasa@448: size_t alignment = heap->intra_heap_alignment(); jmasa@698: size_t size = virtual_space()->reserved_size(); duke@435: duke@435: size_t max_survivor_size; duke@435: size_t max_eden_size; duke@435: duke@435: if (UseAdaptiveSizePolicy) { duke@435: max_survivor_size = size / MinSurvivorRatio; duke@435: duke@435: // round the survivor space size down to the nearest alignment duke@435: // and make sure its size is greater than 0. duke@435: max_survivor_size = align_size_down(max_survivor_size, alignment); duke@435: max_survivor_size = MAX2(max_survivor_size, alignment); duke@435: duke@435: // set the maximum size of eden to be the size of the young gen duke@435: // less two times the minimum survivor size. The minimum survivor duke@435: // size for UseAdaptiveSizePolicy is one alignment. duke@435: max_eden_size = size - 2 * alignment; duke@435: } else { duke@435: max_survivor_size = size / InitialSurvivorRatio; duke@435: duke@435: // round the survivor space size down to the nearest alignment duke@435: // and make sure its size is greater than 0. duke@435: max_survivor_size = align_size_down(max_survivor_size, alignment); duke@435: max_survivor_size = MAX2(max_survivor_size, alignment); duke@435: duke@435: // set the maximum size of eden to be the size of the young gen duke@435: // less two times the survivor size when the generation is 100% duke@435: // committed. The minimum survivor size for -UseAdaptiveSizePolicy duke@435: // is dependent on the committed portion (current capacity) of the duke@435: // generation - the less space committed, the smaller the survivor duke@435: // space, possibly as small as an alignment. However, we are interested duke@435: // in the case where the young generation is 100% committed, as this duke@435: // is the point where eden reachs its maximum size. At this point, duke@435: // the size of a survivor space is max_survivor_size. duke@435: max_eden_size = size - 2 * max_survivor_size; duke@435: } duke@435: duke@435: _eden_counters = new SpaceCounters("eden", 0, max_eden_size, _eden_space, duke@435: _gen_counters); duke@435: _from_counters = new SpaceCounters("s0", 1, max_survivor_size, _from_space, duke@435: _gen_counters); duke@435: _to_counters = new SpaceCounters("s1", 2, max_survivor_size, _to_space, duke@435: _gen_counters); duke@435: duke@435: compute_initial_space_boundaries(); duke@435: } duke@435: duke@435: void PSYoungGen::compute_initial_space_boundaries() { duke@435: ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap(); duke@435: assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity"); duke@435: duke@435: // Compute sizes jmasa@448: size_t alignment = heap->intra_heap_alignment(); jmasa@698: size_t size = virtual_space()->committed_size(); duke@435: duke@435: size_t survivor_size = size / InitialSurvivorRatio; duke@435: survivor_size = align_size_down(survivor_size, alignment); duke@435: // ... but never less than an alignment duke@435: survivor_size = MAX2(survivor_size, alignment); duke@435: duke@435: // Young generation is eden + 2 survivor spaces duke@435: size_t eden_size = size - (2 * survivor_size); duke@435: duke@435: // Now go ahead and set 'em. duke@435: set_space_boundaries(eden_size, survivor_size); duke@435: space_invariants(); duke@435: duke@435: if (UsePerfData) { duke@435: _eden_counters->update_capacity(); duke@435: _from_counters->update_capacity(); duke@435: _to_counters->update_capacity(); duke@435: } duke@435: } duke@435: duke@435: void PSYoungGen::set_space_boundaries(size_t eden_size, size_t survivor_size) { jmasa@698: assert(eden_size < virtual_space()->committed_size(), "just checking"); duke@435: assert(eden_size > 0 && survivor_size > 0, "just checking"); duke@435: duke@435: // Initial layout is Eden, to, from. After swapping survivor spaces, duke@435: // that leaves us with Eden, from, to, which is step one in our two duke@435: // step resize-with-live-data procedure. jmasa@698: char *eden_start = virtual_space()->low(); duke@435: char *to_start = eden_start + eden_size; duke@435: char *from_start = to_start + survivor_size; duke@435: char *from_end = from_start + survivor_size; duke@435: jmasa@698: assert(from_end == virtual_space()->high(), "just checking"); duke@435: assert(is_object_aligned((intptr_t)eden_start), "checking alignment"); duke@435: assert(is_object_aligned((intptr_t)to_start), "checking alignment"); duke@435: assert(is_object_aligned((intptr_t)from_start), "checking alignment"); duke@435: duke@435: MemRegion eden_mr((HeapWord*)eden_start, (HeapWord*)to_start); duke@435: MemRegion to_mr ((HeapWord*)to_start, (HeapWord*)from_start); duke@435: MemRegion from_mr((HeapWord*)from_start, (HeapWord*)from_end); duke@435: jmasa@698: eden_space()->initialize(eden_mr, true, ZapUnusedHeapArea); jmasa@698: to_space()->initialize(to_mr , true, ZapUnusedHeapArea); jmasa@698: from_space()->initialize(from_mr, true, ZapUnusedHeapArea); duke@435: } duke@435: duke@435: #ifndef PRODUCT duke@435: void PSYoungGen::space_invariants() { duke@435: ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap(); jmasa@448: const size_t alignment = heap->intra_heap_alignment(); duke@435: duke@435: // Currently, our eden size cannot shrink to zero duke@435: guarantee(eden_space()->capacity_in_bytes() >= alignment, "eden too small"); duke@435: guarantee(from_space()->capacity_in_bytes() >= alignment, "from too small"); duke@435: guarantee(to_space()->capacity_in_bytes() >= alignment, "to too small"); duke@435: duke@435: // Relationship of spaces to each other duke@435: char* eden_start = (char*)eden_space()->bottom(); duke@435: char* eden_end = (char*)eden_space()->end(); duke@435: char* from_start = (char*)from_space()->bottom(); duke@435: char* from_end = (char*)from_space()->end(); duke@435: char* to_start = (char*)to_space()->bottom(); duke@435: char* to_end = (char*)to_space()->end(); duke@435: jmasa@698: guarantee(eden_start >= virtual_space()->low(), "eden bottom"); duke@435: guarantee(eden_start < eden_end, "eden space consistency"); duke@435: guarantee(from_start < from_end, "from space consistency"); duke@435: guarantee(to_start < to_end, "to space consistency"); duke@435: duke@435: // Check whether from space is below to space duke@435: if (from_start < to_start) { duke@435: // Eden, from, to duke@435: guarantee(eden_end <= from_start, "eden/from boundary"); duke@435: guarantee(from_end <= to_start, "from/to boundary"); jmasa@698: guarantee(to_end <= virtual_space()->high(), "to end"); duke@435: } else { duke@435: // Eden, to, from duke@435: guarantee(eden_end <= to_start, "eden/to boundary"); duke@435: guarantee(to_end <= from_start, "to/from boundary"); jmasa@698: guarantee(from_end <= virtual_space()->high(), "from end"); duke@435: } duke@435: duke@435: // More checks that the virtual space is consistent with the spaces jmasa@698: assert(virtual_space()->committed_size() >= duke@435: (eden_space()->capacity_in_bytes() + duke@435: to_space()->capacity_in_bytes() + duke@435: from_space()->capacity_in_bytes()), "Committed size is inconsistent"); jmasa@698: assert(virtual_space()->committed_size() <= virtual_space()->reserved_size(), duke@435: "Space invariant"); duke@435: char* eden_top = (char*)eden_space()->top(); duke@435: char* from_top = (char*)from_space()->top(); duke@435: char* to_top = (char*)to_space()->top(); jmasa@698: assert(eden_top <= virtual_space()->high(), "eden top"); jmasa@698: assert(from_top <= virtual_space()->high(), "from top"); jmasa@698: assert(to_top <= virtual_space()->high(), "to top"); duke@435: jmasa@698: virtual_space()->verify(); duke@435: } duke@435: #endif duke@435: duke@435: void PSYoungGen::resize(size_t eden_size, size_t survivor_size) { duke@435: // Resize the generation if needed. If the generation resize duke@435: // reports false, do not attempt to resize the spaces. duke@435: if (resize_generation(eden_size, survivor_size)) { duke@435: // Then we lay out the spaces inside the generation duke@435: resize_spaces(eden_size, survivor_size); duke@435: duke@435: space_invariants(); duke@435: duke@435: if (PrintAdaptiveSizePolicy && Verbose) { duke@435: gclog_or_tty->print_cr("Young generation size: " duke@435: "desired eden: " SIZE_FORMAT " survivor: " SIZE_FORMAT duke@435: " used: " SIZE_FORMAT " capacity: " SIZE_FORMAT duke@435: " gen limits: " SIZE_FORMAT " / " SIZE_FORMAT, duke@435: eden_size, survivor_size, used_in_bytes(), capacity_in_bytes(), duke@435: _max_gen_size, min_gen_size()); duke@435: } duke@435: } duke@435: } duke@435: duke@435: duke@435: bool PSYoungGen::resize_generation(size_t eden_size, size_t survivor_size) { jmasa@698: const size_t alignment = virtual_space()->alignment(); jmasa@698: size_t orig_size = virtual_space()->committed_size(); duke@435: bool size_changed = false; duke@435: duke@435: // There used to be this guarantee there. duke@435: // guarantee ((eden_size + 2*survivor_size) <= _max_gen_size, "incorrect input arguments"); duke@435: // Code below forces this requirement. In addition the desired eden duke@435: // size and disired survivor sizes are desired goals and may duke@435: // exceed the total generation size. duke@435: duke@435: assert(min_gen_size() <= orig_size && orig_size <= max_size(), "just checking"); duke@435: duke@435: // Adjust new generation size duke@435: const size_t eden_plus_survivors = duke@435: align_size_up(eden_size + 2 * survivor_size, alignment); duke@435: size_t desired_size = MAX2(MIN2(eden_plus_survivors, max_size()), duke@435: min_gen_size()); duke@435: assert(desired_size <= max_size(), "just checking"); duke@435: duke@435: if (desired_size > orig_size) { duke@435: // Grow the generation duke@435: size_t change = desired_size - orig_size; duke@435: assert(change % alignment == 0, "just checking"); jmasa@698: HeapWord* prev_high = (HeapWord*) virtual_space()->high(); jmasa@698: if (!virtual_space()->expand_by(change)) { duke@435: return false; // Error if we fail to resize! duke@435: } jmasa@698: if (ZapUnusedHeapArea) { jmasa@698: // Mangle newly committed space immediately because it jmasa@698: // can be done here more simply that after the new jmasa@698: // spaces have been computed. jmasa@698: HeapWord* new_high = (HeapWord*) virtual_space()->high(); jmasa@698: MemRegion mangle_region(prev_high, new_high); jmasa@698: SpaceMangler::mangle_region(mangle_region); jmasa@698: } duke@435: size_changed = true; duke@435: } else if (desired_size < orig_size) { duke@435: size_t desired_change = orig_size - desired_size; duke@435: assert(desired_change % alignment == 0, "just checking"); duke@435: duke@435: desired_change = limit_gen_shrink(desired_change); duke@435: duke@435: if (desired_change > 0) { duke@435: virtual_space()->shrink_by(desired_change); duke@435: reset_survivors_after_shrink(); duke@435: duke@435: size_changed = true; duke@435: } duke@435: } else { duke@435: if (Verbose && PrintGC) { duke@435: if (orig_size == gen_size_limit()) { duke@435: gclog_or_tty->print_cr("PSYoung generation size at maximum: " duke@435: SIZE_FORMAT "K", orig_size/K); duke@435: } else if (orig_size == min_gen_size()) { duke@435: gclog_or_tty->print_cr("PSYoung generation size at minium: " duke@435: SIZE_FORMAT "K", orig_size/K); duke@435: } duke@435: } duke@435: } duke@435: duke@435: if (size_changed) { duke@435: post_resize(); duke@435: duke@435: if (Verbose && PrintGC) { jmasa@698: size_t current_size = virtual_space()->committed_size(); duke@435: gclog_or_tty->print_cr("PSYoung generation size changed: " duke@435: SIZE_FORMAT "K->" SIZE_FORMAT "K", duke@435: orig_size/K, current_size/K); duke@435: } duke@435: } duke@435: jmasa@698: guarantee(eden_plus_survivors <= virtual_space()->committed_size() || jmasa@698: virtual_space()->committed_size() == max_size(), "Sanity"); duke@435: duke@435: return true; duke@435: } duke@435: jmasa@698: #ifndef PRODUCT jmasa@698: // In the numa case eden is not mangled so a survivor space jmasa@698: // moving into a region previously occupied by a survivor jmasa@698: // may find an unmangled region. Also in the PS case eden jmasa@698: // to-space and from-space may not touch (i.e., there may be jmasa@698: // gaps between them due to movement while resizing the jmasa@698: // spaces). Those gaps must be mangled. jmasa@698: void PSYoungGen::mangle_survivors(MutableSpace* s1, jmasa@698: MemRegion s1MR, jmasa@698: MutableSpace* s2, jmasa@698: MemRegion s2MR) { jmasa@698: // Check eden and gap between eden and from-space, in deciding jmasa@698: // what to mangle in from-space. Check the gap between from-space jmasa@698: // and to-space when deciding what to mangle. jmasa@698: // jmasa@698: // +--------+ +----+ +---+ jmasa@698: // | eden | |s1 | |s2 | jmasa@698: // +--------+ +----+ +---+ jmasa@698: // +-------+ +-----+ jmasa@698: // |s1MR | |s2MR | jmasa@698: // +-------+ +-----+ jmasa@698: // All of survivor-space is properly mangled so find the jmasa@698: // upper bound on the mangling for any portion above current s1. jmasa@698: HeapWord* delta_end = MIN2(s1->bottom(), s1MR.end()); jmasa@698: MemRegion delta1_left; jmasa@698: if (s1MR.start() < delta_end) { jmasa@698: delta1_left = MemRegion(s1MR.start(), delta_end); jmasa@698: s1->mangle_region(delta1_left); jmasa@698: } jmasa@698: // Find any portion to the right of the current s1. jmasa@698: HeapWord* delta_start = MAX2(s1->end(), s1MR.start()); jmasa@698: MemRegion delta1_right; jmasa@698: if (delta_start < s1MR.end()) { jmasa@698: delta1_right = MemRegion(delta_start, s1MR.end()); jmasa@698: s1->mangle_region(delta1_right); jmasa@698: } jmasa@698: jmasa@698: // Similarly for the second survivor space except that jmasa@698: // any of the new region that overlaps with the current jmasa@698: // region of the first survivor space has already been jmasa@698: // mangled. jmasa@698: delta_end = MIN2(s2->bottom(), s2MR.end()); jmasa@698: delta_start = MAX2(s2MR.start(), s1->end()); jmasa@698: MemRegion delta2_left; jmasa@698: if (s2MR.start() < delta_end) { jmasa@698: delta2_left = MemRegion(s2MR.start(), delta_end); jmasa@698: s2->mangle_region(delta2_left); jmasa@698: } jmasa@698: delta_start = MAX2(s2->end(), s2MR.start()); jmasa@698: MemRegion delta2_right; jmasa@698: if (delta_start < s2MR.end()) { jmasa@698: s2->mangle_region(delta2_right); jmasa@698: } jmasa@698: jmasa@698: if (TraceZapUnusedHeapArea) { jmasa@698: // s1 jmasa@698: gclog_or_tty->print_cr("Current region: [" PTR_FORMAT ", " PTR_FORMAT ") " jmasa@698: "New region: [" PTR_FORMAT ", " PTR_FORMAT ")", jmasa@698: s1->bottom(), s1->end(), s1MR.start(), s1MR.end()); jmasa@698: gclog_or_tty->print_cr(" Mangle before: [" PTR_FORMAT ", " jmasa@698: PTR_FORMAT ") Mangle after: [" PTR_FORMAT ", " PTR_FORMAT ")", jmasa@698: delta1_left.start(), delta1_left.end(), delta1_right.start(), jmasa@698: delta1_right.end()); jmasa@698: jmasa@698: // s2 jmasa@698: gclog_or_tty->print_cr("Current region: [" PTR_FORMAT ", " PTR_FORMAT ") " jmasa@698: "New region: [" PTR_FORMAT ", " PTR_FORMAT ")", jmasa@698: s2->bottom(), s2->end(), s2MR.start(), s2MR.end()); jmasa@698: gclog_or_tty->print_cr(" Mangle before: [" PTR_FORMAT ", " jmasa@698: PTR_FORMAT ") Mangle after: [" PTR_FORMAT ", " PTR_FORMAT ")", jmasa@698: delta2_left.start(), delta2_left.end(), delta2_right.start(), jmasa@698: delta2_right.end()); jmasa@698: } jmasa@698: jmasa@698: } jmasa@698: #endif // NOT PRODUCT duke@435: duke@435: void PSYoungGen::resize_spaces(size_t requested_eden_size, duke@435: size_t requested_survivor_size) { duke@435: assert(UseAdaptiveSizePolicy, "sanity check"); duke@435: assert(requested_eden_size > 0 && requested_survivor_size > 0, duke@435: "just checking"); duke@435: duke@435: // We require eden and to space to be empty duke@435: if ((!eden_space()->is_empty()) || (!to_space()->is_empty())) { duke@435: return; duke@435: } duke@435: duke@435: if (PrintAdaptiveSizePolicy && Verbose) { duke@435: gclog_or_tty->print_cr("PSYoungGen::resize_spaces(requested_eden_size: " duke@435: SIZE_FORMAT duke@435: ", requested_survivor_size: " SIZE_FORMAT ")", duke@435: requested_eden_size, requested_survivor_size); duke@435: gclog_or_tty->print_cr(" eden: [" PTR_FORMAT ".." PTR_FORMAT ") " duke@435: SIZE_FORMAT, duke@435: eden_space()->bottom(), duke@435: eden_space()->end(), duke@435: pointer_delta(eden_space()->end(), duke@435: eden_space()->bottom(), duke@435: sizeof(char))); duke@435: gclog_or_tty->print_cr(" from: [" PTR_FORMAT ".." PTR_FORMAT ") " duke@435: SIZE_FORMAT, duke@435: from_space()->bottom(), duke@435: from_space()->end(), duke@435: pointer_delta(from_space()->end(), duke@435: from_space()->bottom(), duke@435: sizeof(char))); duke@435: gclog_or_tty->print_cr(" to: [" PTR_FORMAT ".." PTR_FORMAT ") " duke@435: SIZE_FORMAT, duke@435: to_space()->bottom(), duke@435: to_space()->end(), duke@435: pointer_delta( to_space()->end(), duke@435: to_space()->bottom(), duke@435: sizeof(char))); duke@435: } duke@435: duke@435: // There's nothing to do if the new sizes are the same as the current duke@435: if (requested_survivor_size == to_space()->capacity_in_bytes() && duke@435: requested_survivor_size == from_space()->capacity_in_bytes() && duke@435: requested_eden_size == eden_space()->capacity_in_bytes()) { duke@435: if (PrintAdaptiveSizePolicy && Verbose) { duke@435: gclog_or_tty->print_cr(" capacities are the right sizes, returning"); duke@435: } duke@435: return; duke@435: } duke@435: duke@435: char* eden_start = (char*)eden_space()->bottom(); duke@435: char* eden_end = (char*)eden_space()->end(); duke@435: char* from_start = (char*)from_space()->bottom(); duke@435: char* from_end = (char*)from_space()->end(); duke@435: char* to_start = (char*)to_space()->bottom(); duke@435: char* to_end = (char*)to_space()->end(); duke@435: duke@435: ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap(); jmasa@448: const size_t alignment = heap->intra_heap_alignment(); duke@435: const bool maintain_minimum = duke@435: (requested_eden_size + 2 * requested_survivor_size) <= min_gen_size(); duke@435: jmasa@698: bool eden_from_to_order = from_start < to_start; duke@435: // Check whether from space is below to space jmasa@698: if (eden_from_to_order) { duke@435: // Eden, from, to jmasa@698: eden_from_to_order = true; duke@435: if (PrintAdaptiveSizePolicy && Verbose) { duke@435: gclog_or_tty->print_cr(" Eden, from, to:"); duke@435: } duke@435: duke@435: // Set eden duke@435: // "requested_eden_size" is a goal for the size of eden duke@435: // and may not be attainable. "eden_size" below is duke@435: // calculated based on the location of from-space and duke@435: // the goal for the size of eden. from-space is duke@435: // fixed in place because it contains live data. duke@435: // The calculation is