duke@435: /* never@1609: * Copyright 2003-2010 Sun Microsystems, Inc. All Rights Reserved. duke@435: * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. duke@435: * duke@435: * This code is free software; you can redistribute it and/or modify it duke@435: * under the terms of the GNU General Public License version 2 only, as duke@435: * published by the Free Software Foundation. duke@435: * duke@435: * This code is distributed in the hope that it will be useful, but WITHOUT duke@435: * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or duke@435: * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License duke@435: * version 2 for more details (a copy is included in the LICENSE file that duke@435: * accompanied this code). duke@435: * duke@435: * You should have received a copy of the GNU General Public License version duke@435: * 2 along with this work; if not, write to the Free Software Foundation, duke@435: * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. duke@435: * duke@435: * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, duke@435: * CA 95054 USA or visit www.sun.com if you need additional information or duke@435: * have any questions. duke@435: * duke@435: */ duke@435: duke@435: #include "incls/_precompiled.incl" duke@435: #include "incls/_stubGenerator_x86_64.cpp.incl" duke@435: duke@435: // Declaration and definition of StubGenerator (no .hpp file). duke@435: // For a more detailed description of the stub routine structure duke@435: // see the comment in stubRoutines.hpp duke@435: duke@435: #define __ _masm-> coleenp@548: #define TIMES_OOP (UseCompressedOops ? Address::times_4 : Address::times_8) never@739: #define a__ ((Assembler*)_masm)-> duke@435: duke@435: #ifdef PRODUCT duke@435: #define BLOCK_COMMENT(str) /* nothing */ duke@435: #else duke@435: #define BLOCK_COMMENT(str) __ block_comment(str) duke@435: #endif duke@435: duke@435: #define BIND(label) bind(label); BLOCK_COMMENT(#label ":") duke@435: const int MXCSR_MASK = 0xFFC0; // Mask out any pending exceptions duke@435: duke@435: // Stub Code definitions duke@435: duke@435: static address handle_unsafe_access() { duke@435: JavaThread* thread = JavaThread::current(); duke@435: address pc = thread->saved_exception_pc(); duke@435: // pc is the instruction which we must emulate duke@435: // doing a no-op is fine: return garbage from the load duke@435: // therefore, compute npc duke@435: address npc = Assembler::locate_next_instruction(pc); duke@435: duke@435: // request an async exception duke@435: thread->set_pending_unsafe_access_error(); duke@435: duke@435: // return address of next instruction to execute duke@435: return npc; duke@435: } duke@435: duke@435: class StubGenerator: public StubCodeGenerator { duke@435: private: duke@435: duke@435: #ifdef PRODUCT duke@435: #define inc_counter_np(counter) (0) duke@435: #else duke@435: void inc_counter_np_(int& counter) { duke@435: __ incrementl(ExternalAddress((address)&counter)); duke@435: } duke@435: #define inc_counter_np(counter) \ duke@435: BLOCK_COMMENT("inc_counter " #counter); \ duke@435: inc_counter_np_(counter); duke@435: #endif duke@435: duke@435: // Call stubs are used to call Java from C duke@435: // duke@435: // Linux Arguments: duke@435: // c_rarg0: call wrapper address address duke@435: // c_rarg1: result address duke@435: // c_rarg2: result type BasicType duke@435: // c_rarg3: method methodOop duke@435: // c_rarg4: (interpreter) entry point address duke@435: // c_rarg5: parameters intptr_t* duke@435: // 16(rbp): parameter size (in words) int duke@435: // 24(rbp): thread Thread* duke@435: // duke@435: // [ return_from_Java ] <--- rsp duke@435: // [ argument word n ] duke@435: // ... duke@435: // -12 [ argument word 1 ] duke@435: // -11 [ saved r15 ] <--- rsp_after_call duke@435: // -10 [ saved r14 ] duke@435: // -9 [ saved r13 ] duke@435: // -8 [ saved r12 ] duke@435: // -7 [ saved rbx ] duke@435: // -6 [ call wrapper ] duke@435: // -5 [ result ] duke@435: // -4 [ result type ] duke@435: // -3 [ method ] duke@435: // -2 [ entry point ] duke@435: // -1 [ parameters ] duke@435: // 0 [ saved rbp ] <--- rbp duke@435: // 1 [ return address ] duke@435: // 2 [ parameter size ] duke@435: // 3 [ thread ] duke@435: // duke@435: // Windows Arguments: duke@435: // c_rarg0: call wrapper address address duke@435: // c_rarg1: result address duke@435: // c_rarg2: result type BasicType duke@435: // c_rarg3: method methodOop duke@435: // 48(rbp): (interpreter) entry point address duke@435: // 56(rbp): parameters intptr_t* duke@435: // 64(rbp): parameter size (in words) int duke@435: // 72(rbp): thread Thread* duke@435: // duke@435: // [ return_from_Java ] <--- rsp duke@435: // [ argument word n ] duke@435: // ... duke@435: // -8 [ argument word 1 ] duke@435: // -7 [ saved r15 ] <--- rsp_after_call duke@435: // -6 [ saved r14 ] duke@435: // -5 [ saved r13 ] duke@435: // -4 [ saved r12 ] duke@435: // -3 [ saved rdi ] duke@435: // -2 [ saved rsi ] duke@435: // -1 [ saved rbx ] duke@435: // 0 [ saved rbp ] <--- rbp duke@435: // 1 [ return address ] duke@435: // 2 [ call wrapper ] duke@435: // 3 [ result ] duke@435: // 4 [ result type ] duke@435: // 5 [ method ] duke@435: // 6 [ entry point ] duke@435: // 7 [ parameters ] duke@435: // 8 [ parameter size ] duke@435: // 9 [ thread ] duke@435: // duke@435: // Windows reserves the callers stack space for arguments 1-4. duke@435: // We spill c_rarg0-c_rarg3 to this space. duke@435: duke@435: // Call stub stack layout word offsets from rbp duke@435: enum call_stub_layout { duke@435: #ifdef _WIN64 duke@435: rsp_after_call_off = -7, duke@435: r15_off = rsp_after_call_off, duke@435: r14_off = -6, duke@435: r13_off = -5, duke@435: r12_off = -4, duke@435: rdi_off = -3, duke@435: rsi_off = -2, duke@435: rbx_off = -1, duke@435: rbp_off = 0, duke@435: retaddr_off = 1, duke@435: call_wrapper_off = 2, duke@435: result_off = 3, duke@435: result_type_off = 4, duke@435: method_off = 5, duke@435: entry_point_off = 6, duke@435: parameters_off = 7, duke@435: parameter_size_off = 8, duke@435: thread_off = 9 duke@435: #else duke@435: rsp_after_call_off = -12, duke@435: mxcsr_off = rsp_after_call_off, duke@435: r15_off = -11, duke@435: r14_off = -10, duke@435: r13_off = -9, duke@435: r12_off = -8, duke@435: rbx_off = -7, duke@435: call_wrapper_off = -6, duke@435: result_off = -5, duke@435: result_type_off = -4, duke@435: method_off = -3, duke@435: entry_point_off = -2, duke@435: parameters_off = -1, duke@435: rbp_off = 0, duke@435: retaddr_off = 1, duke@435: parameter_size_off = 2, duke@435: thread_off = 3 duke@435: #endif duke@435: }; duke@435: duke@435: address generate_call_stub(address& return_address) { duke@435: assert((int)frame::entry_frame_after_call_words == -(int)rsp_after_call_off + 1 && duke@435: (int)frame::entry_frame_call_wrapper_offset == (int)call_wrapper_off, duke@435: "adjust this code"); duke@435: StubCodeMark mark(this, "StubRoutines", "call_stub"); duke@435: address start = __ pc(); duke@435: duke@435: // same as in generate_catch_exception()! duke@435: const Address rsp_after_call(rbp, rsp_after_call_off * wordSize); duke@435: duke@435: const Address call_wrapper (rbp, call_wrapper_off * wordSize); duke@435: const Address result (rbp, result_off * wordSize); duke@435: const Address result_type (rbp, result_type_off * wordSize); duke@435: const Address method (rbp, method_off * wordSize); duke@435: const Address entry_point (rbp, entry_point_off * wordSize); duke@435: const Address parameters (rbp, parameters_off * wordSize); duke@435: const Address parameter_size(rbp, parameter_size_off * wordSize); duke@435: duke@435: // same as in generate_catch_exception()! duke@435: const Address thread (rbp, thread_off * wordSize); duke@435: duke@435: const Address r15_save(rbp, r15_off * wordSize); duke@435: const Address r14_save(rbp, r14_off * wordSize); duke@435: const Address r13_save(rbp, r13_off * wordSize); duke@435: const Address r12_save(rbp, r12_off * wordSize); duke@435: const Address rbx_save(rbp, rbx_off * wordSize); duke@435: duke@435: // stub code duke@435: __ enter(); never@739: __ subptr(rsp, -rsp_after_call_off * wordSize); duke@435: duke@435: // save register parameters duke@435: #ifndef _WIN64 never@739: __ movptr(parameters, c_rarg5); // parameters never@739: __ movptr(entry_point, c_rarg4); // entry_point duke@435: #endif duke@435: never@739: __ movptr(method, c_rarg3); // method never@739: __ movl(result_type, c_rarg2); // result type never@739: __ movptr(result, c_rarg1); // result never@739: __ movptr(call_wrapper, c_rarg0); // call wrapper duke@435: duke@435: // save regs belonging to calling function never@739: __ movptr(rbx_save, rbx); never@739: __ movptr(r12_save, r12); never@739: __ movptr(r13_save, r13); never@739: __ movptr(r14_save, r14); never@739: __ movptr(r15_save, r15); duke@435: duke@435: #ifdef _WIN64 duke@435: const Address rdi_save(rbp, rdi_off * wordSize); duke@435: const Address rsi_save(rbp, rsi_off * wordSize); duke@435: never@739: __ movptr(rsi_save, rsi); never@739: __ movptr(rdi_save, rdi); duke@435: #else duke@435: const Address mxcsr_save(rbp, mxcsr_off * wordSize); duke@435: { duke@435: Label skip_ldmx; duke@435: __ stmxcsr(mxcsr_save); duke@435: __ movl(rax, mxcsr_save); duke@435: __ andl(rax, MXCSR_MASK); // Only check control and mask bits never@739: ExternalAddress mxcsr_std(StubRoutines::x86::mxcsr_std()); duke@435: __ cmp32(rax, mxcsr_std); duke@435: __ jcc(Assembler::equal, skip_ldmx); duke@435: __ ldmxcsr(mxcsr_std); duke@435: __ bind(skip_ldmx); duke@435: } duke@435: #endif duke@435: duke@435: // Load up thread register never@739: __ movptr(r15_thread, thread); coleenp@548: __ reinit_heapbase(); duke@435: duke@435: #ifdef ASSERT duke@435: // make sure we have no pending exceptions duke@435: { duke@435: Label L; never@739: __ cmpptr(Address(r15_thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD); duke@435: __ jcc(Assembler::equal, L); duke@435: __ stop("StubRoutines::call_stub: entered with pending exception"); duke@435: __ bind(L); duke@435: } duke@435: #endif duke@435: duke@435: // pass parameters if any duke@435: BLOCK_COMMENT("pass parameters if any"); duke@435: Label parameters_done; duke@435: __ movl(c_rarg3, parameter_size); duke@435: __ testl(c_rarg3, c_rarg3); duke@435: __ jcc(Assembler::zero, parameters_done); duke@435: duke@435: Label loop; never@739: __ movptr(c_rarg2, parameters); // parameter pointer never@739: __ movl(c_rarg1, c_rarg3); // parameter counter is in c_rarg1 duke@435: __ BIND(loop); duke@435: if (TaggedStackInterpreter) { never@739: __ movl(rax, Address(c_rarg2, 0)); // get tag never@739: __ addptr(c_rarg2, wordSize); // advance to next tag never@739: __ push(rax); // pass tag duke@435: } never@739: __ movptr(rax, Address(c_rarg2, 0));// get parameter never@739: __ addptr(c_rarg2, wordSize); // advance to next parameter never@739: __ decrementl(c_rarg1); // decrement counter never@739: __ push(rax); // pass parameter duke@435: __ jcc(Assembler::notZero, loop); duke@435: duke@435: // call Java function duke@435: __ BIND(parameters_done); never@739: __ movptr(rbx, method); // get methodOop never@739: __ movptr(c_rarg1, entry_point); // get entry_point never@739: __ mov(r13, rsp); // set sender sp duke@435: BLOCK_COMMENT("call Java function"); duke@435: __ call(c_rarg1); duke@435: duke@435: BLOCK_COMMENT("call_stub_return_address:"); duke@435: return_address = __ pc(); duke@435: duke@435: // store result depending on type (everything that is not duke@435: // T_OBJECT, T_LONG, T_FLOAT or T_DOUBLE is treated as T_INT) never@739: __ movptr(c_rarg0, result); duke@435: Label is_long, is_float, is_double, exit; duke@435: __ movl(c_rarg1, result_type); duke@435: __ cmpl(c_rarg1, T_OBJECT); duke@435: __ jcc(Assembler::equal, is_long); duke@435: __ cmpl(c_rarg1, T_LONG); duke@435: __ jcc(Assembler::equal, is_long); duke@435: __ cmpl(c_rarg1, T_FLOAT); duke@435: __ jcc(Assembler::equal, is_float); duke@435: __ cmpl(c_rarg1, T_DOUBLE); duke@435: __ jcc(Assembler::equal, is_double); duke@435: duke@435: // handle T_INT case duke@435: __ movl(Address(c_rarg0, 0), rax); duke@435: duke@435: __ BIND(exit); duke@435: duke@435: // pop parameters never@739: __ lea(rsp, rsp_after_call); duke@435: duke@435: #ifdef ASSERT duke@435: // verify that threads correspond duke@435: { duke@435: Label L, S; never@739: __ cmpptr(r15_thread, thread); duke@435: __ jcc(Assembler::notEqual, S); duke@435: __ get_thread(rbx); never@739: __ cmpptr(r15_thread, rbx); duke@435: __ jcc(Assembler::equal, L); duke@435: __ bind(S); duke@435: __ jcc(Assembler::equal, L); duke@435: __ stop("StubRoutines::call_stub: threads must correspond"); duke@435: __ bind(L); duke@435: } duke@435: #endif duke@435: duke@435: // restore regs belonging to calling function never@739: __ movptr(r15, r15_save); never@739: __ movptr(r14, r14_save); never@739: __ movptr(r13, r13_save); never@739: __ movptr(r12, r12_save); never@739: __ movptr(rbx, rbx_save); duke@435: duke@435: #ifdef _WIN64 never@739: __ movptr(rdi, rdi_save); never@739: __ movptr(rsi, rsi_save); duke@435: #else duke@435: __ ldmxcsr(mxcsr_save); duke@435: #endif duke@435: duke@435: // restore rsp never@739: __ addptr(rsp, -rsp_after_call_off * wordSize); duke@435: duke@435: // return never@739: __ pop(rbp); duke@435: __ ret(0); duke@435: duke@435: // handle return types different from T_INT duke@435: __ BIND(is_long); duke@435: __ movq(Address(c_rarg0, 0), rax); duke@435: __ jmp(exit); duke@435: duke@435: __ BIND(is_float); duke@435: __ movflt(Address(c_rarg0, 0), xmm0); duke@435: __ jmp(exit); duke@435: duke@435: __ BIND(is_double); duke@435: __ movdbl(Address(c_rarg0, 0), xmm0); duke@435: __ jmp(exit); duke@435: duke@435: return start; duke@435: } duke@435: duke@435: // Return point for a Java call if there's an exception thrown in duke@435: // Java code. The exception is caught and transformed into a duke@435: // pending exception stored in JavaThread that can be tested from duke@435: // within the VM. duke@435: // duke@435: // Note: Usually the