aoqi@0: /* kevinw@8368: * Copyright (c) 2005, 2016, Oracle and/or its affiliates. All rights reserved. aoqi@0: * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. aoqi@0: * aoqi@0: * This code is free software; you can redistribute it and/or modify it aoqi@0: * under the terms of the GNU General Public License version 2 only, as aoqi@0: * published by the Free Software Foundation. aoqi@0: * aoqi@0: * This code is distributed in the hope that it will be useful, but WITHOUT aoqi@0: * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or aoqi@0: * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License aoqi@0: * version 2 for more details (a copy is included in the LICENSE file that aoqi@0: * accompanied this code). aoqi@0: * aoqi@0: * You should have received a copy of the GNU General Public License version aoqi@0: * 2 along with this work; if not, write to the Free Software Foundation, aoqi@0: * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. aoqi@0: * aoqi@0: * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA aoqi@0: * or visit www.oracle.com if you need additional information or have any aoqi@0: * questions. aoqi@0: * aoqi@0: */ aoqi@0: aoqi@1: /* aoqi@1: * This file has been modified by Loongson Technology in 2015. These aoqi@1: * modifications are Copyright (c) 2015 Loongson Technology, and are made aoqi@1: * available on the same license terms set forth above. aoqi@1: */ aoqi@1: aoqi@0: #include "precompiled.hpp" dlong@7598: #include "c1/c1_Defs.hpp" aoqi@0: #include "c1/c1_Compilation.hpp" aoqi@0: #include "c1/c1_FrameMap.hpp" aoqi@0: #include "c1/c1_Instruction.hpp" aoqi@0: #include "c1/c1_LIRAssembler.hpp" aoqi@0: #include "c1/c1_LIRGenerator.hpp" aoqi@0: #include "c1/c1_ValueStack.hpp" aoqi@0: #include "ci/ciArrayKlass.hpp" aoqi@0: #include "ci/ciInstance.hpp" aoqi@0: #include "ci/ciObjArray.hpp" aoqi@0: #include "runtime/sharedRuntime.hpp" aoqi@0: #include "runtime/stubRoutines.hpp" aoqi@0: #include "utilities/bitMap.inline.hpp" aoqi@0: #include "utilities/macros.hpp" aoqi@0: #if INCLUDE_ALL_GCS aoqi@0: #include "gc_implementation/g1/heapRegion.hpp" aoqi@0: #endif // INCLUDE_ALL_GCS aoqi@0: aoqi@0: #ifdef ASSERT aoqi@0: #define __ gen()->lir(__FILE__, __LINE__)-> aoqi@0: #else aoqi@0: #define __ gen()->lir()-> aoqi@0: #endif aoqi@0: dlong@7598: #ifndef PATCHED_ADDR aoqi@0: #define PATCHED_ADDR (max_jint) aoqi@0: #endif aoqi@0: aoqi@0: void PhiResolverState::reset(int max_vregs) { aoqi@0: // Initialize array sizes aoqi@0: _virtual_operands.at_put_grow(max_vregs - 1, NULL, NULL); aoqi@0: _virtual_operands.trunc_to(0); aoqi@0: _other_operands.at_put_grow(max_vregs - 1, NULL, NULL); aoqi@0: _other_operands.trunc_to(0); aoqi@0: _vreg_table.at_put_grow(max_vregs - 1, NULL, NULL); aoqi@0: _vreg_table.trunc_to(0); aoqi@0: } aoqi@0: aoqi@0: aoqi@0: aoqi@0: //-------------------------------------------------------------- aoqi@0: // PhiResolver aoqi@0: aoqi@0: // Resolves cycles: aoqi@0: // aoqi@0: // r1 := r2 becomes temp := r1 aoqi@0: // r2 := r1 r1 := r2 aoqi@0: // r2 := temp aoqi@0: // and orders moves: aoqi@0: // aoqi@0: // r2 := r3 becomes r1 := r2 aoqi@0: // r1 := r2 r2 := r3 aoqi@0: aoqi@0: PhiResolver::PhiResolver(LIRGenerator* gen, int max_vregs) aoqi@0: : _gen(gen) aoqi@0: , _state(gen->resolver_state()) aoqi@0: , _temp(LIR_OprFact::illegalOpr) aoqi@0: { aoqi@0: // reinitialize the shared state arrays aoqi@0: _state.reset(max_vregs); aoqi@0: } aoqi@0: aoqi@0: aoqi@0: void PhiResolver::emit_move(LIR_Opr src, LIR_Opr dest) { aoqi@0: assert(src->is_valid(), ""); aoqi@0: assert(dest->is_valid(), ""); aoqi@0: __ move(src, dest); aoqi@0: } aoqi@0: aoqi@0: aoqi@0: void PhiResolver::move_temp_to(LIR_Opr dest) { aoqi@0: assert(_temp->is_valid(), ""); aoqi@0: emit_move(_temp, dest); aoqi@0: NOT_PRODUCT(_temp = LIR_OprFact::illegalOpr); aoqi@0: } aoqi@0: aoqi@0: aoqi@0: void PhiResolver::move_to_temp(LIR_Opr src) { aoqi@0: assert(_temp->is_illegal(), ""); aoqi@0: _temp = _gen->new_register(src->type()); aoqi@0: emit_move(src, _temp); aoqi@0: } aoqi@0: aoqi@0: aoqi@0: // Traverse assignment graph in depth first order and generate moves in post order aoqi@0: // ie. two assignments: b := c, a := b start with node c: aoqi@0: // Call graph: move(NULL, c) -> move(c, b) -> move(b, a) aoqi@0: // Generates moves in this order: move b to a and move c to b aoqi@0: // ie. cycle a := b, b := a start with node a aoqi@0: // Call graph: move(NULL, a) -> move(a, b) -> move(b, a) aoqi@0: // Generates moves in this order: move b to temp, move a to b, move temp to a aoqi@0: void PhiResolver::move(ResolveNode* src, ResolveNode* dest) { aoqi@0: if (!dest->visited()) { aoqi@0: dest->set_visited(); aoqi@0: for (int i = dest->no_of_destinations()-1; i >= 0; i --) { aoqi@0: move(dest, dest->destination_at(i)); aoqi@0: } aoqi@0: } else if (!dest->start_node()) { aoqi@0: // cylce in graph detected aoqi@0: assert(_loop == NULL, "only one loop valid!"); aoqi@0: _loop = dest; aoqi@0: move_to_temp(src->operand()); aoqi@0: return; aoqi@0: } // else dest is a start node aoqi@0: aoqi@0: if (!dest->assigned()) { aoqi@0: if (_loop == dest) { aoqi@0: move_temp_to(dest->operand()); aoqi@0: dest->set_assigned(); aoqi@0: } else if (src != NULL) { aoqi@0: emit_move(src->operand(), dest->operand()); aoqi@0: dest->set_assigned(); aoqi@0: } aoqi@0: } aoqi@0: } aoqi@0: aoqi@0: aoqi@0: PhiResolver::~PhiResolver() { aoqi@0: int i; aoqi@0: // resolve any cycles in moves from and to virtual registers aoqi@0: for (i = virtual_operands().length() - 1; i >= 0; i --) { aoqi@0: ResolveNode* node = virtual_operands()[i]; aoqi@0: if (!node->visited()) { aoqi@0: _loop = NULL; aoqi@0: move(NULL, node); aoqi@0: node->set_start_node(); aoqi@0: assert(_temp->is_illegal(), "move_temp_to() call missing"); aoqi@0: } aoqi@0: } aoqi@0: aoqi@0: // generate move for move from non virtual register to abitrary destination aoqi@0: for (i = other_operands().length() - 1; i >= 0; i --) { aoqi@0: ResolveNode* node = other_operands()[i]; aoqi@0: for (int j = node->no_of_destinations() - 1; j >= 0; j --) { aoqi@0: emit_move(node->operand(), node->destination_at(j)->operand()); aoqi@0: } aoqi@0: } aoqi@0: } aoqi@0: aoqi@0: aoqi@0: ResolveNode* PhiResolver::create_node(LIR_Opr opr, bool source) { aoqi@0: ResolveNode* node; aoqi@0: if (opr->is_virtual()) { aoqi@0: int vreg_num = opr->vreg_number(); aoqi@0: node = vreg_table().at_grow(vreg_num, NULL); aoqi@0: assert(node == NULL || node->operand() == opr, ""); aoqi@0: if (node == NULL) { aoqi@0: node = new ResolveNode(opr); aoqi@0: vreg_table()[vreg_num] = node; aoqi@0: } aoqi@0: // Make sure that all virtual operands show up in the list when aoqi@0: // they are used as the source of a move. aoqi@0: if (source && !virtual_operands().contains(node)) { aoqi@0: virtual_operands().append(node); aoqi@0: } aoqi@0: } else { aoqi@0: assert(source, ""); aoqi@0: node = new ResolveNode(opr); aoqi@0: other_operands().append(node); aoqi@0: } aoqi@0: return node; aoqi@0: } aoqi@0: aoqi@0: aoqi@0: void PhiResolver::move(LIR_Opr src, LIR_Opr dest) { aoqi@0: assert(dest->is_virtual(), ""); aoqi@0: // tty->print("move "); src->print(); tty->print(" to "); dest->print(); tty->cr(); aoqi@0: assert(src->is_valid(), ""); aoqi@0: assert(dest->is_valid(), ""); aoqi@0: ResolveNode* source = source_node(src); aoqi@0: source->append(destination_node(dest)); aoqi@0: } aoqi@0: aoqi@0: aoqi@0: //-------------------------------------------------------------- aoqi@0: // LIRItem aoqi@0: aoqi@0: void LIRItem::set_result(LIR_Opr opr) { aoqi@0: assert(value()->operand()->is_illegal() || value()->operand()->is_constant(), "operand should never change"); aoqi@0: value()->set_operand(opr); aoqi@0: aoqi@0: if (opr->is_virtual()) { aoqi@0: _gen->_instruction_for_operand.at_put_grow(opr->vreg_number(), value(), NULL); aoqi@0: } aoqi@0: aoqi@0: _result = opr; aoqi@0: } aoqi@0: aoqi@0: void LIRItem::load_item() { aoqi@0: if (result()->is_illegal()) { aoqi@0: // update the items result aoqi@0: _result = value()->operand(); aoqi@0: } aoqi@0: if (!result()->is_register()) { aoqi@0: LIR_Opr reg = _gen->new_register(value()->type()); aoqi@0: __ move(result(), reg); aoqi@0: if (result()->is_constant()) { aoqi@0: _result = reg; aoqi@0: } else { aoqi@0: set_result(reg); aoqi@0: } aoqi@0: } aoqi@0: } aoqi@0: aoqi@0: aoqi@0: void LIRItem::load_for_store(BasicType type) { aoqi@0: if (_gen->can_store_as_constant(value(), type)) { aoqi@0: _result = value()->operand(); aoqi@0: if (!_result->is_constant()) { aoqi@0: _result = LIR_OprFact::value_type(value()->type()); aoqi@0: } aoqi@0: } else if (type == T_BYTE || type == T_BOOLEAN) { aoqi@0: load_byte_item(); aoqi@0: } else { aoqi@0: load_item(); aoqi@0: } aoqi@0: } aoqi@0: aoqi@0: void LIRItem::load_item_force(LIR_Opr reg) { aoqi@0: LIR_Opr r = result(); aoqi@0: if (r != reg) { aoqi@0: #if !defined(ARM) && !defined(E500V2) aoqi@0: if (r->type() != reg->type()) { aoqi@0: // moves between different types need an intervening spill slot aoqi@0: r = _gen->force_to_spill(r, reg->type()); aoqi@0: } aoqi@0: #endif aoqi@0: __ move(r, reg); aoqi@0: _result = reg; aoqi@0: } aoqi@0: } aoqi@0: aoqi@0: ciObject* LIRItem::get_jobject_constant() const { aoqi@0: ObjectType* oc = type()->as_ObjectType(); aoqi@0: if (oc) { aoqi@0: return oc->constant_value(); aoqi@0: } aoqi@0: return NULL; aoqi@0: } aoqi@0: aoqi@0: aoqi@0: jint LIRItem::get_jint_constant() const { aoqi@0: assert(is_constant() && value() != NULL, ""); aoqi@0: assert(type()->as_IntConstant() != NULL, "type check"); aoqi@0: return type()->as_IntConstant()->value(); aoqi@0: } aoqi@0: aoqi@0: aoqi@0: jint LIRItem::get_address_constant() const { aoqi@0: assert(is_constant() && value() != NULL, ""); aoqi@0: assert(type()->as_AddressConstant() != NULL, "type check"); aoqi@0: return type()->as_AddressConstant()->value(); aoqi@0: } aoqi@0: aoqi@0: aoqi@0: jfloat LIRItem::get_jfloat_constant() const { aoqi@0: assert(is_constant() && value() != NULL, ""); aoqi@0: assert(type()->as_FloatConstant() != NULL, "type check"); aoqi@0: return type()->as_FloatConstant()->value(); aoqi@0: } aoqi@0: aoqi@0: aoqi@0: jdouble LIRItem::get_jdouble_constant() const { aoqi@0: assert(is_constant() && value() != NULL, ""); aoqi@0: assert(type()->as_DoubleConstant() != NULL, "type check"); aoqi@0: return type()->as_DoubleConstant()->value(); aoqi@0: } aoqi@0: aoqi@0: aoqi@0: jlong LIRItem::get_jlong_constant() const { aoqi@0: assert(is_constant() && value() != NULL, ""); aoqi@0: assert(type()->as_LongConstant() != NULL, "type check"); aoqi@0: return type()->as_LongConstant()->value(); aoqi@0: } aoqi@0: aoqi@0: aoqi@0: aoqi@0: //-------------------------------------------------------------- aoqi@0: aoqi@0: aoqi@0: void LIRGenerator::init() { aoqi@0: _bs = Universe::heap()->barrier_set(); aoqi@1: #ifdef MIPS64 aoqi@1: assert(_bs->kind() == BarrierSet::CardTableModRef, "Wrong barrier set kind"); aoqi@1: CardTableModRefBS* ct = (CardTableModRefBS*)_bs; aoqi@1: assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust this code"); aoqi@1: //_card_table_base = new LIR_Const((intptr_t)ct->byte_map_base); aoqi@1: // //FIXME, untested in 32bit. by aoqi aoqi@1: _card_table_base = new LIR_Const(ct->byte_map_base); aoqi@1: #endif aoqi@0: } aoqi@0: aoqi@0: aoqi@0: void LIRGenerator::block_do_prolog(BlockBegin* block) { aoqi@0: #ifndef PRODUCT aoqi@0: if (PrintIRWithLIR) { aoqi@0: block->print(); aoqi@0: } aoqi@0: #endif aoqi@0: aoqi@0: // set up the list of LIR instructions aoqi@0: assert(block->lir() == NULL, "LIR list already computed for this block"); aoqi@0: _lir = new LIR_List(compilation(), block); aoqi@0: block->set_lir(_lir); aoqi@0: aoqi@0: __ branch_destination(block->label()); aoqi@0: aoqi@0: if (LIRTraceExecution && aoqi@0: Compilation::current()->hir()->start()->block_id() != block->block_id() && aoqi@0: !block->is_set(BlockBegin::exception_entry_flag)) { aoqi@0: assert(block->lir()->instructions_list()->length() == 1, "should come right after br_dst"); aoqi@0: trace_block_entry(block); aoqi@0: } aoqi@0: } aoqi@0: aoqi@0: aoqi@0: void LIRGenerator::block_do_epilog(BlockBegin* block) { aoqi@0: #ifndef PRODUCT aoqi@0: if (PrintIRWithLIR) { aoqi@0: tty->cr(); aoqi@0: } aoqi@0: #endif aoqi@0: aoqi@0: // LIR_Opr for unpinned constants shouldn't be referenced by other aoqi@0: // blocks so clear them out after processing the block. aoqi@0: for (int i = 0; i < _unpinned_constants.length(); i++) { aoqi@0: _unpinned_constants.at(i)->clear_operand(); aoqi@0: } aoqi@0: _unpinned_constants.trunc_to(0); aoqi@0: aoqi@0: // clear our any registers for other local constants aoqi@0: _constants.trunc_to(0); aoqi@0: _reg_for_constants.trunc_to(0); aoqi@0: } aoqi@0: aoqi@0: aoqi@0: void LIRGenerator::block_do(BlockBegin* block) { aoqi@0: CHECK_BAILOUT(); aoqi@0: aoqi@0: block_do_prolog(block); aoqi@0: set_block(block); aoqi@0: aoqi@0: for (Instruction* instr = block; instr != NULL; instr = instr->next()) { aoqi@0: if (instr->is_pinned()) do_root(instr); aoqi@0: } aoqi@0: aoqi@0: set_block(NULL); aoqi@0: block_do_epilog(block); aoqi@0: } aoqi@0: aoqi@0: aoqi@0: //-------------------------LIRGenerator----------------------------- aoqi@0: aoqi@0: // This is where the tree-walk starts; instr must be root; aoqi@0: void LIRGenerator::do_root(Value instr) { aoqi@0: CHECK_BAILOUT(); aoqi@0: aoqi@0: InstructionMark im(compilation(), instr); aoqi@0: aoqi@0: assert(instr->is_pinned(), "use only with roots"); aoqi@0: assert(instr->subst() == instr, "shouldn't have missed substitution"); aoqi@0: aoqi@0: instr->visit(this); aoqi@0: aoqi@0: assert(!instr->has_uses() || instr->operand()->is_valid() || aoqi@0: instr->as_Constant() != NULL || bailed_out(), "invalid item set"); aoqi@0: } aoqi@0: aoqi@0: aoqi@0: // This is called for each node in tree; the walk stops if a root is reached aoqi@0: void LIRGenerator::walk(Value instr) { aoqi@0: InstructionMark im(compilation(), instr); aoqi@0: //stop walk when encounter a root aoqi@0: if (instr->is_pinned() && instr->as_Phi() == NULL || instr->operand()->is_valid()) { aoqi@0: assert(instr->operand() != LIR_OprFact::illegalOpr || instr->as_Constant() != NULL, "this root has not yet been visited"); aoqi@0: } else { aoqi@0: assert(instr->subst() == instr, "shouldn't have missed substitution"); aoqi@0: instr->visit(this); aoqi@0: // assert(instr->use_count() > 0 || instr->as_Phi() != NULL, "leaf instruction must have a use"); aoqi@0: } aoqi@0: } aoqi@0: aoqi@0: aoqi@0: CodeEmitInfo* LIRGenerator::state_for(Instruction* x, ValueStack* state, bool ignore_xhandler) { aoqi@0: assert(state != NULL, "state must be defined"); aoqi@0: aoqi@0: #ifndef PRODUCT aoqi@0: state->verify(); aoqi@0: #endif aoqi@0: aoqi@0: ValueStack* s = state; aoqi@0: for_each_state(s) { aoqi@0: if (s->kind() == ValueStack::EmptyExceptionState) { aoqi@0: assert(s->stack_size() == 0 && s->locals_size() == 0 && (s->locks_size() == 0 || s->locks_size() == 1), "state must be empty"); aoqi@0: continue; aoqi@0: } aoqi@0: aoqi@0: int index; aoqi@0: Value value; aoqi@0: for_each_stack_value(s, index, value) { aoqi@0: assert(value->subst() == value, "missed substitution"); aoqi@0: if (!value->is_pinned() && value->as_Constant() == NULL && value->as_Local() == NULL) { aoqi@0: walk(value); aoqi@0: assert(value->operand()->is_valid(), "must be evaluated now"); aoqi@0: } aoqi@0: } aoqi@0: aoqi@0: int bci = s->bci(); aoqi@0: IRScope* scope = s->scope(); aoqi@0: ciMethod* method = scope->method(); aoqi@0: aoqi@0: MethodLivenessResult liveness = method->liveness_at_bci(bci); aoqi@0: if (bci == SynchronizationEntryBCI) { aoqi@0: if (x->as_ExceptionObject() || x->as_Throw()) { aoqi@0: // all locals are dead on exit from the synthetic unlocker aoqi@0: liveness.clear(); aoqi@0: } else { aoqi@0: assert(x->as_MonitorEnter() || x->as_ProfileInvoke(), "only other cases are MonitorEnter and ProfileInvoke"); aoqi@0: } aoqi@0: } aoqi@0: if (!liveness.is_valid()) { aoqi@0: // Degenerate or breakpointed method. aoqi@0: bailout("Degenerate or breakpointed method"); aoqi@0: } else { aoqi@0: assert((int)liveness.size() == s->locals_size(), "error in use of liveness"); aoqi@0: for_each_local_value(s, index, value) { aoqi@0: assert(value->subst() == value, "missed substition"); aoqi@0: if (liveness.at(index) && !value->type()->is_illegal()) { aoqi@0: if (!value->is_pinned() && value->as_Constant() == NULL && value->as_Local() == NULL) { aoqi@0: walk(value); aoqi@0: assert(value->operand()->is_valid(), "must be evaluated now"); aoqi@0: } aoqi@0: } else { aoqi@0: // NULL out this local so that linear scan can assume that all non-NULL values are live. aoqi@0: s->invalidate_local(index); aoqi@0: } aoqi@0: } aoqi@0: } aoqi@0: } aoqi@0: aoqi@0: return new CodeEmitInfo(state, ignore_xhandler ? NULL : x->exception_handlers(), x->check_flag(Instruction::DeoptimizeOnException)); aoqi@0: } aoqi@0: aoqi@0: aoqi@0: CodeEmitInfo* LIRGenerator::state_for(Instruction* x) { aoqi@0: return state_for(x, x->exception_state()); aoqi@0: } aoqi@0: aoqi@0: rbackman@7058: void LIRGenerator::klass2reg_with_patching(LIR_Opr r, ciMetadata* obj, CodeEmitInfo* info, bool need_resolve) { rbackman@7058: /* C2 relies on constant pool entries being resolved (ciTypeFlow), so if TieredCompilation rbackman@7058: * is active and the class hasn't yet been resolved we need to emit a patch that resolves rbackman@7058: * the class. */ rbackman@7058: if ((TieredCompilation && need_resolve) || !obj->is_loaded() || PatchALot) { aoqi@0: assert(info != NULL, "info must be set if class is not loaded"); aoqi@0: __ klass2reg_patch(NULL, r, info); aoqi@0: } else { aoqi@0: // no patching needed aoqi@0: __ metadata2reg(obj->constant_encoding(), r); aoqi@0: } aoqi@0: } aoqi@0: aoqi@0: aoqi@0: void LIRGenerator::array_range_check(LIR_Opr array, LIR_Opr index, aoqi@0: CodeEmitInfo* null_check_info, CodeEmitInfo* range_check_info) { aoqi@0: CodeStub* stub = new RangeCheckStub(range_check_info, index); aoqi@0: if (index->is_constant()) { aoqi@1: #ifndef MIPS64 aoqi@0: cmp_mem_int(lir_cond_belowEqual, array, arrayOopDesc::length_offset_in_bytes(), aoqi@0: index->as_jint(), null_check_info); aoqi@0: __ branch(lir_cond_belowEqual, T_INT, stub); // forward branch aoqi@1: #else aoqi@1: LIR_Opr left = LIR_OprFact::address(new LIR_Address(array, arrayOopDesc::length_offset_in_bytes(), T_INT)); aoqi@1: LIR_Opr right = LIR_OprFact::intConst(index->as_jint()); aoqi@1: __ null_check_for_branch(lir_cond_belowEqual, left, right, null_check_info); aoqi@1: __ branch(lir_cond_belowEqual, left, right ,T_INT, stub); // forward branch aoqi@1: #endif aoqi@0: } else { aoqi@1: #ifndef MIPS64 aoqi@0: cmp_reg_mem(lir_cond_aboveEqual, index, array, aoqi@0: arrayOopDesc::length_offset_in_bytes(), T_INT, null_check_info); aoqi@0: __ branch(lir_cond_aboveEqual, T_INT, stub); // forward branch aoqi@1: #else aoqi@1: LIR_Opr left = index; aoqi@1: LIR_Opr right = LIR_OprFact::address(new LIR_Address( array, arrayOopDesc::length_offset_in_bytes(), T_INT)); aoqi@1: __ null_check_for_branch(lir_cond_aboveEqual, left, right, null_check_info); aoqi@1: __ branch(lir_cond_aboveEqual,left, right ,T_INT, stub); // forward branch aoqi@1: #endif aoqi@0: } aoqi@0: } aoqi@0: aoqi@0: aoqi@0: void LIRGenerator::nio_range_check(LIR_Opr buffer, LIR_Opr index, LIR_Opr result, CodeEmitInfo* info) { aoqi@0: CodeStub* stub = new RangeCheckStub(info, index, true); aoqi@0: if (index->is_constant()) { aoqi@1: #ifndef MIPS64 aoqi@0: cmp_mem_int(lir_cond_belowEqual, buffer, java_nio_Buffer::limit_offset(), index->as_jint(), info); aoqi@0: __ branch(lir_cond_belowEqual, T_INT, stub); // forward branch aoqi@1: #else aoqi@1: LIR_Opr left = LIR_OprFact::address(new