done this way to avoid 32bit duke@435: // overflow (i.e., eden_start + requested_eden_size duke@435: // may too large for representation in 32bits). duke@435: size_t eden_size; duke@435: if (maintain_minimum) { duke@435: // Only make eden larger than the requested size if duke@435: // the minimum size of the generation has to be maintained. duke@435: // This could be done in general but policy at a higher duke@435: // level is determining a requested size for eden and that duke@435: // should be honored unless there is a fundamental reason. duke@435: eden_size = pointer_delta(from_start, duke@435: eden_start, duke@435: sizeof(char)); duke@435: } else { duke@435: eden_size = MIN2(requested_eden_size, duke@435: pointer_delta(from_start, eden_start, sizeof(char))); duke@435: } duke@435: duke@435: eden_end = eden_start + eden_size; jcoomes@1844: assert(eden_end >= eden_start, "addition overflowed"); duke@435: duke@435: // To may resize into from space as long as it is clear of live data. duke@435: // From space must remain page aligned, though, so we need to do some duke@435: // extra calculations. duke@435: duke@435: // First calculate an optimal to-space jmasa@698: to_end = (char*)virtual_space()->high(); duke@435: to_start = (char*)pointer_delta(to_end, (char*)requested_survivor_size, duke@435: sizeof(char)); duke@435: duke@435: // Does the optimal to-space overlap from-space? duke@435: if (to_start < (char*)from_space()->end()) { duke@435: assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity"); duke@435: duke@435: // Calculate the minimum offset possible for from_end duke@435: size_t from_size = pointer_delta(from_space()->top(), from_start, sizeof(char)); duke@435: duke@435: // Should we be in this method if from_space is empty? Why not the set_space method? FIX ME! duke@435: if (from_size == 0) { duke@435: from_size = alignment; duke@435: } else { duke@435: from_size = align_size_up(from_size, alignment); duke@435: } duke@435: duke@435: from_end = from_start + from_size; duke@435: assert(from_end > from_start, "addition overflow or from_size problem"); duke@435: duke@435: guarantee(from_end <= (char*)from_space()->end(), "from_end moved to the right"); duke@435: duke@435: // Now update to_start with the new from_end duke@435: to_start = MAX2(from_end, to_start); duke@435: } duke@435: duke@435: guarantee(to_start != to_end, "to space is zero sized"); duke@435: duke@435: if (PrintAdaptiveSizePolicy && Verbose) { duke@435: gclog_or_tty->print_cr(" [eden_start .. eden_end): " duke@435: "[" PTR_FORMAT " .. " PTR_FORMAT ") " SIZE_FORMAT, duke@435: eden_start, duke@435: eden_end, duke@435: pointer_delta(eden_end, eden_start, sizeof(char))); duke@435: gclog_or_tty->print_cr(" [from_start .. from_end): " duke@435: "[" PTR_FORMAT " .. " PTR_FORMAT ") " SIZE_FORMAT, duke@435: from_start, duke@435: from_end, duke@435: pointer_delta(from_end, from_start, sizeof(char))); duke@435: gclog_or_tty->print_cr(" [ to_start .. to_end): " duke@435: "[" PTR_FORMAT " .. " PTR_FORMAT ") " SIZE_FORMAT, duke@435: to_start, duke@435: to_end, duke@435: pointer_delta( to_end, to_start, sizeof(char))); duke@435: } duke@435: } else { duke@435: // Eden, to, from duke@435: if (PrintAdaptiveSizePolicy && Verbose) { duke@435: gclog_or_tty->print_cr(" Eden, to, from:"); duke@435: } duke@435: duke@435: // To space gets priority over eden resizing. Note that we position duke@435: // to space as if we were able to resize from space, even though from duke@435: // space is not modified. duke@435: // Giving eden priority was tried and gave poorer performance. jmasa@698: to_end = (char*)pointer_delta(virtual_space()->high(), duke@435: (char*)requested_survivor_size, duke@435: sizeof(char)); duke@435: to_end = MIN2(to_end, from_start); duke@435: to_start = (char*)pointer_delta(to_end, (char*)requested_survivor_size, duke@435: sizeof(char)); duke@435: // if the space sizes are to be increased by several times then duke@435: // 'to_start' will point beyond the young generation. In this case duke@435: // 'to_start' should be adjusted. duke@435: to_start = MAX2(to_start, eden_start + alignment); duke@435: duke@435: // Compute how big eden can be, then adjust end. duke@435: // See comments above on calculating eden_end. duke@435: size_t eden_size; duke@435: if (maintain_minimum) { duke@435: eden_size = pointer_delta(to_start, eden_start, sizeof(char)); duke@435: } else { duke@435: eden_size = MIN2(requested_eden_size, duke@435: pointer_delta(to_start, eden_start, sizeof(char))); duke@435: } duke@435: eden_end = eden_start + eden_size; jcoomes@1844: assert(eden_end >= eden_start, "addition overflowed"); duke@435: duke@435: // Could