parameters are removed by the callee. In case duke@435: // of an exception crossing an activation frame boundary, that is duke@435: // not the case if the callee is compiled code => need to setup the duke@435: // rsp. duke@435: // duke@435: // rax: exception oop duke@435: duke@435: address generate_catch_exception() { duke@435: StubCodeMark mark(this, "StubRoutines", "catch_exception"); duke@435: address start = __ pc(); duke@435: duke@435: // same as in generate_call_stub(): duke@435: const Address rsp_after_call(rbp, rsp_after_call_off * wordSize); duke@435: const Address thread (rbp, thread_off * wordSize); duke@435: duke@435: #ifdef ASSERT duke@435: // verify that threads correspond duke@435: { duke@435: Label L, S; never@739: __ cmpptr(r15_thread, thread); duke@435: __ jcc(Assembler::notEqual, S); duke@435: __ get_thread(rbx); never@739: __ cmpptr(r15_thread, rbx); duke@435: __ jcc(Assembler::equal, L); duke@435: __ bind(S); duke@435: __ stop("StubRoutines::catch_exception: threads must correspond"); duke@435: __ bind(L); duke@435: } duke@435: #endif duke@435: duke@435: // set pending exception duke@435: __ verify_oop(rax); duke@435: never@739: __ movptr(Address(r15_thread, Thread::pending_exception_offset()), rax); duke@435: __ lea(rscratch1, ExternalAddress((address)__FILE__)); never@739: __ movptr(Address(r15_thread, Thread::exception_file_offset()), rscratch1); duke@435: __ movl(Address(r15_thread, Thread::exception_line_offset()), (int) __LINE__); duke@435: duke@435: // complete return to VM duke@435: assert(StubRoutines::_call_stub_return_address != NULL, duke@435: "_call_stub_return_address must have been generated before"); duke@435: __ jump(RuntimeAddress(StubRoutines::_call_stub_return_address)); duke@435: duke@435: return start; duke@435: } duke@435: duke@435: // Continuation point for runtime calls returning with a pending duke@435: // exception. The pending exception check happened in the runtime duke@435: // or native call stub. The pending exception in Thread is duke@435: // converted into a Java-level exception. duke@435: // duke@435: // Contract with Java-level exception handlers: duke@435: // rax: exception duke@435: // rdx: throwing pc duke@435: // duke@435: // NOTE: At entry of this stub, exception-pc must be on stack !! duke@435: duke@435: address generate_forward_exception() { duke@435: StubCodeMark mark(this, "StubRoutines", "forward exception"); duke@435: address start = __ pc(); duke@435: duke@435: // Upon entry, the sp points to the return address returning into duke@435: // Java (interpreted or compiled) code; i.e., the return address duke@435: // becomes the throwing pc. duke@435: // duke@435: // Arguments pushed before the runtime call are still on the stack duke@435: // but the exception handler will reset the stack pointer -> duke@435: // ignore them. A potential result in registers can be ignored as duke@435: // well. duke@435: duke@435: #ifdef ASSERT duke@435: // make sure this code is only executed if there is a pending exception duke@435: { duke@435: Label L; never@739: __ cmpptr(Address(r15_thread, Thread::pending_exception_offset()), (int32_t) NULL); duke@435: __ jcc(Assembler::notEqual, L); duke@435: __ stop("StubRoutines::forward exception: no pending exception (1)"); duke@435: __ bind(L); duke@435: } duke@435: #endif duke@435: duke@435: // compute exception handler into rbx never@739: __ movptr(c_rarg0, Address(rsp, 0)); duke@435: BLOCK_COMMENT("call exception_handler_for_return_address"); duke@435: __ call_VM_leaf(CAST_FROM_FN_PTR(address, duke@435: SharedRuntime::exception_handler_for_return_address), twisti@1730: r15_thread, c_rarg0); never@739: __ mov(rbx, rax); duke@435: duke@435: // setup rax & rdx, remove return address & clear pending exception never@739: __ pop(rdx); never@739: __ movptr(rax, Address(r15_thread, Thread::pending_exception_offset())); xlu@947: __ movptr(Address(r15_thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD); duke@435: duke@435: #ifdef ASSERT duke@435: // make sure exception is set duke@435: { duke@435: Label L; never@739: __ testptr(rax, rax); duke@435: __ jcc(Assembler::notEqual, L); duke@435: __ stop("StubRoutines::forward exception: no pending exception (2)"); duke@435: __ bind(L); duke@435: } duke@435: #endif duke@435: duke@435: // continue at exception handler (return address removed) duke@435: // rax: exception duke@435: // rbx: exception handler duke@435: // rdx: throwing pc duke@435: __ verify_oop(rax); duke@435: __ jmp(rbx); duke@435: duke@435: return start; duke@435: } duke@435: duke@435: // Support for jint atomic::xchg(jint exchange_value, volatile jint* dest) duke@435: // duke@435: // Arguments : duke@435: // c_rarg0: exchange_value duke@435: // c_rarg0: dest duke@435: // duke@435: // Result: duke@435: // *dest <- ex, return (orig *dest) duke@435: address generate_atomic_xchg() { duke@435: StubCodeMark mark(this, "StubRoutines", "atomic_xchg"); duke@435: address start = __ pc(); duke@435: duke@435: __ movl(rax, c_rarg0); // Copy to eax we need a return value anyhow duke@435: __ xchgl(rax, Address(c_rarg1, 0)); // automatic LOCK duke@435: __ ret(0); duke@435: duke@435: return start; duke@435: } duke@435: duke@435: // Support for intptr_t atomic::xchg_ptr(intptr_t exchange_value, volatile intptr_t* dest) duke@435: // duke@435: // Arguments : duke@435: // c_rarg0: exchange_value duke@435: // c_rarg1: dest duke@435: // duke@435: // Result: duke@435: // *dest <- ex, return (orig *dest) duke@435: address generate_atomic_xchg_ptr() { duke@435: StubCodeMark mark(this, "StubRoutines", "atomic_xchg_ptr"); duke@435: address start = __ pc(); duke@435: never@739: __ movptr(rax, c_rarg0); // Copy to eax we need a return value anyhow never@739: __ xchgptr(rax, Address(c_rarg1, 0)); // automatic LOCK duke@435: __ ret(0); duke@435: duke@435: return start; duke@435: } duke@435: duke@435: // Support for jint atomic::atomic_cmpxchg(jint exchange_value, volatile jint* dest, duke@435: // jint compare_value) duke@435: // duke@435: // Arguments : duke@435: // c_rarg0: exchange_value duke@435: // c_rarg1: dest duke@435: // c_rarg2: compare_value duke@435: // duke@435: // Result: duke@435: // if ( compare_value == *dest ) { duke@435: // *dest = exchange_value duke@435: // return compare_value; duke@435: // else duke@435: // return *dest; duke@435: address generate_atomic_cmpxchg() { duke@435: StubCodeMark mark(this, "StubRoutines", "atomic_cmpxchg"); duke@435: address start = __ pc(); duke@435: duke@435: __ movl(rax, c_rarg2); duke@435: if ( os::is_MP() ) __ lock(); duke@435: __ cmpxchgl(c_rarg0, Address(c_rarg1, 0)); duke@435: __ ret(0); duke@435: duke@435: return start; duke@435: } duke@435: duke@435: // Support for jint atomic::atomic_cmpxchg_long(jlong exchange_value, duke@435: // volatile jlong* dest, duke@435: // jlong compare_value) duke@435: // Arguments : duke@435: // c_rarg0: exchange_value duke@435: // c_rarg1: dest duke@435: // c_rarg2: compare_value duke@435: // duke@435: // Result: duke@435: // if ( compare_value == *dest ) { duke@435: // *dest = exchange_value duke@435: // return compare_value; duke@435: // else duke@435: // return *dest; duke@435: address generate_atomic_cmpxchg_long() { duke@435: StubCodeMark mark(this, "StubRoutines", "atomic_cmpxchg_long"); duke@435: address start = __ pc(); duke@435: duke@435: __ movq(rax, c_rarg2); duke@435: if ( os::is_MP() ) __ lock(); duke@435: __ cmpxchgq(c_rarg0, Address(c_rarg1, 0)); duke@435: __ ret(0); duke@435: duke@435: return start; duke@435: } duke@435: duke@435: // Support for jint atomic::add(jint add_value, volatile jint* dest) duke@435: // duke@435: // Arguments : duke@435: // c_rarg0: add_value duke@435: // c_rarg1: dest duke@435: // duke@435: // Result: duke@435: // *dest += add_value duke@435: // return *dest; duke@435: address generate_atomic_add() { duke@435: StubCodeMark mark(this, "StubRoutines", "atomic_add"); duke@435: address start = __ pc(); duke@435: duke@435: __ movl(rax, c_rarg0); duke@435: if ( os::is_MP() ) __ lock(); duke@435: __ xaddl(Address(c_rarg1, 0), c_rarg0); duke@435: __ addl(rax, c_rarg0); duke@435: __ ret(0); duke@435: duke@435: return start; duke@435: } duke@435: duke@435: // Support for intptr_t atomic::add_ptr(intptr_t add_value, volatile intptr_t* dest) duke@435: // duke@435: // Arguments : duke@435: // c_rarg0: add_value duke@435: // c_rarg1: dest duke@435: // duke@435: // Result: duke@435: // *dest += add_value duke@435: // return *dest; duke@435: address generate_atomic_add_ptr() { duke@435: StubCodeMark mark(this, "StubRoutines", "atomic_add_ptr"); duke@435: address start = __ pc(); duke@435: never@739: __ movptr(rax, c_rarg0); // Copy to eax we need a return value anyhow duke@435: if ( os::is_MP() ) __ lock(); never@739: __ xaddptr(Address(c_rarg1, 0), c_rarg0); never@739: __ addptr(rax, c_rarg0); duke@435: __ ret(0); duke@435: duke@435: return start; duke@435: } duke@435: duke@435: // Support for intptr_t OrderAccess::fence() duke@435: // duke@435: // Arguments : duke@435: // duke@435: // Result: duke@435: address generate_orderaccess_fence() { duke@435: StubCodeMark mark(this, "StubRoutines", "orderaccess_fence"); duke@435: address start = __ pc(); never@1106: __ membar(Assembler::StoreLoad); duke@435: __ ret(0); duke@435: duke@435: return start; duke@435: } duke@435: duke@435: // Support for intptr_t get_previous_fp() duke@435: // duke@435: // This routine is used to find the previous frame pointer for the duke@435: // caller (current_frame_guess). This is used as part of debugging duke@435: // ps() is seemingly lost trying to find frames. duke@435: // This code assumes that caller current_frame_guess) has a frame. duke@435: address generate_get_previous_fp() { duke@435: StubCodeMark mark(this, "StubRoutines", "get_previous_fp"); duke@435: const Address old_fp(rbp, 0); duke@435: const Address older_fp(rax, 0); duke@435: address start = __ pc(); duke@435: duke@435: __ enter(); never@739: __ movptr(rax, old_fp); // callers fp never@739: __ movptr(rax, older_fp); // the frame for ps() never@739: __ pop(rbp); duke@435: __ ret(0); duke@435: duke@435: return start; duke@435: } duke@435: duke@435: //---------------------------------------------------------------------------------------------------- duke@435: // Support for void verify_mxcsr() duke@435: // duke@435: // This routine is used with -Xcheck:jni to verify that native duke@435: // JNI code does not return to Java code without restoring the duke@435: // MXCSR register to our expected state. duke@435: duke@435: address generate_verify_mxcsr() { duke@435: StubCodeMark mark(this, "StubRoutines", "verify_mxcsr"); duke@435: address start = __ pc(); duke@435: duke@435: const Address mxcsr_save(rsp, 0); duke@435: duke@435: if (CheckJNICalls) { duke@435: Label ok_ret; never@739: __ push(rax); never@739: __ subptr(rsp, wordSize); // allocate a temp location duke@435: __ stmxcsr(mxcsr_save); duke@435: __ movl(rax, mxcsr_save); duke@435: __ andl(rax, MXCSR_MASK); // Only check control and mask bits never@739: __ cmpl(rax, *(int *)(StubRoutines::x86::mxcsr_std())); duke@435: __ jcc(Assembler::equal, ok_ret); duke@435: duke@435: __ warn("MXCSR changed by native JNI code, use -XX:+RestoreMXCSROnJNICall"); duke@435: never@739: __ ldmxcsr(ExternalAddress(StubRoutines::x86::mxcsr_std())); duke@435: duke@435: __ bind(ok_ret); never@739: __ addptr(rsp, wordSize); never@739: __ pop(rax); duke@435: } duke@435: duke@435: __ ret(0); duke@435: duke@435: return start; duke@435: } duke@435: duke@435: address generate_f2i_fixup() { duke@435: StubCodeMark mark(this, "StubRoutines", "f2i_fixup"); duke@435: Address inout(rsp, 5 * wordSize); // return address + 4 saves duke@435: duke@435: address start = __ pc(); duke@435: duke@435: Label L; duke@435: never@739: __ push(rax); never@739: __ push(c_rarg3); never@739: __ push(c_rarg2); never@739: __ push(c_rarg1); duke@435: duke@435: __ movl(rax, 0x7f800000); duke@435: __ xorl(c_rarg3, c_rarg3); duke@435: __ movl(c_rarg2, inout); duke@435: __ movl(c_rarg1, c_rarg2); duke@435: __ andl(c_rarg1, 0x7fffffff); duke@435: __ cmpl(rax, c_rarg1); // NaN? -> 0 duke@435: __ jcc(Assembler::negative, L); duke@435: __ testl(c_rarg2, c_rarg2); // signed ? min_jint : max_jint duke@435: __ movl(c_rarg3, 0x80000000); duke@435: __ movl(rax, 0x7fffffff); duke@435: __ cmovl(Assembler::positive, c_rarg3, rax); duke@435: duke@435: __ bind(L); never@739: __ movptr(inout, c_rarg3); never@739: never@739: __ pop(c_rarg1); never@739: __ pop(c_rarg2); never@739: __ pop(c_rarg3); never@739: __ pop(rax); duke@435: duke@435: __ ret(0); duke@435: duke@435: return start; duke@435: } duke@435: duke@435: address generate_f2l_fixup() { duke@435: StubCodeMark mark(this, "StubRoutines", "f2l_fixup"); duke@435: Address inout(rsp, 5 * wordSize); // return address + 4 saves duke@435: address start = __ pc(); duke@435: duke@435: Label L; duke@435: never@739: __ push(rax); never@739: __ push(c_rarg3); never@739: __ push(c_rarg2); never@739: __ push(c_rarg1); duke@435: duke@435: __ movl(rax, 0x7f800000); duke@435: __ xorl(c_rarg3, c_rarg3); duke@435: __ movl(c_rarg2, inout); duke@435: __ movl(c_rarg1, c_rarg2); duke@435: __ andl(c_rarg1, 0x7fffffff); duke@435: __ cmpl(rax, c_rarg1); // NaN? -> 0 duke@435: __ jcc(Assembler::negative, L); duke@435: __ testl(c_rarg2, c_rarg2); // signed ? min_jlong : max_jlong duke@435: __ mov64(c_rarg3, 0x8000000000000000); duke@435: __ mov64(rax, 0x7fffffffffffffff); never@739: __ cmov(Assembler::positive, c_rarg3, rax); duke@435: duke@435: __ bind(L); never@739: __ movptr(inout, c_rarg3); never@739: never@739: __ pop(c_rarg1); never@739: __ pop(c_rarg2); never@739: __ pop(c_rarg3); never@739: __ pop(rax); duke@435: duke@435: __ ret(0); duke@435: duke@435: return start; duke@435: } duke@435: duke@435: address generate_d2i_fixup() { duke@435: StubCodeMark mark(this, "StubRoutines", "d2i_fixup"); duke@435: Address inout(rsp, 6 * wordSize); // return address + 5 saves duke@435: duke@435: address start = __ pc(); duke@435: duke@435: Label L; duke@435: never@739: __ push(rax); never@739: __ push(c_rarg3); never@739: __ push(c_rarg2); never@739: __ push(c_rarg1); never@739: __ push(c_rarg0); duke@435: duke@435: __ movl(rax, 0x7ff00000); duke@435: __ movq(c_rarg2, inout); duke@435: __ movl(c_rarg3, c_rarg2); never@739: __ mov(c_rarg1, c_rarg2); never@739: __ mov(c_rarg0, c_rarg2); duke@435: __ negl(c_rarg3); never@739: __ shrptr(c_rarg1, 0x20); duke@435: __ orl(c_rarg3, c_rarg2); duke@435: __ andl(c_rarg1, 0x7fffffff); duke@435: __ xorl(c_rarg2, c_rarg2); duke@435: __ shrl(c_rarg3, 0x1f); duke@435: __ orl(c_rarg1, c_rarg3); duke@435: __ cmpl(rax, c_rarg1); duke@435: __ jcc(Assembler::negative, L); // NaN -> 0 never@739: __ testptr(c_rarg0, c_rarg0); // signed ? min_jint : max_jint duke@435: __ movl(c_rarg2, 0x80000000); duke@435: __ movl(rax, 0x7fffffff); never@739: __ cmov(Assembler::positive, c_rarg2, rax); duke@435: duke@435: __ bind(L); never@739: __ movptr(inout, c_rarg2); never@739: never@739: __ pop(c_rarg0); never@739: __ pop(c_rarg1); never@739: __ pop(c_rarg2); never@739: __ pop(c_rarg3); never@739: __ pop(rax); duke@435: duke@435: __ ret(0); duke@435: duke@435: return start; duke@435: } duke@435: duke@435: address generate_d2l_fixup() { duke@435: StubCodeMark mark(this, "StubRoutines", "d2l_fixup"); duke@435: Address inout(rsp, 6 * wordSize); // return address + 5 saves duke@435: duke@435: address start = __ pc(); duke@435: duke@435: Label L; duke@435: never@739: __ push(rax); never@739: __ push(c_rarg3); never@739: __ push(c_rarg2); never@739: __ push(c_rarg1); never@739: __ push(c_rarg0); duke@435: duke@435: __ movl(rax, 0x7ff00000); duke@435: __ movq(c_rarg2, inout); duke@435: __ movl(c_rarg3, c_rarg2); never@739: __ mov(c_rarg1, c_rarg2); never@739: __ mov(c_rarg0, c_rarg2); duke@435: __ negl(c_rarg3); never@739: __ shrptr(c_rarg1, 0x20); duke@435: __ orl(c_rarg3, c_rarg2); duke@435: __ andl(c_rarg1, 0x7fffffff); duke@435: __ xorl(c_rarg2, c_rarg2); duke@435: __ shrl(c_rarg3, 0x1f); duke@435: __ orl(c_rarg1, c_rarg3); duke@435: __ cmpl(rax, c_rarg1); duke@435: __ jcc(Assembler::negative, L); // NaN -> 0 duke@435: __ testq(c_rarg0, c_rarg0); // signed ? min_jlong : max_jlong duke@435: __ mov64(c_rarg2, 0x8000000000000000); duke@435: __ mov64(rax, 0x7fffffffffffffff); duke@435: __ cmovq(Assembler::positive, c_rarg2, rax); duke@435: duke@435: __ bind(L); duke@435: __ movq(inout, c_rarg2); duke@435: never@739: __ pop(c_rarg0); never@739: __ pop(c_rarg1); never@739: __ pop(c_rarg2); never@739: __ pop(c_rarg3); never@739: __ pop(rax); duke@435: duke@435: __ ret(0); duke@435: duke@435: return start; duke@435: } duke@435: duke@435: address generate_fp_mask(const char *stub_name, int64_t mask) { duke@435: StubCodeMark mark(this, "StubRoutines", stub_name); duke@435: duke@435: __ align(16); duke@435: address start = __ pc(); duke@435: duke@435: __ emit_data64( mask, relocInfo::none ); duke@435: __ emit_data64( mask, relocInfo::none ); duke@435: duke@435: return start; duke@435: } duke@435: duke@435: // The following routine generates a subroutine to throw an duke@435: // asynchronous UnknownError when an unsafe access gets a fault that duke@435: // could not be reasonably prevented by the programmer. (Example: duke@435: // SIGBUS/OBJERR.) duke@435: address generate_handler_for_unsafe_access() { duke@435: StubCodeMark mark(this, "StubRoutines", "handler_for_unsafe_access"); duke@435: address start = __ pc(); duke@435: never@739: __ push(0); // hole for return address-to-be never@739: __ pusha(); // push registers duke@435: Address next_pc(rsp, RegisterImpl::number_of_registers * BytesPerWord); duke@435: never@739: __ subptr(rsp, frame::arg_reg_save_area_bytes); duke@435: BLOCK_COMMENT("call handle_unsafe_access"); duke@435: __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, handle_unsafe_access))); never@739: __ addptr(rsp, frame::arg_reg_save_area_bytes); never@739: never@739: __ movptr(next_pc, rax); // stuff next address never@739: __ popa(); duke@435: __ ret(0); // jump to next address duke@435: duke@435: return start; duke@435: } duke@435: duke@435: // Non-destructive plausibility checks for oops duke@435: // duke@435: // Arguments: duke@435: // all args on stack! duke@435: // duke@435: // Stack after saving c_rarg3: duke@435: // [tos + 0]: saved c_rarg3 duke@435: // [tos + 1]: saved c_rarg2 kvn@559: // [tos + 2]: saved r12 (several TemplateTable methods use it) kvn@559: // [tos + 3]: saved flags kvn@559: // [tos + 4]: return address kvn@559: // * [tos + 5]: error message (char*) kvn@559: // * [tos + 6]: object to verify (oop) kvn@559: // * [tos + 7]: saved rax - saved by caller and bashed duke@435: // * = popped on exit duke@435: address generate_verify_oop() { duke@435: StubCodeMark mark(this, "StubRoutines", "verify_oop"); duke@435: address start = __ pc(); duke@435: duke@435: Label exit, error; duke@435: never@739: __ pushf(); duke@435: __ incrementl(ExternalAddress((address) StubRoutines::verify_oop_count_addr())); duke@435: never@739: __ push(r12); kvn@559: duke@435: // save c_rarg2 and c_rarg3 never@739: __ push(c_rarg2); never@739: __ push(c_rarg3); duke@435: kvn@559: enum { kvn@559: // After previous pushes. kvn@559: oop_to_verify = 6 * wordSize, kvn@559: saved_rax = 7 * wordSize, kvn@559: kvn@559: // Before the call to MacroAssembler::debug(), see below. kvn@559: return_addr = 16 * wordSize, kvn@559: error_msg = 17 * wordSize kvn@559: }; kvn@559: duke@435: // get object never@739: __ movptr(rax, Address(rsp, oop_to_verify)); duke@435: duke@435: // make sure object is 'reasonable' never@739: __ testptr(rax, rax); duke@435: __ jcc(Assembler::zero, exit); // if obj is NULL it is OK duke@435: // Check if the oop is in the right area of memory never@739: __ movptr(c_rarg2, rax); xlu@947: __ movptr(c_rarg3, (intptr_t) Universe::verify_oop_mask()); never@739: __ andptr(c_rarg2, c_rarg3); xlu@947: __ movptr(c_rarg3, (intptr_t) Universe::verify_oop_bits()); never@739: __ cmpptr(c_rarg2, c_rarg3); duke@435: __ jcc(Assembler::notZero, error); duke@435: kvn@559: // set r12 to heapbase for load_klass() kvn@559: __ reinit_heapbase(); kvn@559: duke@435: // make sure klass is 'reasonable' coleenp@548: __ load_klass(rax, rax); // get klass never@739: __ testptr(rax, rax); duke@435: __ jcc(Assembler::zero, error); // if klass is NULL it is broken duke@435: // Check if the klass is in the right area of memory never@739: __ mov(c_rarg2, rax); xlu@947: __ movptr(c_rarg3, (intptr_t) Universe::verify_klass_mask()); never@739: __ andptr(c_rarg2, c_rarg3); xlu@947: __ movptr(c_rarg3, (intptr_t) Universe::verify_klass_bits()); never@739: __ cmpptr(c_rarg2, c_rarg3); duke@435: __ jcc(Assembler::notZero, error); duke@435: duke@435: // make sure klass' klass is 'reasonable' coleenp@548: __ load_klass(rax, rax); never@739: __ testptr(rax, rax); duke@435: __ jcc(Assembler::zero, error); // if klass' klass is NULL it is broken duke@435: // Check if the klass' klass is in the right area of memory xlu@947: __ movptr(c_rarg3, (intptr_t) Universe::verify_klass_mask()); never@739: __ andptr(rax, c_rarg3); xlu@947: __ movptr(c_rarg3, (intptr_t) Universe::verify_klass_bits()); never@739: __ cmpptr(rax, c_rarg3); duke@435: __ jcc(Assembler::notZero, error); duke@435: duke@435: // return if everything seems ok duke@435: __ bind(exit); never@739: __ movptr(rax, Address(rsp, saved_rax)); // get saved rax back never@739: __ pop(c_rarg3); // restore c_rarg3 never@739: __ pop(c_rarg2); // restore c_rarg2 never@739: __ pop(r12); // restore r12 never@739: __ popf(); // restore flags duke@435: __ ret(3 * wordSize); // pop caller saved stuff duke@435: duke@435: // handle errors duke@435: __ bind(error); never@739: __ movptr(rax, Address(rsp, saved_rax)); // get saved rax back never@739: __ pop(c_rarg3); // get saved c_rarg3 back never@739: __ pop(c_rarg2); // get saved c_rarg2 back never@739: __ pop(r12); // get saved r12 back never@739: __ popf(); // get saved flags off stack -- duke@435: // will be ignored duke@435: never@739: __ pusha(); // push registers duke@435: // (rip is already duke@435: // already pushed) kvn@559: // debug(char* msg, int64_t pc, int64_t regs[]) duke@435: // We've popped the registers we'd saved (c_rarg3, c_rarg2 and flags), and duke@435: // pushed all the registers, so now the stack looks like: duke@435: // [tos + 0] 16 saved registers duke@435: // [tos + 16] return address kvn@559: // * [tos + 17] error message (char*) kvn@559: // * [tos + 18] object to verify (oop) kvn@559: // * [tos + 19] saved rax - saved by caller and bashed kvn@559: // * = popped on exit kvn@559: never@739: __ movptr(c_rarg0, Address(rsp, error_msg)); // pass address of error message never@739: __ movptr(c_rarg1, Address(rsp, return_addr)); // pass return address never@739: __ movq(c_rarg2, rsp); // pass address of regs on stack never@739: __ mov(r12, rsp); // remember rsp never@739: __ subptr(rsp, frame::arg_reg_save_area_bytes); // windows never@739: __ andptr(rsp, -16); // align stack as required by ABI duke@435: BLOCK_COMMENT("call MacroAssembler::debug"); never@739: __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::debug64))); never@739: __ mov(rsp, r12); // restore rsp never@739: __ popa(); // pop registers (includes r12) never@739: __ ret(3 * wordSize); // pop caller saved stuff duke@435: duke@435: return start; duke@435: } duke@435: duke@435: static address disjoint_byte_copy_entry; duke@435: static address disjoint_short_copy_entry; duke@435: static address disjoint_int_copy_entry; duke@435: static address disjoint_long_copy_entry; duke@435: static address disjoint_oop_copy_entry; duke@435: duke@435: static address byte_copy_entry; duke@435: static address short_copy_entry; duke@435: static address int_copy_entry; duke@435: static address long_copy_entry; duke@435: static address oop_copy_entry; duke@435: duke@435: static address checkcast_copy_entry; duke@435: duke@435: // duke@435: // Verify that a register contains clean 32-bits positive value duke@435: // (high 32-bits are 0) so it could be used in 64-bits shifts. duke@435: // duke@435: // Input: duke@435: // Rint - 32-bits value duke@435: // Rtmp - scratch duke@435: // duke@435: void assert_clean_int(Register Rint, Register Rtmp) { duke@435: #ifdef ASSERT duke@435: Label L; duke@435: assert_different_registers(Rtmp, Rint); duke@435: __ movslq(Rtmp, Rint); duke@435: __ cmpq(Rtmp, Rint); kvn@559: __ jcc(Assembler::equal, L); duke@435: __ stop("high 32-bits of int value are not 0"); duke@435: __ bind(L); duke@435: #endif duke@435: } duke@435: duke@435: // Generate overlap test for array copy stubs duke@435: // duke@435: // Input: duke@435: // c_rarg0 - from duke@435: // c_rarg1 - to duke@435: // c_rarg2 - element count duke@435: // duke@435: // Output: duke@435: // rax - &from[element count - 1] duke@435: // duke@435: void array_overlap_test(address no_overlap_target, Address::ScaleFactor sf) { duke@435: assert(no_overlap_target != NULL, "must be generated"); duke@435: array_overlap_test(no_overlap_target, NULL, sf); duke@435: } duke@435: void array_overlap_test(Label& L_no_overlap, Address::ScaleFactor sf) { duke@435: array_overlap_test(NULL, &L_no_overlap, sf); duke@435: } duke@435: void array_overlap_test(address no_overlap_target, Label* NOLp, Address::ScaleFactor sf) { duke@435: const Register from = c_rarg0; duke@435: const Register to = c_rarg1; duke@435: const Register count = c_rarg2; duke@435: const Register end_from = rax; duke@435: never@739: __ cmpptr(to, from); never@739: __ lea(end_from, Address(from, count, sf, 0)); duke@435: if (NOLp == NULL) { duke@435: ExternalAddress no_overlap(no_overlap_target); duke@435: __ jump_cc(Assembler::belowEqual, no_overlap); never@739: __ cmpptr(to, end_from); duke@435: __ jump_cc(Assembler::aboveEqual, no_overlap); duke@435: } else { duke@435: __ jcc(Assembler::belowEqual, (*NOLp)); never@739: __ cmpptr(to, end_from); duke@435: __ jcc(Assembler::aboveEqual, (*NOLp)); duke@435: } duke@435: } duke@435: duke@435: // Shuffle first three arg regs on Windows into Linux/Solaris locations. duke@435: // duke@435: // Outputs: duke@435: // rdi - rcx duke@435: // rsi - rdx duke@435: // rdx - r8 duke@435: // rcx - r9 duke@435: // duke@435: // Registers r9 and r10 are used to save rdi and rsi on Windows, which latter duke@435: // are non-volatile. r9 and r10 should not be used by the caller. duke@435: // duke@435: void setup_arg_regs(int nargs = 3) { duke@435: const Register saved_rdi = r9; duke@435: const Register saved_rsi = r10; duke@435: assert(nargs == 3 || nargs == 4, "else fix"); duke@435: #ifdef _WIN64 duke@435: assert(c_rarg0 == rcx && c_rarg1 == rdx && c_rarg2 == r8 && c_rarg3 == r9, duke@435: "unexpected argument registers"); duke@435: if (nargs >= 4) never@739: __ mov(rax, r9); // r9 is also saved_rdi never@739: __ movptr(saved_rdi, rdi); never@739: __ movptr(saved_rsi, rsi); never@739: __ mov(rdi, rcx); // c_rarg0 never@739: __ mov(rsi, rdx); // c_rarg1 never@739: __ mov(rdx, r8); // c_rarg2 duke@435: if (nargs >= 4) never@739: __ mov(rcx, rax); // c_rarg3 (via rax) duke@435: #else duke@435: assert(c_rarg0 == rdi && c_rarg1 == rsi && c_rarg2 == rdx && c_rarg3 == rcx, duke@435: "unexpected argument registers"); duke@435: #endif duke@435: } duke@435: duke@435: void restore_arg_regs() { duke@435: const Register saved_rdi = r9; duke@435: const Register saved_rsi = r10; duke@435: #ifdef _WIN64 never@739: __ movptr(rdi, saved_rdi); never@739: __ movptr(rsi, saved_rsi); duke@435: #endif duke@435: } duke@435: duke@435: // Generate code for an array write pre barrier duke@435: // duke@435: // addr - starting address duke@435: // count - element count duke@435: // duke@435: // Destroy no registers! duke@435: // duke@435: void gen_write_ref_array_pre_barrier(Register addr, Register count) { duke@435: BarrierSet* bs = Universe::heap()->barrier_set(); duke@435: switch (bs->kind()) { duke@435: case BarrierSet::G1SATBCT: duke@435: case BarrierSet::G1SATBCTLogging: duke@435: { never@739: __ pusha(); // push registers ysr@777: if (count == c_rarg0) { ysr@777: if (addr == c_rarg1) { ysr@777: // exactly