LIR_Address(buffer, java_nio_Buffer::limit_offset(),T_INT)); aoqi@1: LIR_Opr right = LIR_OprFact::intConst(index->as_jint()); aoqi@1: __ null_check_for_branch(lir_cond_belowEqual, left, right, info); aoqi@1: __ branch(lir_cond_belowEqual,left, right ,T_INT, stub); // forward branch aoqi@1: #endif aoqi@0: } else { aoqi@1: #ifndef MIPS64 aoqi@0: cmp_reg_mem(lir_cond_aboveEqual, index, buffer, aoqi@0: java_nio_Buffer::limit_offset(), T_INT, info); aoqi@0: __ branch(lir_cond_aboveEqual, T_INT, stub); // forward branch aoqi@1: #else aoqi@1: LIR_Opr left = index; aoqi@1: LIR_Opr right = LIR_OprFact::address(new LIR_Address( buffer, java_nio_Buffer::limit_offset(), T_INT)); aoqi@1: __ null_check_for_branch(lir_cond_aboveEqual, left, right, info); aoqi@1: __ branch(lir_cond_aboveEqual,left, right ,T_INT, stub); // forward branch aoqi@1: #endif aoqi@0: } aoqi@0: __ move(index, result); aoqi@0: } aoqi@0: aoqi@0: aoqi@0: aoqi@0: void LIRGenerator::arithmetic_op(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, bool is_strictfp, LIR_Opr tmp_op, CodeEmitInfo* info) { aoqi@0: LIR_Opr result_op = result; aoqi@0: LIR_Opr left_op = left; aoqi@0: LIR_Opr right_op = right; aoqi@0: aoqi@0: if (TwoOperandLIRForm && left_op != result_op) { aoqi@0: assert(right_op != result_op, "malformed"); aoqi@0: __ move(left_op, result_op); aoqi@0: left_op = result_op; aoqi@0: } aoqi@0: aoqi@0: switch(code) { aoqi@0: case Bytecodes::_dadd: aoqi@0: case Bytecodes::_fadd: aoqi@0: case Bytecodes::_ladd: aoqi@0: case Bytecodes::_iadd: __ add(left_op, right_op, result_op); break; aoqi@0: case Bytecodes::_fmul: aoqi@0: case Bytecodes::_lmul: __ mul(left_op, right_op, result_op); break; aoqi@0: aoqi@0: case Bytecodes::_dmul: aoqi@0: { aoqi@0: if (is_strictfp) { aoqi@0: __ mul_strictfp(left_op, right_op, result_op, tmp_op); break; aoqi@0: } else { aoqi@0: __ mul(left_op, right_op, result_op); break; aoqi@0: } aoqi@0: } aoqi@0: break; aoqi@0: aoqi@0: case Bytecodes::_imul: aoqi@0: { aoqi@0: bool did_strength_reduce = false; aoqi@0: aoqi@0: if (right->is_constant()) { aoqi@0: int c = right->as_jint(); aoqi@0: if (is_power_of_2(c)) { aoqi@0: // do not need tmp here aoqi@0: __ shift_left(left_op, exact_log2(c), result_op); aoqi@0: did_strength_reduce = true; aoqi@0: } else { aoqi@0: did_strength_reduce = strength_reduce_multiply(left_op, c, result_op, tmp_op); aoqi@0: } aoqi@0: } aoqi@0: // we couldn't strength reduce so just emit the multiply aoqi@0: if (!did_strength_reduce) { aoqi@0: __ mul(left_op, right_op, result_op); aoqi@0: } aoqi@0: } aoqi@0: break; aoqi@0: aoqi@0: case Bytecodes::_dsub: aoqi@0: case Bytecodes::_fsub: aoqi@0: case Bytecodes::_lsub: aoqi@0: case Bytecodes::_isub: __ sub(left_op, right_op, result_op); break; aoqi@0: aoqi@0: case Bytecodes::_fdiv: __ div (left_op, right_op, result_op); break; aoqi@0: // ldiv and lrem are implemented with a direct runtime call aoqi@0: aoqi@0: case Bytecodes::_ddiv: aoqi@0: { aoqi@0: if (is_strictfp) { aoqi@0: __ div_strictfp (left_op, right_op, result_op, tmp_op); break; aoqi@0: } else { aoqi@0: __ div (left_op, right_op, result_op); break; aoqi@0: } aoqi@0: } aoqi@0: break; aoqi@0: aoqi@0: case Bytecodes::_drem: aoqi@0: case Bytecodes::_frem: __ rem (left_op, right_op, result_op); break; aoqi@0: aoqi@0: default: ShouldNotReachHere(); aoqi@0: } aoqi@0: } aoqi@0: aoqi@0: aoqi@0: void LIRGenerator::arithmetic_op_int(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, LIR_Opr tmp) { aoqi@0: arithmetic_op(code, result, left, right, false, tmp); aoqi@0: } aoqi@0: aoqi@0: aoqi@0: void LIRGenerator::arithmetic_op_long(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, CodeEmitInfo* info) { aoqi@0: arithmetic_op(code, result, left, right, false, LIR_OprFact::illegalOpr, info); aoqi@0: } aoqi@0: aoqi@0: aoqi@0: void LIRGenerator::arithmetic_op_fpu(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, bool is_strictfp, LIR_Opr tmp) { aoqi@0: arithmetic_op(code, result, left, right, is_strictfp, tmp); aoqi@0: } aoqi@0: aoqi@0: aoqi@0: void LIRGenerator::shift_op(Bytecodes::Code code, LIR_Opr result_op, LIR_Opr value, LIR_Opr count, LIR_Opr tmp) { aoqi@0: if (TwoOperandLIRForm && value != result_op) { aoqi@0: assert(count != result_op, "malformed"); aoqi@0: __ move(value, result_op); aoqi@0: value = result_op; aoqi@0: } aoqi@0: aoqi@0: assert(count->is_constant() || count->is_register(), "must be"); aoqi@0: switch(code) { aoqi@0: case Bytecodes::_ishl: aoqi@0: case Bytecodes::_lshl: __ shift_left(value, count, result_op, tmp); break; aoqi@0: case Bytecodes::_ishr: aoqi@0: case Bytecodes::_lshr: __ shift_right(value, count, result_op, tmp); break; aoqi@0: case Bytecodes::_iushr: aoqi@0: case Bytecodes::_lushr: __ unsigned_shift_right(value, count, result_op, tmp); break; aoqi@0: default: ShouldNotReachHere(); aoqi@0: } aoqi@0: } aoqi@0: aoqi@0: aoqi@0: void LIRGenerator::logic_op (Bytecodes::Code code, LIR_Opr result_op, LIR_Opr left_op, LIR_Opr right_op) { aoqi@0: if (TwoOperandLIRForm && left_op != result_op) { aoqi@0: assert(right_op != result_op, "malformed"); aoqi@0: __ move(left_op, result_op); aoqi@0: left_op = result_op; aoqi@0: } aoqi@0: aoqi@0: switch(code) { aoqi@0: case Bytecodes::_iand: aoqi@0: case Bytecodes::_land: __ logical_and(left_op, right_op, result_op); break; aoqi@0: aoqi@0: case Bytecodes::_ior: aoqi@0: case Bytecodes::_lor: __ logical_or(left_op, right_op, result_op); break; aoqi@0: aoqi@0: case Bytecodes::_ixor: aoqi@0: case Bytecodes::_lxor: __ logical_xor(left_op, right_op, result_op); break; aoqi@0: aoqi@0: default: ShouldNotReachHere(); aoqi@0: } aoqi@0: } aoqi@0: aoqi@0: aoqi@0: void LIRGenerator::monitor_enter(LIR_Opr object, LIR_Opr lock, LIR_Opr hdr, LIR_Opr scratch, int monitor_no, CodeEmitInfo* info_for_exception, CodeEmitInfo* info) { aoqi@0: if (!GenerateSynchronizationCode) return; aoqi@0: // for slow path, use debug info for state after successful locking aoqi@0: CodeStub* slow_path = new MonitorEnterStub(object, lock, info); aoqi@0: __ load_stack_address_monitor(monitor_no, lock); aoqi@0: // for handling NullPointerException, use debug info representing just the lock stack before this monitorenter aoqi@0: __ lock_object(hdr, object, lock, scratch, slow_path, info_for_exception); aoqi@0: } aoqi@0: aoqi@0: aoqi@0: void LIRGenerator::monitor_exit(LIR_Opr object, LIR_Opr lock, LIR_Opr new_hdr, LIR_Opr scratch, int monitor_no) { aoqi@0: if (!GenerateSynchronizationCode) return; aoqi@0: // setup registers aoqi@0: LIR_Opr hdr = lock; aoqi@0: lock = new_hdr; aoqi@0: CodeStub* slow_path = new MonitorExitStub(lock, UseFastLocking, monitor_no); aoqi@0: __ load_stack_address_monitor(monitor_no, lock); aoqi@0: __ unlock_object(hdr, object, lock, scratch, slow_path); aoqi@0: } aoqi@0: rbackman@7058: #ifndef PRODUCT rbackman@7058: void LIRGenerator::print_if_not_loaded(const NewInstance* new_instance) { rbackman@7058: if (PrintNotLoaded && !new_instance->klass()->is_loaded()) { rbackman@7058: tty->print_cr(" ###class not loaded at new bci %d", new_instance->printable_bci()); rbackman@7058: } else if (PrintNotLoaded && (TieredCompilation && new_instance->is_unresolved())) { rbackman@7058: tty->print_cr(" ###class not resolved at new bci %d", new_instance->printable_bci()); rbackman@7058: } rbackman@7058: } rbackman@7058: #endif rbackman@7058: aoqi@1: #ifndef MIPS64 rbackman@7058: void LIRGenerator::new_instance(LIR_Opr dst, ciInstanceKlass* klass, bool is_unresolved, LIR_Opr scratch1, LIR_Opr scratch2, LIR_Opr scratch3, LIR_Opr scratch4, LIR_Opr klass_reg, CodeEmitInfo* info) { aoqi@1: #else aoqi@7535: void LIRGenerator::new_instance(LIR_Opr dst, ciInstanceKlass* klass, bool is_unresolved, LIR_Opr scratch1, LIR_Opr scratch2, LIR_Opr scratch3, aoqi@1: LIR_Opr scratch4, LIR_Opr scratch5, LIR_Opr scratch6,LIR_Opr klass_reg, CodeEmitInfo* info) { aoqi@1: #endif rbackman@7058: klass2reg_with_patching(klass_reg, klass, info, is_unresolved); aoqi@0: // If klass is not loaded we do not know if the klass has finalizers: aoqi@0: if (UseFastNewInstance && klass->is_loaded() aoqi@0: && !Klass::layout_helper_needs_slow_path(klass->layout_helper())) { aoqi@0: aoqi@0: Runtime1::StubID stub_id = klass->is_initialized() ? Runtime1::fast_new_instance_id : Runtime1::fast_new_instance_init_check_id; aoqi@0: aoqi@0: CodeStub* slow_path = new NewInstanceStub(klass_reg, dst, klass, info, stub_id); aoqi@0: aoqi@0: assert(klass->is_loaded(), "must be loaded"); aoqi@0: // allocate space for instance aoqi@0: assert(klass->size_helper() >= 0, "illegal instance size"); aoqi@0: const int instance_size = align_object_size(klass->size_helper()); aoqi@1: #ifndef MIPS64 aoqi@0: __ allocate_object(dst, scratch1, scratch2, scratch3, scratch4, aoqi@0: oopDesc::header_size(), instance_size, klass_reg, !klass->is_initialized(), slow_path); aoqi@1: #else aoqi@1: __ allocate_object(dst, scratch1, scratch2, scratch3, scratch4, scratch5, scratch6, aoqi@1: oopDesc::header_size(), instance_size, klass_reg, !klass->is_initialized(), slow_path); aoqi@1: aoqi@1: #endif aoqi@0: } else { aoqi@0: CodeStub* slow_path = new NewInstanceStub(klass_reg, dst, klass, info, Runtime1::new_instance_id); aoqi@1: #ifndef MIPS64 aoqi@0: __ branch(lir_cond_always, T_ILLEGAL, slow_path); aoqi@0: __ branch_destination(slow_path->continuation()); aoqi@1: #else aoqi@1: __ branch(lir_cond_always, LIR_OprFact::illegalOpr, LIR_OprFact::illegalOpr, T_ILLEGAL, slow_path); aoqi@1: __ branch_destination(slow_path->continuation()); aoqi@1: #endif aoqi@0: } aoqi@0: } aoqi@0: aoqi@0: aoqi@0: static bool is_constant_zero(Instruction* inst) { aoqi@0: IntConstant* c = inst->type()->as_IntConstant(); aoqi@0: if (c) { aoqi@0: return (c->value() == 0); aoqi@0: } aoqi@0: return false; aoqi@0: } aoqi@0: aoqi@0: aoqi@0: static bool positive_constant(Instruction* inst) { aoqi@0: IntConstant* c = inst->type()->as_IntConstant(); aoqi@0: if (c) { aoqi@0: return (c->value() >= 0); aoqi@0: } aoqi@0: return false; aoqi@0: } aoqi@0: aoqi@0: aoqi@0: static ciArrayKlass* as_array_klass(ciType* type) { aoqi@0: if (type != NULL && type->is_array_klass() && type->is_loaded()) { aoqi@0: return (ciArrayKlass*)type; aoqi@0: } else { aoqi@0: return NULL; aoqi@0: } aoqi@0: } aoqi@0: aoqi@0: static ciType* phi_declared_type(Phi* phi) { aoqi@0: ciType* t = phi->operand_at(0)->declared_type(); aoqi@0: if (t == NULL) { aoqi@0: return NULL; aoqi@0: } aoqi@0: for(int i = 1; i < phi->operand_count(); i++) { aoqi@0: if (t != phi->operand_at(i)->declared_type()) { aoqi@0: return NULL; aoqi@0: } aoqi@0: } aoqi@0: return t; aoqi@0: } aoqi@0: aoqi@0: void LIRGenerator::arraycopy_helper(Intrinsic* x, int* flagsp, ciArrayKlass** expected_typep) { aoqi@0: Instruction* src = x->argument_at(0); aoqi@0: Instruction* src_pos = x->argument_at(1); aoqi@0: Instruction* dst = x->argument_at(2); aoqi@0: Instruction* dst_pos = x->argument_at(3); aoqi@0: Instruction* length = x->argument_at(4); aoqi@0: aoqi@0: // first try to identify the likely type of the arrays involved aoqi@0: ciArrayKlass* expected_type = NULL; aoqi@0: bool is_exact = false, src_objarray = false, dst_objarray = false; aoqi@0: { aoqi@0: ciArrayKlass* src_exact_type = as_array_klass(src->exact_type()); aoqi@0: ciArrayKlass* src_declared_type = as_array_klass(src->declared_type()); aoqi@0: Phi* phi; aoqi@0: if (src_declared_type == NULL && (phi = src->as_Phi()) != NULL) { aoqi@0: src_declared_type = as_array_klass(phi_declared_type(phi)); aoqi@0: } aoqi@0: ciArrayKlass* dst_exact_type = as_array_klass(dst->exact_type()); aoqi@0: ciArrayKlass* dst_declared_type = as_array_klass(dst->declared_type()); aoqi@0: if (dst_declared_type == NULL && (phi = dst->as_Phi()) != NULL) { aoqi@0: dst_declared_type = as_array_klass(phi_declared_type(phi)); aoqi@0: } aoqi@0: aoqi@0: if (src_exact_type != NULL && src_exact_type == dst_exact_type) { aoqi@0: // the types exactly match so the type is fully known aoqi@0: is_exact = true; aoqi@0: expected_type = src_exact_type; aoqi@0: } else if (dst_exact_type != NULL && dst_exact_type->is_obj_array_klass()) { aoqi@0: ciArrayKlass* dst_type = (ciArrayKlass*) dst_exact_type; aoqi@0: ciArrayKlass* src_type = NULL; aoqi@0: if (src_exact_type != NULL && src_exact_type->is_obj_array_klass()) { aoqi@0: src_type = (ciArrayKlass*) src_exact_type; aoqi@0: } else if (src_declared_type != NULL && src_declared_type->is_obj_array_klass()) { aoqi@0: src_type = (ciArrayKlass*) src_declared_type; aoqi@0: } aoqi@0: if (src_type != NULL) { aoqi@0: if (src_type->element_type()->is_subtype_of(dst_type->element_type())) { aoqi@0: is_exact = true; aoqi@0: expected_type = dst_type; aoqi@0: } aoqi@0: } aoqi@0: } aoqi@0: // at least pass along a good guess aoqi@0: if (expected_type == NULL) expected_type = dst_exact_type; aoqi@0: if (expected_type == NULL) expected_type = src_declared_type; aoqi@0: if (expected_type == NULL) expected_type = dst_declared_type; aoqi@0: aoqi@0: src_objarray = (src_exact_type && src_exact_type->is_obj_array_klass()) || (src_declared_type && src_declared_type->is_obj_array_klass()); aoqi@0: dst_objarray = (dst_exact_type && dst_exact_type->is_obj_array_klass()) || (dst_declared_type && dst_declared_type->is_obj_array_klass()); aoqi@0: } aoqi@0: aoqi@0: // if a probable array type has been identified, figure out if any aoqi@0: // of the required checks for a fast case can be elided. aoqi@0: int flags = LIR_OpArrayCopy::all_flags; aoqi@0: aoqi@0: if (!src_objarray) aoqi@0: flags &= ~LIR_OpArrayCopy::src_objarray; aoqi@0: if (!dst_objarray) aoqi@0: flags &= ~LIR_OpArrayCopy::dst_objarray; aoqi@0: aoqi@0: if (!x->arg_needs_null_check(0)) aoqi@0: flags &= ~LIR_OpArrayCopy::src_null_check; aoqi@0: if (!x->arg_needs_null_check(2)) aoqi@0: flags &= ~LIR_OpArrayCopy::dst_null_check; aoqi@0: aoqi@0: aoqi@0: if (expected_type != NULL) { aoqi@0: Value length_limit = NULL; aoqi@0: aoqi@0: IfOp* ifop = length->as_IfOp(); aoqi@0: if (ifop != NULL) { aoqi@0: // look for expressions like min(v, a.length) which ends up as aoqi@0: // x > y ? y : x or x >= y ? y : x aoqi@0: if ((ifop->cond() == If::gtr || ifop->cond() == If::geq) && aoqi@0: ifop->x() == ifop->fval() && aoqi@0: ifop->y() == ifop->tval()) { aoqi@0: length_limit = ifop->y(); aoqi@0: } aoqi@0: } aoqi@0: aoqi@0: // try to skip null checks and range checks aoqi@0: NewArray* src_array = src->as_NewArray(); aoqi@0: if (src_array != NULL) { aoqi@0: flags &= ~LIR_OpArrayCopy::src_null_check; aoqi@0: if (length_limit != NULL && aoqi@0: src_array->length() == length_limit && aoqi@0: is_constant_zero(src_pos)) { aoqi@0: flags &= ~LIR_OpArrayCopy::src_range_check; aoqi@0: } aoqi@0: } aoqi@0: aoqi@0: NewArray* dst_array = dst->as_NewArray(); aoqi@0: if (dst_array != NULL) { aoqi@0: flags &= ~LIR_OpArrayCopy::dst_null_check; aoqi@0: if (length_limit != NULL && aoqi@0: dst_array->length() == length_limit && aoqi@0: is_constant_zero(dst_pos)) { aoqi@0: flags &= ~LIR_OpArrayCopy::dst_range_check; aoqi@0: } aoqi@0: } aoqi@0: aoqi@0: // check from incoming constant values aoqi@0: if (positive_constant(src_pos)) aoqi@0: flags &= ~LIR_OpArrayCopy::src_pos_positive_check; aoqi@0: if (positive_constant(dst_pos)) aoqi@0: flags &= ~LIR_OpArrayCopy::dst_pos_positive_check; aoqi@0: if (positive_constant(length)) aoqi@0: flags &= ~LIR_OpArrayCopy::length_positive_check; aoqi@0: aoqi@0: // see if the range check can be elided, which might also imply aoqi@0: // that src or dst is non-null. aoqi@0: ArrayLength* al = length->as_ArrayLength(); aoqi@0: if (al != NULL) { aoqi@0: if (al->array() == src) { aoqi@0: // it's the length of the source array aoqi@0: flags &= ~LIR_OpArrayCopy::length_positive_check; aoqi@0: flags &= ~LIR_OpArrayCopy::src_null_check; aoqi@0: if (is_constant_zero(src_pos)) aoqi@0: flags &= ~LIR_OpArrayCopy::src_range_check; aoqi@0: } aoqi@0: if (al->array() == dst) { aoqi@0: // it's the length of the destination array aoqi@0: flags &= ~LIR_OpArrayCopy::length_positive_check; aoqi@0: flags &= ~LIR_OpArrayCopy::dst_null_check; aoqi@0: if (is_constant_zero(dst_pos)) aoqi@0: flags &= ~LIR_OpArrayCopy::dst_range_check; aoqi@0: } aoqi@0: } aoqi@0: if (is_exact) { aoqi@0: flags &= ~LIR_OpArrayCopy::type_check; aoqi@0: } aoqi@0: } aoqi@0: aoqi@0: IntConstant* src_int = src_pos->type()->as_IntConstant(); aoqi@0: IntConstant* dst_int = dst_pos->type()->as_IntConstant(); aoqi@0: if (src_int && dst_int) { aoqi@0: int s_offs = src_int->value(); aoqi@0: int d_offs = dst_int->value(); aoqi@0: if (src_int->value() >= dst_int->value()) { aoqi@0: flags &= ~LIR_OpArrayCopy::overlapping; aoqi@0: } aoqi@0: if (expected_type != NULL) { aoqi@0: BasicType t = expected_type->element_type()->basic_type(); aoqi@0: int element_size = type2aelembytes(t); aoqi@0: if (((arrayOopDesc::base_offset_in_bytes(t) + s_offs * element_size) % HeapWordSize == 0) && aoqi@0: ((arrayOopDesc::base_offset_in_bytes(t) + d_offs * element_size) % HeapWordSize == 0)) { aoqi@0: flags &= ~LIR_OpArrayCopy::unaligned; aoqi@0: } aoqi@0: } aoqi@0: } else if (src_pos == dst_pos || is_constant_zero(dst_pos)) { aoqi@0: // src and dest positions are the same, or dst is zero so assume aoqi@0: // nonoverlapping copy. aoqi@0: flags &= ~LIR_OpArrayCopy::overlapping; aoqi@0: } aoqi@0: aoqi@0: if (src == dst) { aoqi@0: // moving within a single array so no type checks are needed aoqi@0: if (flags & LIR_OpArrayCopy::type_check) { aoqi@0: flags &= ~LIR_OpArrayCopy::type_check; aoqi@0: } aoqi@0: } aoqi@0: *flagsp = flags; aoqi@0: *expected_typep = (ciArrayKlass*)expected_type; aoqi@0: } aoqi@0: aoqi@0: aoqi@0: LIR_Opr LIRGenerator::round_item(LIR_Opr opr) { aoqi@0: assert(opr->is_register(), "why spill if item is not register?"); aoqi@0: aoqi@0: if (RoundFPResults && UseSSE < 1 && opr->is_single_fpu()) { aoqi@0: LIR_Opr result = new_register(T_FLOAT); aoqi@0: set_vreg_flag(result, must_start_in_memory); aoqi@0: assert(opr->is_register(), "only a register can be spilled"); aoqi@0: assert(opr->value_type()->is_float(), "rounding only for floats available"); aoqi@0: __ roundfp(opr, LIR_OprFact::illegalOpr, result); aoqi@0: return result; aoqi@0: } aoqi@0: return opr; aoqi@0: } aoqi@0: aoqi@0: aoqi@0: LIR_Opr LIRGenerator::force_to_spill(LIR_Opr value, BasicType t) { aoqi@0: assert(type2size[t] == type2size[value->type()], aoqi@0: err_msg_res("size mismatch: t=%s, value->type()=%s", type2name(t), type2name(value->type()))); aoqi@0: if (!value->is_register()) { aoqi@0: // force into a register aoqi@0: LIR_Opr r = new_register(value->type()); aoqi@0: __ move(value, r); aoqi@0: value = r; aoqi@0: } aoqi@0: aoqi@0: // create a spill location aoqi@0: LIR_Opr tmp = new_register(t); aoqi@0: set_vreg_flag(tmp, LIRGenerator::must_start_in_memory); aoqi@0: aoqi@0: // move from register to spill aoqi@0: __ move(value, tmp); aoqi@0: return tmp; aoqi@0: } roland@6668: aoqi@1: #ifndef MIPS64 aoqi@0: void LIRGenerator::profile_branch(If* if_instr, If::Condition cond) { aoqi@0: if (if_instr->should_profile()) { aoqi@0: ciMethod* method = if_instr->profiled_method(); aoqi@0: assert(method != NULL, "method should be set if branch is profiled"); aoqi@0: ciMethodData* md = method->method_data_or_null(); aoqi@0: assert(md != NULL, "Sanity"); aoqi@0: ciProfileData* data = md->bci_to_data(if_instr->profiled_bci()); aoqi@0: assert(data != NULL, "must have profiling data"); aoqi@0: assert(data->is_BranchData(), "need BranchData for two-way branches"); aoqi@0: int taken_count_offset = md->byte_offset_of_slot(data, BranchData::taken_offset()); aoqi@0: int not_taken_count_offset = md->byte_offset_of_slot(data, BranchData::not_taken_offset()); aoqi@0: if (if_instr->is_swapped()) { aoqi@0: int t = taken_count_offset; aoqi@0: taken_count_offset = not_taken_count_offset; aoqi@0: not_taken_count_offset = t; aoqi@0: } aoqi@0: aoqi@0: LIR_Opr md_reg = new_register(T_METADATA); aoqi@0: __ metadata2reg(md->constant_encoding(), md_reg); aoqi@0: aoqi@0: LIR_Opr data_offset_reg = new_pointer_register(); aoqi@0: __ cmove(lir_cond(cond), aoqi@0: LIR_OprFact::intptrConst(taken_count_offset), aoqi@0: LIR_OprFact::intptrConst(not_taken_count_offset), aoqi@0: data_offset_reg, as_BasicType(if_instr->x()->type())); aoqi@0: aoqi@0: // MDO cells are intptr_t, so the data_reg width is arch-dependent. aoqi@0: LIR_Opr data_reg = new_pointer_register(); aoqi@0: LIR_Address* data_addr = new LIR_Address(md_reg, data_offset_reg, data_reg->type()); aoqi@0: __ move(data_addr, data_reg); aoqi@0: // Use leal instead of add to avoid destroying condition codes on x86 aoqi@0: LIR_Address* fake_incr_value = new LIR_Address(data_reg, DataLayout::counter_increment, T_INT); aoqi@0: __ leal(LIR_OprFact::address(fake_incr_value), data_reg); aoqi@0: __ move(data_reg, data_addr); aoqi@0: } aoqi@0: } aoqi@1: #else aoqi@1: void LIRGenerator::profile_branch(If* if_instr, If::Condition cond , LIR_Opr left, LIR_Opr right) { aoqi@1: if (if_instr->should_profile()) { aoqi@1: ciMethod* method = if_instr->profiled_method(); aoqi@1: assert(method != NULL, "method should be set if branch is profiled"); aoqi@1: ciMethodData* md = method->method_data_or_null(); aoqi@1: if (md == NULL) { aoqi@1: bailout("out of memory building methodDataOop"); aoqi@1: return; aoqi@1: } aoqi@1: ciProfileData* data = md->bci_to_data(if_instr->profiled_bci()); aoqi@1: assert(data != NULL, "must have profiling data"); aoqi@1: assert(data->is_BranchData(), "need BranchData for two-way branches"); aoqi@1: int taken_count_offset = md->byte_offset_of_slot(data, BranchData::taken_offset()); aoqi@1: int not_taken_count_offset = md->byte_offset_of_slot(data, BranchData::not_taken_offset()); aoqi@1: if (if_instr->is_swapped()) { aoqi@1: int t = taken_count_offset; aoqi@1: taken_count_offset = not_taken_count_offset; aoqi@1: not_taken_count_offset = t; aoqi@1: } aoqi@1: LIR_Opr md_reg = new_register(T_METADATA); aoqi@1: __ metadata2reg(md->constant_encoding(), md_reg); aoqi@1: //__ move(LIR_OprFact::oopConst(md->constant_encoding()), md_reg); aoqi@1: LIR_Opr data_offset_reg = new_pointer_register(); aoqi@1: aoqi@1: LIR_Opr opr1 = LIR_OprFact::intConst(taken_count_offset); aoqi@1: LIR_Opr opr2 = LIR_OprFact::intConst(not_taken_count_offset); aoqi@1: LabelObj* skip = new LabelObj(); aoqi@1: aoqi@1: __ move(opr1, data_offset_reg); aoqi@1: __ branch( lir_cond(cond), left, right, skip->label()); aoqi@1: __ move(opr2, data_offset_reg); aoqi@1: __ branch_destination(skip->label()); aoqi@1: aoqi@1: LIR_Opr data_reg = new_pointer_register(); aoqi@1: LIR_Opr tmp_reg = new_pointer_register(); aoqi@1: // LIR_Address* data_addr = new LIR_Address(md_reg, data_offset_reg, T_INT); aoqi@1: __ move(data_offset_reg, tmp_reg); aoqi@1: __ add(tmp_reg, md_reg, tmp_reg); aoqi@1: LIR_Address* data_addr = new LIR_Address(tmp_reg, 0, T_INT); aoqi@1: __ move(LIR_OprFact::address(data_addr), data_reg); aoqi@1: LIR_Address* fake_incr_value = new LIR_Address(data_reg, DataLayout::counter_increment, T_INT); aoqi@1: // Use leal instead of add to avoid destroying condition codes on x86 aoqi@1: __ leal(LIR_OprFact::address(fake_incr_value), data_reg); aoqi@1: __ move(data_reg, LIR_OprFact::address(data_addr)); aoqi@1: } aoqi@1: } aoqi@1: aoqi@1: #endif aoqi@0: aoqi@0: // Phi technique: aoqi@0: // This is about passing live values from one basic block to the other. aoqi@0: // In code generated with Java it is rather rare that more than one aoqi@0: // value is on the stack from one basic block to the other. aoqi@0: // We optimize our technique for efficient passing of one value aoqi@0: // (of type long, int, double..) but it can be extended. aoqi@0: // When entering or leaving a basic block, all registers and all spill aoqi@0: // slots are release and empty. We use the released registers aoqi@0: // and spill slots to pass the live values from one block aoqi@0: // to the other. The topmost value, i.e., the value on TOS of expression aoqi@0: // stack is passed in registers. All other values are stored in spilling aoqi@0: // area. Every Phi has an index which designates its spill slot aoqi@0: // At exit of a basic block, we fill the register(s) and spill slots. aoqi@0: // At entry of a basic block, the block_prolog sets up the content of phi nodes aoqi@0: // and locks necessary registers and spilling slots. aoqi@0: aoqi@0: aoqi@0: // move current value to referenced phi function aoqi@0: void LIRGenerator::move_to_phi(PhiResolver* resolver, Value cur_val, Value sux_val) { aoqi@0: Phi* phi = sux_val->as_Phi(); aoqi@0: // cur_val can be null without phi being null in conjunction with inlining aoqi@0: if (phi != NULL && cur_val != NULL && cur_val != phi && !phi->is_illegal()) { aoqi@0: LIR_Opr operand = cur_val->operand(); aoqi@0: if (cur_val->operand()->is_illegal()) { aoqi@0: assert(cur_val->as_Constant() != NULL || cur_val->as_Local() != NULL, aoqi@0: "these can be produced lazily"); aoqi@0: operand = operand_for_instruction(cur_val); aoqi@0: } aoqi@0: resolver->move(operand, operand_for_instruction(phi)); aoqi@0: } aoqi@0: } aoqi@0: aoqi@0: aoqi@0: // Moves all stack values into their PHI position aoqi@0: void LIRGenerator::move_to_phi(ValueStack* cur_state) { aoqi@0: BlockBegin* bb = block(); aoqi@0: if (bb->number_of_sux() == 1) { aoqi@0: BlockBegin* sux = bb->sux_at(0); aoqi@0: assert(sux->number_of_preds() > 0, "invalid CFG"); aoqi@0: aoqi@0: // a block with only one predecessor never has phi functions aoqi@0: if (sux->number_of_preds() > 1) { aoqi@0: int max_phis = cur_state->stack_size() + cur_state->locals_size(); aoqi@0: PhiResolver resolver(this, _virtual_register_number + max_phis * 2); aoqi@0: aoqi@0: ValueStack* sux_state = sux->state(); aoqi@0: Value sux_value; aoqi@0: int index; aoqi@0: aoqi@0: assert(cur_state->scope() == sux_state->scope(), "not matching"); aoqi@0: assert(cur_state->locals_size() == sux_state->locals_size(), "not matching"); aoqi@0: assert(cur_state->stack_size() == sux_state->stack_size(), "not matching"); aoqi@0: aoqi@0: for_each_stack_value(sux_state, index, sux_value) { aoqi@0: move_to_phi(&resolver, cur_state->stack_at(index), sux_value); aoqi@0: } aoqi@0: aoqi@0: for_each_local_value(sux_state, index, sux_value) { aoqi@0: move_to_phi(&resolver, cur_state->local_at(index), sux_value); aoqi@0: } aoqi@0: aoqi@0: assert(cur_state->caller_state() == sux_state->caller_state(), "caller states must be equal"); aoqi@0: } aoqi@0: } aoqi@0: } aoqi@0: aoqi@0: aoqi@0: LIR_Opr LIRGenerator::new_register(BasicType type) { aoqi@0: int vreg = _virtual_register_number; aoqi@0: // add a little fudge factor for the bailout, since the bailout is aoqi@0: // only checked periodically. This gives a few extra registers to aoqi@0: // hand out before we really run out, which helps us keep from aoqi@0: // tripping over assertions. aoqi@0: if (vreg + 20 >= LIR_OprDesc::vreg_max) { aoqi@0: bailout("out of virtual registers"); aoqi@0: if (vreg + 2 >= LIR_OprDesc::vreg_max) { aoqi@0: // wrap it around aoqi@0: _virtual_register_number = LIR_OprDesc::vreg_base; aoqi@0: } aoqi@0: } aoqi@0: _virtual_register_number += 1; aoqi@0: return LIR_OprFact::virtual_register(vreg, type); aoqi@0: } aoqi@0: aoqi@0: aoqi@0: // Try to lock using register in hint aoqi@0: LIR_Opr LIRGenerator::rlock(Value instr) { aoqi@0: return new_register(instr->type()); aoqi@0: } aoqi@0: aoqi@0: aoqi@0: // does an rlock and sets result aoqi@0: LIR_Opr LIRGenerator::rlock_result(Value x) { aoqi@0: LIR_Opr reg = rlock(x); aoqi@0: set_result(x, reg); aoqi@0: return reg; aoqi@0: } aoqi@0: aoqi@0: aoqi@0: // does an rlock and sets result aoqi@0: LIR_Opr LIRGenerator::rlock_result(Value x, BasicType type) { aoqi@0: LIR_Opr reg; aoqi@0: switch (type) { aoqi@0: case T_BYTE: aoqi@0: case T_BOOLEAN: aoqi@0: reg = rlock_byte(type); aoqi@0: break; aoqi@0: default: aoqi@0: reg = rlock(x); aoqi@0: break; aoqi@0: } aoqi@0: aoqi@0: set_result(x, reg); aoqi@0: return reg; aoqi@0: } aoqi@0: aoqi@0: aoqi@0: //--------------------------------------------------------------------- aoqi@0: ciObject* LIRGenerator::get_jobject_constant(Value value) { aoqi@0: ObjectType* oc = value->type()->as_ObjectType(); aoqi@0: if (oc) { aoqi@0: return oc->constant_value(); aoqi@0: } aoqi@0: return NULL; aoqi@0: } aoqi@1: #ifdef MIPS64 aoqi@1: void LIRGenerator::write_barrier(LIR_Opr addr) { aoqi@1: if (addr->is_address()) { aoqi@1: LIR_Address* address = (LIR_Address*)addr; aoqi@1: LIR_Opr ptr = new_register(T_OBJECT); aoqi@1: if (!address->index()->is_valid() && address->disp() == 0) { aoqi@1: __ move(address->base(), ptr); aoqi@1: } else { aoqi@1: __ leal(addr, ptr); aoqi@1: } aoqi@1: addr = ptr; aoqi@1: } aoqi@1: assert(addr->is_register(), "must be a register at this point"); aoqi@1: aoqi@1: LIR_Opr tmp = new_pointer_register(); aoqi@1: if (TwoOperandLIRForm) { aoqi@1: __ move(addr, tmp); aoqi@1: __ unsigned_shift_right(tmp, CardTableModRefBS::card_shift, tmp); aoqi@1: } else { aoqi@1: __ unsigned_shift_right(addr, CardTableModRefBS::card_shift, tmp); aoqi@1: } aoqi@1: if (can_inline_as_constant(card_table_base())) { aoqi@1: __ move(LIR_OprFact::intConst(0), new LIR_Address(tmp, card_table_base()->as_jint(), T_BYTE)); aoqi@1: } else { aoqi@1: __ add(tmp, load_constant(card_table_base()), tmp); aoqi@1: __ move(LIR_OprFact::intConst(0), new LIR_Address(tmp, 0, T_BYTE)); aoqi@1: } aoqi@1: } aoqi@1: #endif aoqi@0: aoqi@0: aoqi@0: void LIRGenerator::do_ExceptionObject(ExceptionObject* x) { aoqi@0: assert(block()->is_set(BlockBegin::exception_entry_flag), "ExceptionObject only allowed in exception handler block"); aoqi@0: assert(block()->next() == x, "ExceptionObject must be first instruction of block"); aoqi@0: aoqi@0: // no moves are created for phi functions at the begin of exception aoqi@0: // handlers, so assign operands manually here aoqi@0: for_each_phi_fun(block(), phi, aoqi@0: operand_for_instruction(phi)); aoqi@0: aoqi@0: LIR_Opr thread_reg = getThreadPointer(); aoqi@0: __ move_wide(new LIR_Address(thread_reg, in_bytes(JavaThread::exception_oop_offset()), T_OBJECT), aoqi@0: exceptionOopOpr()); aoqi@0: __ move_wide(LIR_OprFact::oopConst(NULL), aoqi@0: new LIR_Address(thread_reg, in_bytes(JavaThread::exception_oop_offset()), T_OBJECT)); aoqi@0: __ move_wide(LIR_OprFact::oopConst(NULL), aoqi@0: new LIR_Address(thread_reg, in_bytes(JavaThread::exception_pc_offset()), T_OBJECT)); aoqi@0: aoqi@0: LIR_Opr result = new_register(T_OBJECT); aoqi@0: __ move(exceptionOopOpr(), result); aoqi@0: set_result(x, result); aoqi@0: } aoqi@0: aoqi@0: aoqi@0: //---------------------------------------------------------------------- aoqi@0: //---------------------------------------------------------------------- aoqi@0: //---------------------------------------------------------------------- aoqi@0: //---------------------------------------------------------------------- aoqi@0: // visitor functions aoqi@0: //---------------------------------------------------------------------- aoqi@0: //---------------------------------------------------------------------- aoqi@0: //---------------------------------------------------------------------- aoqi@0: //---------------------------------------------------------------------- aoqi@0: aoqi@0: void LIRGenerator::do_Phi(Phi* x) { aoqi@0: // phi functions are never visited directly aoqi@0: ShouldNotReachHere(); aoqi@0: } aoqi@0: aoqi@0: aoqi@0: // Code for a constant is generated lazily unless the constant is frequently used and can't be inlined. aoqi@0: void LIRGenerator::do_Constant(Constant* x) { aoqi@0: if (x->state_before() != NULL) { aoqi@0: // Any constant with a ValueStack requires patching so emit the patch here aoqi@0: LIR_Opr reg = rlock_result(x); aoqi@0: CodeEmitInfo* info = state_for(x, x->state_before()); aoqi@0: __ oop2reg_patch(NULL, reg, info); aoqi@0: } else if (x->use_count() > 1 && !can_inline_as_constant(x)) { aoqi@0: if (!x->is_pinned()) { aoqi@0: // unpinned constants are handled specially so that they can be aoqi@0: // put into registers when they are used multiple times within a aoqi@0: // block. After the block completes their operand will be aoqi@0: // cleared so that other blocks can't refer to that register. aoqi@0: set_result(x, load_constant(x)); aoqi@0: } else { aoqi@0: LIR_Opr res = x->operand(); aoqi@0: if (!res->is_valid()) { aoqi@0: res = LIR_OprFact::value_type(x->type()); aoqi@0: } aoqi@0: if (res->is_constant()) { aoqi@0: LIR_Opr reg = rlock_result(x); aoqi@0: __ move(res, reg); aoqi@0: } else { aoqi@0: set_result(x, res); aoqi@0: } aoqi@0: } aoqi@0: } else { aoqi@0: set_result(x, LIR_OprFact::value_type(x->type())); aoqi@0: } aoqi@0: } aoqi@0: aoqi@0: aoqi@0: void LIRGenerator::do_Local(Local* x) { aoqi@0: // operand_for_instruction has the side effect of setting the result aoqi@0: // so there's no need to do it here. aoqi@0: operand_for_instruction(x); aoqi@0: } aoqi@0: aoqi@0: aoqi@0: void LIRGenerator::do_IfInstanceOf(IfInstanceOf* x) { aoqi@0: Unimplemented(); aoqi@0: } aoqi@0: aoqi@0: aoqi@0: void LIRGenerator::do_Return(Return* x) { aoqi@0: if (compilation()->env()->dtrace_method_probes()) { aoqi@0: BasicTypeList signature; aoqi@0: signature.append(LP64_ONLY(T_LONG) NOT_LP64(T_INT)); // thread aoqi@0: signature.append(T_METADATA); // Method* aoqi@0: LIR_OprList* args = new LIR_OprList(); aoqi@0: args->append(getThreadPointer()); aoqi@0: LIR_Opr meth = new_register(T_METADATA); aoqi@0: __ metadata2reg(method()->constant_encoding(), meth); aoqi@0: args->append(meth); aoqi@0: call_runtime(&signature, args, CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit), voidType, NULL); aoqi@0: } aoqi@0: aoqi@0: if (x->type()->is_void()) { aoqi@0: __ return_op(LIR_OprFact::illegalOpr); aoqi@0: } else { aoqi@0: LIR_Opr reg = result_register_for(x->type(), /*callee=*/true); aoqi@0: LIRItem result(x->result(), this); aoqi@0: aoqi@0: result.load_item_force(reg); aoqi@0: __ return_op(result.result()); aoqi@0: } aoqi@0: set_no_result(x); aoqi@0: } aoqi@0: aoqi@0: // Examble: ref.get() aoqi@0: // Combination of LoadField and g1 pre-write barrier aoqi@0: void LIRGenerator::do_Reference_get(Intrinsic* x) { aoqi@0: aoqi@0: const int referent_offset = java_lang_ref_Reference::referent_offset; aoqi@0: guarantee(referent_offset > 0, "referent offset not initialized"); aoqi@0: aoqi@0: assert(x->number_of_arguments() == 1, "wrong type"); aoqi@0: aoqi@0: LIRItem reference(x->argument_at(0), this); aoqi@0: reference.load_item(); aoqi@0: aoqi@0: // need to perform the null check on the reference objecy aoqi@0: CodeEmitInfo* info = NULL; aoqi@0: if (x->needs_null_check()) { aoqi@0: info = state_for(x); aoqi@0: } aoqi@0: aoqi@0: LIR_Address* referent_field_adr = aoqi@0: new LIR_Address(reference.result(), referent_offset, T_OBJECT); aoqi@0: aoqi@0: LIR_Opr result = rlock_result(x); aoqi@0: aoqi@0: __ load(referent_field_adr, result, info); aoqi@0: aoqi@0: // Register the value in the referent field with the pre-barrier aoqi@0: pre_barrier(LIR_OprFact::illegalOpr /* addr_opr */, aoqi@0: result /* pre_val */, aoqi@0: false /* do_load */, aoqi@0: false /* patch */, aoqi@0: NULL /* info */); aoqi@0: } aoqi@0: aoqi@0: // Example: clazz.isInstance(object) aoqi@0: void LIRGenerator::do_isInstance(Intrinsic* x) { aoqi@0: assert(x->number_of_arguments() == 2, "wrong type"); aoqi@0: aoqi@0: // TODO could try to substitute this node with an equivalent InstanceOf aoqi@0: // if clazz is known to be a constant Class. This will pick up newly found aoqi@0: // constants after HIR construction. I'll leave this to a future change. aoqi@0: aoqi@0: // as a first cut, make a simple leaf call to runtime to stay platform independent. aoqi@0: // could follow the aastore example in a future change. aoqi@0: aoqi@0: LIRItem clazz(x->argument_at(0), this); aoqi@0: LIRItem object(x->argument_at(1), this); aoqi@0: clazz.load_item(); aoqi@0: object.load_item(); aoqi@0: LIR_Opr result = rlock_result(x); aoqi@0: aoqi@0: // need to perform null check on clazz aoqi@0: if (x->needs_null_check()) { aoqi@0: CodeEmitInfo* info = state_for(x); aoqi@0: __ null_check(clazz.result(), info); aoqi@0: } aoqi@0: aoqi@0: LIR_Opr call_result = call_runtime(clazz.value(), object.value(), aoqi@0: CAST_FROM_FN_PTR(address, Runtime1::is_instance_of), aoqi@0: x->type(), aoqi@0: NULL); // NULL CodeEmitInfo results in a leaf call aoqi@0: __ move(call_result, result); aoqi@0: } aoqi@0: aoqi@0: // Example: object.getClass () aoqi@0: void LIRGenerator::do_getClass(Intrinsic* x) { aoqi@0: assert(x->number_of_arguments() == 1, "wrong type"); aoqi@0: aoqi@0: LIRItem rcvr(x->argument_at(0), this); aoqi@0: rcvr.load_item(); aoqi@0: LIR_Opr temp = new_register(T_METADATA); aoqi@0: LIR_Opr result = rlock_result(x); aoqi@0: aoqi@0: // need to perform the null check on the rcvr aoqi@0: CodeEmitInfo* info = NULL; aoqi@0: if (x->needs_null_check()) { aoqi@0: info = state_for(x); aoqi@0: } aoqi@0: aoqi@0: // FIXME T_ADDRESS should actually be T_METADATA but it can't because the aoqi@0: // meaning of these two is mixed up (see JDK-8026837). aoqi@0: __ move(new LIR_Address(rcvr.result(), oopDesc::klass_offset_in_bytes(), T_ADDRESS), temp, info); aoqi@0: __ move_wide(new LIR_Address(temp, in_bytes(Klass::java_mirror_offset()), T_OBJECT), result); aoqi@0: } aoqi@0: aoqi@0: aoqi@0: // Example: Thread.currentThread() aoqi@0: void LIRGenerator::do_currentThread(Intrinsic* x) { aoqi@0: assert(x->number_of_arguments() == 0, "wrong type"); aoqi@0: LIR_Opr reg = rlock_result(x); aoqi@0: __ move_wide(new LIR_Address(getThreadPointer(), in_bytes(JavaThread::threadObj_offset()), T_OBJECT), reg); aoqi@0: } aoqi@0: aoqi@0: aoqi@0: void LIRGenerator::do_RegisterFinalizer(Intrinsic* x) { aoqi@0: assert(x->number_of_arguments() == 1, "wrong type"); aoqi@0: LIRItem receiver(x->argument_at(0), this); aoqi@0: aoqi@0: receiver.load_item(); aoqi@0: BasicTypeList signature; aoqi@0: signature.append(T_OBJECT); // receiver aoqi@0: LIR_OprList* args = new LIR_OprList(); aoqi@0: args->append(receiver.result()); aoqi@0: CodeEmitInfo* info = state_for(x, x->state()); aoqi@0: call_runtime(&signature, args, aoqi@0: CAST_FROM_FN_PTR(address, Runtime1::entry_for(Runtime1::register_finalizer_id)), aoqi@0: voidType, info); aoqi@0: aoqi@0: set_no_result(x); aoqi@0: } aoqi@0: aoqi@0: aoqi@0: //------------------------local access-------------------------------------- aoqi@0: aoqi@0: LIR_Opr LIRGenerator::operand_for_instruction(Instruction* x) { aoqi@0: if (x->operand()->is_illegal()) { aoqi@0: Constant* c = x->as_Constant(); aoqi@0: if (c != NULL) { aoqi@0: x->set_operand(LIR_OprFact::value_type(c->type())); aoqi@0: } else { aoqi@0: assert(x->as_Phi() || x->as_Local() != NULL, "only for Phi and Local"); aoqi@0: // allocate a virtual register for this local or phi aoqi@0: x->set_operand(rlock(x)); aoqi@0: _instruction_for_operand.at_put_grow(x->operand()->vreg_number(), x, NULL); aoqi@0: } aoqi@0: } aoqi@0: return x->operand(); aoqi@0: } aoqi@0: aoqi@0: aoqi@0: Instruction* LIRGenerator::instruction_for_opr(LIR_Opr opr) { aoqi@0: if (opr->is_virtual()) { aoqi@0: return instruction_for_vreg(opr->vreg_number()); aoqi@0: } aoqi@0: return NULL; aoqi@0: } aoqi@0: aoqi@0: aoqi@0: Instruction* LIRGenerator::instruction_for_vreg(int reg_num) { aoqi@0: if (reg_num < _instruction_for_operand.length()) { aoqi@0: return _instruction_for_operand.at(reg_num); aoqi@0: } aoqi@0: return NULL; aoqi@0: } aoqi@0: aoqi@0: aoqi@0: void LIRGenerator::set_vreg_flag(int vreg_num, VregFlag f) { aoqi@0: if (_vreg_flags.size_in_bits() == 0) { aoqi@0: BitMap2D temp(100, num_vreg_flags); aoqi@0: temp.clear(); aoqi@0: _vreg_flags = temp; aoqi@0: } aoqi@0: _vreg_flags.at_put_grow(vreg_num, f, true); aoqi@0: } aoqi@0: aoqi@0: bool LIRGenerator::is_vreg_flag_set(int vreg_num, VregFlag f) { aoqi@0: if (!