choose to not let eden shrink duke@435: // to_start = MAX2(to_start, eden_end); duke@435: duke@435: // Don't let eden shrink down to 0 or less. duke@435: eden_end = MAX2(eden_end, eden_start + alignment); duke@435: to_start = MAX2(to_start, eden_end); duke@435: duke@435: if (PrintAdaptiveSizePolicy && Verbose) { duke@435: gclog_or_tty->print_cr(" [eden_start .. eden_end): " duke@435: "[" PTR_FORMAT " .. " PTR_FORMAT ") " SIZE_FORMAT, duke@435: eden_start, duke@435: eden_end, duke@435: pointer_delta(eden_end, eden_start, sizeof(char))); duke@435: gclog_or_tty->print_cr(" [ to_start .. to_end): " duke@435: "[" PTR_FORMAT " .. " PTR_FORMAT ") " SIZE_FORMAT, duke@435: to_start, duke@435: to_end, duke@435: pointer_delta( to_end, to_start, sizeof(char))); duke@435: gclog_or_tty->print_cr(" [from_start .. from_end): " duke@435: "[" PTR_FORMAT " .. " PTR_FORMAT ") " SIZE_FORMAT, duke@435: from_start, duke@435: from_end, duke@435: pointer_delta(from_end, from_start, sizeof(char))); duke@435: } duke@435: } duke@435: duke@435: duke@435: guarantee((HeapWord*)from_start <= from_space()->bottom(), duke@435: "from start moved to the right"); duke@435: guarantee((HeapWord*)from_end >= from_space()->top(), duke@435: "from end moved into live data"); duke@435: assert(is_object_aligned((intptr_t)eden_start), "checking alignment"); duke@435: assert(is_object_aligned((intptr_t)from_start), "checking alignment"); duke@435: assert(is_object_aligned((intptr_t)to_start), "checking alignment"); duke@435: duke@435: MemRegion edenMR((HeapWord*)eden_start, (HeapWord*)eden_end); duke@435: MemRegion toMR ((HeapWord*)to_start, (HeapWord*)to_end); duke@435: MemRegion fromMR((HeapWord*)from_start, (HeapWord*)from_end); duke@435: duke@435: // Let's make sure the call to initialize doesn't reset "top"! duke@435: HeapWord* old_from_top = from_space()->top(); duke@435: duke@435: // For PrintAdaptiveSizePolicy block below duke@435: size_t old_from = from_space()->capacity_in_bytes(); duke@435: size_t old_to = to_space()->capacity_in_bytes(); duke@435: jmasa@698: if (ZapUnusedHeapArea) { jmasa@698: // NUMA is a special case because a numa space is not mangled jmasa@698: // in order to not prematurely bind its address to memory to jmasa@698: // the wrong memory (i.e., don't want the GC thread to first jmasa@698: // touch the memory). The survivor spaces are not numa jmasa@698: // spaces and are mangled. jmasa@698: if (UseNUMA) { jmasa@698: if (eden_from_to_order) { jmasa@698: mangle_survivors(from_space(), fromMR, to_space(), toMR); jmasa@698: } else { jmasa@698: mangle_survivors(to_space(), toMR, from_space(), fromMR); jmasa@698: } jmasa@698: } jmasa@698: jmasa@698: // If not mangling the spaces, do some checking to verify that jmasa@698: // the spaces are already mangled. jmasa@698: // The spaces should be correctly mangled at this point so jmasa@698: // do some checking here. Note that they are not being mangled jmasa@698: // in the calls to initialize(). jmasa@698: // Must check mangling before the spaces are reshaped. Otherwise, jmasa@698: // the bottom or end of one space may have moved into an area jmasa@698: // covered by another space and a failure of the check may jmasa@698: // not correctly indicate which space is not properly mangled. jmasa@698: HeapWord* limit = (HeapWord*) virtual_space()->high(); jmasa@698: eden_space()->check_mangled_unused_area(limit); jmasa@698: from_space()->check_mangled_unused_area(limit); jmasa@698: to_space()->check_mangled_unused_area(limit); jmasa@698: } jmasa@698: // When an existing space is being initialized, it is not jmasa@698: // mangled because the space has been previously mangled. jmasa@698: eden_space()->initialize(edenMR, jmasa@698: SpaceDecorator::Clear, jmasa@698: SpaceDecorator::DontMangle); jmasa@698: to_space()->initialize(toMR, jmasa@698: SpaceDecorator::Clear, jmasa@698: SpaceDecorator::DontMangle); jmasa@698: from_space()->initialize(fromMR, jmasa@698: SpaceDecorator::DontClear, jmasa@698: SpaceDecorator::DontMangle); duke@435: duke@435: assert(from_space()->top() == old_from_top, "from top changed!"); duke@435: duke@435: if (PrintAdaptiveSizePolicy) { duke@435: ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap(); duke@435: assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity"); duke@435: duke@435: gclog_or_tty->print("AdaptiveSizePolicy::survivor space sizes: " duke@435: "collection: %d " duke@435: "(" SIZE_FORMAT ", " SIZE_FORMAT ") -> " duke@435: "(" SIZE_FORMAT ", " SIZE_FORMAT ") ", duke@435: heap->total_collections(), duke@435: old_from, old_to, duke@435: from_space()->capacity_in_bytes(), duke@435: to_space()->capacity_in_bytes()); duke@435: gclog_or_tty->cr(); duke@435: } duke@435: } duke@435: duke@435: void PSYoungGen::swap_spaces() { duke@435: MutableSpace* s = from_space(); duke@435: _from_space = to_space(); duke@435: _to_space = s; duke@435: duke@435: // Now update the decorators. duke@435: PSMarkSweepDecorator* md = from_mark_sweep(); duke@435: _from_mark_sweep = to_mark_sweep(); duke@435: _to_mark_sweep = md; duke@435: duke@435: assert(from_mark_sweep()->space() == from_space(), "Sanity"); duke@435: assert(to_mark_sweep()->space() == to_space(), "Sanity"); duke@435: } duke@435: duke@435: size_t PSYoungGen::capacity_in_bytes() const { duke@435: return eden_space()->capacity_in_bytes() duke@435: + from_space()->capacity_in_bytes(); // to_space() is only used during scavenge duke@435: } duke@435: duke@435: duke@435: size_t PSYoungGen::used_in_bytes() const { duke@435: return eden_space()->used_in_bytes() duke@435: + from_space()->used_in_bytes(); // to_space() is only used during scavenge duke@435: } duke@435: duke@435: duke@435: size_t PSYoungGen::free_in_bytes() const { duke@435: return eden_space()->free_in_bytes() duke@435: + from_space()->free_in_bytes(); // to_space() is only used during scavenge duke@435: } duke@435: duke@435: size_t PSYoungGen::capacity_in_words() const { duke@435: return eden_space()->capacity_in_words() duke@435: + from_space()->capacity_in_words(); // to_space() is only used during scavenge duke@435: } duke@435: duke@435: duke@435: size_t PSYoungGen::used_in_words() const { duke@435: return eden_space()->used_in_words() duke@435: + from_space()->used_in_words(); // to_space() is only used during scavenge duke@435: } duke@435: duke@435: duke@435: size_t PSYoungGen::free_in_words() const { duke@435: return eden_space()->free_in_words() duke@435: + from_space()->free_in_words(); // to_space() is only used during scavenge duke@435: } duke@435: duke@435: void PSYoungGen::object_iterate(ObjectClosure* blk) { duke@435: eden_space()->object_iterate(blk); duke@435: from_space()->object_iterate(blk); duke@435: to_space()->object_iterate(blk); duke@435: } duke@435: duke@435: void PSYoungGen::precompact() { duke@435: eden_mark_sweep()->precompact(); duke@435: from_mark_sweep()->precompact(); duke@435: to_mark_sweep()->precompact(); duke@435: } duke@435: duke@435: void PSYoungGen::adjust_pointers() { duke@435: eden_mark_sweep()->adjust_pointers(); duke@435: from_mark_sweep()->adjust_pointers(); duke@435: to_mark_sweep()->adjust_pointers(); duke@435: } duke@435: duke@435: void PSYoungGen::compact() { duke@435: eden_mark_sweep()->compact(ZapUnusedHeapArea); duke@435: from_mark_sweep()->compact(ZapUnusedHeapArea); duke@435: // Mark sweep stores preserved markOops in to space, don't disturb! duke@435: to_mark_sweep()->compact(false); duke@435: } duke@435: duke@435: void PSYoungGen::print() const { print_on(tty); } duke@435: void PSYoungGen::print_on(outputStream* st) const { duke@435: st->print(" %-15s", "PSYoungGen"); duke@435: if (PrintGCDetails && Verbose) { duke@435: st->print(" total " SIZE_FORMAT ", used " SIZE_FORMAT, duke@435: capacity_in_bytes(), used_in_bytes()); duke@435: } else { duke@435: st->print(" total " SIZE_FORMAT "K, used " SIZE_FORMAT "K", duke@435: capacity_in_bytes()/K, used_in_bytes()/K); duke@435: } jmasa@698: virtual_space()->print_space_boundaries_on(st); duke@435: st->print(" eden"); eden_space()->print_on(st); duke@435: st->print(" from"); from_space()->print_on(st); duke@435: st->print(" to "); to_space()->print_on(st); duke@435: } duke@435: jmasa@4391: // Note that a space is not printed before the [NAME: duke@435: void PSYoungGen::print_used_change(size_t prev_used) const { jmasa@4391: gclog_or_tty->print("[%s:", name()); duke@435: gclog_or_tty->print(" " SIZE_FORMAT "K" duke@435: "->" SIZE_FORMAT "K" duke@435: "(" SIZE_FORMAT "K)", duke@435: prev_used / K, used_in_bytes() / K, duke@435: capacity_in_bytes() / K); duke@435: gclog_or_tty->print("]"); duke@435: } duke@435: duke@435: size_t PSYoungGen::available_for_expansion() { duke@435: ShouldNotReachHere(); duke@435: return 0; duke@435: } duke@435: duke@435: size_t PSYoungGen::available_for_contraction() { duke@435: ShouldNotReachHere(); duke@435: return 0; duke@435: } duke@435: duke@435: size_t PSYoungGen::available_to_min_gen() { duke@435: assert(virtual_space()->committed_size() >= min_gen_size(), "Invariant"); duke@435: return virtual_space()->committed_size() - min_gen_size(); duke@435: } duke@435: duke@435: // This method assumes that from-space has live data and that duke@435: // any shrinkage of the young gen is limited by location of duke@435: // from-space. duke@435: size_t PSYoungGen::available_to_live() { duke@435: size_t delta_in_survivor = 0; duke@435: ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap(); jmasa@448: const size_t space_alignment = heap->intra_heap_alignment(); duke@435: const size_t gen_alignment = heap->young_gen_alignment(); duke@435: duke@435: MutableSpace* space_shrinking = NULL; duke@435: if (from_space()->end() > to_space()->end()) { duke@435: space_shrinking = from_space(); duke@435: } else { duke@435: space_shrinking = to_space(); duke@435: } duke@435: duke@435: // Include any space that is committed but not included in duke@435: // the survivor spaces. duke@435: assert(((HeapWord*)virtual_space()->high()) >= space_shrinking->end(), duke@435: "Survivor space beyond high end"); duke@435: size_t unused_committed = pointer_delta(virtual_space()->high(), duke@435: space_shrinking->end(), sizeof(char)); duke@435: duke@435: if (space_shrinking->is_empty()) { duke@435: // Don't let the space shrink to 0 duke@435: assert(space_shrinking->capacity_in_bytes() >= space_alignment, duke@435: "Space is too small"); duke@435: delta_in_survivor = space_shrinking->capacity_in_bytes() - space_alignment; duke@435: } else { duke@435: delta_in_survivor = pointer_delta(space_shrinking->end(), duke@435: space_shrinking->top(), duke@435: sizeof(char)); duke@435: } duke@435: duke@435: size_t delta_in_bytes = unused_committed + delta_in_survivor; duke@435: delta_in_bytes = align_size_down(delta_in_bytes, gen_alignment); duke@435: return delta_in_bytes; duke@435: } duke@435: duke@435: // Return the number of bytes available for resizing down the young duke@435: // generation. This is the minimum of duke@435: // input "bytes" duke@435: // bytes to the minimum young gen size duke@435: // bytes to the size currently being used + some small extra duke@435: size_t PSYoungGen::limit_gen_shrink(size_t bytes) { duke@435: // Allow shrinkage into the current eden but keep eden large enough duke@435: // to maintain the minimum young gen size duke@435: bytes = MIN3(bytes, available_to_min_gen(), available_to_live()); duke@435: return align_size_down(bytes, virtual_space()->alignment()); duke@435: } duke@435: duke@435: void PSYoungGen::reset_after_change() { duke@435: ShouldNotReachHere(); duke@435: } duke@435: duke@435: void PSYoungGen::reset_survivors_after_shrink() { duke@435: _reserved = MemRegion((HeapWord*)virtual_space()->low_boundary(), duke@435: (HeapWord*)virtual_space()->high_boundary()); duke@435: PSScavenge::reference_processor()->set_span(_reserved); duke@435: duke@435: MutableSpace* space_shrinking = NULL; duke@435: if (from_space()->end() > to_space()->end()) { duke@435: space_shrinking = from_space(); duke@435: } else { duke@435: space_shrinking = to_space(); duke@435: } duke@435: duke@435: HeapWord* new_end = (HeapWord*)virtual_space()->high(); duke@435: assert(new_end >= space_shrinking->bottom(), "Shrink was too large"); duke@435: // Was there a shrink of the survivor space? duke@435: if (new_end < space_shrinking->end()) { duke@435: MemRegion mr(space_shrinking->bottom(), new_end); jmasa@698: space_shrinking->initialize(mr, jmasa@698: SpaceDecorator::DontClear, jmasa@698: SpaceDecorator::Mangle); duke@435: } duke@435: } duke@435: duke@435: // This method currently does not expect to expand into eden (i.e., duke@435: // the virtual space boundaries is expected to be consistent duke@435: // with the eden boundaries.. duke@435: void PSYoungGen::post_resize() { duke@435: assert_locked_or_safepoint(Heap_lock); duke@435: assert((eden_space()->bottom() < to_space()->bottom()) && duke@435: (eden_space()->bottom() < from_space()->bottom()), duke@435: "Eden is assumed to be below the survivor spaces"); duke@435: duke@435: MemRegion cmr((HeapWord*)virtual_space()->low(), duke@435: (HeapWord*)virtual_space()->high()); duke@435: Universe::heap()->barrier_set()->resize_covered_region(cmr); duke@435: space_invariants(); duke@435: } duke@435: duke@435: duke@435: duke@435: void PSYoungGen::update_counters() { duke@435: if (UsePerfData) { duke@435: _eden_counters->update_all(); duke@435: _from_counters->update_all(); duke@435: _to_counters->update_all(); duke@435: _gen_counters->update_all(); duke@435: } duke@435: } duke@435: brutisso@3711: void PSYoungGen::verify() { brutisso@3711: eden_space()->verify(); brutisso@3711: from_space()->verify(); brutisso@3711: to_space()->verify(); duke@435: } jmasa@698: jmasa@698: #ifndef PRODUCT jmasa@698: void PSYoungGen::record_spaces_top() { jmasa@698: assert(ZapUnusedHeapArea, "Not mangling unused space"); jmasa@698: eden_space()->set_top_for_allocations(); jmasa@698: from_space()->set_top_for_allocations(); jmasa@698: to_space()->set_top_for_allocations(); jmasa@698: } jmasa@698: #endif