backwards!! apetrusenko@797: __ xchgptr(c_rarg1, c_rarg0); ysr@777: } else { apetrusenko@797: __ movptr(c_rarg1, count); apetrusenko@797: __ movptr(c_rarg0, addr); ysr@777: } ysr@777: ysr@777: } else { apetrusenko@797: __ movptr(c_rarg0, addr); apetrusenko@797: __ movptr(c_rarg1, count); ysr@777: } apetrusenko@1627: __ call_VM_leaf(CAST_FROM_FN_PTR(address, BarrierSet::static_write_ref_array_pre), 2); never@739: __ popa(); duke@435: } duke@435: break; duke@435: case BarrierSet::CardTableModRef: duke@435: case BarrierSet::CardTableExtension: duke@435: case BarrierSet::ModRef: duke@435: break; ysr@777: default: duke@435: ShouldNotReachHere(); duke@435: duke@435: } duke@435: } duke@435: duke@435: // duke@435: // Generate code for an array write post barrier duke@435: // duke@435: // Input: duke@435: // start - register containing starting address of destination array duke@435: // end - register containing ending address of destination array duke@435: // scratch - scratch register duke@435: // duke@435: // The input registers are overwritten. duke@435: // The ending address is inclusive. duke@435: void gen_write_ref_array_post_barrier(Register start, Register end, Register scratch) { duke@435: assert_different_registers(start, end, scratch); duke@435: BarrierSet* bs = Universe::heap()->barrier_set(); duke@435: switch (bs->kind()) { duke@435: case BarrierSet::G1SATBCT: duke@435: case BarrierSet::G1SATBCTLogging: duke@435: duke@435: { never@739: __ pusha(); // push registers (overkill) duke@435: // must compute element count unless barrier set interface is changed (other platforms supply count) duke@435: assert_different_registers(start, end, scratch); ysr@1280: __ lea(scratch, Address(end, BytesPerHeapOop)); ysr@1280: __ subptr(scratch, start); // subtract start to get #bytes ysr@1280: __ shrptr(scratch, LogBytesPerHeapOop); // convert to element count never@739: __ mov(c_rarg0, start); never@739: __ mov(c_rarg1, scratch); apetrusenko@1627: __ call_VM_leaf(CAST_FROM_FN_PTR(address, BarrierSet::static_write_ref_array_post), 2); never@739: __ popa(); duke@435: } duke@435: break; duke@435: case BarrierSet::CardTableModRef: duke@435: case BarrierSet::CardTableExtension: duke@435: { duke@435: CardTableModRefBS* ct = (CardTableModRefBS*)bs; duke@435: assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust this code"); duke@435: duke@435: Label L_loop; duke@435: never@739: __ shrptr(start, CardTableModRefBS::card_shift); ysr@1280: __ addptr(end, BytesPerHeapOop); never@739: __ shrptr(end, CardTableModRefBS::card_shift); never@739: __ subptr(end, start); // number of bytes to copy duke@435: never@684: intptr_t disp = (intptr_t) ct->byte_map_base; never@684: if (__ is_simm32(disp)) { never@684: Address cardtable(noreg, noreg, Address::no_scale, disp); never@684: __ lea(scratch, cardtable); never@684: } else { never@684: ExternalAddress cardtable((address)disp); never@684: __ lea(scratch, cardtable); never@684: } never@684: duke@435: const Register count = end; // 'end' register contains bytes count now never@739: __ addptr(start, scratch); duke@435: __ BIND(L_loop); duke@435: __ movb(Address(start, count, Address::times_1), 0); never@739: __ decrement(count); duke@435: __ jcc(Assembler::greaterEqual, L_loop); duke@435: } ysr@777: break; ysr@777: default: ysr@777: ShouldNotReachHere(); ysr@777: ysr@777: } ysr@777: } duke@435: kvn@840: duke@435: // Copy big chunks forward duke@435: // duke@435: // Inputs: duke@435: // end_from - source arrays end address duke@435: // end_to - destination array end address duke@435: // qword_count - 64-bits element count, negative duke@435: // to - scratch duke@435: // L_copy_32_bytes - entry label duke@435: // L_copy_8_bytes - exit label duke@435: // duke@435: void copy_32_bytes_forward(Register end_from, Register end_to, duke@435: Register qword_count, Register to, duke@435: Label& L_copy_32_bytes, Label& L_copy_8_bytes) { duke@435: DEBUG_ONLY(__ stop("enter at entry label, not here")); duke@435: Label L_loop; duke@435: __ align(16); duke@435: __ BIND(L_loop); kvn@840: if(UseUnalignedLoadStores) { kvn@840: __ movdqu(xmm0, Address(end_from, qword_count, Address::times_8, -24)); kvn@840: __ movdqu(Address(end_to, qword_count, Address::times_8, -24), xmm0); kvn@840: __ movdqu(xmm1, Address(end_from, qword_count, Address::times_8, - 8)); kvn@840: __ movdqu(Address(end_to, qword_count, Address::times_8, - 8), xmm1); kvn@840: kvn@840: } else { kvn@840: __ movq(to, Address(end_from, qword_count, Address::times_8, -24)); kvn@840: __ movq(Address(end_to, qword_count, Address::times_8, -24), to); kvn@840: __ movq(to, Address(end_from, qword_count, Address::times_8, -16)); kvn@840: __ movq(Address(end_to, qword_count, Address::times_8, -16), to); kvn@840: __ movq(to, Address(end_from, qword_count, Address::times_8, - 8)); kvn@840: __ movq(Address(end_to, qword_count, Address::times_8, - 8), to); kvn@840: __ movq(to, Address(end_from, qword_count, Address::times_8, - 0)); kvn@840: __ movq(Address(end_to, qword_count, Address::times_8, - 0), to); kvn@840: } duke@435: __ BIND(L_copy_32_bytes); never@739: __ addptr(qword_count, 4); duke@435: __ jcc(Assembler::lessEqual, L_loop); never@739: __ subptr(qword_count, 4); duke@435: __ jcc(Assembler::less, L_copy_8_bytes); // Copy trailing qwords duke@435: } duke@435: duke@435: duke@435: // Copy big chunks backward duke@435: // duke@435: // Inputs: duke@435: // from - source arrays address duke@435: // dest - destination array address duke@435: // qword_count - 64-bits element count duke@435: // to - scratch duke@435: // L_copy_32_bytes - entry label duke@435: // L_copy_8_bytes - exit label duke@435: // duke@435: void copy_32_bytes_backward(Register from, Register dest, duke@435: Register qword_count, Register to, duke@435: Label& L_copy_32_bytes, Label& L_copy_8_bytes) { duke@435: DEBUG_ONLY(__ stop("enter at entry label, not here")); duke@435: Label L_loop; duke@435: __ align(16); duke@435: __ BIND(L_loop); kvn@840: if(UseUnalignedLoadStores) { kvn@840: __ movdqu(xmm0, Address(from, qword_count, Address::times_8, 16)); kvn@840: __ movdqu(Address(dest, qword_count, Address::times_8, 16), xmm0); kvn@840: __ movdqu(xmm1, Address(from, qword_count, Address::times_8, 0)); kvn@840: __ movdqu(Address(dest, qword_count, Address::times_8, 0), xmm1); kvn@840: kvn@840: } else { kvn@840: __ movq(to, Address(from, qword_count, Address::times_8, 24)); kvn@840: __ movq(Address(dest, qword_count, Address::times_8, 24), to); kvn@840: __ movq(to, Address(from, qword_count, Address::times_8, 16)); kvn@840: __ movq(Address(dest, qword_count, Address::times_8, 16), to); kvn@840: __ movq(to, Address(from, qword_count, Address::times_8, 8)); kvn@840: __ movq(Address(dest, qword_count, Address::times_8, 8), to); kvn@840: __ movq(to, Address(from, qword_count, Address::times_8, 0)); kvn@840: __ movq(Address(dest, qword_count, Address::times_8, 0), to); kvn@840: } duke@435: __ BIND(L_copy_32_bytes); never@739: __ subptr(qword_count, 4); duke@435: __ jcc(Assembler::greaterEqual, L_loop); never@739: __ addptr(qword_count, 4); duke@435: __ jcc(Assembler::greater, L_copy_8_bytes); // Copy trailing qwords duke@435: } duke@435: duke@435: duke@435: // Arguments: duke@435: // aligned - true => Input and output aligned on a HeapWord == 8-byte boundary duke@435: // ignored duke@435: // name - stub name string duke@435: // duke@435: // Inputs: duke@435: // c_rarg0 - source array address duke@435: // c_rarg1 - destination array address duke@435: // c_rarg2 - element count, treated as ssize_t, can be zero duke@435: // duke@435: // If 'from' and/or 'to' are aligned on 4-, 2-, or 1-byte boundaries, duke@435: // we let the hardware handle it. The one to eight bytes within words, duke@435: // dwords or qwords that span cache line boundaries will still be loaded duke@435: // and stored atomically. duke@435: // duke@435: // Side Effects: duke@435: // disjoint_byte_copy_entry is set to the no-overlap entry point duke@435: // used by generate_conjoint_byte_copy(). duke@435: // duke@435: address generate_disjoint_byte_copy(bool aligned, const char *name) { duke@435: __ align(CodeEntryAlignment); duke@435: StubCodeMark mark(this, "StubRoutines", name); duke@435: address start = __ pc(); duke@435: duke@435: Label L_copy_32_bytes, L_copy_8_bytes, L_copy_4_bytes, L_copy_2_bytes; duke@435: Label L_copy_byte, L_exit; duke@435: const Register from = rdi; // source array address duke@435: const Register to = rsi; // destination array address duke@435: const Register count = rdx; // elements count duke@435: const Register byte_count = rcx; duke@435: const Register qword_count = count; duke@435: const Register end_from = from; // source array end address duke@435: const Register end_to = to; // destination array end address duke@435: // End pointers are inclusive, and if count is not zero they point duke@435: // to the last unit copied: end_to[0] := end_from[0] duke@435: duke@435: __ enter(); // required for proper stackwalking of RuntimeStub frame duke@435: assert_clean_int(c_rarg2, rax); // Make sure 'count' is clean int. duke@435: duke@435: disjoint_byte_copy_entry = __ pc(); duke@435: BLOCK_COMMENT("Entry:"); duke@435: // caller can pass a 64-bit byte count here (from Unsafe.copyMemory) duke@435: duke@435: setup_arg_regs(); // from => rdi, to => rsi, count => rdx duke@435: // r9 and r10 may be used to save non-volatile registers duke@435: duke@435: // 'from', 'to' and 'count' are now valid never@739: __ movptr(byte_count, count); never@739: __ shrptr(count, 3); // count => qword_count duke@435: duke@435: // Copy from low to high addresses. Use 'to' as scratch. never@739: __ lea(end_from, Address(from, qword_count, Address::times_8, -8)); never@739: __ lea(end_to, Address(to, qword_count, Address::times_8, -8)); never@739: __ negptr(qword_count); // make the count negative duke@435: __ jmp(L_copy_32_bytes); duke@435: duke@435: // Copy trailing qwords duke@435: __ BIND(L_copy_8_bytes); duke@435: __ movq(rax, Address(end_from, qword_count, Address::times_8, 8)); duke@435: __ movq(Address(end_to, qword_count, Address::times_8, 8), rax); never@739: __ increment(qword_count); duke@435: __ jcc(Assembler::notZero, L_copy_8_bytes); duke@435: duke@435: // Check for and copy trailing dword duke@435: __ BIND(L_copy_4_bytes); never@739: __ testl(byte_count, 4); duke@435: __ jccb(Assembler::zero, L_copy_2_bytes); duke@435: __ movl(rax, Address(end_from, 8)); duke@435: __ movl(Address(end_to, 8), rax); duke@435: never@739: __ addptr(end_from, 4); never@739: __ addptr(end_to, 4); duke@435: duke@435: // Check for and copy trailing word duke@435: __ BIND(L_copy_2_bytes); never@739: __ testl(byte_count, 2); duke@435: __ jccb(Assembler::zero, L_copy_byte); duke@435: __ movw(rax, Address(end_from, 8)); duke@435: __ movw(Address(end_to, 8), rax); duke@435: never@739: __ addptr(end_from, 2); never@739: __ addptr(end_to, 2); duke@435: duke@435: // Check for and copy trailing byte duke@435: __ BIND(L_copy_byte); never@739: __ testl(byte_count, 1); duke@435: __ jccb(Assembler::zero, L_exit); duke@435: __ movb(rax, Address(end_from, 8)); duke@435: __ movb(Address(end_to, 8), rax); duke@435: duke@435: __ BIND(L_exit); duke@435: inc_counter_np(SharedRuntime::_jbyte_array_copy_ctr); duke@435: restore_arg_regs(); never@739: __ xorptr(rax, rax); // return 0 duke@435: __ leave(); // required for proper stackwalking of RuntimeStub frame duke@435: __ ret(0); duke@435: duke@435: // Copy in 32-bytes chunks duke@435: copy_32_bytes_forward(end_from, end_to, qword_count, rax, L_copy_32_bytes, L_copy_8_bytes); duke@435: __ jmp(L_copy_4_bytes); duke@435: duke@435: return start; duke@435: } duke@435: duke@435: // Arguments: duke@435: // aligned - true => Input and output aligned on a HeapWord == 8-byte boundary duke@435: // ignored duke@435: // name - stub name string duke@435: // duke@435: // Inputs: duke@435: // c_rarg0 - source array address duke@435: // c_rarg1 - destination array address duke@435: // c_rarg2 - element count, treated as ssize_t, can be zero duke@435: // duke@435: // If 'from' and/or 'to' are aligned on 4-, 2-, or 1-byte boundaries, duke@435: // we let the hardware handle it. The one to eight bytes within words, duke@435: // dwords or qwords that span cache line boundaries will still be loaded duke@435: // and stored atomically. duke@435: // duke@435: address generate_conjoint_byte_copy(bool aligned, const char *name) { duke@435: __ align(CodeEntryAlignment); duke@435: StubCodeMark mark(this, "StubRoutines", name); duke@435: address start = __ pc(); duke@435: duke@435: Label L_copy_32_bytes, L_copy_8_bytes, L_copy_4_bytes, L_copy_2_bytes; duke@435: const Register from = rdi; // source array address duke@435: const Register to = rsi; // destination array address duke@435: const Register count = rdx; // elements count duke@435: const Register byte_count = rcx; duke@435: const Register qword_count = count; duke@435: duke@435: __ enter(); // required for proper stackwalking of RuntimeStub frame duke@435: assert_clean_int(c_rarg2, rax); // Make sure 'count' is clean int. duke@435: duke@435: byte_copy_entry = __ pc(); duke@435: BLOCK_COMMENT("Entry:"); duke@435: // caller can pass a 64-bit byte count here (from Unsafe.copyMemory) duke@435: duke@435: array_overlap_test(disjoint_byte_copy_entry, Address::times_1); duke@435: setup_arg_regs(); // from => rdi, to => rsi, count => rdx duke@435: // r9 and r10 may be used to save non-volatile registers duke@435: duke@435: // 'from', 'to' and 'count' are now valid never@739: __ movptr(byte_count, count); never@739: __ shrptr(count, 3); // count => qword_count duke@435: duke@435: // Copy from high to low addresses. duke@435: duke@435: // Check for and copy trailing byte never@739: __ testl(byte_count, 1); duke@435: __ jcc(Assembler::zero, L_copy_2_bytes); duke@435: __ movb(rax, Address(from, byte_count, Address::times_1, -1)); duke@435: __ movb(Address(to, byte_count, Address::times_1, -1), rax); never@739: __ decrement(byte_count); // Adjust for possible trailing word duke@435: duke@435: // Check for and copy trailing word duke@435: __ BIND(L_copy_2_bytes); never@739: __ testl(byte_count, 2); duke@435: __ jcc(Assembler::zero, L_copy_4_bytes); duke@435: __ movw(rax, Address(from, byte_count, Address::times_1, -2)); duke@435: __ movw(Address(to, byte_count, Address::times_1, -2), rax); duke@435: duke@435: // Check for and copy trailing dword duke@435: __ BIND(L_copy_4_bytes); never@739: __ testl(byte_count, 4); duke@435: __ jcc(Assembler::zero, L_copy_32_bytes); duke@435: __ movl(rax, Address(from, qword_count, Address::times_8)); duke@435: __ movl(Address(to, qword_count, Address::times_8), rax); duke@435: __ jmp(L_copy_32_bytes); duke@435: duke@435: // Copy trailing qwords duke@435: __ BIND(L_copy_8_bytes); duke@435: __ movq(rax, Address(from, qword_count, Address::times_8, -8)); duke@435: __ movq(Address(to, qword_count, Address::times_8, -8), rax); never@739: __ decrement(qword_count); duke@435: __ jcc(Assembler::notZero, L_copy_8_bytes); duke@435: duke@435: inc_counter_np(SharedRuntime::_jbyte_array_copy_ctr); duke@435: restore_arg_regs(); never@739: __ xorptr(rax, rax); // return 0 duke@435: __ leave(); // required for proper stackwalking of RuntimeStub frame duke@435: __ ret(0); duke@435: duke@435: // Copy in 32-bytes chunks duke@435: copy_32_bytes_backward(from, to, qword_count, rax, L_copy_32_bytes, L_copy_8_bytes); duke@435: duke@435: inc_counter_np(SharedRuntime::_jbyte_array_copy_ctr); duke@435: restore_arg_regs(); never@739: __ xorptr(rax, rax); // return 0 duke@435: __ leave(); // required for proper stackwalking of RuntimeStub frame duke@435: __ ret(0); duke@435: duke@435: return start; duke@435: } duke@435: duke@435: // Arguments: duke@435: // aligned - true => Input and output aligned on a HeapWord == 8-byte boundary duke@435: // ignored duke@435: // name - stub name string duke@435: // duke@435: // Inputs: duke@435: // c_rarg0 - source array address duke@435: // c_rarg1 - destination array address duke@435: // c_rarg2 - element count, treated as ssize_t, can be zero duke@435: // duke@435: // If 'from' and/or 'to' are aligned on 4- or 2-byte boundaries, we duke@435: // let the hardware handle it. The two or four words within dwords duke@435: // or qwords that span cache line boundaries will still be loaded duke@435: // and stored atomically. duke@435: // duke@435: // Side Effects: duke@435: // disjoint_short_copy_entry is set to the no-overlap entry point duke@435: // used by generate_conjoint_short_copy(). duke@435: // duke@435: address generate_disjoint_short_copy(bool aligned, const char *name) { duke@435: __ align(CodeEntryAlignment); duke@435: StubCodeMark mark(this, "StubRoutines", name); duke@435: address start = __ pc(); duke@435: duke@435: Label L_copy_32_bytes, L_copy_8_bytes, L_copy_4_bytes,L_copy_2_bytes,L_exit; duke@435: const Register from = rdi; // source array address duke@435: const Register to = rsi; // destination array address duke@435: const Register count = rdx; // elements count duke@435: const Register word_count = rcx; duke@435: const Register qword_count = count; duke@435: const Register end_from = from; // source array end address duke@435: const Register end_to = to; // destination array end address duke@435: // End pointers are inclusive, and if count is not zero they point duke@435: // to the last unit copied: end_to[0] := end_from[0] duke@435: duke@435: __ enter(); // required for proper stackwalking of RuntimeStub frame duke@435: assert_clean_int(c_rarg2, rax); // Make sure 'count' is clean int. duke@435: duke@435: disjoint_short_copy_entry = __ pc(); duke@435: BLOCK_COMMENT("Entry:"); duke@435: // caller can pass a 64-bit byte count here (from Unsafe.copyMemory) duke@435: duke@435: setup_arg_regs(); // from => rdi, to => rsi, count => rdx duke@435: // r9 and r10 may be used to save non-volatile registers duke@435: duke@435: // 'from', 'to' and 'count' are now valid never@739: __ movptr(word_count, count); never@739: __ shrptr(count, 2); // count => qword_count duke@435: duke@435: // Copy from low to high addresses. Use 'to' as scratch. never@739: __ lea(end_from, Address(from, qword_count, Address::times_8, -8)); never@739: __ lea(end_to, Address(to, qword_count, Address::times_8, -8)); never@739: __ negptr(qword_count); duke@435: __ jmp(L_copy_32_bytes); duke@435: duke@435: // Copy trailing qwords duke@435: __ BIND(L_copy_8_bytes); duke@435: __ movq(rax, Address(end_from, qword_count, Address::times_8, 8)); duke@435: __ movq(Address(end_to, qword_count, Address::times_8, 8), rax); never@739: __ increment(qword_count); duke@435: __ jcc(Assembler::notZero, L_copy_8_bytes); duke@435: duke@435: // Original 'dest' is trashed, so we can't use it as a duke@435: // base register for a possible trailing word copy duke@435: duke@435: // Check for and copy trailing dword duke@435: __ BIND(L_copy_4_bytes); never@739: __ testl(word_count, 2); duke@435: __ jccb(Assembler::zero, L_copy_2_bytes); duke@435: __ movl(rax, Address(end_from, 8)); duke@435: __ movl(Address(end_to, 8), rax); duke@435: never@739: __ addptr(end_from, 4); never@739: __ addptr(end_to, 4); duke@435: duke@435: // Check for and copy trailing word duke@435: __ BIND(L_copy_2_bytes); never@739: __ testl(word_count, 1); duke@435: __ jccb(Assembler::zero, L_exit); duke@435: __ movw(rax, Address(end_from, 8)); duke@435: __ movw(Address(end_to, 8), rax); duke@435: duke@435: __ BIND(L_exit); duke@435: inc_counter_np(SharedRuntime::_jshort_array_copy_ctr); duke@435: restore_arg_regs(); never@739: __ xorptr(rax, rax); // return 0 duke@435: __ leave(); // required for proper stackwalking of RuntimeStub frame duke@435: __ ret(0); duke@435: duke@435: // Copy in 32-bytes chunks duke@435: copy_32_bytes_forward(end_from, end_to, qword_count, rax, L_copy_32_bytes, L_copy_8_bytes); duke@435: __ jmp(L_copy_4_bytes); duke@435: duke@435: return start; duke@435: } duke@435: duke@435: // Arguments: duke@435: // aligned - true => Input and output aligned on a HeapWord == 8-byte boundary duke@435: // ignored duke@435: // name - stub name string duke@435: // duke@435: // Inputs: duke@435: // c_rarg0 - source array address duke@435: // c_rarg1 - destination array address duke@435: // c_rarg2 - element count, treated as ssize_t, can be zero duke@435: // duke@435: // If 'from' and/or 'to' are aligned on 4- or 2-byte boundaries, we duke@435: // let the hardware handle it. The two or four words within dwords duke@435: // or qwords that span cache line boundaries will still be loaded duke@435: // and stored atomically. duke@435: // duke@435: address generate_conjoint_short_copy(bool aligned, const char *name) { duke@435: __ align(CodeEntryAlignment); duke@435: StubCodeMark mark(this, "StubRoutines", name); duke@435: address start = __ pc(); duke@435: duke@435: Label L_copy_32_bytes, L_copy_8_bytes, L_copy_4_bytes; duke@435: const Register from = rdi; // source array address duke@435: const Register to = rsi; // destination array address duke@435: const Register count = rdx; // elements count duke@435: const Register word_count = rcx; duke@435: const Register qword_count = count; duke@435: duke@435: __ enter(); // required for proper stackwalking of RuntimeStub frame duke@435: assert_clean_int(c_rarg2, rax); // Make sure 'count' is clean int. duke@435: duke@435: short_copy_entry = __ pc(); duke@435: BLOCK_COMMENT("Entry:"); duke@435: // caller can pass a 64-bit byte count here (from Unsafe.copyMemory) duke@435: duke@435: array_overlap_test(disjoint_short_copy_entry, Address::times_2); duke@435: setup_arg_regs(); // from => rdi, to => rsi, count => rdx duke@435: // r9 and r10 may be used to save non-volatile registers duke@435: duke@435: // 'from', 'to' and 'count' are now valid never@739: __ movptr(word_count, count); never@739: __ shrptr(count, 2); // count => qword_count duke@435: duke@435: // Copy from high to low addresses. Use 'to' as scratch. duke@435: duke@435: // Check for and copy trailing word never@739: __ testl(word_count, 1); duke@435: __ jccb(Assembler::zero, L_copy_4_bytes); duke@435: __ movw(rax, Address(from, word_count, Address::times_2, -2)); duke@435: __ movw(Address(to, word_count, Address::times_2, -2), rax); duke@435: duke@435: // Check for and copy trailing dword duke@435: __ BIND(L_copy_4_bytes); never@739: __ testl(word_count, 2); duke@435: __ jcc(Assembler::zero, L_copy_32_bytes); duke@435: __ movl(rax, Address(from, qword_count, Address::times_8)); duke@435: __ movl(Address(to, qword_count, Address::times_8), rax); duke@435: __ jmp(L_copy_32_bytes); duke@435: duke@435: // Copy trailing qwords duke@435: __ BIND(L_copy_8_bytes); duke@435: __ movq(rax, Address(from, qword_count, Address::times_8, -8)); duke@435: __ movq(Address(to, qword_count, Address::times_8, -8), rax); never@739: __ decrement(qword_count); duke@435: __ jcc(Assembler::notZero, L_copy_8_bytes); duke@435: duke@435: inc_counter_np(SharedRuntime::_jshort_array_copy_ctr); duke@435: restore_arg_regs(); never@739: __ xorptr(rax, rax); // return 0 duke@435: __ leave(); // required for proper stackwalking of RuntimeStub frame duke@435: __ ret(0); duke@435: duke@435: // Copy in 32-bytes chunks duke@435: copy_32_bytes_backward(from, to, qword_count, rax, L_copy_32_bytes, L_copy_8_bytes); duke@435: duke@435: inc_counter_np(SharedRuntime::_jshort_array_copy_ctr); duke@435: restore_arg_regs(); never@739: __ xorptr(rax, rax); // return 0 duke@435: __ leave(); // required for proper stackwalking of RuntimeStub frame duke@435: __ ret(0); duke@435: duke@435: return start; duke@435: } duke@435: duke@435: // Arguments: duke@435: // aligned - true => Input and output aligned on a HeapWord == 8-byte boundary duke@435: // ignored coleenp@548: // is_oop - true => oop array, so generate store check code duke@435: // name - stub name string duke@435: // duke@435: // Inputs: duke@435: // c_rarg0 - source array address duke@435: // c_rarg1 - destination array address duke@435: // c_rarg2 - element count, treated as ssize_t, can be zero duke@435: // duke@435: // If 'from' and/or 'to' are aligned on 4-byte boundaries, we let duke@435: // the hardware handle it. The two dwords within qwords that span duke@435: // cache line boundaries will still be loaded and stored atomicly. duke@435: // duke@435: // Side Effects: duke@435: // disjoint_int_copy_entry is set to the no-overlap entry point coleenp@548: // used by generate_conjoint_int_oop_copy(). duke@435: // coleenp@548: address generate_disjoint_int_oop_copy(bool aligned, bool is_oop, const char *name) { duke@435: __ align(CodeEntryAlignment); duke@435: StubCodeMark mark(this, "StubRoutines", name); duke@435: address start = __ pc(); duke@435: duke@435: Label L_copy_32_bytes, L_copy_8_bytes, L_copy_4_bytes, L_exit; duke@435: const Register from = rdi; // source array address duke@435: const Register to = rsi; // destination array address duke@435: const Register count = rdx; // elements count duke@435: const Register dword_count = rcx; duke@435: const Register qword_count = count; duke@435: const Register end_from = from; // source array end address duke@435: const Register end_to = to; // destination array end address coleenp@548: const Register saved_to = r11; // saved destination array address duke@435: // End pointers are inclusive, and if count is not zero they point duke@435: // to the last unit copied: end_to[0] := end_from[0] duke@435: duke@435: __ enter(); // required for proper stackwalking of RuntimeStub frame duke@435: assert_clean_int(c_rarg2, rax); // Make sure 'count' is clean int. duke@435: coleenp@548: (is_oop ? disjoint_oop_copy_entry : disjoint_int_copy_entry) = __ pc(); coleenp@548: coleenp@548: if (is_oop) { coleenp@548: // no registers are destroyed by this call coleenp@548: gen_write_ref_array_pre_barrier(/* dest */ c_rarg1, /* count */ c_rarg2); coleenp@548: } coleenp@548: duke@435: BLOCK_COMMENT("Entry:"); duke@435: // caller can pass a 64-bit byte count here (from Unsafe.copyMemory) duke@435: duke@435: setup_arg_regs(); // from => rdi, to => rsi, count => rdx duke@435: // r9 and r10 may be used to save non-volatile registers duke@435: coleenp@548: if (is_oop) { coleenp@548: __ movq(saved_to, to); coleenp@548: } coleenp@548: duke@435: // 'from', 'to' and 'count' are now valid never@739: __ movptr(dword_count, count); never@739: __ shrptr(count, 1); // count => qword_count duke@435: duke@435: // Copy from low to high addresses. Use 'to' as scratch. never@739: __ lea(end_from, Address(from, qword_count, Address::times_8, -8)); never@739: __ lea(end_to, Address(to, qword_count, Address::times_8, -8)); never@739: __ negptr(qword_count); duke@435: __ jmp(L_copy_32_bytes); duke@435: duke@435: // Copy trailing qwords duke@435: __ BIND(L_copy_8_bytes); duke@435: __ movq(rax, Address(end_from, qword_count, Address::times_8, 8)); duke@435: __ movq(Address(end_to, qword_count, Address::times_8, 8), rax); never@739: __ increment(qword_count); duke@435: __ jcc(Assembler::notZero, L_copy_8_bytes); duke@435: duke@435: // Check for and copy trailing dword duke@435: __ BIND(L_copy_4_bytes); never@739: __ testl(dword_count, 1); // Only byte test since the value is 0 or 1 duke@435: __ jccb(Assembler::zero, L_exit); duke@435: __ movl(rax, Address(end_from, 8)); duke@435: __ movl(Address(end_to, 8), rax); duke@435: duke@435: __ BIND(L_exit); coleenp@548: if (is_oop) { coleenp@548: __ leaq(end_to, Address(saved_to, dword_count, Address::times_4, -4)); coleenp@548: gen_write_ref_array_post_barrier(saved_to, end_to, rax); coleenp@548: } duke@435: inc_counter_np(SharedRuntime::_jint_array_copy_ctr); duke@435: restore_arg_regs(); never@739: __ xorptr(rax, rax); // return 0 duke@435: __ leave(); // required for proper stackwalking of RuntimeStub frame duke@435: __ ret(0); duke@435: duke@435: // Copy 32-bytes chunks duke@435: copy_32_bytes_forward(end_from, end_to, qword_count, rax, L_copy_32_bytes, L_copy_8_bytes); duke@435: __ jmp(L_copy_4_bytes); duke@435: duke@435: return start; duke@435: } duke@435: duke@435: // Arguments: duke@435: // aligned - true => Input and output aligned on a HeapWord == 8-byte