_vreg_flags.is_valid_index(vreg_num, f)) { aoqi@0: return false; aoqi@0: } aoqi@0: return _vreg_flags.at(vreg_num, f); aoqi@0: } aoqi@0: aoqi@0: aoqi@0: // Block local constant handling. This code is useful for keeping aoqi@0: // unpinned constants and constants which aren't exposed in the IR in aoqi@0: // registers. Unpinned Constant instructions have their operands aoqi@0: // cleared when the block is finished so that other blocks can't end aoqi@0: // up referring to their registers. aoqi@0: aoqi@0: LIR_Opr LIRGenerator::load_constant(Constant* x) { aoqi@0: assert(!x->is_pinned(), "only for unpinned constants"); aoqi@0: _unpinned_constants.append(x); aoqi@0: return load_constant(LIR_OprFact::value_type(x->type())->as_constant_ptr()); aoqi@0: } aoqi@0: aoqi@0: aoqi@0: LIR_Opr LIRGenerator::load_constant(LIR_Const* c) { aoqi@0: BasicType t = c->type(); aoqi@0: for (int i = 0; i < _constants.length(); i++) { aoqi@0: LIR_Const* other = _constants.at(i); aoqi@0: if (t == other->type()) { aoqi@0: switch (t) { aoqi@0: case T_INT: aoqi@0: case T_FLOAT: aoqi@0: if (c->as_jint_bits() != other->as_jint_bits()) continue; aoqi@0: break; aoqi@0: case T_LONG: aoqi@0: case T_DOUBLE: aoqi@0: if (c->as_jint_hi_bits() != other->as_jint_hi_bits()) continue; aoqi@0: if (c->as_jint_lo_bits() != other->as_jint_lo_bits()) continue; aoqi@0: break; aoqi@0: case T_OBJECT: aoqi@0: if (c->as_jobject() != other->as_jobject()) continue; aoqi@0: break; aoqi@0: } aoqi@0: return _reg_for_constants.at(i); aoqi@0: } aoqi@0: } aoqi@0: aoqi@0: LIR_Opr result = new_register(t); aoqi@0: __ move((LIR_Opr)c, result); aoqi@0: _constants.append(c); aoqi@0: _reg_for_constants.append(result); aoqi@0: return result; aoqi@0: } aoqi@0: aoqi@0: // Various barriers aoqi@0: aoqi@0: void LIRGenerator::pre_barrier(LIR_Opr addr_opr, LIR_Opr pre_val, aoqi@0: bool do_load, bool patch, CodeEmitInfo* info) { aoqi@0: // Do the pre-write barrier, if any. aoqi@0: switch (_bs->kind()) { aoqi@0: #if INCLUDE_ALL_GCS aoqi@0: case BarrierSet::G1SATBCT: aoqi@0: case BarrierSet::G1SATBCTLogging: aoqi@0: G1SATBCardTableModRef_pre_barrier(addr_opr, pre_val, do_load, patch, info); aoqi@0: break; aoqi@0: #endif // INCLUDE_ALL_GCS aoqi@0: case BarrierSet::CardTableModRef: aoqi@0: case BarrierSet::CardTableExtension: aoqi@0: // No pre barriers aoqi@0: break; aoqi@0: case BarrierSet::ModRef: aoqi@0: case BarrierSet::Other: aoqi@0: // No pre barriers aoqi@0: break; aoqi@0: default : aoqi@0: ShouldNotReachHere(); aoqi@0: aoqi@0: } aoqi@0: } aoqi@0: aoqi@0: void LIRGenerator::post_barrier(LIR_OprDesc* addr, LIR_OprDesc* new_val) { aoqi@0: switch (_bs->kind()) { aoqi@0: #if INCLUDE_ALL_GCS aoqi@0: case BarrierSet::G1SATBCT: aoqi@0: case BarrierSet::G1SATBCTLogging: aoqi@0: G1SATBCardTableModRef_post_barrier(addr, new_val); aoqi@0: break; aoqi@0: #endif // INCLUDE_ALL_GCS aoqi@0: case BarrierSet::CardTableModRef: aoqi@0: case BarrierSet::CardTableExtension: aoqi@0: CardTableModRef_post_barrier(addr, new_val); aoqi@0: break; aoqi@0: case BarrierSet::ModRef: aoqi@0: case BarrierSet::Other: aoqi@0: // No post barriers aoqi@0: break; aoqi@0: default : aoqi@0: ShouldNotReachHere(); aoqi@0: } aoqi@0: } aoqi@0: aoqi@0: //////////////////////////////////////////////////////////////////////// aoqi@0: #if INCLUDE_ALL_GCS aoqi@0: aoqi@0: void LIRGenerator::G1SATBCardTableModRef_pre_barrier(LIR_Opr addr_opr, LIR_Opr pre_val, aoqi@0: bool do_load, bool patch, CodeEmitInfo* info) { aoqi@0: // First we test whether marking is in progress. aoqi@0: BasicType flag_type; aoqi@0: if (in_bytes(PtrQueue::byte_width_of_active()) == 4) { aoqi@0: flag_type = T_INT; aoqi@0: } else { aoqi@0: guarantee(in_bytes(PtrQueue::byte_width_of_active()) == 1, aoqi@0: "Assumption"); aoqi@0: flag_type = T_BYTE; aoqi@0: } aoqi@0: LIR_Opr thrd = getThreadPointer(); aoqi@0: LIR_Address* mark_active_flag_addr = aoqi@0: new LIR_Address(thrd, aoqi@0: in_bytes(JavaThread::satb_mark_queue_offset() + aoqi@0: PtrQueue::byte_offset_of_active()), aoqi@0: flag_type); aoqi@0: // Read the marking-in-progress flag. aoqi@0: LIR_Opr flag_val = new_register(T_INT); aoqi@0: __ load(mark_active_flag_addr, flag_val); aoqi@7535: //MIPS not support cmp. aoqi@1: #ifndef MIPS64 aoqi@0: __ cmp(lir_cond_notEqual, flag_val, LIR_OprFact::intConst(0)); aoqi@1: #endif aoqi@0: aoqi@0: LIR_PatchCode pre_val_patch_code = lir_patch_none; aoqi@0: aoqi@0: CodeStub* slow; aoqi@0: aoqi@0: if (do_load) { aoqi@0: assert(pre_val == LIR_OprFact::illegalOpr, "sanity"); aoqi@0: assert(addr_opr != LIR_OprFact::illegalOpr, "sanity"); aoqi@0: aoqi@0: if (patch) aoqi@0: pre_val_patch_code = lir_patch_normal; aoqi@0: aoqi@0: pre_val = new_register(T_OBJECT); aoqi@0: aoqi@0: if (!addr_opr->is_address()) { aoqi@0: assert(addr_opr->is_register(), "must be"); aoqi@0: addr_opr = LIR_OprFact::address(new LIR_Address(addr_opr, T_OBJECT)); aoqi@0: } aoqi@0: slow = new G1PreBarrierStub(addr_opr, pre_val, pre_val_patch_code, info); aoqi@0: } else { aoqi@0: assert(addr_opr == LIR_OprFact::illegalOpr, "sanity"); aoqi@0: assert(pre_val->is_register(), "must be"); aoqi@0: assert(pre_val->type() == T_OBJECT, "must be an object"); aoqi@0: assert(info == NULL, "sanity"); aoqi@0: aoqi@0: slow = new G1PreBarrierStub(pre_val); aoqi@0: } aoqi@0: aoqi@1: #ifndef MIPS64 aoqi@0: __ branch(lir_cond_notEqual, T_INT, slow); aoqi@1: #else aoqi@1: __ branch(lir_cond_notEqual, flag_val, LIR_OprFact::intConst(0), T_INT, slow); aoqi@1: #endif aoqi@0: __ branch_destination(slow->continuation()); aoqi@0: } aoqi@0: aoqi@0: void LIRGenerator::G1SATBCardTableModRef_post_barrier(LIR_OprDesc* addr, LIR_OprDesc* new_val) { aoqi@0: // If the "new_val" is a constant NULL, no barrier is necessary. aoqi@0: if (new_val->is_constant() && aoqi@0: new_val->as_constant_ptr()->as_jobject() == NULL) return; aoqi@0: aoqi@0: if (!new_val->is_register()) { aoqi@0: LIR_Opr new_val_reg = new_register(T_OBJECT); aoqi@0: if (new_val->is_constant()) { aoqi@0: __ move(new_val, new_val_reg); aoqi@0: } else { aoqi@0: __ leal(new_val, new_val_reg); aoqi@0: } aoqi@0: new_val = new_val_reg; aoqi@0: } aoqi@0: assert(new_val->is_register(), "must be a register at this point"); aoqi@0: aoqi@0: if (addr->is_address()) { aoqi@0: LIR_Address* address = addr->as_address_ptr(); aoqi@0: LIR_Opr ptr = new_pointer_register(); aoqi@0: if (!address->index()->is_valid() && address->disp() == 0) { aoqi@0: __ move(address->base(), ptr); aoqi@0: } else { aoqi@0: assert(address->disp() != max_jint, "lea doesn't support patched addresses!"); aoqi@0: __ leal(addr, ptr); aoqi@0: } aoqi@0: addr = ptr; aoqi@0: } aoqi@0: assert(addr->is_register(), "must be a register at this point"); aoqi@0: aoqi@0: LIR_Opr xor_res = new_pointer_register(); aoqi@0: LIR_Opr xor_shift_res = new_pointer_register(); aoqi@0: if (TwoOperandLIRForm ) { aoqi@0: __ move(addr, xor_res); aoqi@0: __ logical_xor(xor_res, new_val, xor_res); aoqi@0: __ move(xor_res, xor_shift_res); aoqi@0: __ unsigned_shift_right(xor_shift_res, aoqi@0: LIR_OprFact::intConst(HeapRegion::LogOfHRGrainBytes), aoqi@0: xor_shift_res, aoqi@0: LIR_OprDesc::illegalOpr()); aoqi@0: } else { aoqi@0: __ logical_xor(addr, new_val, xor_res); aoqi@0: __ unsigned_shift_right(xor_res, aoqi@0: LIR_OprFact::intConst(HeapRegion::LogOfHRGrainBytes), aoqi@0: xor_shift_res, aoqi@0: LIR_OprDesc::illegalOpr()); aoqi@0: } aoqi@0: aoqi@0: if (!new_val->is_register()) { aoqi@0: LIR_Opr new_val_reg = new_register(T_OBJECT); aoqi@0: __ leal(new_val, new_val_reg); aoqi@0: new_val = new_val_reg; aoqi@0: } aoqi@0: assert(new_val->is_register(), "must be a register at this point"); aoqi@0: aoqi@1: #ifndef MIPS64 aoqi@0: __ cmp(lir_cond_notEqual, xor_shift_res, LIR_OprFact::intptrConst(NULL_WORD)); aoqi@0: aoqi@1: #endif aoqi@0: CodeStub* slow = new G1PostBarrierStub(addr, new_val); aoqi@1: #ifndef MIPS64 aoqi@0: __ branch(lir_cond_notEqual, LP64_ONLY(T_LONG) NOT_LP64(T_INT), slow); aoqi@1: #else aoqi@1: __ branch(lir_cond_notEqual, xor_shift_res, LIR_OprFact::intptrConst((intptr_t)NULL_WORD), LP64_ONLY(T_LONG) NOT_LP64(T_INT), slow); aoqi@1: #endif aoqi@0: __ branch_destination(slow->continuation()); aoqi@0: } aoqi@0: aoqi@0: #endif // INCLUDE_ALL_GCS aoqi@0: //////////////////////////////////////////////////////////////////////// aoqi@0: aoqi@0: void LIRGenerator::CardTableModRef_post_barrier(LIR_OprDesc* addr, LIR_OprDesc* new_val) { aoqi@0: aoqi@0: assert(sizeof(*((CardTableModRefBS*)_bs)->byte_map_base) == sizeof(jbyte), "adjust this code"); aoqi@0: LIR_Const* card_table_base = new LIR_Const(((CardTableModRefBS*)_bs)->byte_map_base); aoqi@0: if (addr->is_address()) { aoqi@0: LIR_Address* address = addr->as_address_ptr(); aoqi@0: // ptr cannot be an object because we use this barrier for array card marks aoqi@0: // and addr can point in the middle of an array. aoqi@0: LIR_Opr ptr = new_pointer_register(); aoqi@0: if (!address->index()->is_valid() && address->disp() == 0) { aoqi@0: __ move(address->base(), ptr); aoqi@0: } else { aoqi@0: assert(address->disp() != max_jint, "lea doesn't support patched addresses!"); aoqi@0: __ leal(addr, ptr); aoqi@0: } aoqi@0: addr = ptr; aoqi@0: } aoqi@0: assert(addr->is_register(), "must be a register at this point"); aoqi@0: dlong@7598: #ifdef CARDTABLEMODREF_POST_BARRIER_HELPER dlong@7598: CardTableModRef_post_barrier_helper(addr, card_table_base); dlong@7598: #else aoqi@0: LIR_Opr tmp = new_pointer_register(); aoqi@0: if (TwoOperandLIRForm) { aoqi@0: __ move(addr, tmp); aoqi@0: __ unsigned_shift_right(tmp, CardTableModRefBS::card_shift, tmp); aoqi@0: } else { aoqi@0: __ unsigned_shift_right(addr, CardTableModRefBS::card_shift, tmp); aoqi@0: } aoqi@0: if (can_inline_as_constant(card_table_base)) { aoqi@0: __ move(LIR_OprFact::intConst(0), aoqi@0: new LIR_Address(tmp, card_table_base->as_jint(), T_BYTE)); aoqi@0: } else { aoqi@1: #ifndef MIPS64 aoqi@0: __ move(LIR_OprFact::intConst(0), aoqi@0: new LIR_Address(tmp, load_constant(card_table_base), aoqi@0: T_BYTE)); aoqi@1: #else aoqi@1: __ add(tmp, load_constant(card_table_base), tmp); aoqi@1: __ move(LIR_OprFact::intConst(0), aoqi@1: new LIR_Address(tmp, 0, aoqi@1: T_BYTE)); aoqi@1: #endif aoqi@0: } dlong@7598: #endif aoqi@0: } aoqi@0: aoqi@0: aoqi@0: //------------------------field access-------------------------------------- aoqi@0: aoqi@0: // Comment copied form templateTable_i486.cpp aoqi@0: // ---------------------------------------------------------------------------- aoqi@0: // Volatile variables demand their effects be made known to all CPU's in aoqi@0: // order. Store buffers on most chips allow reads & writes to reorder; the aoqi@0: // JMM's ReadAfterWrite.java test fails in -Xint mode without some kind of aoqi@0: // memory barrier (i.e., it's not sufficient that the interpreter does not aoqi@0: // reorder volatile references, the hardware also must not reorder them). aoqi@0: // aoqi@0: // According to the new Java Memory Model (JMM): aoqi@0: // (1) All volatiles are serialized wrt to each other. aoqi@0: // ALSO reads & writes act as aquire & release, so: aoqi@0: // (2) A read cannot let unrelated NON-volatile memory refs that happen after aoqi@0: // the read float up to before the read. It's OK for non-volatile memory refs aoqi@0: // that happen before the volatile read to float down below it. aoqi@0: // (3) Similar a volatile write cannot let unrelated NON-volatile memory refs aoqi@0: // that happen BEFORE the write float down to after the write. It's OK for aoqi@0: // non-volatile memory refs that happen after the volatile write to float up aoqi@0: // before it. aoqi@0: // aoqi@0: // We only put in barriers around volatile refs (they are expensive), not aoqi@0: // _between_ memory refs (that would require us to track the flavor of the aoqi@0: // previous memory refs). Requirements (2) and (3) require some barriers aoqi@0: // before volatile stores and after volatile loads. These nearly cover aoqi@0: // requirement (1) but miss the volatile-store-volatile-load case. This final aoqi@0: // case is placed after volatile-stores although it could just as well go aoqi@0: // before volatile-loads. aoqi@0: aoqi@0: aoqi@0: void LIRGenerator::do_StoreField(StoreField* x) { aoqi@0: bool needs_patching = x->needs_patching(); aoqi@0: bool is_volatile = x->field()->is_volatile(); aoqi@0: BasicType field_type = x->field_type(); aoqi@0: bool is_oop = (field_type == T_ARRAY || field_type == T_OBJECT); aoqi@0: aoqi@0: CodeEmitInfo* info = NULL; aoqi@0: if (needs_patching) { aoqi@0: assert(x->explicit_null_check() == NULL, "can't fold null check into patching field access"); aoqi@0: info = state_for(x, x->state_before()); aoqi@0: } else if (x->needs_null_check()) { aoqi@0: NullCheck* nc = x->explicit_null_check(); aoqi@0: if (nc == NULL) { aoqi@0: info = state_for(x); aoqi@0: } else { aoqi@0: info = state_for(nc); aoqi@0: } aoqi@0: } aoqi@0: aoqi@0: aoqi@0: LIRItem object(x->obj(), this); aoqi@0: LIRItem value(x->value(), this); aoqi@0: aoqi@0: object.load_item(); aoqi@0: aoqi@0: if (is_volatile || needs_patching) { aoqi@0: // load item if field is volatile (fewer special cases for volatiles) aoqi@0: // load item if field not initialized aoqi@0: // load item if field not constant aoqi@0: // because of code patching we cannot inline constants aoqi@0: if (field_type == T_BYTE || field_type == T_BOOLEAN) { aoqi@0: value.load_byte_item(); aoqi@0: } else { aoqi@0: value.load_item(); aoqi@0: } aoqi@0: } else { aoqi@0: value.load_for_store(field_type); aoqi@0: } aoqi@0: aoqi@0: set_no_result(x); aoqi@0: aoqi@0: #ifndef PRODUCT aoqi@0: if (PrintNotLoaded && needs_patching) { aoqi@0: tty->print_cr(" ###class not loaded at store_%s bci %d", aoqi@0: x->is_static() ? "static" : "field", x->printable_bci()); aoqi@0: } aoqi@0: #endif aoqi@0: aoqi@0: if (x->needs_null_check() && aoqi@0: (needs_patching || aoqi@0: MacroAssembler::needs_explicit_null_check(x->offset()))) { vkempik@8735: // Emit an explicit null check because the offset is too large. vkempik@8735: // If the class is not loaded and the object is NULL, we need to deoptimize to throw a vkempik@8735: // NoClassDefFoundError in the interpreter instead of an implicit NPE from compiled code. vkempik@8735: __ null_check(object.result(), new CodeEmitInfo(info), /* deoptimize */ needs_patching); aoqi@0: } aoqi@0: aoqi@0: LIR_Address* address; aoqi@0: if (needs_patching) { aoqi@0: // we need to patch the offset in the instruction so don't allow aoqi@0: // generate_address to try to be smart about emitting the -1. aoqi@0: // Otherwise the patching code won't know how to find the aoqi@0: // instruction to patch. aoqi@0: address = new LIR_Address(object.result(), PATCHED_ADDR, field_type); aoqi@0: } else { aoqi@0: address = generate_address(object.result(), x->offset(), field_type); aoqi@0: } aoqi@0: aoqi@0: if (is_volatile && os::is_MP()) { aoqi@0: __ membar_release(); aoqi@0: } aoqi@0: aoqi@0: if (is_oop) { aoqi@0: // Do the pre-write barrier, if any. aoqi@0: pre_barrier(LIR_OprFact::address(address), aoqi@0: LIR_OprFact::illegalOpr /* pre_val */, aoqi@0: true /* do_load*/, aoqi@0: needs_patching, aoqi@0: (info ? new CodeEmitInfo(info) : NULL)); aoqi@0: } aoqi@0: aoqi@0: if (is_volatile && !needs_patching) { aoqi@0: volatile_field_store(value.result(), address, info); aoqi@0: } else { aoqi@0: LIR_PatchCode patch_code = needs_patching ? lir_patch_normal : lir_patch_none; aoqi@0: __ store(value.result(), address, info, patch_code); aoqi@0: } aoqi@0: aoqi@0: if (is_oop) { aoqi@0: // Store to object so mark the card of the header aoqi@0: post_barrier(object.result(), value.result()); aoqi@0: } aoqi@0: aoqi@0: if (is_volatile && os::is_MP()) { aoqi@0: __ membar(); aoqi@0: } aoqi@0: } aoqi@0: aoqi@0: aoqi@0: void LIRGenerator::do_LoadField(LoadField* x) { aoqi@0: bool needs_patching = x->needs_patching(); aoqi@0: bool is_volatile = x->field()->is_volatile(); aoqi@0: BasicType field_type = x->field_type(); aoqi@0: aoqi@0: CodeEmitInfo* info = NULL; aoqi@0: if (needs_patching) { aoqi@0: assert(x->explicit_null_check() == NULL, "can't fold null check into patching field access"); aoqi@0: info = state_for(x, x->state_before()); aoqi@0: } else if (x->needs_null_check()) { aoqi@0: NullCheck* nc = x->explicit_null_check(); aoqi@0: if (nc == NULL) { aoqi@0: info = state_for(x); aoqi@0: } else { aoqi@0: info = state_for(nc); aoqi@0: } aoqi@0: } aoqi@0: aoqi@0: LIRItem object(x->obj(), this); aoqi@0: aoqi@0: object.load_item(); aoqi@0: aoqi@0: #ifndef PRODUCT aoqi@0: if (PrintNotLoaded && needs_patching) { aoqi@0: tty->print_cr(" ###class not loaded at load_%s bci %d", aoqi@0: x->is_static() ? "static" : "field", x->printable_bci()); aoqi@0: } aoqi@0: #endif aoqi@0: aoqi@0: bool stress_deopt = StressLoopInvariantCodeMotion && info && info->deoptimize_on_exception(); aoqi@0: if (x->needs_null_check() && aoqi@0: (needs_patching || aoqi@0: MacroAssembler::needs_explicit_null_check(x->offset()) || aoqi@0: stress_deopt)) { aoqi@0: LIR_Opr obj = object.result(); aoqi@0: if (stress_deopt) { aoqi@0: obj = new_register(T_OBJECT); aoqi@0: __ move(LIR_OprFact::oopConst(NULL), obj); aoqi@0: } vkempik@8735: // Emit an explicit null check because the offset is too large. vkempik@8735: // If the class is not loaded and the object is NULL, we need to deoptimize to throw a vkempik@8735: // NoClassDefFoundError in the interpreter instead of an implicit NPE from compiled code. vkempik@8735: __ null_check(obj, new CodeEmitInfo(info), /* deoptimize */ needs_patching); aoqi@0: } aoqi@0: aoqi@0: LIR_Opr reg = rlock_result(x, field_type); aoqi@0: LIR_Address* address; aoqi@0: if (needs_patching) { aoqi@0: // we need to patch the offset in the instruction so don't allow aoqi@0: // generate_address to try to be smart about emitting the -1. aoqi@0: // Otherwise the patching code won't know how to find the aoqi@0: // instruction to patch. aoqi@0: address = new LIR_Address(object.result(), PATCHED_ADDR, field_type); aoqi@0: } else { aoqi@0: address = generate_address(object.result(), x->offset(), field_type); aoqi@0: } aoqi@0: aoqi@0: if (is_volatile && !needs_patching) { aoqi@0: volatile_field_load(address, reg, info); aoqi@0: } else { aoqi@0: LIR_PatchCode patch_code = needs_patching ? lir_patch_normal : lir_patch_none; aoqi@0: __ load(address, reg, info, patch_code); aoqi@0: } aoqi@0: aoqi@0: if (is_volatile && os::is_MP()) { aoqi@0: __ membar_acquire(); aoqi@0: } aoqi@0: } aoqi@0: aoqi@0: aoqi@0: //------------------------java.nio.Buffer.checkIndex------------------------ aoqi@0: aoqi@0: // int java.nio.Buffer.checkIndex(int) aoqi@0: void LIRGenerator::do_NIOCheckIndex(Intrinsic* x) { aoqi@0: // NOTE: by the time we are in checkIndex() we are guaranteed that aoqi@0: // the buffer is non-null (because checkIndex is package-private and aoqi@0: // only called from within other methods in the buffer). aoqi@0: assert(x->number_of_arguments() == 2, "wrong type"); aoqi@0: LIRItem buf (x->argument_at(0), this); aoqi@0: LIRItem index(x->argument_at(1), this); aoqi@0: buf.load_item(); aoqi@0: index.load_item(); aoqi@0: aoqi@0: LIR_Opr result = rlock_result(x); aoqi@0: if (GenerateRangeChecks) { aoqi@0: CodeEmitInfo* info = state_for(x); aoqi@0: CodeStub* stub = new RangeCheckStub(info, index.result(), true); aoqi@0: if (index.result()->is_constant()) { aoqi@1: #ifndef MIPS64 aoqi@0: cmp_mem_int(lir_cond_belowEqual, buf.result(), java_nio_Buffer::limit_offset(), index.result()->as_jint(), info); aoqi@0: __ branch(lir_cond_belowEqual, T_INT, stub); aoqi@1: #else aoqi@1: LIR_Opr left = LIR_OprFact::address(new LIR_Address( buf.result(), aoqi@1: java_nio_Buffer::limit_offset(),T_INT)); aoqi@1: LIR_Opr right = LIR_OprFact::intConst(index.result()->as_jint()); aoqi@1: __ null_check_for_branch(lir_cond_belowEqual, left, right, info); aoqi@1: __ branch(lir_cond_belowEqual,left, right ,T_INT, stub); // forward branch aoqi@1: aoqi@1: #endif aoqi@0: } else { aoqi@1: #ifndef MIPS64 aoqi@0: cmp_reg_mem(lir_cond_aboveEqual, index.result(), buf.result(), aoqi@0: java_nio_Buffer::limit_offset(), T_INT, info); aoqi@0: __ branch(lir_cond_aboveEqual, T_INT, stub); aoqi@1: #else aoqi@1: LIR_Opr right = LIR_OprFact::address(new LIR_Address( buf.result(), java_nio_Buffer::limit_offset(),T_INT)); aoqi@1: LIR_Opr left = index.result(); aoqi@1: __ null_check_for_branch(lir_cond_aboveEqual, left, right, info); aoqi@1: __ branch(lir_cond_aboveEqual, left, right , T_INT, stub); // forward branch aoqi@1: #endif aoqi@0: } aoqi@0: __ move(index.result(), result); aoqi@0: } else { aoqi@0: // Just load the index into the result register aoqi@0: __ move(index.result(), result); aoqi@0: } aoqi@0: } aoqi@0: aoqi@0: aoqi@0: //------------------------array access-------------------------------------- aoqi@0: aoqi@0: aoqi@0: void LIRGenerator::do_ArrayLength(ArrayLength* x) { aoqi@0: LIRItem array(x->array(), this); aoqi@0: array.load_item(); aoqi@0: LIR_Opr reg = rlock_result(x); aoqi@0: aoqi@0: CodeEmitInfo* info = NULL; aoqi@0: if (x->needs_null_check()) { aoqi@0: NullCheck* nc = x->explicit_null_check(); aoqi@0: if (nc == NULL) { aoqi@0: info = state_for(x); aoqi@0: } else { aoqi@0: info = state_for(nc); aoqi@0: } aoqi@0: if (StressLoopInvariantCodeMotion && info->deoptimize_on_exception()) { aoqi@0: LIR_Opr obj = new_register(T_OBJECT); aoqi@0: __ move(LIR_OprFact::oopConst(NULL), obj); aoqi@0: __ null_check(obj, new CodeEmitInfo(info)); aoqi@0: } aoqi@0: } aoqi@0: __ load(new LIR_Address(array.result(), arrayOopDesc::length_offset_in_bytes(), T_INT), reg, info, lir_patch_none); aoqi@0: } aoqi@0: aoqi@0: aoqi@0: void LIRGenerator::do_LoadIndexed(LoadIndexed* x) { aoqi@0: bool use_length = x->length() != NULL; aoqi@0: LIRItem array(x->array(), this); aoqi@0: LIRItem index(x->index(), this); aoqi@0: LIRItem length(this); aoqi@0: bool needs_range_check = x->compute_needs_range_check(); aoqi@0: aoqi@0: if (use_length && needs_range_check) { aoqi@0: length.set_instruction(x->length()); aoqi@0: length.load_item(); aoqi@0: } aoqi@0: aoqi@0: array.load_item(); aoqi@0: if (index.is_constant() && can_inline_as_constant(x->index())) { aoqi@0: // let it be a constant aoqi@0: index.dont_load_item(); aoqi@0: } else { aoqi@0: index.load_item(); aoqi@0: } aoqi@0: aoqi@0: CodeEmitInfo* range_check_info = state_for(x); aoqi@0: CodeEmitInfo* null_check_info = NULL; aoqi@0: if (x->needs_null_check()) { aoqi@0: NullCheck* nc = x->explicit_null_check(); aoqi@0: if (nc != NULL) { aoqi@0: null_check_info = state_for(nc); aoqi@0: } else { aoqi@0: null_check_info = range_check_info; aoqi@0: } aoqi@0: if (StressLoopInvariantCodeMotion && null_check_info->deoptimize_on_exception()) { aoqi@0: LIR_Opr obj = new_register(T_OBJECT); aoqi@0: __ move(LIR_OprFact::oopConst(NULL), obj); aoqi@0: __ null_check(obj, new CodeEmitInfo(null_check_info)); aoqi@0: } aoqi@0: } aoqi@0: aoqi@0: // emit array address setup early so it schedules better aoqi@0: LIR_Address* array_addr = emit_array_address(array.result(), index.result(), x->elt_type(), false); aoqi@0: aoqi@0: if (GenerateRangeChecks && needs_range_check) { aoqi@0: if (StressLoopInvariantCodeMotion && range_check_info->deoptimize_on_exception()) { aoqi@1: #ifndef MIPS64 aoqi@0: __ branch(lir_cond_always, T_ILLEGAL, new RangeCheckStub(range_check_info, index.result())); aoqi@1: #else aoqi@1: tty->print_cr("LIRGenerator::do_LoadIndexed(LoadIndexed* x) unimplemented yet!"); aoqi@1: Unimplemented(); aoqi@1: #endif aoqi@0: } else if (use_length) { aoqi@0: // TODO: use a (modified) version of array_range_check that does not require a aoqi@0: // constant length to be loaded to a register aoqi@1: #ifndef MIPS64 aoqi@0: __ cmp(lir_cond_belowEqual, length.result(), index.result()); aoqi@0: __ branch(lir_cond_belowEqual, T_INT, new RangeCheckStub(range_check_info, index.result())); aoqi@1: #else aoqi@1: __ branch(lir_cond_belowEqual, length.result(), index.result(),T_INT, new RangeCheckStub(range_check_info, index.result())); aoqi@1: #endif aoqi@0: } else { aoqi@0: array_range_check(array.result(), index.result(), null_check_info, range_check_info); aoqi@0: // The range check performs the null check, so clear it out for the load aoqi@0: null_check_info = NULL; aoqi@0: } aoqi@0: } aoqi@0: aoqi@0: __ move(array_addr, rlock_result(x, x->elt_type()), null_check_info); aoqi@0: } aoqi@0: aoqi@0: aoqi@0: void LIRGenerator::do_NullCheck(NullCheck* x) { aoqi@0: if (x->can_trap()) { aoqi@0: LIRItem value(x->obj(), this); aoqi@0: value.load_item(); aoqi@0: CodeEmitInfo* info = state_for(x); aoqi@0: __ null_check(value.result(), info); aoqi@0: } aoqi@0: } aoqi@0: aoqi@0: aoqi@0: void LIRGenerator::do_TypeCast(TypeCast* x) { aoqi@0: LIRItem value(x->obj(), this); aoqi@0: value.load_item(); aoqi@0: // the result is the same as from the node we are casting aoqi@0: set_result(x, value.result()); aoqi@0: } aoqi@0: aoqi@0: aoqi@0: void LIRGenerator::do_Throw(Throw* x) { aoqi@0: LIRItem exception(x->exception(), this); aoqi@0: exception.load_item(); aoqi@0: set_no_result(x); aoqi@0: LIR_Opr exception_opr = exception.result(); aoqi@0: CodeEmitInfo* info = state_for(x, x->state()); aoqi@0: aoqi@0: #ifndef PRODUCT aoqi@0: if (PrintC1Statistics) { aoqi@0: increment_counter(Runtime1::throw_count_address(), T_INT); aoqi@0: } aoqi@0: #endif aoqi@0: aoqi@0: // check if the instruction has an xhandler in any of the nested scopes aoqi@0: bool unwind = false; aoqi@0: if (info->exception_handlers()->length() == 0) { aoqi@0: // this throw is not inside an xhandler aoqi@0: unwind = true; aoqi@0: } else { aoqi@0: // get some idea of the throw type aoqi@0: bool type_is_exact = true; aoqi@0: ciType* throw_type = x->exception()->exact_type(); aoqi@0: if (throw_type == NULL) { aoqi@0: type_is_exact = false; aoqi@0: throw_type = x->exception()->declared_type(); aoqi@0: } aoqi@0: if (throw_type != NULL && throw_type->is_instance_klass()) { aoqi@0: ciInstanceKlass* throw_klass = (ciInstanceKlass*)throw_type; aoqi@0: unwind = !x->exception_handlers()->could_catch(throw_klass, type_is_exact); aoqi@0: } aoqi@0: } aoqi@0: aoqi@0: // do null check before moving exception oop into fixed register aoqi@0: // to avoid a fixed interval with an oop during the null check. aoqi@0: // Use a copy of the CodeEmitInfo because debug information is aoqi@0: // different for null_check and throw. aoqi@0: if (GenerateCompilerNullChecks && aoqi@0: (x->exception()->as_NewInstance() == NULL && x->exception()->as_ExceptionObject() == NULL)) { aoqi@0: // if the exception object wasn't created using new then it might be null. aoqi@0: __ null_check(exception_opr, new CodeEmitInfo(info, x->state()->copy(ValueStack::ExceptionState, x->state()->bci()))); aoqi@0: } aoqi@0: aoqi@0: if (compilation()->env()->jvmti_can_post_on_exceptions()) { aoqi@0: // we need to go through the exception lookup path to get JVMTI aoqi@0: // notification done aoqi@0: unwind = false; aoqi@0: } aoqi@0: aoqi@0: // move exception oop into fixed register aoqi@0: __ move(exception_opr, exceptionOopOpr()); aoqi@0: aoqi@0: if (unwind) { aoqi@0: __ unwind_exception(exceptionOopOpr()); aoqi@0: } else { aoqi@0: __ throw_exception(exceptionPcOpr(), exceptionOopOpr(), info); aoqi@0: } aoqi@0: } aoqi@0: aoqi@0: aoqi@0: void LIRGenerator::do_RoundFP(RoundFP* x) { aoqi@0: LIRItem input(x->input(), this); aoqi@0: input.load_item(); aoqi@0: LIR_Opr input_opr = input.result(); aoqi@0: assert(input_opr->is_register(), "why round if value is not in a register?"); aoqi@0: assert(input_opr->is_single_fpu() || input_opr->is_double_fpu(), "input should be floating-point value"); aoqi@0: if (input_opr->is_single_fpu()) { aoqi@0: set_result(x, round_item(input_opr)); // This code path not currently taken aoqi@0: } else { aoqi@0: LIR_Opr result = new_register(T_DOUBLE); aoqi@0: set_vreg_flag(result, must_start_in_memory); aoqi@0: __ roundfp(input_opr, LIR_OprFact::illegalOpr, result); aoqi@0: set_result(x, result); aoqi@0: } aoqi@0: } aoqi@0: iveresov@7205: // Here UnsafeGetRaw may have x->base() and x->index() be int or long iveresov@7205: // on both 64 and 32 bits. Expecting x->base() to be always long on 64bit. aoqi@0: void LIRGenerator::do_UnsafeGetRaw(UnsafeGetRaw* x) { aoqi@0: LIRItem base(x->base(), this); aoqi@0: LIRItem idx(this); aoqi@0: aoqi@0: base.load_item(); aoqi@0: if (x->has_index()) { aoqi@0: idx.set_instruction(x->index()); aoqi@0: idx.load_nonconstant(); aoqi@0: } aoqi@0: aoqi@0: LIR_Opr reg = rlock_result(x, x->basic_type()); aoqi@0: aoqi@0: int log2_scale = 0; aoqi@0: if (x->has_index()) { aoqi@0: log2_scale = x->log2_scale(); aoqi@0: } aoqi@0: aoqi@0: assert(!x->has_index() || idx.value() == x->index(), "should match"); aoqi@0: aoqi@0: LIR_Opr base_op = base.result(); iveresov@7205: LIR_Opr index_op = idx.result(); aoqi@0: #ifndef _LP64 iveresov@7233: if (base_op->type() == T_LONG) { aoqi@0: base_op = new_register(T_INT); aoqi@0: __ convert(Bytecodes::_l2i, base.result(), base_op); aoqi@0: } iveresov@7205: if (x->has_index()) { iveresov@7233: if (index_op->type() == T_LONG) { iveresov@7205: LIR_Opr long_index_op = index_op; iveresov@7233: if (index_op->is_constant()) { iveresov@7205: long_index_op = new_register(T_LONG); iveresov@7205: __ move(index_op, long_index_op); iveresov@7205: } iveresov@7205: index_op = new_register(T_INT); iveresov@7205: __ convert(Bytecodes::_l2i, long_index_op, index_op); iveresov@7205: } else { iveresov@7205: assert(x->index()->type()->tag() == intTag, "must be"); iveresov@7205: } iveresov@7205: } iveresov@7205: // At this point base and index should be all ints. iveresov@7205: assert(base_op->type() == T_INT && !base_op->is_constant(), "base should be an non-constant int"); iveresov@7205: assert(!x->has_index() || index_op->type() == T_INT, "index should be an int"); iveresov@7205: #else iveresov@7205: if (x->has_index()) { iveresov@7233: if (index_op->type() == T_INT) { iveresov@7233: if (!index_op->is_constant()) { iveresov@7205: index_op = new_register(T_LONG); iveresov@7205: __ convert(Bytecodes::_i2l, idx.result(), index_op); iveresov@7205: } iveresov@7205: } else { iveresov@7233: assert(index_op->type() == T_LONG, "must be"); iveresov@7233: if (index_op->is_constant()) { iveresov@7205: index_op = new_register(T_LONG); iveresov@7205: __ move(idx.result(), index_op); iveresov@7205: } iveresov@7205: } iveresov@7205: } iveresov@7205: // At this point base is a long non-constant iveresov@7205: // Index is a long register or a int constant. iveresov@7205: // We allow the constant to stay an int because that would allow us a more compact encoding by iveresov@7205: // embedding an immediate offset in the address expression. If we have a long constant, we have to iveresov@7205: // move it into a register first. iveresov@7205: assert(base_op->type() == T_LONG && !base_op->is_constant(), "base must be a long non-constant"); iveresov@7205: assert(!x->has_index() || (index_op->type() == T_INT && index_op->is_constant()) || iveresov@7205: (index_op->type() == T_LONG && !index_op->is_constant()), "unexpected index type"); aoqi@0: #endif aoqi@0: aoqi@0: BasicType dst_type = x->basic_type(); aoqi@0: aoqi@0: LIR_Address* addr; aoqi@0: if (index_op->is_constant()) { aoqi@0: assert(log2_scale == 0, "must not have a scale"); iveresov@7205: assert(index_op->type() == T_INT, "only int constants supported"); aoqi@0: addr = new LIR_Address(base_op, index_op->as_jint(), dst_type); aoqi@0: } else { aoqi@0: #ifdef X86 aoqi@0: addr = new LIR_Address(base_op, index_op, LIR_Address::Scale(log2_scale), 0, dst_type); dlong@7598: #elif defined(GENERATE_ADDRESS_IS_PREFERRED) aoqi@0: addr = generate_address(base_op, index_op, log2_scale, 0, dst_type); aoqi@0: #else aoqi@0: if (index_op->is_illegal() || log2_scale == 0) { aoqi@1: #ifndef MIPS64 aoqi@0: addr = new LIR_Address(base_op, index_op, dst_type); aoqi@1: #else aoqi@1: #ifdef _LP64 aoqi@1: LIR_Opr ptr = new_register(T_LONG); aoqi@1: #else aoqi@1: LIR_Opr ptr = new_register(T_INT); aoqi@1: #endif aoqi@1: __ move(base_op, ptr); aoqi@1: if(index_op -> is_valid()) aoqi@1: __ add(ptr, index_op, ptr); aoqi@1: addr = new LIR_Address(ptr, 0, dst_type); aoqi@1: #endif aoqi@0: } else { aoqi@0: LIR_Opr tmp = new_pointer_register(); aoqi@0: __ shift_left(index_op, log2_scale, tmp); aoqi@0: addr = new LIR_Address(base_op, tmp, dst_type); aoqi@0: } aoqi@0: #endif aoqi@0: } aoqi@0: aoqi@0: if (x->may_be_unaligned() && (dst_type == T_LONG || dst_type == T_DOUBLE)) { aoqi@0: __ unaligned_move(addr, reg); aoqi@0: } else { aoqi@0: if (dst_type == T_OBJECT && x->is_wide()) { aoqi@0: __ move_wide(addr, reg); aoqi@0: } else { aoqi@0: __ move(addr, reg); aoqi@0: } aoqi@0: } aoqi@0: } aoqi@0: aoqi@0: aoqi@0: void LIRGenerator::do_UnsafePutRaw(UnsafePutRaw* x) { aoqi@0: int log2_scale = 0; aoqi@0: BasicType type = x->basic_type(); aoqi@0: aoqi@0: if (x->has_index()) { aoqi@0: log2_scale = x->log2_scale(); aoqi@0: } aoqi@0: aoqi@0: LIRItem base(x->base(), this); aoqi@0: LIRItem value(x->value(), this); aoqi@0: LIRItem idx(this); aoqi@0: aoqi@0: base.load_item(); aoqi@0: if (x->has_index()) { aoqi@0: idx.set_instruction(x->index()); aoqi@0: idx.load_item(); aoqi@0: } aoqi@0: aoqi@0: if (type == T_BYTE || type == T_BOOLEAN) { aoqi@0: value.load_byte_item(); aoqi@0: } else { aoqi@0: value.load_item(); aoqi@0: } aoqi@0: aoqi@0: set_no_result(x); aoqi@0: aoqi@0: LIR_Opr base_op = base.result(); iveresov@7205: LIR_Opr index_op = idx.result(); iveresov@7205: dlong@7598: #ifdef GENERATE_ADDRESS_IS_PREFERRED dlong@7598: LIR_Address* addr = generate_address(base_op, index_op, log2_scale, 0, x->basic_type()); dlong@7598: #else aoqi@0: #ifndef _LP64 iveresov@7233: if (base_op->type() == T_LONG) { aoqi@0: base_op = new_register(T_INT); aoqi@0: __ convert(Bytecodes::_l2i, base.result(), base_op); aoqi@0: } iveresov@7205: if (x->has_index()) { iveresov@7233: if (index_op->type() == T_LONG) { iveresov@7205: index_op = new_register(T_INT); iveresov@7205: __ convert(Bytecodes::_l2i, idx.result(), index_op); iveresov@7205: } iveresov@7205: } iveresov@7205: // At this point base and index should be all ints and not constants iveresov@7205: assert(base_op->type() == T_INT && !base_op->is_constant(), "base should be an non-constant int"); iveresov@7205: assert(!x->has_index() || (index_op->type() == T_INT && !index_op->is_constant()), "index should be an non-constant int"); iveresov@7205: #else iveresov@7205: if (x->has_index()) { iveresov@7233: if (index_op->type() == T_INT) { iveresov@7205: index_op = new_register(T_LONG); iveresov@7205: __ convert(Bytecodes::_i2l, idx.result(), index_op); iveresov@7205: } iveresov@7205: } iveresov@7205: // At this point base and index are long and non-constant iveresov@7205: assert(base_op->type() == T_LONG && !base_op->is_constant(), "base must be a non-constant long"); iveresov@7205: assert(!x->has_index() || (index_op->type() == T_LONG && !index_op->is_constant()), "index must be a non-constant long"); aoqi@0: #endif aoqi@0: aoqi@0: if (log2_scale != 0) { aoqi@0: // temporary fix (platform dependent code without shift on Intel would be better) iveresov@7205: // TODO: ARM also allows embedded shift in the address roland@7924: LIR_Opr tmp = new_pointer_register(); roland@7924: if (TwoOperandLIRForm) { roland@7924: __ move(index_op, tmp); roland@7924: index_op = tmp; roland@7924: } roland@7924: __ shift_left(index_op, log2_scale, tmp); roland@7924: if (!TwoOperandLIRForm) { roland@7924: index_op = tmp; roland@7924: } aoqi@0: } aoqi@0: aoqi@0: LIR_Address* addr = new LIR_Address(base_op, index_op, x->basic_type()); dlong@7598: #endif // !GENERATE_ADDRESS_IS_PREFERRED aoqi@0: __ move(value.result(), addr); aoqi@0: } aoqi@0: aoqi@0: aoqi@0: void LIRGenerator::do_UnsafeGetObject(UnsafeGetObject* x) { aoqi@0: BasicType type = x->basic_type(); aoqi@0: LIRItem src(x->object(), this); aoqi@0: LIRItem off(x->offset(), this); aoqi@0: aoqi@0: off.load_item(); aoqi@0: src.load_item(); aoqi@0: aoqi@0: LIR_Opr value = rlock_result(x, x->basic_type()); aoqi@0: aoqi@0: get_Object_unsafe(value, src.result(), off.result(), type, x->is_volatile()); aoqi@0: aoqi@0: #if INCLUDE_ALL_GCS aoqi@0: // We might be reading the value of the referent field of a aoqi@0: // Reference object in order to attach it back to the live aoqi@0: // object graph. If G1 is enabled then we need to record aoqi@0: // the value that is being returned in an SATB log buffer. aoqi@0: // aoqi@0: // We need to generate code similar to the following... aoqi@0: // aoqi@0: // if (offset == java_lang_ref_Reference::referent_offset) { aoqi@0: // if (src != NULL) { aoqi@0: // if (klass(src)->reference_type() != REF_NONE) { aoqi@0: // pre_barrier(..., value, ...); aoqi@0: // } aoqi@0: // } aoqi@0: // } aoqi@0: aoqi@0: if (UseG1GC && type == T_OBJECT) { aoqi@0: bool gen_pre_barrier = true; // Assume we need to generate pre_barrier. aoqi@0: bool gen_offset_check = true; // Assume we need to generate the offset guard. aoqi@0: bool gen_source_check = true; // Assume we need to check the src object for null. aoqi@0: bool gen_type_check = true; // Assume we need to check the reference_type. aoqi@0: aoqi@0: if (off.is_constant()) { aoqi@0: jlong off_con = (off.type()->is_int() ? aoqi@0: (jlong) off.get_jint_constant() : aoqi@0: off.get_jlong_constant()); aoqi@0: aoqi@0: aoqi@0: if (off_con != (jlong) java_lang_ref_Reference::referent_offset) { aoqi@0: // The constant offset is something other than referent_offset. aoqi@0: // We can skip generating/checking the remaining guards and aoqi@0: // skip generation of the code stub. aoqi@0: gen_pre_barrier = false; aoqi@0: } else { aoqi@0: // The constant offset is the same as referent_offset - aoqi@0: // we do not need to generate a runtime offset check. aoqi@0: gen_offset_check = false; aoqi@0: } aoqi@0: } aoqi@0: aoqi@0: // We don't need to generate stub if the source object is an array aoqi@0: if (gen_pre_barrier && src.type()->is_array()) { aoqi@0: gen_pre_barrier = false; aoqi@0: } aoqi@0: aoqi@0: if (gen_pre_barrier) { aoqi@0: // We still need to continue with the checks. aoqi@0: if (src.is_constant()) { aoqi@0: ciObject* src_con = src.get_jobject_constant(); aoqi@0: guarantee(src_con != NULL, "no source constant"); aoqi@0: aoqi@0: if (src_con->is_null_object()) { aoqi@0: // The constant src object is null - We can skip aoqi@0: // generating the code stub. aoqi@0: gen_pre_barrier = false; aoqi@0: } else { aoqi@0: // Non-null constant source object. We still have to generate aoqi@0: // the slow stub - but we don't need to generate the runtime aoqi@0: // null object check. aoqi@0: gen_source_check = false; aoqi@0: } aoqi@0: } aoqi@0: } aoqi@0: if (gen_pre_barrier && !PatchALot) { aoqi@0: // Can the klass of object be statically determined to be aoqi@0: // a sub-class of Reference? aoqi@0: ciType* type = src.value()->declared_type(); aoqi@0: if ((type != NULL) && type->is_loaded()) { aoqi@0: if (type->is_subtype_of(compilation()->env()->Reference_klass())) { aoqi@0: gen_type_check = false; aoqi@0: } else if (type->is_klass() && aoqi@0: !compilation()->env()->Object_klass()->is_subtype_of(type->as_klass())) { aoqi@0: // Not Reference and not Object klass. aoqi@0: gen_pre_barrier = false; aoqi@0: } aoqi@0: } aoqi@0: } aoqi@0: aoqi@0: if (gen_pre_barrier) { aoqi@0: LabelObj* Lcont = new LabelObj(); aoqi@0: aoqi@0: // We can have generate one runtime check here. Let's start with aoqi@0: // the offset check. aoqi@0: if (gen_offset_check) { aoqi@0: // if (offset != referent_offset) -> continue aoqi@0: // If offset is an int then we can do the comparison with the aoqi@0: // referent_offset constant; otherwise we need to move aoqi@0: // referent_offset into a temporary register and generate aoqi@0: // a reg-reg compare. aoqi@0: aoqi@0: LIR_Opr referent_off; aoqi@0: aoqi@0: if (off.type()->is_int()) { aoqi@0: referent_off = LIR_OprFact::intConst(java_lang_ref_Reference::referent_offset); aoqi@0: } else { aoqi@0: assert(off.type()->is_long(), "what else?"); aoqi@0: referent_off = new_register(T_LONG); aoqi@0: __ move(LIR_OprFact::longConst(java_lang_ref_Reference::referent_offset), referent_off); aoqi@0: } aoqi@1: #ifndef MIPS64 aoqi@0: __ cmp(lir_cond_notEqual, off.result(), referent_off); aoqi@0: __ branch(lir_cond_notEqual, as_BasicType(off.type()), Lcont->label()); aoqi@1: #else aoqi@1: __ branch(lir_cond_notEqual, off.result(), referent_off, Lcont->label()); aoqi@1: #endif aoqi@0: } aoqi@0: if (gen_source_check) { aoqi@0: // offset is a const and equals referent offset aoqi@0: // if (source == null) -> continue aoqi@1: #ifndef MIPS64 aoqi@0: __ cmp(lir_cond_equal, src.result(), LIR_OprFact::oopConst(NULL)); aoqi@0: __ branch(lir_cond_equal, T_OBJECT, Lcont->label()); aoqi@1: #else aoqi@1: __ branch(lir_cond_equal, src.result(), LIR_OprFact::oopConst(NULL), Lcont->label()); aoqi@1: #endif aoqi@0: } aoqi@0: LIR_Opr src_klass = new_register(T_OBJECT); aoqi@0: if (gen_type_check) { aoqi@0: // We have determined that offset == referent_offset && src != null. aoqi@0: // if (src->_klass->_reference_type == REF_NONE) -> continue aoqi@0: __ move(new LIR_Address(src.result(), oopDesc::klass_offset_in_bytes(), T_ADDRESS), src_klass); aoqi@0: LIR_Address* reference_type_addr = new LIR_Address(src_klass, in_bytes(InstanceKlass::reference_type_offset()), T_BYTE); aoqi@0: LIR_Opr reference_type = new_register(T_INT); aoqi@0: __ move(reference_type_addr, reference_type); aoqi@1: #ifndef MIPS64 aoqi@0: __ cmp(lir_cond_equal, reference_type, LIR_OprFact::intConst(REF_NONE)); aoqi@0: __ branch(lir_cond_equal, T_INT, Lcont->label()); aoqi@1: #else aoqi@1: __ branch(lir_cond_equal, reference_type, LIR_OprFact::intConst(REF_NONE), Lcont->label()); aoqi@1: #endif aoqi@0: } aoqi@0: { aoqi@0: // We have determined that src->_klass->_reference_type != REF_NONE aoqi@0: // so register the value in the referent field with the pre-barrier. aoqi@0: pre_barrier(LIR_OprFact::illegalOpr /* addr_opr */, aoqi@0: value /* pre_val */, aoqi@0: false /* do_load */, aoqi@0: false /* patch */, aoqi@0: NULL /* info */); aoqi@0: } aoqi@0: __ branch_destination(Lcont->label()); aoqi@0: } aoqi@0: } aoqi@0: #endif // INCLUDE_ALL_GCS aoqi@0: aoqi@0: if (x->is_volatile() && os::is_MP()) __ membar_acquire(); aoqi@0: } aoqi@0: aoqi@0: aoqi@0: void LIRGenerator::do_UnsafePutObject(UnsafePutObject* x) { aoqi@0: BasicType type = x->basic_type(); aoqi@0: LIRItem src(x->object(), this); aoqi@0: LIRItem off(x->offset(), this); aoqi@0: LIRItem data(x->value(), this); aoqi@0: aoqi@0: src.load_item(); aoqi@0: if (type == T_BOOLEAN || type == T_BYTE) { aoqi@0: data.load_byte_item(); aoqi@0: } else { aoqi@0: data.load_item(); aoqi@0: } aoqi@0: off.load_item(); aoqi@0: aoqi@0: set_no_result(x); aoqi@0: aoqi@0: if (x->is_volatile() && os::is_MP()) __ membar_release(); aoqi@0: put_Object_unsafe(src.result(), off.result(), data.result(), type, x->is_volatile()); aoqi@0: if (x->is_volatile() && os::is_MP()) __ membar(); aoqi@0: } aoqi@0: aoqi@0: aoqi@0: void LIRGenerator::do_UnsafePrefetch(UnsafePrefetch* x, bool is_store) { aoqi@0: LIRItem src(x->object(), this); aoqi@0: LIRItem off(x->offset(), this); aoqi@0: aoqi@0: src.load_item(); aoqi@0: if (off.is_constant() && can_inline_as_constant(x->offset())) { aoqi@0: // let it be a constant aoqi@0: off.dont_load_item(); aoqi@0: } else { aoqi@0: off.load_item(); aoqi@0: } aoqi@0: aoqi@0: set_no_result(x); aoqi@0: aoqi@0: LIR_Address* addr = generate_address(src.result(), off.result(), 0, 0, T_BYTE); aoqi@0: __ prefetch(addr, is_store); aoqi@0: } aoqi@0: aoqi@0: aoqi@0: void LIRGenerator::do_UnsafePrefetchRead(UnsafePrefetchRead* x) { aoqi@0: do_UnsafePrefetch(x, false); aoqi@0: } aoqi@0: aoqi@0: aoqi@0: void LIRGenerator::do_UnsafePrefetchWrite(UnsafePrefetchWrite* x) { aoqi@0: do_UnsafePrefetch(x, true); aoqi@0: } aoqi@0: aoqi@0: aoqi@0: void LIRGenerator::do_SwitchRanges(SwitchRangeArray* x, LIR_Opr value, BlockBegin* default_sux) { aoqi@0: int lng = x->length(); aoqi@0: aoqi@0: for (int i = 0; i < lng; i++) { aoqi@0: SwitchRange* one_range = x->at(i); aoqi@0: int low_key = one_range->low_key(); aoqi@0: int high_key = one_range->high_key(); aoqi@0: BlockBegin* dest = one_range->sux(); aoqi@0: if (low_key == high_key) { aoqi@1: #ifndef MIPS64 aoqi@0: __ cmp(lir_cond_equal, value, low_key); aoqi@0: __ branch(lir_cond_equal, T_INT, dest); aoqi@1: #else aoqi@1: __ branch(lir_cond_equal, value, LIR_OprFact::intConst(low_key), T_INT, dest); aoqi@1: #endif aoqi@0: } else if (high_key - low_key == 1) { aoqi@1: #ifndef MIPS64 aoqi@0: __ cmp(lir_cond_equal, value, low_key); aoqi@0: __ branch(lir_cond_equal, T_INT, dest); aoqi@0: __ cmp(lir_cond_equal, value, high_key); aoqi@0: __ branch(lir_cond_equal, T_INT, dest); aoqi@1: #else aoqi@1: __ branch(lir_cond_equal, value, LIR_OprFact::intConst(low_key), T_INT, dest); aoqi@1: __ branch(lir_cond_equal, value, LIR_OprFact::intConst(high_key), T_INT, dest); aoqi@1: aoqi@1: #endif aoqi@0: } else { aoqi@0: LabelObj* L = new LabelObj(); aoqi@1: #ifndef MIPS64 aoqi@0: __ cmp(lir_cond_less, value, low_key); aoqi@0: __ branch(lir_cond_less, T_INT, L->label()); aoqi@0: __ cmp(lir_cond_lessEqual, value, high_key); aoqi@0: __ branch(lir_cond_lessEqual, T_INT, dest); aoqi@0: __ branch_destination(L->label()); aoqi@1: #else aoqi@1: __ branch(lir_cond_less, value, LIR_OprFact::intConst(low_key), L->label()); aoqi@1: __ branch(lir_cond_lessEqual, value, LIR_OprFact::intConst(high_key), T_INT, dest); aoqi@1: __ branch_destination(L->label()); aoqi@1: #endif aoqi@0: } aoqi@0: } aoqi@0: __ jump(default_sux); aoqi@0: } aoqi@0: aoqi@0: aoqi@0: SwitchRangeArray* LIRGenerator::create_lookup_ranges(TableSwitch* x) { aoqi@0: SwitchRangeList* res = new SwitchRangeList(); aoqi@0: int len = x->length(); aoqi@0: if (len > 0) { aoqi@0: BlockBegin* sux = x->sux_at(0); aoqi@0: int key = x->lo_key(); aoqi@0: BlockBegin* default_sux = x->default_sux(); aoqi@0: SwitchRange* range = new SwitchRange(key, sux); aoqi@0: for (int i = 0; i < len; i++, key++) { aoqi@0: BlockBegin* new_sux = x->sux_at(i); aoqi@0: if (sux == new_sux) { aoqi@0: // still in same range aoqi@0: range->set_high_key(key); aoqi@0: } else { aoqi@0: // skip tests which explicitly dispatch to the default aoqi@0: if (sux != default_sux) { aoqi@0: res->append(range); aoqi@0: } aoqi@0: range = new SwitchRange(key, new_sux); aoqi@0: } aoqi@0: sux = new_sux; aoqi@0: } aoqi@0: if (res->length() == 0 || res->last() != range) res->append(range); aoqi@0: } aoqi@0: return res; aoqi@0: } aoqi@0: aoqi@0: aoqi@0: // we expect the keys to be sorted by increasing value aoqi@0: SwitchRangeArray* LIRGenerator::create_lookup_ranges(LookupSwitch* x) { aoqi@0: SwitchRangeList* res = new SwitchRangeList(); aoqi@0: int len = x->length(); aoqi@0: if (len > 0) { aoqi@0: BlockBegin* default_sux = x->default_sux(); aoqi@0: int key = x->key_at(0); aoqi@0: BlockBegin* sux = x->sux_at(0); aoqi@0: SwitchRange* range = new SwitchRange(key, sux); aoqi@0: for (int i = 1; i < len; i++) { aoqi@0: int new_key = x->key_at(i); aoqi@0: BlockBegin* new_sux = x->sux_at(i); aoqi@0: if (key+1 == new_key && sux == new_sux) { aoqi@0: // still in same range aoqi@0: range->set_high_key(new_key); aoqi@0: } else { aoqi@0: // skip tests which explicitly dispatch to the default aoqi@0: if (range->sux() != default_sux) { aoqi@0: res->append(range); aoqi@0: } aoqi@0: range = new SwitchRange(new_key, new_sux); aoqi@0: } aoqi@0: key = new_key; aoqi@0: sux = new_sux; aoqi@0: } aoqi@0: if (res->length() == 0 || res->last() != range) res->append(range); aoqi@0: } aoqi@0: return res; aoqi@0: } aoqi@0: aoqi@0: aoqi@0: void LIRGenerator::do_TableSwitch(TableSwitch* x) { aoqi@0: LIRItem tag(x->tag(), this); aoqi@0: tag.load_item(); aoqi@0: set_no_result(x); aoqi@0: aoqi@0: if (x->is_safepoint()) { aoqi@0: __ safepoint(safepoint_poll_register(), state_for(x, x->state_before())); aoqi@0: } aoqi@0: aoqi@0: // move values into phi locations aoqi@0: move_to_phi(x->state()); aoqi@0: aoqi@0: int lo_key = x->lo_key(); aoqi@0: int hi_key = x->hi_key(); aoqi@0: int len = x->length(); aoqi@0: LIR_Opr value = tag.result(); aoqi@0: if (UseTableRanges) { aoqi@0: do_SwitchRanges(create_lookup_ranges(x), value, x->default_sux()); aoqi@0: } else { aoqi@0: for (int i = 0; i < len; i++) { aoqi@1: #ifndef MIPS64 aoqi@0: __ cmp(lir_cond_equal, value, i + lo_key); aoqi@0: __ branch(lir_cond_equal, T_INT, x->sux_at(i)); aoqi@1: #else aoqi@1: __ branch(lir_cond_equal, value, LIR_OprFact::intConst(i+lo_key), T_INT, x->sux_at(i)); aoqi@1: #endif aoqi@0: } aoqi@0: __ jump(x->default_sux()); aoqi@0: } aoqi@0: } aoqi@0: aoqi@0: aoqi@0: void LIRGenerator::do_LookupSwitch(LookupSwitch* x) { aoqi@0: LIRItem tag(x->tag(), this); aoqi@0: tag.load_item(); aoqi@0: set_no_result(x); aoqi@0: aoqi@0: if (x->is_safepoint()) { aoqi@0: __ safepoint(safepoint_poll_register(), state_for(x, x->state_before())); aoqi@0: } aoqi@0: aoqi@0: // move values into phi locations aoqi@0: move_to_phi(x->state()); aoqi@0: aoqi@0: LIR_Opr value = tag.result(); aoqi@0: if (UseTableRanges) { aoqi@0: do_SwitchRanges(create_lookup_ranges(x), value, x->default_sux()); aoqi@0: } else { aoqi@0: int len = x->length(); aoqi@0: for (int i = 0; i < len; i++) { aoqi@1: #ifndef MIPS64 aoqi@0: __ cmp(lir_cond_equal, value, x->key_at(i)); aoqi@0: __ branch(lir_cond_equal, T_INT, x->sux_at(i)); aoqi@1: #else aoqi@1: __ branch(lir_cond_equal, value, LIR_OprFact::intConst(x->key_at(i)), T_INT, x->sux_at(i)); aoqi@1: #endif aoqi@0: } aoqi@0: __ jump(x->default_sux()); aoqi@0: } aoqi@0: } aoqi@0: aoqi@0: aoqi@0: void LIRGenerator::do_Goto(Goto* x) { aoqi@0: set_no_result(x); aoqi@0: aoqi@0: if (block()->next()->as_OsrEntry()) { aoqi@0: // need to free up storage used for OSR entry point aoqi@0: LIR_Opr osrBuffer = block()->next()->operand(); aoqi@0: BasicTypeList signature; iveresov@7585: signature.append(NOT_LP64(T_INT) LP64_ONLY(T_LONG)); // pass a pointer to osrBuffer aoqi@0: CallingConvention* cc = frame_map()->c_calling_convention(&signature); aoqi@0: __ move(osrBuffer, cc->args()->at(0)); aoqi@0: __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_end), aoqi@0: getThreadTemp(), LIR_OprFact::illegalOpr, cc->args()); aoqi@0: } aoqi@0: aoqi@0: if (x->is_safepoint()) { aoqi@0: ValueStack* state = x->state_before() ? x->state_before() : x->state(); aoqi@0: aoqi@0: // increment backedge counter if needed aoqi@0: CodeEmitInfo* info = state_for(x, state); aoqi@0: increment_backedge_counter(info, x->profiled_bci()); aoqi@0: CodeEmitInfo* safepoint_info = state_for(x, state); aoqi@0: __ safepoint(safepoint_poll_register(), safepoint_info); aoqi@0: } aoqi@0: aoqi@0: // Gotos can be folded Ifs, handle this case. aoqi@0: if (x->should_profile()) { aoqi@0: ciMethod* method = x->profiled_method(); aoqi@0: assert(method != NULL, "method should be set if branch is profiled"); aoqi@0: ciMethodData* md = method->method_data_or_null(); aoqi@0: assert(md != NULL, "Sanity"); aoqi@0: ciProfileData* data = md->bci_to_data(x->profiled_bci()); aoqi@0: assert(data != NULL, "must have profiling data"); aoqi@0: int offset; aoqi@0: if (x->direction() == Goto::taken) { aoqi@0: assert(data->is_BranchData(), "need BranchData for two-way branches"); aoqi@0: offset = md->byte_offset_of_slot(data, BranchData::taken_offset()); aoqi@0: } else if (x->direction() == Goto::not_taken) { aoqi@0: assert(data->is_BranchData(), "need BranchData for two-way branches"); aoqi@0: offset = md->byte_offset_of_slot(data, BranchData::not_taken_offset()); aoqi@0: } else { aoqi@0: assert(data->is_JumpData(), "need JumpData for branches"); aoqi@0: offset = md->byte_offset_of_slot(data, JumpData::taken_offset()); aoqi@0: } aoqi@0: LIR_Opr md_reg = new_register(T_METADATA); aoqi@0: __ metadata2reg(md->constant_encoding(), md_reg); aoqi@0: aoqi@0: increment_counter(new LIR_Address(md_reg, offset, aoqi@0: NOT_LP64(T_INT) LP64_ONLY(T_LONG)), DataLayout::counter_increment); aoqi@0: } aoqi@0: aoqi@0: // emit phi-instruction move after safepoint since this simplifies aoqi@0: // describing the state as the safepoint. aoqi@0: move_to_phi(x->state()); aoqi@0: aoqi@0: __ jump(x->default_sux()); aoqi@0: } aoqi@0: aoqi@0: /** aoqi@0: * Emit profiling code if needed for arguments, parameters, return value types aoqi@0: * aoqi@0: * @param md MDO the code will update at runtime aoqi@0: * @param md_base_offset common offset in the MDO for this profile and subsequent ones aoqi@0: * @param md_offset offset in the MDO (on top of md_base_offset) for this profile aoqi@0: * @param profiled_k current profile aoqi@0: * @param obj IR node for the object to be profiled aoqi@0: * @param mdp register to hold the pointer inside the MDO (md + md_base_offset). aoqi@0: * Set once we find an update to make and use for next ones. aoqi@0: * @param not_null true if we know obj cannot be null aoqi@0: * @param signature_at_call_k signature at call for obj aoqi@0: * @param callee_signature_k signature of callee for obj aoqi@0: * at call and callee signatures differ at method handle call aoqi@0: * @return the only klass we know will ever be seen at this profile point aoqi@0: */ aoqi@0: ciKlass* LIRGenerator::profile_type(ciMethodData* md, int md_base_offset, int md_offset, intptr_t profiled_k, aoqi@0: Value obj, LIR_Opr& mdp, bool not_null, ciKlass* signature_at_call_k, aoqi@0: ciKlass* callee_signature_k) { aoqi@0: ciKlass* result = NULL; aoqi@0: bool do_null = !not_null && !TypeEntries::was_null_seen(profiled_k); aoqi@0: bool do_update = !TypeEntries::is_type_unknown(profiled_k); aoqi@0: // known not to be null or null bit already set and already set to aoqi@0: // unknown: nothing we can do to improve profiling aoqi@0: if (!do_null && !do_update) { aoqi@0: return result; aoqi@0: } aoqi@0: aoqi@0: ciKlass* exact_klass = NULL; aoqi@0: Compilation* comp = Compilation::current(); aoqi@0: if (do_update) { aoqi@0: // try to find exact type, using CHA if possible, so that loading aoqi@0: // the klass from the object can be avoided aoqi@0: ciType* type = obj->exact_type(); aoqi@0: if (type == NULL) { aoqi@0: type = obj->declared_type(); aoqi@0: type = comp->cha_exact_type(type); aoqi@0: } aoqi@0: assert(type == NULL || type->is_klass(), "type should be class"); aoqi@0: exact_klass = (type != NULL && type->is_loaded()) ? (ciKlass*)type : NULL; aoqi@0: aoqi@0: do_update = exact_klass == NULL || ciTypeEntries::valid_ciklass(profiled_k) != exact_klass; aoqi@0: } aoqi@0: aoqi@0: if (!do_null && !do_update) { aoqi@0: return result; aoqi@0: } aoqi@0: aoqi@0: ciKlass* exact_signature_k = NULL; aoqi@0: if (do_update) { aoqi@0: // Is the type from the signature exact (the only one possible)? aoqi@0: exact_signature_k = signature_at_call_k->exact_klass(); aoqi@0: if (exact_signature_k == NULL) { aoqi@0: exact_signature_k = comp->cha_exact_type(signature_at_call_k); aoqi@0: } else { aoqi@0: result = exact_signature_k; aoqi@0: // Known statically. No need to emit any code: prevent aoqi@0: // LIR_Assembler::emit_profile_type() from emitting useless code aoqi@0: profiled_k = ciTypeEntries::with_status(result, profiled_k); aoqi@0: } aoqi@0: // exact_klass and exact_signature_k can be both non NULL but aoqi@0: // different if exact_klass is loaded after the ciObject for aoqi@0: // exact_signature_k is created. aoqi@0: if (exact_klass == NULL && exact_signature_k != NULL && exact_klass != exact_signature_k) { aoqi@0: // sometimes the type of the signature is better than the best type aoqi@0: // the compiler has aoqi@0: exact_klass = exact_signature_k; aoqi@0: } aoqi@0: if (callee_signature_k != NULL && aoqi@0: callee_signature_k != signature_at_call_k) { aoqi@0: ciKlass* improved_klass = callee_signature_k->exact_klass(); aoqi@0: if (improved_klass == NULL) { aoqi@0: improved_klass = comp->cha_exact_type(callee_signature_k); aoqi@0: } aoqi@0: if (exact_klass == NULL && improved_klass != NULL && exact_klass != improved_klass) { aoqi@0: exact_klass = exact_signature_k; aoqi@0: } aoqi@0: } aoqi@0: do_update = exact_klass == NULL || ciTypeEntries::valid_ciklass(profiled_k) != exact_klass; aoqi@0: } aoqi@0: aoqi@0: if (!do_null && !do_update) { aoqi@0: return result; aoqi@0: } aoqi@0: aoqi@0: if (mdp == LIR_OprFact::illegalOpr) { aoqi@0: mdp = new_register(T_METADATA); aoqi@0: __ metadata2reg(md->constant_encoding(), mdp); aoqi@0: if (md_base_offset != 0) { aoqi@0: LIR_Address* base_type_address = new LIR_Address(mdp, md_base_offset, T_ADDRESS); aoqi@0: mdp = new_pointer_register(); aoqi@0: __ leal(LIR_OprFact::address(base_type_address), mdp); aoqi@0: } aoqi@0: } aoqi@0: LIRItem value(obj, this); aoqi@0: value.load_item(); aoqi@0: __ profile_type(new LIR_Address(mdp, md_offset, T_METADATA), aoqi@0: value.result(), exact_klass, profiled_k, new_pointer_register(), not_null, exact_signature_k != NULL); aoqi@0: return result; aoqi@0: } aoqi@0: aoqi@0: // profile parameters on entry to the root of the compilation aoqi@0: void LIRGenerator::profile_parameters(Base* x) { aoqi@0: if (compilation()->profile_parameters()) { aoqi@0: CallingConvention* args = compilation()->frame_map()->incoming_arguments(); aoqi@0: ciMethodData* md = scope()->method()->method_data_or_null(); aoqi@0: assert(md != NULL, "Sanity"); aoqi@0: aoqi@0: if (md->parameters_type_data() != NULL) { aoqi@0: ciParametersTypeData* parameters_type_data = md->parameters_type_data(); aoqi@0: ciTypeStackSlotEntries* parameters = parameters_type_data->parameters(); aoqi@0: LIR_Opr mdp = LIR_OprFact::illegalOpr; aoqi@0: for (int java_index = 0, i = 0, j = 0; j < parameters_type_data->number_of_parameters(); i++) { aoqi@0: LIR_Opr src = args->at(i); aoqi@0: assert(!src->is_illegal(), "check"); aoqi@0: BasicType t = src->type(); aoqi@0: if (t == T_OBJECT || t == T_ARRAY) { aoqi@0: intptr_t profiled_k = parameters->type(j); aoqi@0: Local* local = x->state()->local_at(java_index)->as_Local(); aoqi@0: ciKlass* exact = profile_type(md, md->byte_offset_of_slot(parameters_type_data, ParametersTypeData::type_offset(0)), aoqi@0: in_bytes(ParametersTypeData::type_offset(j)) - in_bytes(ParametersTypeData::type_offset(0)), aoqi@0: profiled_k, local, mdp, false, local->declared_type()->as_klass(), NULL); aoqi@0: // If the profile is known statically set it once for all and do not emit any code aoqi@0: if (exact != NULL) { aoqi@0: md->set_parameter_type(j, exact); aoqi@0: } aoqi@0: j++; aoqi@0: } aoqi@0: java_index += type2size[t]; aoqi@0: } aoqi@0: } aoqi@0: } aoqi@0: } aoqi@0: aoqi@0: void LIRGenerator::do_Base(Base* x) { aoqi@0: __ std_entry(LIR_OprFact::illegalOpr); aoqi@0: // Emit moves from physical registers / stack slots to virtual registers aoqi@0: CallingConvention* args = compilation()->frame_map()->incoming_arguments(); aoqi@0: IRScope* irScope = compilation()->hir()->top_scope(); aoqi@0: int java_index = 0; aoqi@0: for (int i = 0; i < args->length(); i++) { aoqi@0: LIR_Opr src = args->at(i); aoqi@0: assert(!src->is_illegal(), "check"); aoqi@0: BasicType t = src->type(); aoqi@0: aoqi@0: // Types which are smaller than int are passed as int, so aoqi@0: // correct the type which passed. aoqi@0: switch (t) { aoqi@0: case T_BYTE: aoqi@0: case T_BOOLEAN: aoqi@0: case T_SHORT: aoqi@0: case T_CHAR: aoqi@0: t = T_INT; aoqi@0: break; aoqi@0: } aoqi@0: aoqi@0: LIR_Opr dest = new_register(t); aoqi@0: __ move(src, dest); aoqi@0: aoqi@0: // Assign new location to Local instruction for this local aoqi@0: Local* local = x->state()->local_at(java_index)->as_Local(); aoqi@0: assert(local != NULL, "Locals for incoming arguments must have been created"); aoqi@0: #ifndef __SOFTFP__ aoqi@0: // The java calling convention passes double as long and float as int. aoqi@0: assert(as_ValueType(t)->tag() == local->type()->tag(), "check"); aoqi@0: #endif // __SOFTFP__ aoqi@0: local->set_operand(dest); aoqi@0: _instruction_for_operand.at_put_grow(dest->vreg_number(), local, NULL); aoqi@0: java_index += type2size[t]; aoqi@0: } aoqi@0: aoqi@0: if (compilation()->env()->dtrace_method_probes()) { aoqi@0: BasicTypeList signature; aoqi@0: signature.append(LP64_ONLY(T_LONG) NOT_LP64(T_INT)); // thread aoqi@0: signature.append(T_METADATA); // Method* aoqi@0: LIR_OprList* args = new LIR_OprList(); aoqi@0: args->append(getThreadPointer()); aoqi@0: LIR_Opr meth = new_register(T_METADATA); aoqi@0: __ metadata2reg(method()->constant_encoding(), meth); aoqi@0: args->append(meth); aoqi@0: call_runtime(&signature, args, CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry), voidType, NULL); aoqi@0: } aoqi@0: aoqi@0: if (method()->is_synchronized()) { aoqi@0: LIR_Opr obj; aoqi@0: if (method()->is_static()) { aoqi@0: obj = new_register(T_OBJECT); aoqi@0: __ oop2reg(method()->holder()->java_mirror()->constant_encoding(), obj); aoqi@0: } else { aoqi@0: Local* receiver = x->state()->local_at(0)->as_Local(); aoqi@0: assert(receiver != NULL, "must already exist"); aoqi@0: obj = receiver->operand(); aoqi@0: } aoqi@0: assert(obj->is_valid(), "must be valid"); aoqi@0: aoqi@0: if (method()->is_synchronized() && GenerateSynchronizationCode) { aoqi@0: LIR_Opr lock = new_register(T_INT); aoqi@0: __ load_stack_address_monitor(0, lock); aoqi@0: aoqi@0: CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, SynchronizationEntryBCI), NULL, x->check_flag(Instruction::DeoptimizeOnException)); aoqi@0: CodeStub* slow_path = new MonitorEnterStub(obj, lock, info); aoqi@0: aoqi@0: // receiver is guaranteed non-NULL so don't need CodeEmitInfo aoqi@0: __ lock_object(syncTempOpr(), obj, lock, new_register(T_OBJECT), slow_path, NULL); aoqi@0: } aoqi@0: } aoqi@0: aoqi@0: // increment invocation counters if needed aoqi@0: if (!method()->is_accessor()) { // Accessors do not have MDOs, so no counting. aoqi@0: profile_parameters(x); aoqi@0: CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, SynchronizationEntryBCI), NULL, false); aoqi@0: increment_invocation_counter(info); aoqi@0: } aoqi@0: aoqi@0: // all blocks with a successor must end with an unconditional jump aoqi@0: // to the successor even if they are consecutive aoqi@0: __ jump(x->default_sux()); aoqi@0: } aoqi@0: aoqi@0: aoqi@0: void LIRGenerator::do_OsrEntry(OsrEntry* x) { aoqi@0: // construct our frame and model the production of incoming pointer aoqi@0: // to the OSR buffer. aoqi@0: __ osr_entry(LIR_Assembler::osrBufferPointer()); aoqi@0: LIR_Opr result = rlock_result(x); aoqi@0: __ move(LIR_Assembler::osrBufferPointer(), result); aoqi@0: } aoqi@0: aoqi@0: aoqi@0: void LIRGenerator::invoke_load_arguments(Invoke* x, LIRItemList* args, const LIR_OprList* arg_list) { aoqi@0: assert(args->length() == arg_list->length(), aoqi@0: err_msg_res("args=%d, arg_list=%d", args->length(), arg_list->length())); aoqi@0: for (int i = x->has_receiver() ? 1 : 0; i < args->length(); i++) { aoqi@0: LIRItem* param = args->at(i); aoqi@0: LIR_Opr loc = arg_list->at(i); aoqi@0: if (loc->is_register()) { aoqi@0: param->load_item_force(loc); aoqi@0: } else { aoqi@0: LIR_Address* addr = loc->as_address_ptr(); aoqi@0: param->load_for_store(addr->type()); aoqi@0: if (addr->type() == T_OBJECT) { aoqi@0: __ move_wide(param->result(), addr); aoqi@0: } else aoqi@0: if (addr->type() == T_LONG || addr->type() == T_DOUBLE) { aoqi@0: __ unaligned_move(param->result(), addr); aoqi@0: } else { aoqi@0: __ move(param->result(), addr); aoqi@0: } aoqi@0: } aoqi@0: } aoqi@0: aoqi@0: if (x->has_receiver()) { aoqi@0: LIRItem* receiver = args->at(0); aoqi@0: LIR_Opr loc = arg_list->at(0); aoqi@0: if (loc->is_register()) { aoqi@0: receiver->load_item_force(loc); aoqi@0: } else { aoqi@0: assert(loc->is_address(), "just checking"); aoqi@0: receiver->load_for_store(T_OBJECT); aoqi@0: __ move_wide(receiver->result(), loc->as_address_ptr()); aoqi@0: } aoqi@0: } aoqi@0: } aoqi@0: aoqi@0: aoqi@0: // Visits all arguments, returns appropriate items without loading them aoqi@0: LIRItemList* LIRGenerator::invoke_visit_arguments(Invoke* x) { aoqi@0: LIRItemList* argument_items = new LIRItemList(); aoqi@0: if (x->has_receiver()) { aoqi@0: LIRItem* receiver = new LIRItem(x->receiver(), this); aoqi@0: argument_items->append(receiver); aoqi@0: } aoqi@0: for (int i = 0; i < x->number_of_arguments(); i++) { aoqi@0: LIRItem* param = new LIRItem(x->argument_at(i), this); aoqi@0: argument_items->append(param); aoqi@0: } aoqi@0: return argument_items; aoqi@0: } aoqi@0: aoqi@0: aoqi@0: // The invoke with receiver has following phases: aoqi@0: // a) traverse and load/lock receiver; aoqi@0: // b) traverse all arguments -> item-array (invoke_visit_argument) aoqi@0: // c) push receiver on stack aoqi@0: // d) load each of the items and push on stack aoqi@0: // e) unlock receiver aoqi@0: // f) move receiver into receiver-register %o0 aoqi@0: // g) lock result registers and emit call operation aoqi@0: // aoqi@0: // Before issuing a call, we must spill-save all values on stack zmajo@7854: // that are in caller-save register. "spill-save" moves those registers aoqi@0: // either in a free callee-save register or spills them if no free aoqi@0: // callee save register is available. aoqi@0: // aoqi@0: // The problem is where to invoke spill-save. aoqi@0: // - if invoked between e) and f), we may lock callee save aoqi@0: // register in "spill-save" that destroys the receiver register aoqi@0: // before f) is executed zmajo@7854: // - if we rearrange f) to be earlier (by loading %o0) it aoqi@0: // may destroy a value on the stack that is currently in %o0 aoqi@0: // and is waiting to be spilled aoqi@0: // - if we keep the receiver locked while doing spill-save, aoqi@0: // we cannot spill it as it is spill-locked aoqi@0: // aoqi@0: void LIRGenerator::do_Invoke(Invoke* x) { aoqi@0: CallingConvention* cc = frame_map()->java_calling_convention(x->signature(), true); aoqi@0: aoqi@0: LIR_OprList* arg_list = cc->args(); aoqi@0: LIRItemList* args = invoke_visit_arguments(x); aoqi@0: LIR_Opr receiver = LIR_OprFact::illegalOpr; aoqi@0: aoqi@0: // setup result register aoqi@0: LIR_Opr result_register = LIR_OprFact::illegalOpr; aoqi@0: if (x->type() != voidType) { aoqi@0: result_register = result_register_for(x->type()); aoqi@0: } aoqi@0: aoqi@0: CodeEmitInfo* info = state_for(x, x->state()); aoqi@0: aoqi@0: invoke_load_arguments(x, args, arg_list); aoqi@0: aoqi@0: if (x->has_receiver()) { aoqi@0: args->at(0)->load_item_force(LIR_Assembler::receiverOpr()); aoqi@0: receiver = args->at(0)->result(); aoqi@0: } aoqi@0: aoqi@0: // emit invoke code aoqi@0: bool optimized = x->target_is_loaded() && x->target_is_final(); aoqi@0: assert(receiver->is_illegal() || receiver->is_equal(LIR_Assembler::receiverOpr()), "must match"); aoqi@0: aoqi@0: // JSR 292 zmajo@7854: // Preserve the SP over MethodHandle call sites, if needed. aoqi@0: ciMethod* target = x->target(); aoqi@0: bool is_method_handle_invoke = (// %%% FIXME: Are both of these relevant? aoqi@0: target->is_method_handle_intrinsic() || aoqi@0: target->is_compiled_lambda_form()); aoqi@0: if (is_method_handle_invoke) { aoqi@0: info->set_is_method_handle_invoke(true); zmajo@7854: if(FrameMap::method_handle_invoke_SP_save_opr() != LIR_OprFact::illegalOpr) { zmajo@7854: __ move(FrameMap::stack_pointer(), FrameMap::method_handle_invoke_SP_save_opr()); zmajo@7854: } aoqi@0: } aoqi@0: aoqi@0: switch (x->code()) { aoqi@0: case Bytecodes::_invokestatic: aoqi@0: __ call_static(target, result_register, aoqi@0: SharedRuntime::get_resolve_static_call_stub(), aoqi@0: arg_list, info); aoqi@0: break; aoqi@0: case Bytecodes::_invokespecial: aoqi@0: case Bytecodes::_invokevirtual: aoqi@0: case Bytecodes::_invokeinterface: aoqi@0: // for final target we still produce an inline cache, in order aoqi@0: // to be able to call mixed mode aoqi@0: if (x->code() == Bytecodes::_invokespecial || optimized) { aoqi@0: __ call_opt_virtual(target, receiver, result_register, aoqi@0: SharedRuntime::get_resolve_opt_virtual_call_stub(), aoqi@0: arg_list, info); aoqi@0: } else if (x->vtable_index() < 0) { aoqi@0: __ call_icvirtual(target, receiver, result_register, aoqi@0: SharedRuntime::get_resolve_virtual_call_stub(), aoqi@0: arg_list, info); aoqi@0: } else { aoqi@0: int entry_offset = InstanceKlass::vtable_start_offset() + x->vtable_index() * vtableEntry::size(); aoqi@0: int vtable_offset = entry_offset * wordSize + vtableEntry::method_offset_in_bytes(); aoqi@0: __ call_virtual(target, receiver, result_register, vtable_offset, arg_list, info); aoqi@0: } aoqi@0: break; aoqi@0: case Bytecodes::_invokedynamic: { aoqi@0: __ call_dynamic(target, receiver, result_register, aoqi@0: SharedRuntime::get_resolve_static_call_stub(), aoqi@0: arg_list, info); aoqi@0: break; aoqi@0: } aoqi@0: default: aoqi@0: fatal(err_msg("unexpected bytecode: %s", Bytecodes::name(x->code()))); aoqi@0: break; aoqi@0: } aoqi@0: aoqi@0: // JSR 292 zmajo@7854: // Restore the SP after MethodHandle call sites, if needed. zmajo@7854: if (is_method_handle_invoke zmajo@7854: && FrameMap::method_handle_invoke_SP_save_opr() != LIR_OprFact::illegalOpr) { aoqi@0: __ move(FrameMap::method_handle_invoke_SP_save_opr(), FrameMap::stack_pointer()); aoqi@0: } aoqi@0: aoqi@0: if (x->type()->is_float() || x->type()->is_double()) { aoqi@0: // Force rounding of results from non-strictfp when in strictfp aoqi@0: // scope (or when we don't know the strictness of the callee, to aoqi@0: // be safe.) aoqi@0: if (method()->is_strict()) { aoqi@0: if (!x->target_is_loaded() || !x->target_is_strictfp()) { aoqi@0: result_register = round_item(result_register); aoqi@0: } aoqi@0: } aoqi@0: } aoqi@0: aoqi@0: if (result_register->is_valid()) { aoqi@0: LIR_Opr result = rlock_result(x); aoqi@0: __ move(result_register, result); aoqi@0: } aoqi@0: } aoqi@0: aoqi@0: aoqi@0: void LIRGenerator::do_FPIntrinsics(Intrinsic* x) { aoqi@0: assert(x->number_of_arguments() == 1, "wrong type"); aoqi@0: LIRItem value (x->argument_at(0), this); aoqi@0: LIR_Opr reg = rlock_result(x); aoqi@0: value.load_item(); aoqi@0: LIR_Opr tmp = force_to_spill(value.result(), as_BasicType(x->type())); aoqi@0: __ move(tmp, reg); aoqi@0: } aoqi@0: aoqi@0: aoqi@0: aoqi@0: // Code for : x->x() {x->cond()} x->y() ? x->tval() : x->fval() aoqi@0: void LIRGenerator::do_IfOp(IfOp* x) { aoqi@0: #ifdef ASSERT aoqi@0: { aoqi@0: ValueTag xtag = x->x()->type()->tag(); aoqi@0: ValueTag ttag = x->tval()->type()->tag(); aoqi@0: assert(xtag == intTag || xtag == objectTag, "cannot handle others"); aoqi@0: assert(ttag == addressTag || ttag == intTag || ttag == objectTag || ttag == longTag, "cannot handle others"); aoqi@0: assert(ttag == x->fval()->type()->tag(), "cannot handle others"); aoqi@0: } aoqi@0: #endif aoqi@0: aoqi@0: LIRItem left(x->x(), this); aoqi@0: LIRItem right(x->y(), this); aoqi@0: left.load_item(); aoqi@0: if (can_inline_as_constant(right.value())) { aoqi@0: right.dont_load_item(); aoqi@0: } else { aoqi@0: right.load_item(); aoqi@0: } aoqi@0: aoqi@0: LIRItem t_val(x->tval(), this); aoqi@0: LIRItem f_val(x->fval(), this); aoqi@0: t_val.dont_load_item(); aoqi@0: f_val.dont_load_item(); aoqi@0: LIR_Opr reg = rlock_result(x); roland@6668: aoqi@1: #ifndef MIPS64 aoqi@0: __ cmp(lir_cond(x->cond()), left.result(), right.result()); aoqi@0: __ cmove(lir_cond(x->cond()), t_val.result(), f_val.result(), reg, as_BasicType(x->x()->type())); aoqi@1: #else aoqi@1: LIR_Opr opr1 = t_val.result(); aoqi@1: LIR_Opr opr2 = f_val.result(); aoqi@1: LabelObj* skip = new LabelObj(); aoqi@1: __ move(opr1, reg); aoqi@1: __ branch(lir_cond(x->cond()), left.result(), right.result(), skip->label()); aoqi@1: __ move(opr2, reg); aoqi@1: __ branch_destination(skip->label()); aoqi@1: #endif aoqi@0: } aoqi@0: aoqi@0: void LIRGenerator::do_RuntimeCall(address routine, int expected_arguments, Intrinsic* x) { aoqi@0: assert(x->number_of_arguments() == expected_arguments, "wrong type"); aoqi@0: LIR_Opr reg = result_register_for(x->type()); aoqi@0: __ call_runtime_leaf(routine, getThreadTemp(), aoqi@0: reg, new LIR_OprList()); aoqi@0: LIR_Opr result = rlock_result(x); aoqi@0: __ move(reg, result); aoqi@0: } aoqi@0: aoqi@0: #ifdef TRACE_HAVE_INTRINSICS aoqi@0: void LIRGenerator::do_ThreadIDIntrinsic(Intrinsic* x) { aoqi@0: LIR_Opr thread = getThreadPointer(); aoqi@0: LIR_Opr osthread = new_pointer_register(); aoqi@0: __ move(new LIR_Address(thread, in_bytes(JavaThread::osthread_offset()), osthread->type()), osthread); aoqi@0: size_t thread_id_size = OSThread::thread_id_size(); aoqi@0: if (thread_id_size == (size_t) BytesPerLong) { aoqi@0: LIR_Opr id = new_register(T_LONG); aoqi@0: __ move(new LIR_Address(osthread, in_bytes(OSThread::thread_id_offset()), T_LONG), id); aoqi@0: __ convert(Bytecodes::_l2i, id, rlock_result(x)); aoqi@0: } else if (thread_id_size == (size_t) BytesPerInt) { aoqi@0: __ move(new LIR_Address(osthread, in_bytes(OSThread::thread_id_offset()), T_INT), rlock_result(x)); aoqi@0: } else { aoqi@0: ShouldNotReachHere(); aoqi@0: } aoqi@0: } aoqi@0: aoqi@0: void LIRGenerator::do_ClassIDIntrinsic(Intrinsic* x) { aoqi@0: CodeEmitInfo* info = state_for(x); aoqi@0: CodeEmitInfo* info2 = new CodeEmitInfo(info); // Clone for the second null check aoqi@0: BasicType klass_pointer_type = NOT_LP64(T_INT) LP64_ONLY(T_LONG); aoqi@0: assert(info != NULL, "must have info"); aoqi@0: LIRItem arg(x->argument_at(1), this); aoqi@0: arg.load_item(); aoqi@0: LIR_Opr klass = new_pointer_register(); aoqi@0: __ move(new LIR_Address(arg.result(), java_lang_Class::klass_offset_in_bytes(), klass_pointer_type), klass, info); aoqi@0: LIR_Opr id = new_register(T_LONG); aoqi@0: ByteSize offset = TRACE_ID_OFFSET; aoqi@0: LIR_Address* trace_id_addr = new LIR_Address(klass, in_bytes(offset), T_LONG); aoqi@0: __ move(trace_id_addr, id); aoqi@0: __ logical_or(id, LIR_OprFact::longConst(0x01l), id); aoqi@0: __ store(id, trace_id_addr); aoqi@0: __ logical_and(id, LIR_OprFact::longConst(~0x3l), id); aoqi@0: __ move(id, rlock_result(x)); aoqi@0: } aoqi@0: #endif aoqi@0: aoqi@0: void LIRGenerator::do_Intrinsic(Intrinsic* x) { aoqi@0: switch (x->id()) { aoqi@0: case vmIntrinsics::_intBitsToFloat : aoqi@0: case vmIntrinsics::_doubleToRawLongBits : aoqi@0: case vmIntrinsics::_longBitsToDouble : aoqi@0: case vmIntrinsics::_floatToRawIntBits : { aoqi@0: do_FPIntrinsics(x); aoqi@0: break; aoqi@0: } aoqi@0: aoqi@0: #ifdef TRACE_HAVE_INTRINSICS aoqi@0: case vmIntrinsics::_threadID: do_ThreadIDIntrinsic(x); break; aoqi@0: case vmIntrinsics::_classID: do_ClassIDIntrinsic(x); break; aoqi@0: case vmIntrinsics::_counterTime: aoqi@0: do_RuntimeCall(CAST_FROM_FN_PTR(address, TRACE_TIME_METHOD), 0, x); aoqi@0: break; aoqi@0: #endif aoqi@0: aoqi@0: case vmIntrinsics::_currentTimeMillis: aoqi@0: do_RuntimeCall(CAST_FROM_FN_PTR(address, os::javaTimeMillis), 0, x); aoqi@0: break; aoqi@0: aoqi@0: case vmIntrinsics::_nanoTime: aoqi@0: do_RuntimeCall(CAST_FROM_FN_PTR(address, os::javaTimeNanos), 0, x); aoqi@0: break; aoqi@0: aoqi@0: case vmIntrinsics::_Object_init: do_RegisterFinalizer(x); break; aoqi@0: case vmIntrinsics::_isInstance: do_isInstance(x); break; aoqi@0: case vmIntrinsics::_getClass: do_getClass(x); break; aoqi@0: case vmIntrinsics::_currentThread: do_currentThread(x); break; aoqi@0: aoqi@0: case vmIntrinsics::_dlog: // fall through aoqi@0: case vmIntrinsics::_dlog10: // fall through aoqi@0: case vmIntrinsics::_dabs: // fall through aoqi@0: case vmIntrinsics::_dsqrt: // fall through aoqi@0: case vmIntrinsics::_dtan: // fall through aoqi@0: case vmIntrinsics::_dsin : // fall through aoqi@0: case vmIntrinsics::_dcos : // fall through aoqi@0: case vmIntrinsics::_dexp : // fall through aoqi@0: case vmIntrinsics::_dpow : do_MathIntrinsic(x); break; aoqi@0: case vmIntrinsics::_arraycopy: do_ArrayCopy(x); break; aoqi@0: aoqi@0: // java.nio.Buffer.checkIndex aoqi@0: case vmIntrinsics::_checkIndex: do_NIOCheckIndex(x); break; aoqi@0: aoqi@0: case vmIntrinsics::_compareAndSwapObject: aoqi@0: do_CompareAndSwap(x, objectType); aoqi@0: break; aoqi@0: case vmIntrinsics::_compareAndSwapInt: aoqi@0: do_CompareAndSwap(x, intType); aoqi@0: break; aoqi@0: case vmIntrinsics::_compareAndSwapLong: aoqi@0: do_CompareAndSwap(x, longType); aoqi@0: break; aoqi@0: aoqi@0: case vmIntrinsics::_loadFence : aoqi@0: if (os::is_MP()) __ membar_acquire(); aoqi@0: break; aoqi@0: case vmIntrinsics::_storeFence: aoqi@0: if (os::is_MP()) __ membar_release(); aoqi@0: break; aoqi@0: case vmIntrinsics::_fullFence : aoqi@0: if (os::is_MP()) __ membar(); aoqi@0: break; aoqi@0: aoqi@0: case vmIntrinsics::_Reference_get: aoqi@0: do_Reference_get(x); aoqi@0: break; aoqi@0: aoqi@0: case vmIntrinsics::_updateCRC32: aoqi@0: case vmIntrinsics::_updateBytesCRC32: aoqi@0: case vmIntrinsics::_updateByteBufferCRC32: aoqi@0: do_update_CRC32(x); aoqi@0: break; aoqi@0: aoqi@0: default: ShouldNotReachHere(); break; aoqi@0: } aoqi@0: } aoqi@0: aoqi@0: void LIRGenerator::profile_arguments(ProfileCall* x) { aoqi@0: if (compilation()->profile_arguments()) { aoqi@0: int bci = x->bci_of_invoke(); aoqi@0: ciMethodData* md = x->method()->method_data_or_null(); aoqi@0: ciProfileData* data = md->bci_to_data(bci); aoqi@0: if ((data->is_CallTypeData() && data->as_CallTypeData()->has_arguments()) || aoqi@0: (data->is_VirtualCallTypeData() && data->as_VirtualCallTypeData()->has_arguments())) { aoqi@0: ByteSize extra = data->is_CallTypeData() ? CallTypeData::args_data_offset() : VirtualCallTypeData::args_data_offset(); aoqi@0: int base_offset = md->byte_offset_of_slot(data, extra); aoqi@0: LIR_Opr mdp = LIR_OprFact::illegalOpr; aoqi@0: ciTypeStackSlotEntries* args = data->is_CallTypeData() ? ((ciCallTypeData*)data)->args() : ((ciVirtualCallTypeData*)data)->args(); aoqi@0: aoqi@0: Bytecodes::Code bc = x->method()->java_code_at_bci(bci); aoqi@0: int start = 0; aoqi@0: int stop = data->is_CallTypeData() ? ((ciCallTypeData*)data)->number_of_arguments() : ((ciVirtualCallTypeData*)data)->number_of_arguments(); dbuck@8657: if (x->callee()->is_loaded() && x->callee()->is_static() && Bytecodes::has_receiver(bc)) { aoqi@0: // first argument is not profiled at call (method handle invoke) aoqi@0: assert(x->method()->raw_code_at_bci(bci) == Bytecodes::_invokehandle, "invokehandle expected"); aoqi@0: start = 1; aoqi@0: } aoqi@0: ciSignature* callee_signature = x->callee()->signature(); aoqi@0: // method handle call to virtual method dbuck@8657: bool has_receiver = x->callee()->is_loaded() && !x->callee()->is_static() && !Bytecodes::has_receiver(bc); aoqi@0: ciSignatureStream callee_signature_stream(callee_signature, has_receiver ? x->callee()->holder() : NULL); aoqi@0: aoqi@0: bool ignored_will_link; aoqi@0: ciSignature* signature_at_call = NULL; aoqi@0: x->method()->get_method_at_bci(bci, ignored_will_link, &signature_at_call); aoqi@0: ciSignatureStream