boundary duke@435: // ignored coleenp@548: // is_oop - true => oop array, so generate store check code duke@435: // name - stub name string duke@435: // duke@435: // Inputs: duke@435: // c_rarg0 - source array address duke@435: // c_rarg1 - destination array address duke@435: // c_rarg2 - element count, treated as ssize_t, can be zero duke@435: // duke@435: // If 'from' and/or 'to' are aligned on 4-byte boundaries, we let duke@435: // the hardware handle it. The two dwords within qwords that span duke@435: // cache line boundaries will still be loaded and stored atomicly. duke@435: // coleenp@548: address generate_conjoint_int_oop_copy(bool aligned, bool is_oop, const char *name) { duke@435: __ align(CodeEntryAlignment); duke@435: StubCodeMark mark(this, "StubRoutines", name); duke@435: address start = __ pc(); duke@435: coleenp@548: Label L_copy_32_bytes, L_copy_8_bytes, L_copy_2_bytes, L_exit; duke@435: const Register from = rdi; // source array address duke@435: const Register to = rsi; // destination array address duke@435: const Register count = rdx; // elements count duke@435: const Register dword_count = rcx; duke@435: const Register qword_count = count; duke@435: duke@435: __ enter(); // required for proper stackwalking of RuntimeStub frame duke@435: assert_clean_int(c_rarg2, rax); // Make sure 'count' is clean int. duke@435: coleenp@548: if (is_oop) { coleenp@548: // no registers are destroyed by this call coleenp@548: gen_write_ref_array_pre_barrier(/* dest */ c_rarg1, /* count */ c_rarg2); coleenp@548: } coleenp@548: coleenp@548: (is_oop ? oop_copy_entry : int_copy_entry) = __ pc(); duke@435: BLOCK_COMMENT("Entry:"); duke@435: // caller can pass a 64-bit byte count here (from Unsafe.copyMemory) duke@435: coleenp@548: array_overlap_test(is_oop ? disjoint_oop_copy_entry : disjoint_int_copy_entry, coleenp@548: Address::times_4); duke@435: setup_arg_regs(); // from => rdi, to => rsi, count => rdx duke@435: // r9 and r10 may be used to save non-volatile registers duke@435: coleenp@548: assert_clean_int(count, rax); // Make sure 'count' is clean int. duke@435: // 'from', 'to' and 'count' are now valid never@739: __ movptr(dword_count, count); never@739: __ shrptr(count, 1); // count => qword_count duke@435: duke@435: // Copy from high to low addresses. Use 'to' as scratch. duke@435: duke@435: // Check for and copy trailing dword never@739: __ testl(dword_count, 1); duke@435: __ jcc(Assembler::zero, L_copy_32_bytes); duke@435: __ movl(rax, Address(from, dword_count, Address::times_4, -4)); duke@435: __ movl(Address(to, dword_count, Address::times_4, -4), rax); duke@435: __ jmp(L_copy_32_bytes); duke@435: duke@435: // Copy trailing qwords duke@435: __ BIND(L_copy_8_bytes); duke@435: __ movq(rax, Address(from, qword_count, Address::times_8, -8)); duke@435: __ movq(Address(to, qword_count, Address::times_8, -8), rax); never@739: __ decrement(qword_count); duke@435: __ jcc(Assembler::notZero, L_copy_8_bytes); duke@435: duke@435: inc_counter_np(SharedRuntime::_jint_array_copy_ctr); coleenp@548: if (is_oop) { coleenp@548: __ jmp(L_exit); coleenp@548: } duke@435: restore_arg_regs(); never@739: __ xorptr(rax, rax); // return 0 duke@435: __ leave(); // required for proper stackwalking of RuntimeStub frame duke@435: __ ret(0); duke@435: duke@435: // Copy in 32-bytes chunks duke@435: copy_32_bytes_backward(from, to, qword_count, rax, L_copy_32_bytes, L_copy_8_bytes); duke@435: coleenp@548: inc_counter_np(SharedRuntime::_jint_array_copy_ctr); coleenp@548: __ bind(L_exit); coleenp@548: if (is_oop) { coleenp@548: Register end_to = rdx; coleenp@548: __ leaq(end_to, Address(to, dword_count, Address::times_4, -4)); coleenp@548: gen_write_ref_array_post_barrier(to, end_to, rax); coleenp@548: } duke@435: restore_arg_regs(); never@739: __ xorptr(rax, rax); // return 0 duke@435: __ leave(); // required for proper stackwalking of RuntimeStub frame duke@435: __ ret(0); duke@435: duke@435: return start; duke@435: } duke@435: duke@435: // Arguments: duke@435: // aligned - true => Input and output aligned on a HeapWord boundary == 8 bytes duke@435: // ignored duke@435: // is_oop - true => oop array, so generate store check code duke@435: // name - stub name string duke@435: // duke@435: // Inputs: duke@435: // c_rarg0 - source array address duke@435: // c_rarg1 - destination array address duke@435: // c_rarg2 - element count, treated as ssize_t, can be zero duke@435: // coleenp@548: // Side Effects: duke@435: // disjoint_oop_copy_entry or disjoint_long_copy_entry is set to the duke@435: // no-overlap entry point used by generate_conjoint_long_oop_copy(). duke@435: // duke@435: address generate_disjoint_long_oop_copy(bool aligned, bool is_oop, const char *name) { duke@435: __ align(CodeEntryAlignment); duke@435: StubCodeMark mark(this, "StubRoutines", name); duke@435: address start = __ pc(); duke@435: duke@435: Label L_copy_32_bytes, L_copy_8_bytes, L_exit; duke@435: const Register from = rdi; // source array address duke@435: const Register to = rsi; // destination array address duke@435: const Register qword_count = rdx; // elements count duke@435: const Register end_from = from; // source array end address duke@435: const Register end_to = rcx; // destination array end address duke@435: const Register saved_to = to; duke@435: // End pointers are inclusive, and if count is not zero they point duke@435: // to the last unit copied: end_to[0] := end_from[0] duke@435: duke@435: __ enter(); // required for proper stackwalking of RuntimeStub frame duke@435: // Save no-overlap entry point for generate_conjoint_long_oop_copy() duke@435: assert_clean_int(c_rarg2, rax); // Make sure 'count' is clean int. duke@435: duke@435: if (is_oop) { duke@435: disjoint_oop_copy_entry = __ pc(); duke@435: // no registers are destroyed by this call duke@435: gen_write_ref_array_pre_barrier(/* dest */ c_rarg1, /* count */ c_rarg2); duke@435: } else { duke@435: disjoint_long_copy_entry = __ pc(); duke@435: } duke@435: BLOCK_COMMENT("Entry:"); duke@435: // caller can pass a 64-bit byte count here (from Unsafe.copyMemory) duke@435: duke@435: setup_arg_regs(); // from => rdi, to => rsi, count => rdx duke@435: // r9 and r10 may be used to save non-volatile registers duke@435: duke@435: // 'from', 'to' and 'qword_count' are now valid duke@435: duke@435: // Copy from low to high addresses. Use 'to' as scratch. never@739: __ lea(end_from, Address(from, qword_count, Address::times_8, -8)); never@739: __ lea(end_to, Address(to, qword_count, Address::times_8, -8)); never@739: __ negptr(qword_count); duke@435: __ jmp(L_copy_32_bytes); duke@435: duke@435: // Copy trailing qwords duke@435: __ BIND(L_copy_8_bytes); duke@435: __ movq(rax, Address(end_from, qword_count, Address::times_8, 8)); duke@435: __ movq(Address(end_to, qword_count, Address::times_8, 8), rax); never@739: __ increment(qword_count); duke@435: __ jcc(Assembler::notZero, L_copy_8_bytes); duke@435: duke@435: if (is_oop) { duke@435: __ jmp(L_exit); duke@435: } else { duke@435: inc_counter_np(SharedRuntime::_jlong_array_copy_ctr); duke@435: restore_arg_regs(); never@739: __ xorptr(rax, rax); // return 0 duke@435: __ leave(); // required for proper stackwalking of RuntimeStub frame duke@435: __ ret(0); duke@435: } duke@435: duke@435: // Copy 64-byte chunks duke@435: copy_32_bytes_forward(end_from, end_to, qword_count, rax, L_copy_32_bytes, L_copy_8_bytes); duke@435: duke@435: if (is_oop) { duke@435: __ BIND(L_exit); duke@435: gen_write_ref_array_post_barrier(saved_to, end_to, rax); duke@435: inc_counter_np(SharedRuntime::_oop_array_copy_ctr); duke@435: } else { duke@435: inc_counter_np(SharedRuntime::_jlong_array_copy_ctr); duke@435: } duke@435: restore_arg_regs(); never@739: __ xorptr(rax, rax); // return 0 duke@435: __ leave(); // required for proper stackwalking of RuntimeStub frame duke@435: __ ret(0); duke@435: duke@435: return start; duke@435: } duke@435: duke@435: // Arguments: duke@435: // aligned - true => Input and output aligned on a HeapWord boundary == 8 bytes duke@435: // ignored duke@435: // is_oop - true => oop array, so generate store check code duke@435: // name - stub name string duke@435: // duke@435: // Inputs: duke@435: // c_rarg0 - source array address duke@435: // c_rarg1 - destination array address duke@435: // c_rarg2 - element count, treated as ssize_t, can be zero duke@435: // duke@435: address generate_conjoint_long_oop_copy(bool aligned, bool is_oop, const char *name) { duke@435: __ align(CodeEntryAlignment); duke@435: StubCodeMark mark(this, "StubRoutines", name); duke@435: address start = __ pc(); duke@435: duke@435: Label L_copy_32_bytes, L_copy_8_bytes, L_exit; duke@435: const Register from = rdi; // source array address duke@435: const Register to = rsi; // destination array address duke@435: const Register qword_count = rdx; // elements count duke@435: const Register saved_count = rcx; duke@435: duke@435: __ enter(); // required for proper stackwalking of RuntimeStub frame duke@435: assert_clean_int(c_rarg2, rax); // Make sure 'count' is clean int. duke@435: duke@435: address disjoint_copy_entry = NULL; duke@435: if (is_oop) { coleenp@548: assert(!UseCompressedOops, "shouldn't be called for compressed oops"); duke@435: disjoint_copy_entry = disjoint_oop_copy_entry; duke@435: oop_copy_entry = __ pc(); coleenp@548: array_overlap_test(disjoint_oop_copy_entry, Address::times_8); duke@435: } else { duke@435: disjoint_copy_entry = disjoint_long_copy_entry; duke@435: long_copy_entry = __ pc(); coleenp@548: array_overlap_test(disjoint_long_copy_entry, Address::times_8); duke@435: } duke@435: BLOCK_COMMENT("Entry:"); duke@435: // caller can pass a 64-bit byte count here (from Unsafe.copyMemory) duke@435: duke@435: array_overlap_test(disjoint_copy_entry, Address::times_8); duke@435: setup_arg_regs(); // from => rdi, to => rsi, count => rdx duke@435: // r9 and r10 may be used to save non-volatile registers duke@435: duke@435: // 'from', 'to' and 'qword_count' are now valid duke@435: duke@435: if (is_oop) { duke@435: // Save to and count for store barrier never@739: __ movptr(saved_count, qword_count); duke@435: // No registers are destroyed by this call duke@435: gen_write_ref_array_pre_barrier(to, saved_count); duke@435: } duke@435: duke@435: __ jmp(L_copy_32_bytes); duke@435: duke@435: // Copy trailing qwords duke@435: __ BIND(L_copy_8_bytes); duke@435: __ movq(rax, Address(from, qword_count, Address::times_8, -8)); duke@435: __ movq(Address(to, qword_count, Address::times_8, -8), rax); never@739: __ decrement(qword_count); duke@435: __ jcc(Assembler::notZero, L_copy_8_bytes); duke@435: duke@435: if (is_oop) { duke@435: __ jmp(L_exit); duke@435: } else { duke@435: inc_counter_np(SharedRuntime::_jlong_array_copy_ctr); duke@435: restore_arg_regs(); never@739: __ xorptr(rax, rax); // return 0 duke@435: __ leave(); // required for proper stackwalking of RuntimeStub frame duke@435: __ ret(0); duke@435: } duke@435: duke@435: // Copy in 32-bytes chunks duke@435: copy_32_bytes_backward(from, to, qword_count, rax, L_copy_32_bytes, L_copy_8_bytes); duke@435: duke@435: if (is_oop) { duke@435: __ BIND(L_exit); never@739: __ lea(rcx, Address(to, saved_count, Address::times_8, -8)); duke@435: gen_write_ref_array_post_barrier(to, rcx, rax); duke@435: inc_counter_np(SharedRuntime::_oop_array_copy_ctr); duke@435: } else { duke@435: inc_counter_np(SharedRuntime::_jlong_array_copy_ctr); duke@435: } duke@435: restore_arg_regs(); never@739: __ xorptr(rax, rax); // return 0 duke@435: __ leave(); // required for proper stackwalking of RuntimeStub frame duke@435: __ ret(0); duke@435: duke@435: return start; duke@435: } duke@435: duke@435: duke@435: // Helper for generating a dynamic type check. duke@435: // Smashes no registers. duke@435: void generate_type_check(Register sub_klass, duke@435: Register super_check_offset, duke@435: Register super_klass, duke@435: Label& L_success) { duke@435: assert_different_registers(sub_klass, super_check_offset, super_klass); duke@435: duke@435: BLOCK_COMMENT("type_check:"); duke@435: duke@435: Label L_miss; duke@435: jrose@1079: __ check_klass_subtype_fast_path(sub_klass, super_klass, noreg, &L_success, &L_miss, NULL, jrose@1079: super_check_offset); jrose@1079: __ check_klass_subtype_slow_path(sub_klass, super_klass, noreg, noreg, &L_success, NULL); duke@435: duke@435: // Fall through on failure! duke@435: __ BIND(L_miss); duke@435: } duke@435: duke@435: // duke@435: // Generate checkcasting array copy stub duke@435: // duke@435: // Input: duke@435: // c_rarg0 - source array address duke@435: // c_rarg1 - destination array address duke@435: // c_rarg2 - element count, treated as ssize_t, can be zero duke@435: // c_rarg3 - size_t ckoff (super_check_offset) duke@435: // not Win64 duke@435: // c_rarg4 - oop ckval (super_klass) duke@435: // Win64 duke@435: // rsp+40 - oop ckval (super_klass) duke@435: // duke@435: // Output: duke@435: // rax == 0 - success duke@435: // rax == -1^K - failure, where K is partial transfer count duke@435: // duke@435: address generate_checkcast_copy(const char *name) { duke@435: duke@435: Label L_load_element, L_store_element, L_do_card_marks, L_done; duke@435: duke@435: // Input registers (after setup_arg_regs) duke@435: const Register from = rdi; // source array address duke@435: const Register to = rsi; // destination array address duke@435: const Register length = rdx; // elements count duke@435: const Register ckoff = rcx; // super_check_offset duke@435: const Register ckval = r8; // super_klass duke@435: duke@435: // Registers used as temps (r13, r14 are save-on-entry) duke@435: const Register end_from = from; // source array end address duke@435: const Register end_to = r13; // destination array end address duke@435: const Register count = rdx; // -(count_remaining) duke@435: const Register r14_length = r14; // saved copy of length duke@435: // End pointers are inclusive, and if length is not zero they point duke@435: // to the last unit copied: end_to[0] := end_from[0] duke@435: duke@435: const Register rax_oop = rax; // actual