signature_at_call_stream(signature_at_call); aoqi@0: aoqi@0: // if called through method handle invoke, some arguments may have been popped aoqi@0: for (int i = 0; i < stop && i+start < x->nb_profiled_args(); i++) { aoqi@0: int off = in_bytes(TypeEntriesAtCall::argument_type_offset(i)) - in_bytes(TypeEntriesAtCall::args_data_offset()); aoqi@0: ciKlass* exact = profile_type(md, base_offset, off, aoqi@0: args->type(i), x->profiled_arg_at(i+start), mdp, aoqi@0: !x->arg_needs_null_check(i+start), aoqi@0: signature_at_call_stream.next_klass(), callee_signature_stream.next_klass()); aoqi@0: if (exact != NULL) { aoqi@0: md->set_argument_type(bci, i, exact); aoqi@0: } aoqi@0: } aoqi@0: } else { aoqi@0: #ifdef ASSERT aoqi@0: Bytecodes::Code code = x->method()->raw_code_at_bci(x->bci_of_invoke()); aoqi@0: int n = x->nb_profiled_args(); aoqi@0: assert(MethodData::profile_parameters() && (MethodData::profile_arguments_jsr292_only() || aoqi@0: (x->inlined() && ((code == Bytecodes::_invokedynamic && n <= 1) || (code == Bytecodes::_invokehandle && n <= 2)))), aoqi@0: "only at JSR292 bytecodes"); aoqi@0: #endif aoqi@0: } aoqi@0: } aoqi@0: } aoqi@0: aoqi@0: // profile parameters on entry to an inlined method aoqi@0: void LIRGenerator::profile_parameters_at_call(ProfileCall* x) { aoqi@0: if (compilation()->profile_parameters() && x->inlined()) { aoqi@0: ciMethodData* md = x->callee()->method_data_or_null(); aoqi@0: if (md != NULL) { aoqi@0: ciParametersTypeData* parameters_type_data = md->parameters_type_data(); aoqi@0: if (parameters_type_data != NULL) { aoqi@0: ciTypeStackSlotEntries* parameters = parameters_type_data->parameters(); aoqi@0: LIR_Opr mdp = LIR_OprFact::illegalOpr; aoqi@0: bool has_receiver = !x->callee()->is_static(); aoqi@0: ciSignature* sig = x->callee()->signature(); aoqi@0: ciSignatureStream sig_stream(sig, has_receiver ? x->callee()->holder() : NULL); aoqi@0: int i = 0; // to iterate on the Instructions aoqi@0: Value arg = x->recv(); aoqi@0: bool not_null = false; aoqi@0: int bci = x->bci_of_invoke(); aoqi@0: Bytecodes::Code bc = x->method()->java_code_at_bci(bci); aoqi@0: // The first parameter is the receiver so that's what we start aoqi@0: // with if it exists. One exception is method handle call to aoqi@0: // virtual method: the receiver is in the args list aoqi@0: if (arg == NULL || !Bytecodes::has_receiver(bc)) { aoqi@0: i = 1; aoqi@0: arg = x->profiled_arg_at(0); aoqi@0: not_null = !x->arg_needs_null_check(0); aoqi@0: } aoqi@0: int k = 0; // to iterate on the profile data aoqi@0: for (;;) { aoqi@0: intptr_t profiled_k = parameters->type(k); aoqi@0: ciKlass* exact = profile_type(md, md->byte_offset_of_slot(parameters_type_data, ParametersTypeData::type_offset(0)), aoqi@0: in_bytes(ParametersTypeData::type_offset(k)) - in_bytes(ParametersTypeData::type_offset(0)), aoqi@0: profiled_k, arg, mdp, not_null, sig_stream.next_klass(), NULL); aoqi@0: // If the profile is known statically set it once for all and do not emit any code aoqi@0: if (exact != NULL) { aoqi@0: md->set_parameter_type(k, exact); aoqi@0: } aoqi@0: k++; aoqi@0: if (k >= parameters_type_data->number_of_parameters()) { aoqi@0: #ifdef ASSERT aoqi@0: int extra = 0; aoqi@0: if (MethodData::profile_arguments() && TypeProfileParmsLimit != -1 && aoqi@0: x->nb_profiled_args() >= TypeProfileParmsLimit && aoqi@0: x->recv() != NULL && Bytecodes::has_receiver(bc)) { aoqi@0: extra += 1; aoqi@0: } aoqi@0: assert(i == x->nb_profiled_args() - extra || (TypeProfileParmsLimit != -1 && TypeProfileArgsLimit > TypeProfileParmsLimit), "unused parameters?"); aoqi@0: #endif aoqi@0: break; aoqi@0: } aoqi@0: arg = x->profiled_arg_at(i); aoqi@0: not_null = !x->arg_needs_null_check(i); aoqi@0: i++; aoqi@0: } aoqi@0: } aoqi@0: } aoqi@0: } aoqi@0: } aoqi@0: aoqi@0: void LIRGenerator::do_ProfileCall(ProfileCall* x) { aoqi@0: // Need recv in a temporary register so it interferes with the other temporaries aoqi@0: LIR_Opr recv = LIR_OprFact::illegalOpr; aoqi@0: LIR_Opr mdo = new_register(T_OBJECT); aoqi@0: // tmp is used to hold the counters on SPARC aoqi@0: LIR_Opr tmp = new_pointer_register(); aoqi@0: aoqi@0: if (x->nb_profiled_args() > 0) { aoqi@0: profile_arguments(x); aoqi@0: } aoqi@0: aoqi@0: // profile parameters on inlined method entry including receiver aoqi@0: if (x->recv() != NULL || x->nb_profiled_args() > 0) { aoqi@0: profile_parameters_at_call(x); aoqi@0: } aoqi@0: aoqi@0: if (x->recv() != NULL) { aoqi@0: LIRItem value(x->recv(), this); aoqi@0: value.load_item(); aoqi@0: recv = new_register(T_OBJECT); aoqi@0: __ move(value.result(), recv); aoqi@0: } aoqi@0: __ profile_call(x->method(), x->bci_of_invoke(), x->callee(), mdo, recv, tmp, x->known_holder()); aoqi@0: } aoqi@0: aoqi@0: void LIRGenerator::do_ProfileReturnType(ProfileReturnType* x) { aoqi@0: int bci = x->bci_of_invoke(); aoqi@0: ciMethodData* md = x->method()->method_data_or_null(); aoqi@0: ciProfileData* data = md->bci_to_data(bci); aoqi@0: assert(data->is_CallTypeData() || data->is_VirtualCallTypeData(), "wrong profile data type"); aoqi@0: ciReturnTypeEntry* ret = data->is_CallTypeData() ? ((ciCallTypeData*)data)->ret() : ((ciVirtualCallTypeData*)data)->ret(); aoqi@0: LIR_Opr mdp = LIR_OprFact::illegalOpr; aoqi@0: aoqi@0: bool ignored_will_link; aoqi@0: ciSignature* signature_at_call = NULL; aoqi@0: x->method()->get_method_at_bci(bci, ignored_will_link, &signature_at_call); aoqi@0: aoqi@0: // The offset within the MDO of the entry to update may be too large aoqi@0: // to be used in load/store instructions on some platforms. So have aoqi@0: // profile_type() compute the address of the profile in a register. aoqi@0: ciKlass* exact = profile_type(md, md->byte_offset_of_slot(data, ret->type_offset()), 0, aoqi@0: ret->type(), x->ret(), mdp, aoqi@0: !x->needs_null_check(), aoqi@0: signature_at_call->return_type()->as_klass(), aoqi@0: x->callee()->signature()->return_type()->as_klass()); aoqi@0: if (exact != NULL) { aoqi@0: md->set_return_type(bci, exact); aoqi@0: } aoqi@0: } aoqi@0: aoqi@0: void LIRGenerator::do_ProfileInvoke(ProfileInvoke* x) { aoqi@0: // We can safely ignore accessors here, since c2 will inline them anyway, aoqi@0: // accessors are also always mature. aoqi@0: if (!x->inlinee()->is_accessor()) { aoqi@0: CodeEmitInfo* info = state_for(x, x->state(), true); aoqi@0: // Notify the runtime very infrequently only to take care of counter overflows aoqi@0: increment_event_counter_impl(info, x->inlinee(), (1 << Tier23InlineeNotifyFreqLog) - 1, InvocationEntryBci, false, true); aoqi@0: } aoqi@0: } aoqi@0: aoqi@0: void LIRGenerator::increment_event_counter(CodeEmitInfo* info, int bci, bool backedge) { csahu@8316: int freq_log = 0; aoqi@0: int level = compilation()->env()->comp_level(); aoqi@0: if (level == CompLevel_limited_profile) { aoqi@0: freq_log = (backedge ? Tier2BackedgeNotifyFreqLog : Tier2InvokeNotifyFreqLog); aoqi@0: } else if (level == CompLevel_full_profile) { aoqi@0: freq_log = (backedge ? Tier3BackedgeNotifyFreqLog : Tier3InvokeNotifyFreqLog); aoqi@0: } else { aoqi@0: ShouldNotReachHere(); aoqi@0: } aoqi@0: // Increment the appropriate invocation/backedge counter and notify the runtime. aoqi@0: increment_event_counter_impl(info, info->scope()->method(), (1 << freq_log) - 1, bci, backedge, true); aoqi@0: } aoqi@0: aoqi@0: void LIRGenerator::increment_event_counter_impl(CodeEmitInfo* info, aoqi@0: ciMethod *method, int frequency, aoqi@0: int bci, bool backedge, bool notify) { aoqi@0: assert(frequency == 0 || is_power_of_2(frequency + 1), "Frequency must be x^2 - 1 or 0"); aoqi@0: int level = _compilation->env()->comp_level(); aoqi@0: assert(level > CompLevel_simple, "Shouldn't be here"); aoqi@0: aoqi@0: int offset = -1; csahu@8316: LIR_Opr counter_holder = NULL; aoqi@0: if (level == CompLevel_limited_profile) { aoqi@0: MethodCounters* counters_adr = method->ensure_method_counters(); aoqi@0: if (counters_adr == NULL) { aoqi@0: bailout("method counters allocation failed"); aoqi@0: return; aoqi@0: } aoqi@0: counter_holder = new_pointer_register(); aoqi@0: __ move(LIR_OprFact::intptrConst(counters_adr), counter_holder); aoqi@0: offset = in_bytes(backedge ? MethodCounters::backedge_counter_offset() : aoqi@0: MethodCounters::invocation_counter_offset()); aoqi@0: } else if (level == CompLevel_full_profile) { aoqi@0: counter_holder = new_register(T_METADATA); aoqi@0: offset = in_bytes(backedge ? MethodData::backedge_counter_offset() : aoqi@0: MethodData::invocation_counter_offset()); aoqi@0: ciMethodData* md = method->method_data_or_null(); aoqi@0: assert(md != NULL, "Sanity"); aoqi@0: __ metadata2reg(md->constant_encoding(), counter_holder); aoqi@0: } else { aoqi@0: ShouldNotReachHere(); aoqi@0: } aoqi@0: LIR_Address* counter = new LIR_Address(counter_holder, offset, T_INT); aoqi@0: LIR_Opr result = new_register(T_INT); aoqi@0: __ load(counter, result); aoqi@0: __ add(result, LIR_OprFact::intConst(InvocationCounter::count_increment), result); aoqi@0: __ store(result, counter); aoqi@0: if (notify) { aoqi@0: LIR_Opr mask = load_immediate(frequency << InvocationCounter::count_shift, T_INT); aoqi@0: LIR_Opr meth = new_register(T_METADATA); aoqi@0: __ metadata2reg(method->constant_encoding(), meth); aoqi@0: __ logical_and(result, mask, result); aoqi@1: #ifndef MIPS64 aoqi@0: __ cmp(lir_cond_equal, result, LIR_OprFact::intConst(0)); aoqi@1: #endif aoqi@0: // The bci for info can point to cmp for if's we want the if bci aoqi@0: CodeStub* overflow = new CounterOverflowStub(info, bci, meth); aoqi@1: #ifndef MIPS64 aoqi@0: __ branch(lir_cond_equal, T_INT, overflow); aoqi@1: #else aoqi@1: __ branch(lir_cond_equal, result, LIR_OprFact::intConst(0), T_INT, overflow); aoqi@1: #endif aoqi@0: __ branch_destination(overflow->continuation()); aoqi@0: } aoqi@0: } aoqi@0: aoqi@0: void LIRGenerator::do_RuntimeCall(RuntimeCall* x) { aoqi@0: LIR_OprList* args = new LIR_OprList(x->number_of_arguments()); aoqi@0: BasicTypeList* signature = new BasicTypeList(x->number_of_arguments()); aoqi@0: aoqi@0: if (x->pass_thread()) { aoqi@0: signature->append(LP64_ONLY(T_LONG) NOT_LP64(T_INT)); // thread aoqi@0: args->append(getThreadPointer()); aoqi@0: } aoqi@0: aoqi@0: for (int i = 0; i < x->number_of_arguments(); i++) { aoqi@0: Value a = x->argument_at(i); aoqi@0: LIRItem* item = new LIRItem(a, this); aoqi@0: item->load_item(); aoqi@0: args->append(item->result()); aoqi@0: signature->append(as_BasicType(a->type())); aoqi@0: } aoqi@0: aoqi@0: LIR_Opr result = call_runtime(signature, args, x->entry(), x->type(), NULL); aoqi@0: if (x->type() == voidType) { aoqi@0: set_no_result(x); aoqi@0: } else { aoqi@0: __ move(result, rlock_result(x)); aoqi@0: } aoqi@0: } aoqi@0: aoqi@0: #ifdef ASSERT aoqi@0: void LIRGenerator::do_Assert(Assert *x) { aoqi@0: ValueTag tag = x->x()->type()->tag(); aoqi@0: If::Condition cond = x->cond(); aoqi@0: aoqi@0: LIRItem xitem(x->x(), this); aoqi@0: LIRItem yitem(x->y(), this); aoqi@0: LIRItem* xin = &xitem; aoqi@0: LIRItem* yin = &yitem; aoqi@0: aoqi@0: assert(tag == intTag, "Only integer assertions are valid!"); aoqi@0: aoqi@0: xin->load_item(); aoqi@0: yin->dont_load_item(); aoqi@0: aoqi@0: set_no_result(x); aoqi@0: aoqi@0: LIR_Opr left = xin->result(); aoqi@0: LIR_Opr right = yin->result(); aoqi@0: aoqi@0: __ lir_assert(lir_cond(x->cond()), left, right, x->message(), true); aoqi@0: } aoqi@0: #endif aoqi@0: aoqi@0: void LIRGenerator::do_RangeCheckPredicate(RangeCheckPredicate *x) { aoqi@0: aoqi@0: aoqi@0: Instruction *a = x->x(); aoqi@0: Instruction *b = x->y(); aoqi@0: if (!a || StressRangeCheckElimination) { aoqi@0: assert(!b || StressRangeCheckElimination, "B must also be null"); aoqi@0: aoqi@0: CodeEmitInfo *info = state_for(x, x->state()); aoqi@0: CodeStub* stub = new PredicateFailedStub(info); aoqi@0: aoqi@0: __ jump(stub); aoqi@0: } else if (a->type()->as_IntConstant() && b->type()->as_IntConstant()) { aoqi@0: int a_int = a->type()->as_IntConstant()->value(); aoqi@0: int b_int = b->type()->as_IntConstant()->value(); aoqi@0: aoqi@0: bool ok = false; aoqi@0: aoqi@0: switch(x->cond()) { aoqi@0: case Instruction::eql: ok = (a_int == b_int); break; aoqi@0: case Instruction::neq: ok = (a_int != b_int); break; aoqi@0: case Instruction::lss: ok = (a_int < b_int); break; aoqi@0: case Instruction::leq: ok = (a_int <= b_int); break; aoqi@0: case Instruction::gtr: ok = (a_int > b_int); break; aoqi@0: case Instruction::geq: ok = (a_int >= b_int); break; aoqi@0: case Instruction::aeq: ok = ((unsigned int)a_int >= (unsigned int)b_int); break; aoqi@0: case Instruction::beq: ok = ((unsigned int)a_int <= (unsigned int)b_int); break; aoqi@0: default: ShouldNotReachHere(); aoqi@0: } aoqi@0: aoqi@0: if (ok) { aoqi@0: aoqi@0: CodeEmitInfo *info = state_for(x, x->state()); aoqi@0: CodeStub* stub = new PredicateFailedStub(info); aoqi@0: aoqi@0: __ jump(stub); aoqi@0: } aoqi@0: } else { aoqi@0: aoqi@0: ValueTag tag = x->x()->type()->tag(); aoqi@0: If::Condition cond = x->cond(); aoqi@0: LIRItem xitem(x->x(), this); aoqi@0: LIRItem yitem(x->y(), this); aoqi@0: LIRItem* xin = &xitem; aoqi@0: LIRItem* yin = &yitem; aoqi@0: aoqi@0: assert(tag == intTag, "Only integer deoptimizations are valid!"); aoqi@0: aoqi@0: xin->load_item(); aoqi@0: yin->dont_load_item(); aoqi@0: set_no_result(x); aoqi@0: aoqi@0: LIR_Opr left = xin->result(); aoqi@0: LIR_Opr right = yin->result(); aoqi@0: aoqi@0: CodeEmitInfo *info = state_for(x, x->state()); aoqi@0: CodeStub* stub = new PredicateFailedStub(info); aoqi@0: aoqi@1: #ifndef MIPS64 aoqi@0: __ cmp(lir_cond(cond), left, right); aoqi@0: __ branch(lir_cond(cond), right->type(), stub); aoqi@1: #else aoqi@1: tty->print_cr("LIRGenerator::do_RangeCheckPredicate(RangeCheckPredicate *x) unimplemented yet!"); aoqi@1: Unimplemented(); aoqi@1: #endif aoqi@0: } aoqi@0: } aoqi@0: aoqi@0: aoqi@0: LIR_Opr LIRGenerator::call_runtime(Value arg1, address entry, ValueType* result_type, CodeEmitInfo* info) { aoqi@0: LIRItemList args(1); aoqi@0: LIRItem value(arg1, this); aoqi@0: args.append(&value); aoqi@0: BasicTypeList signature; aoqi@0: signature.append(as_BasicType(arg1->type())); aoqi@0: aoqi@0: return call_runtime(&signature, &args, entry, result_type, info); aoqi@0: } aoqi@0: aoqi@0: aoqi@0: LIR_Opr LIRGenerator::call_runtime(Value arg1, Value arg2, address entry, ValueType* result_type, CodeEmitInfo* info) { aoqi@0: LIRItemList args(2); aoqi@0: LIRItem value1(arg1, this); aoqi@0: LIRItem value2(arg2, this); aoqi@0: args.append(&value1); aoqi@0: args.append(&value2); aoqi@0: BasicTypeList signature; aoqi@0: signature.append(as_BasicType(arg1->type())); aoqi@0: signature.append(as_BasicType(arg2->type())); aoqi@0: aoqi@0: return call_runtime(&signature, &args, entry, result_type, info); aoqi@0: } aoqi@0: aoqi@0: aoqi@0: LIR_Opr LIRGenerator::call_runtime(BasicTypeArray* signature, LIR_OprList* args, aoqi@0: address entry, ValueType* result_type, CodeEmitInfo* info) { aoqi@0: // get a result register aoqi@0: LIR_Opr phys_reg = LIR_OprFact::illegalOpr; aoqi@0: LIR_Opr result = LIR_OprFact::illegalOpr; aoqi@0: if (result_type->tag() != voidTag) { aoqi@0: result = new_register(result_type); aoqi@0: phys_reg = result_register_for(result_type); aoqi@0: } aoqi@0: aoqi@0: // move the arguments into the correct location aoqi@0: CallingConvention* cc = frame_map()->c_calling_convention(signature); aoqi@0: assert(cc->length() == args->length(), "argument mismatch"); aoqi@0: for (int i = 0; i < args->length(); i++) { aoqi@0: LIR_Opr arg = args->at(i); aoqi@0: LIR_Opr loc = cc->at(i); aoqi@0: if (loc->is_register()) { aoqi@0: __ move(arg, loc); aoqi@0: } else { aoqi@0: LIR_Address* addr = loc->as_address_ptr(); aoqi@0: // if (!can_store_as_constant(arg)) { aoqi@0: // LIR_Opr tmp = new_register(arg->type()); aoqi@0: // __ move(arg, tmp); aoqi@0: // arg = tmp; aoqi@0: // } aoqi@0: if (addr->type() == T_LONG || addr->type() == T_DOUBLE) { aoqi@0: __ unaligned_move(arg, addr); aoqi@0: } else { aoqi@0: __ move(arg, addr); aoqi@0: } aoqi@0: } aoqi@0: } aoqi@0: aoqi@0: if (info) { aoqi@0: __ call_runtime(entry, getThreadTemp(), phys_reg, cc->args(), info); aoqi@0: } else { aoqi@0: __ call_runtime_leaf(entry, getThreadTemp(), phys_reg, cc->args()); aoqi@0: } aoqi@0: if (result->is_valid()) { aoqi@0: __ move(phys_reg, result); aoqi@0: } aoqi@0: return result; aoqi@0: } aoqi@0: aoqi@0: aoqi@0: LIR_Opr LIRGenerator::call_runtime(BasicTypeArray* signature, LIRItemList* args, aoqi@0: address entry, ValueType* result_type, CodeEmitInfo* info) { aoqi@0: // get a result register aoqi@0: LIR_Opr phys_reg = LIR_OprFact::illegalOpr; aoqi@0: LIR_Opr result = LIR_OprFact::illegalOpr; aoqi@0: if (result_type->tag() != voidTag) { aoqi@0: result = new_register(result_type); aoqi@0: phys_reg = result_register_for(result_type); aoqi@0: } aoqi@0: aoqi@0: // move the arguments into the correct location aoqi@0: CallingConvention* cc = frame_map()->c_calling_convention(signature); aoqi@0: aoqi@0: assert(cc->length() == args->length(), "argument mismatch"); aoqi@0: for (int i = 0; i < args->length(); i++) { aoqi@0: LIRItem* arg = args->at(i); aoqi@0: LIR_Opr loc = cc->at(i); aoqi@0: if (loc->is_register()) { aoqi@0: arg->load_item_force(loc); aoqi@0: } else { aoqi@0: LIR_Address* addr = loc->as_address_ptr(); aoqi@0: arg->load_for_store(addr->type()); aoqi@0: if (addr->type() == T_LONG || addr->type() == T_DOUBLE) { aoqi@0: __ unaligned_move(arg->result(), addr); aoqi@0: } else { aoqi@0: __ move(arg->result(), addr); aoqi@0: } aoqi@0: } aoqi@0: } aoqi@0: aoqi@0: if (info) { aoqi@0: __ call_runtime(entry, getThreadTemp(), phys_reg, cc->args(), info); aoqi@0: } else { aoqi@0: __ call_runtime_leaf(entry, getThreadTemp(), phys_reg, cc->args()); aoqi@0: } aoqi@0: if (result->is_valid()) { aoqi@0: __ move(phys_reg, result); aoqi@0: } aoqi@0: return result; aoqi@0: } aoqi@0: aoqi@0: void LIRGenerator::do_MemBar(MemBar* x) { aoqi@0: if (os::is_MP()) { aoqi@0: LIR_Code code = x->code(); aoqi@0: switch(code) { aoqi@0: case lir_membar_acquire : __ membar_acquire(); break; aoqi@0: case lir_membar_release : __ membar_release(); break; aoqi@0: case lir_membar : __ membar(); break; aoqi@0: case lir_membar_loadload : __ membar_loadload(); break; aoqi@0: case lir_membar_storestore: __ membar_storestore(); break; aoqi@0: case lir_membar_loadstore : __ membar_loadstore(); break; aoqi@0: case lir_membar_storeload : __ membar_storeload(); break; aoqi@0: default : ShouldNotReachHere(); break; aoqi@0: } aoqi@0: } aoqi@0: } kevinw@8368: kevinw@8368: LIR_Opr LIRGenerator::maybe_mask_boolean(StoreIndexed* x, LIR_Opr array, LIR_Opr value, CodeEmitInfo*& null_check_info) { kevinw@8368: if (x->check_boolean()) { kevinw@8368: LIR_Opr value_fixed = rlock_byte(T_BYTE); kevinw@8368: if (TwoOperandLIRForm) { kevinw@8368: __ move(value, value_fixed); kevinw@8368: __ logical_and(value_fixed, LIR_OprFact::intConst(1), value_fixed); kevinw@8368: } else { kevinw@8368: __ logical_and(value, LIR_OprFact::intConst(1), value_fixed); kevinw@8368: } kevinw@8368: LIR_Opr klass = new_register(T_METADATA); kevinw@8368: __ move(new LIR_Address(array, oopDesc::klass_offset_in_bytes(), T_ADDRESS), klass, null_check_info); kevinw@8368: null_check_info = NULL; kevinw@8368: LIR_Opr layout = new_register(T_INT); kevinw@8368: __ move(new LIR_Address(klass, in_bytes(Klass::layout_helper_offset()), T_INT), layout); kevinw@8368: int diffbit = Klass::layout_helper_boolean_diffbit(); kevinw@8368: __ logical_and(layout, LIR_OprFact::intConst(diffbit), layout); kevinw@8368: __ cmp(lir_cond_notEqual, layout, LIR_OprFact::intConst(0)); kevinw@8368: __ cmove(lir_cond_notEqual, value_fixed, value, value_fixed, T_BYTE); kevinw@8368: value = value_fixed; kevinw@8368: } kevinw@8368: return value; kevinw@8368: }