oop copied duke@435: const Register r11_klass = r11; // oop._klass duke@435: duke@435: //--------------------------------------------------------------- duke@435: // Assembler stub will be used for this call to arraycopy duke@435: // if the two arrays are subtypes of Object[] but the duke@435: // destination array type is not equal to or a supertype duke@435: // of the source type. Each element must be separately duke@435: // checked. duke@435: duke@435: __ align(CodeEntryAlignment); duke@435: StubCodeMark mark(this, "StubRoutines", name); duke@435: address start = __ pc(); duke@435: duke@435: __ enter(); // required for proper stackwalking of RuntimeStub frame duke@435: duke@435: checkcast_copy_entry = __ pc(); duke@435: BLOCK_COMMENT("Entry:"); duke@435: duke@435: #ifdef ASSERT duke@435: // caller guarantees that the arrays really are different duke@435: // otherwise, we would have to make conjoint checks duke@435: { Label L; coleenp@548: array_overlap_test(L, TIMES_OOP); duke@435: __ stop("checkcast_copy within a single array"); duke@435: __ bind(L); duke@435: } duke@435: #endif //ASSERT duke@435: duke@435: // allocate spill slots for r13, r14 duke@435: enum { duke@435: saved_r13_offset, duke@435: saved_r14_offset, duke@435: saved_rbp_offset, duke@435: saved_rip_offset, duke@435: saved_rarg0_offset duke@435: }; never@739: __ subptr(rsp, saved_rbp_offset * wordSize); never@739: __ movptr(Address(rsp, saved_r13_offset * wordSize), r13); never@739: __ movptr(Address(rsp, saved_r14_offset * wordSize), r14); duke@435: setup_arg_regs(4); // from => rdi, to => rsi, length => rdx duke@435: // ckoff => rcx, ckval => r8 duke@435: // r9 and r10 may be used to save non-volatile registers duke@435: #ifdef _WIN64 duke@435: // last argument (#4) is on stack on Win64 duke@435: const int ckval_offset = saved_rarg0_offset + 4; never@739: __ movptr(ckval, Address(rsp, ckval_offset * wordSize)); duke@435: #endif duke@435: duke@435: // check that int operands are properly extended to size_t duke@435: assert_clean_int(length, rax); duke@435: assert_clean_int(ckoff, rax); duke@435: duke@435: #ifdef ASSERT duke@435: BLOCK_COMMENT("assert consistent ckoff/ckval"); duke@435: // The ckoff and ckval must be mutually consistent, duke@435: // even though caller generates both. duke@435: { Label L; duke@435: int sco_offset = (klassOopDesc::header_size() * HeapWordSize + duke@435: Klass::super_check_offset_offset_in_bytes()); duke@435: __ cmpl(ckoff, Address(ckval, sco_offset)); duke@435: __ jcc(Assembler::equal, L); duke@435: __ stop("super_check_offset inconsistent"); duke@435: __ bind(L); duke@435: } duke@435: #endif //ASSERT duke@435: duke@435: // Loop-invariant addresses. They are exclusive end pointers. coleenp@548: Address end_from_addr(from, length, TIMES_OOP, 0); coleenp@548: Address end_to_addr(to, length, TIMES_OOP, 0); duke@435: // Loop-variant addresses. They assume post-incremented count < 0. coleenp@548: Address from_element_addr(end_from, count, TIMES_OOP, 0); coleenp@548: Address to_element_addr(end_to, count, TIMES_OOP, 0); duke@435: duke@435: gen_write_ref_array_pre_barrier(to, count); duke@435: duke@435: // Copy from low to high addresses, indexed from the end of each array. never@739: __ lea(end_from, end_from_addr); never@739: __ lea(end_to, end_to_addr); never@739: __ movptr(r14_length, length); // save a copy of the length never@739: assert(length == count, ""); // else fix next line: never@739: __ negptr(count); // negate and test the length duke@435: __ jcc(Assembler::notZero, L_load_element); duke@435: duke@435: // Empty array: Nothing to do. never@739: __ xorptr(rax, rax); // return 0 on (trivial) success duke@435: __ jmp(L_done); duke@435: duke@435: // ======== begin loop ======== duke@435: // (Loop is rotated; its entry is L_load_element.) duke@435: // Loop control: duke@435: // for (count = -count; count != 0; count++) duke@435: // Base pointers src, dst are biased by 8*(count-1),to last element. duke@435: __ align(16); duke@435: duke@435: __ BIND(L_store_element); coleenp@548: __ store_heap_oop(to_element_addr, rax_oop); // store the oop never@739: __ increment(count); // increment the count toward zero duke@435: __ jcc(Assembler::zero, L_do_card_marks); duke@435: duke@435: // ======== loop entry is here ======== duke@435: __ BIND(L_load_element); coleenp@548: __ load_heap_oop(rax_oop, from_element_addr); // load the oop never@739: __ testptr(rax_oop, rax_oop); duke@435: __ jcc(Assembler::zero, L_store_element); duke@435: coleenp@548: __ load_klass(r11_klass, rax_oop);// query the object klass duke@435: generate_type_check(r11_klass, ckoff, ckval, L_store_element); duke@435: // ======== end loop ======== duke@435: duke@435: // It was a real error; we must depend on the caller to finish the job. duke@435: // Register rdx = -1 * number of *remaining* oops, r14 = *total* oops. duke@435: // Emit GC store barriers for the oops we have copied (r14 + rdx), duke@435: // and report their number to the caller. duke@435: assert_different_registers(rax, r14_length, count, to, end_to, rcx); never@739: __ lea(end_to, to_element_addr); ysr@1280: __ addptr(end_to, -heapOopSize); // make an inclusive end pointer apetrusenko@797: gen_write_ref_array_post_barrier(to, end_to, rscratch1); never@739: __ movptr(rax, r14_length); // original oops never@739: __ addptr(rax, count); // K = (original - remaining) oops never@739: __ notptr(rax); // report (-1^K) to caller duke@435: __ jmp(L_done); duke@435: duke@435: // Come here on success only. duke@435: __ BIND(L_do_card_marks); ysr@1280: __ addptr(end_to, -heapOopSize); // make an inclusive end pointer apetrusenko@797: gen_write_ref_array_post_barrier(to, end_to, rscratch1); never@739: __ xorptr(rax, rax); // return 0 on success duke@435: duke@435: // Common exit point (success or failure). duke@435: __ BIND(L_done); never@739: __ movptr(r13, Address(rsp, saved_r13_offset * wordSize)); never@739: __ movptr(r14, Address(rsp, saved_r14_offset * wordSize)); duke@435: inc_counter_np(SharedRuntime::_checkcast_array_copy_ctr); duke@435: restore_arg_regs(); duke@435: __ leave(); // required for proper stackwalking of RuntimeStub frame duke@435: __ ret(0); duke@435: duke@435: return start; duke@435: } duke@435: duke@435: // duke@435: // Generate 'unsafe' array copy stub duke@435: // Though just as safe as the other stubs, it takes an unscaled duke@435: // size_t argument instead of an element count. duke@435: // duke@435: // Input: duke@435: // c_rarg0 - source array address duke@435: // c_rarg1 - destination array address duke@435: // c_rarg2 - byte count, treated as ssize_t, can be zero duke@435: // duke@435: // Examines the alignment of the operands and dispatches duke@435: // to a long, int, short, or byte copy loop. duke@435: // duke@435: address generate_unsafe_copy(const char *name) { duke@435: duke@435: Label L_long_aligned, L_int_aligned, L_short_aligned; duke@435: duke@435: // Input registers (before setup_arg_regs) duke@435: const Register from = c_rarg0; // source array address duke@435: const Register to = c_rarg1; // destination array address duke@435: const Register size = c_rarg2; // byte count (size_t) duke@435: duke@435: // Register used as a temp duke@435: const Register bits = rax; // test copy of low bits duke@435: duke@435: __ align(CodeEntryAlignment); duke@435: StubCodeMark mark(this, "StubRoutines", name); duke@435: address start = __ pc(); duke@435: duke@435: __ enter(); // required for proper stackwalking of RuntimeStub frame duke@435: duke@435: // bump this on entry, not on exit: duke@435: inc_counter_np(SharedRuntime::_unsafe_array_copy_ctr); duke@435: never@739: __ mov(bits, from); never@739: __ orptr(bits, to); never@739: __ orptr(bits, size); duke@435: duke@435: __ testb(bits, BytesPerLong-1); duke@435: __ jccb(Assembler::zero, L_long_aligned); duke@435: duke@435: __ testb(bits, BytesPerInt-1); duke@435: __ jccb(Assembler::zero, L_int_aligned); duke@435: duke@435: __ testb(bits, BytesPerShort-1); duke@435: __ jump_cc(Assembler::notZero, RuntimeAddress(byte_copy_entry)); duke@435: duke@435: __ BIND(L_short_aligned); never@739: __ shrptr(size, LogBytesPerShort); // size => short_count duke@435: __ jump(RuntimeAddress(short_copy_entry)); duke@435: duke@435: __ BIND(L_int_aligned); never@739: __ shrptr(size, LogBytesPerInt); // size => int_count duke@435: __ jump(RuntimeAddress(int_copy_entry)); duke@435: duke@435: __ BIND(L_long_aligned); never@739: __ shrptr(size, LogBytesPerLong); // size => qword_count duke@435: __ jump(RuntimeAddress(long_copy_entry)); duke@435: duke@435: return start; duke@435: } duke@435: duke@435: // Perform range checks on the proposed arraycopy. duke@435: // Kills temp, but nothing else. duke@435: // Also, clean the sign bits of src_pos and dst_pos. duke@435: void arraycopy_range_checks(Register src, // source array oop (c_rarg0) duke@435: Register src_pos, // source position (c_rarg1) duke@435: Register dst, // destination array oo (c_rarg2) duke@435: Register dst_pos, // destination position (c_rarg3) duke@435: Register length, duke@435: Register temp, duke@435: Label& L_failed) { duke@435: BLOCK_COMMENT("arraycopy_range_checks:"); duke@435: duke@435: // if (src_pos + length > arrayOop(src)->length()) FAIL; duke@435: __ movl(temp, length); duke@435: __ addl(temp, src_pos); // src_pos + length duke@435: __ cmpl(temp, Address(src, arrayOopDesc::length_offset_in_bytes())); duke@435: __ jcc(Assembler::above, L_failed); duke@435: duke@435: // if (dst_pos + length > arrayOop(dst)->length()) FAIL; duke@435: __ movl(temp, length); duke@435: __ addl(temp, dst_pos); // dst_pos + length duke@435: __ cmpl(temp, Address(dst, arrayOopDesc::length_offset_in_bytes())); duke@435: __ jcc(Assembler::above, L_failed); duke@435: duke@435: // Have to clean up high 32-bits of 'src_pos' and 'dst_pos'. duke@435: // Move with sign extension can be used since they are positive. duke@435: __ movslq(src_pos, src_pos); duke@435: __ movslq(dst_pos, dst_pos); duke@435: duke@435: BLOCK_COMMENT("arraycopy_range_checks done"); duke@435: } duke@435: duke@435: // duke@435: // Generate generic array copy stubs duke@435: // duke@435: // Input: duke@435: // c_rarg0 - src oop duke@435: // c_rarg1 - src_pos (32-bits) duke@435: // c_rarg2 - dst oop duke@435: // c_rarg3 - dst_pos (32-bits) duke@435: // not Win64 duke@435: // c_rarg4 - element count (32-bits) duke@435: // Win64 duke@435: // rsp+40 - element count (32-bits) duke@435: // duke@435: // Output: duke@435: // rax == 0 - success duke@435: // rax == -1^K - failure, where K is partial transfer count duke@435: // duke@435: address generate_generic_copy(const char *name) { duke@435: duke@435: Label L_failed, L_failed_0, L_objArray; duke@435: Label L_copy_bytes, L_copy_shorts, L_copy_ints, L_copy_longs; duke@435: duke@435: // Input registers duke@435: const Register src = c_rarg0; // source array oop duke@435: const Register src_pos = c_rarg1; // source position duke@435: const Register dst = c_rarg2; // destination array oop duke@435: const Register dst_pos = c_rarg3; // destination position duke@435: // elements count is on stack on Win64 duke@435: #ifdef _WIN64 duke@435: #define C_RARG4 Address(rsp, 6 * wordSize) duke@435: #else duke@435: #define C_RARG4 c_rarg4 duke@435: #endif duke@435: duke@435: { int modulus = CodeEntryAlignment; duke@435: int target = modulus - 5; // 5 = sizeof jmp(L_failed) duke@435: int advance = target - (__ offset() % modulus); duke@435: if (advance < 0) advance += modulus; duke@435: if (advance > 0) __ nop(advance); duke@435: } duke@435: StubCodeMark mark(this, "StubRoutines", name); duke@435: duke@435: // Short-hop target to L_failed. Makes for denser prologue code. duke@435: __ BIND(L_failed_0); duke@435: __ jmp(L_failed); duke@435: assert(__ offset() % CodeEntryAlignment == 0, "no further alignment needed"); duke@435: duke@435: __ align(CodeEntryAlignment); duke@435: address start = __ pc(); duke@435: duke@435: __ enter(); // required for proper stackwalking of RuntimeStub frame duke@435: duke@435: // bump this on entry, not on exit: duke@435: inc_counter_np(SharedRuntime::_generic_array_copy_ctr); duke@435: duke@435: //----------------------------------------------------------------------- duke@435: // Assembler stub will be used for this call to arraycopy duke@435: // if the following conditions are met: duke@435: // duke@435: // (1) src and dst must not be null. duke@435: // (2) src_pos must not be negative. duke@435: // (3) dst_pos must not be negative. duke@435: // (4) length must not be negative. duke@435: // (5) src klass and dst klass should be the same and not NULL. duke@435: // (6) src and dst should be arrays. duke@435: // (7) src_pos + length must not exceed length of src. duke@435: // (8) dst_pos + length must not exceed length of dst. duke@435: // duke@435: duke@435: // if (src == NULL) return -1; never@739: __ testptr(src, src); // src oop duke@435: size_t j1off = __ offset(); duke@435: __ jccb(Assembler::zero, L_failed_0); duke@435: duke@435: // if (src_pos < 0) return -1; duke@435: __ testl(src_pos, src_pos); // src_pos (32-bits) duke@435: __ jccb(Assembler::negative, L_failed_0); duke@435: duke@435: // if (dst == NULL) return -1; never@739: __ testptr(dst, dst); // dst oop duke@435: __ jccb(Assembler::zero, L_failed_0); duke@435: duke@435: // if (dst_pos < 0) return -1; duke@435: __ testl(dst_pos, dst_pos); // dst_pos (32-bits) duke@435: size_t j4off = __ offset(); duke@435: __ jccb(Assembler::negative, L_failed_0); duke@435: duke@435: // The first four tests are very dense code, duke@435: // but not quite dense enough to put four duke@435: // jumps in a 16-byte instruction fetch buffer. duke@435: // That's good, because some branch predicters duke@435: // do not like jumps so close together. duke@435: // Make sure of this. duke@435: guarantee(((j1off ^ j4off) & ~15) != 0, "I$ line of 1st & 4th jumps"); duke@435: duke@435: // registers used as temp duke@435: const Register r11_length = r11; // elements count to copy duke@435: const Register r10_src_klass = r10; // array klass coleenp@548: const Register r9_dst_klass = r9; // dest array klass duke@435: duke@435: // if (length < 0) return -1; duke@435: __ movl(r11_length, C_RARG4); // length (elements count, 32-bits value) duke@435: __ testl(r11_length, r11_length); duke@435: __ jccb(Assembler::negative, L_failed_0); duke@435: coleenp@548: __ load_klass(r10_src_klass, src); duke@435: #ifdef ASSERT duke@435: // assert(src->klass() != NULL); duke@435: BLOCK_COMMENT("assert klasses not null"); duke@435: { Label L1, L2; never@739: __ testptr(r10_src_klass, r10_src_klass); duke@435: __ jcc(Assembler::notZero, L2); // it is broken if klass is NULL duke@435: __ bind(L1); duke@435: __ stop("broken null klass"); duke@435: __ bind(L2); coleenp@548: __ load_klass(r9_dst_klass, dst); coleenp@548: __ cmpq(r9_dst_klass, 0); duke@435: __ jcc(Assembler::equal, L1); // this would be broken also duke@435: BLOCK_COMMENT("assert done"); duke@435: } duke@435: #endif duke@435: duke@435: // Load layout helper (32-bits) duke@435: // duke@435: // |array_tag| | header_size | element_type | |log2_element_size| duke@435: // 32 30 24 16 8 2 0 duke@435: // duke@435: // array_tag: typeArray = 0x3, objArray = 0x2, non-array = 0x0 duke@435: // duke@435: duke@435: int lh_offset = klassOopDesc::header_size() * HeapWordSize + duke@435: Klass::layout_helper_offset_in_bytes(); duke@435: duke@435: const Register rax_lh = rax; // layout helper duke@435: duke@435: __ movl(rax_lh, Address(r10_src_klass, lh_offset)); duke@435: duke@435: // Handle objArrays completely differently... duke@435: jint objArray_lh = Klass::array_layout_helper(T_OBJECT); duke@435: __ cmpl(rax_lh, objArray_lh); duke@435: __ jcc(Assembler::equal, L_objArray); duke@435: duke@435: // if (src->klass() != dst->klass()) return -1; coleenp@548: __ load_klass(r9_dst_klass, dst); coleenp@548: __ cmpq(r10_src_klass, r9_dst_klass); duke@435: __ jcc(Assembler::notEqual, L_failed); duke@435: duke@435: // if (!src->is_Array()) return -1; duke@435: __ cmpl(rax_lh, Klass::_lh_neutral_value); duke@435: __ jcc(Assembler::greaterEqual, L_failed); duke@435: duke@435: // At this point, it is known to be a typeArray (array_tag 0x3). duke@435: #ifdef ASSERT duke@435: { Label L; duke@435: __ cmpl(rax_lh, (Klass::_lh_array_tag_type_value << Klass::_lh_array_tag_shift)); duke@435: __ jcc(Assembler::greaterEqual, L); duke@435: __ stop("must be a primitive array"); duke@435: __ bind(L); duke@435: } duke@435: #endif duke@435: duke@435: arraycopy_range_checks(src, src_pos, dst, dst_pos, r11_length, duke@435: r10, L_failed); duke@435: duke@435: // typeArrayKlass duke@435: // duke@435: // src_addr = (src + array_header_in_bytes()) + (src_pos << log2elemsize); duke@435: // dst_addr = (dst + array_header_in_bytes()) + (dst_pos << log2elemsize); duke@435: // duke@435: duke@435: const Register r10_offset = r10; // array offset duke@435: const Register rax_elsize = rax_lh; // element size duke@435: duke@435: __ movl(r10_offset, rax_lh); duke@435: __ shrl(r10_offset, Klass::_lh_header_size_shift); never@739: __ andptr(r10_offset, Klass::_lh_header_size_mask); // array_offset never@739: __ addptr(src, r10_offset); // src array offset never@739: __ addptr(dst, r10_offset); // dst array offset duke@435: BLOCK_COMMENT("choose copy loop based on element size"); duke@435: __ andl(rax_lh, Klass::_lh_log2_element_size_mask); // rax_lh -> rax_elsize duke@435: duke@435: // next registers should be set before the jump to corresponding stub duke@435: const Register from = c_rarg0; // source array address duke@435: const Register to = c_rarg1; // destination array address duke@435: const Register count = c_rarg2; // elements count duke@435: duke@435: // 'from', 'to', 'count' registers should be set in such order duke@435: // since they are the same as 'src', 'src_pos', 'dst'. duke@435: duke@435: __ BIND(L_copy_bytes); duke@435: __ cmpl(rax_elsize, 0); duke@435: __ jccb(Assembler::notEqual, L_copy_shorts); never@739: __ lea(from, Address(src, src_pos, Address::times_1, 0));// src_addr never@739: __ lea(to, Address(dst, dst_pos, Address::times_1, 0));// dst_addr never@739: __ movl2ptr(count, r11_length); // length duke@435: __ jump(RuntimeAddress(byte_copy_entry)); duke@435: duke@435: __ BIND(L_copy_shorts); duke@435: __ cmpl(rax_elsize, LogBytesPerShort); duke@435: __ jccb(Assembler::notEqual, L_copy_ints); never@739: __ lea(from, Address(src, src_pos, Address::times_2, 0));// src_addr never@739: __ lea(to, Address(dst, dst_pos, Address::times_2, 0));// dst_addr never@739: __ movl2ptr(count, r11_length); // length duke@435: __ jump(RuntimeAddress(short_copy_entry)); duke@435: duke@435: __ BIND(L_copy_ints); duke@435: __ cmpl(rax_elsize, LogBytesPerInt); duke@435: __ jccb(Assembler::notEqual, L_copy_longs); never@739: __ lea(from, Address(src, src_pos, Address::times_4, 0));// src_addr never@739: __ lea(to, Address(dst, dst_pos, Address::times_4, 0));// dst_addr never@739: __ movl2ptr(count, r11_length); // length duke@435: __ jump(RuntimeAddress(int_copy_entry)); duke@435: duke@435: __ BIND(L_copy_longs); duke@435: #ifdef ASSERT duke@435: { Label L; duke@435: __ cmpl(rax_elsize, LogBytesPerLong); duke@435: __ jcc(Assembler::equal, L); duke@435: __ stop("must be long copy, but elsize is wrong"); duke@435: __ bind(L); duke@435: } duke@435: #endif never@739: __ lea(from, Address(src, src_pos, Address::times_8, 0));// src_addr never@739: __ lea(to, Address(dst, dst_pos, Address::times_8, 0));// dst_addr never@739: __ movl2ptr(count, r11_length); // length duke@435: __ jump(RuntimeAddress(long_copy_entry)); duke@435: duke@435: // objArrayKlass duke@435: __ BIND(L_objArray); duke@435: // live at this point: r10_src_klass, src[_pos], dst[_pos] duke@435: duke@435: Label L_plain_copy, L_checkcast_copy; duke@435: // test array classes for subtyping coleenp@548: __ load_klass(r9_dst_klass, dst); coleenp@548: __ cmpq(r10_src_klass, r9_dst_klass); // usual case is exact equality duke@435: __ jcc(Assembler::notEqual, L_checkcast_copy); duke@435: duke@435: // Identically typed arrays can be copied without element-wise checks. duke@435: arraycopy_range_checks(src, src_pos, dst, dst_pos, r11_length, duke@435: r10, L_failed); duke@435: never@739: __ lea(from, Address(src, src_pos, TIMES_OOP, duke@435: arrayOopDesc::base_offset_in_bytes(T_OBJECT))); // src_addr never@739: __ lea(to, Address(dst, dst_pos, TIMES_OOP, never@739: arrayOopDesc::base_offset_in_bytes(T_OBJECT))); // dst_addr never@739: __ movl2ptr(count, r11_length); // length duke@435: __ BIND(L_plain_copy); duke@435: __ jump(RuntimeAddress(oop_copy_entry)); duke@435: duke@435: __ BIND(L_checkcast_copy); duke@435: // live at this point: r10_src_klass, !r11_length duke@435: { duke@435: // assert(r11_length == C_RARG4); // will reload from here duke@435: Register r11_dst_klass = r11; coleenp@548: __ load_klass(r11_dst_klass, dst); duke@435: duke@435: // Before looking at dst.length, make sure dst is also an objArray. duke@435: __ cmpl(Address(r11_dst_klass, lh_offset), objArray_lh); duke@435: __ jcc(Assembler::notEqual, L_failed); duke@435: duke@435: // It is safe to examine both src.length and dst.length. duke@435: #ifndef _WIN64 duke@435: arraycopy_range_checks(src, src_pos, dst, dst_pos, C_RARG4, duke@435: rax, L_failed); duke@435: #else duke@435: __ movl(r11_length, C_RARG4); // reload duke@435: arraycopy_range_checks(src, src_pos, dst, dst_pos, r11_length, duke@435: rax, L_failed); coleenp@548: __ load_klass(r11_dst_klass, dst); // reload duke@435: #endif duke@435: duke@435: // Marshal the base address arguments now, freeing registers. never@739: __ lea(from, Address(src, src_pos, TIMES_OOP, duke@435: arrayOopDesc::base_offset_in_bytes(T_OBJECT))); never@739: __ lea(to, Address(dst, dst_pos, TIMES_OOP, duke@435: arrayOopDesc::base_offset_in_bytes(T_OBJECT))); duke@435: __ movl(count, C_RARG4); // length (reloaded) duke@435: Register sco_temp = c_rarg3; // this register is free now duke@435: assert_different_registers(from, to, count, sco_temp, duke@435: r11_dst_klass, r10_src_klass); duke@435: assert_clean_int(count, sco_temp); duke@435: duke@435: // Generate the type check. duke@435: int sco_offset = (klassOopDesc::header_size() * HeapWordSize + duke@435: Klass::super_check_offset_offset_in_bytes()); duke@435: __ movl(sco_temp, Address(r11_dst_klass, sco_offset)); duke@435: assert_clean_int(sco_temp, rax); duke@435: generate_type_check(r10_src_klass, sco_temp, r11_dst_klass, L_plain_copy); duke@435: duke@435: // Fetch destination element klass from the objArrayKlass header. duke@435: int ek_offset = (klassOopDesc::header_size() * HeapWordSize + duke@435: objArrayKlass::element_klass_offset_in_bytes()); never@739: __ movptr(r11_dst_klass, Address(r11_dst_klass, ek_offset)); duke@435: __ movl(sco_temp, Address(r11_dst_klass, sco_offset)); duke@435: assert_clean_int(sco_temp, rax); duke@435: duke@435: // the checkcast_copy loop needs two extra arguments: duke@435: assert(c_rarg3 == sco_temp, "#3 already in place"); never@739: __ movptr(C_RARG4, r11_dst_klass); // dst.klass.element_klass duke@435: __ jump(RuntimeAddress(checkcast_copy_entry)); duke@435: } duke@435: duke@435: __ BIND(L_failed); never@739: __ xorptr(rax, rax); never@739: __ notptr(rax); // return -1 duke@435: __ leave(); // required for proper stackwalking of RuntimeStub frame duke@435: __ ret(0); duke@435: duke@435: return start; duke@435: } duke@435: duke@435: #undef length_arg duke@435: duke@435: void generate_arraycopy_stubs() { duke@435: // Call the conjoint generation methods immediately after duke@435: // the disjoint ones so that short branches from the former duke@435: // to the latter can be generated. duke@435: StubRoutines::_jbyte_disjoint_arraycopy = generate_disjoint_byte_copy(false, "jbyte_disjoint_arraycopy"); duke@435: StubRoutines::_jbyte_arraycopy = generate_conjoint_byte_copy(false, "jbyte_arraycopy"); duke@435: duke@435: StubRoutines::_jshort_disjoint_arraycopy = generate_disjoint_short_copy(false, "jshort_disjoint_arraycopy"); duke@435: StubRoutines::_jshort_arraycopy = generate_conjoint_short_copy(false, "jshort_arraycopy"); duke@435: coleenp@548: StubRoutines::_jint_disjoint_arraycopy = generate_disjoint_int_oop_copy(false, false, "jint_disjoint_arraycopy"); coleenp@548: StubRoutines::_jint_arraycopy = generate_conjoint_int_oop_copy(false, false, "jint_arraycopy"); duke@435: duke@435: StubRoutines::_jlong_disjoint_arraycopy = generate_disjoint_long_oop_copy(false, false, "jlong_disjoint_arraycopy"); duke@435: StubRoutines::_jlong_arraycopy = generate_conjoint_long_oop_copy(false, false, "jlong_arraycopy"); duke@435: coleenp@548: coleenp@548: if (UseCompressedOops) { coleenp@548: StubRoutines::_oop_disjoint_arraycopy = generate_disjoint_int_oop_copy(false, true, "oop_disjoint_arraycopy"); coleenp@548: StubRoutines::_oop_arraycopy = generate_conjoint_int_oop_copy(false, true, "oop_arraycopy"); coleenp@548: } else { coleenp@548: StubRoutines::_oop_disjoint_arraycopy = generate_disjoint_long_oop_copy(false, true, "oop_disjoint_arraycopy"); coleenp@548: StubRoutines::_oop_arraycopy = generate_conjoint_long_oop_copy(false, true, "oop_arraycopy"); coleenp@548: } duke@435: duke@435: StubRoutines::_checkcast_arraycopy = generate_checkcast_copy("checkcast_arraycopy"); duke@435: StubRoutines::_unsafe_arraycopy = generate_unsafe_copy("unsafe_arraycopy"); duke@435: StubRoutines::_generic_arraycopy = generate_generic_copy("generic_arraycopy"); duke@435: duke@435: // We don't generate specialized code for HeapWord-aligned source duke@435: // arrays, so just use the code we've already generated duke@435: StubRoutines::_arrayof_jbyte_disjoint_arraycopy = StubRoutines::_jbyte_disjoint_arraycopy; duke@435: StubRoutines::_arrayof_jbyte_arraycopy = StubRoutines::_jbyte_arraycopy; duke@435: duke@435: StubRoutines::_arrayof_jshort_disjoint_arraycopy = StubRoutines::_jshort_disjoint_arraycopy; duke@435: StubRoutines::_arrayof_jshort_arraycopy = StubRoutines::_jshort_arraycopy; duke@435: duke@435: StubRoutines::_arrayof_jint_disjoint_arraycopy = StubRoutines::_jint_disjoint_arraycopy; duke@435: StubRoutines::_arrayof_jint_arraycopy = StubRoutines::_jint_arraycopy; duke@435: duke@435: StubRoutines::_arrayof_jlong_disjoint_arraycopy = StubRoutines::_jlong_disjoint_arraycopy; duke@435: StubRoutines::_arrayof_jlong_arraycopy = StubRoutines::_jlong_arraycopy; duke@435: duke@435: StubRoutines::_arrayof_oop_disjoint_arraycopy = StubRoutines::_oop_disjoint_arraycopy; duke@435: StubRoutines::_arrayof_oop_arraycopy = StubRoutines::_oop_arraycopy; duke@435: } duke@435: never@1609: void generate_math_stubs() { never@1609: { never@1609: StubCodeMark mark(this, "StubRoutines", "log"); never@1609: StubRoutines::_intrinsic_log = (double (*)(double)) __ pc(); never@1609: never@1609: __ subq(rsp, 8); never@1609: __ movdbl(Address(rsp, 0), xmm0); never@1609: __ fld_d(Address(rsp, 0)); never@1609: __ flog(); never@1609: __ fstp_d(Address(rsp, 0)); never@1609: __ movdbl(xmm0, Address(rsp, 0)); never@1609: __ addq(rsp, 8); never@1609: __ ret(0); never@1609: } never@1609: { never@1609: StubCodeMark mark(this, "StubRoutines", "log10"); never@1609: StubRoutines::_intrinsic_log10 = (double (*)(double)) __ pc(); never@1609: never@1609: __ subq(rsp, 8); never@1609: __ movdbl(Address(rsp, 0), xmm0); never@1609: __ fld_d(Address(rsp, 0)); never@1609: __ flog10(); never@1609: __ fstp_d(Address(rsp, 0)); never@1609: __ movdbl(xmm0, Address(rsp, 0)); never@1609: __ addq(rsp, 8); never@1609: __ ret(0); never@1609: } never@1609: { never@1609: StubCodeMark mark(this, "StubRoutines", "sin"); never@1609: StubRoutines::_intrinsic_sin = (double (*)(double)) __ pc(); never@1609: never@1609: __ subq(rsp, 8); never@1609: __ movdbl(Address(rsp, 0), xmm0); never@1609: __ fld_d(Address(rsp, 0)); never@1609: __ trigfunc('s'); never@1609: __ fstp_d(Address(rsp, 0)); never@1609: __ movdbl(xmm0, Address(rsp, 0)); never@1609: __ addq(rsp, 8); never@1609: __ ret(0); never@1609: } never@1609: { never@1609: StubCodeMark mark(this, "StubRoutines", "cos"); never@1609: StubRoutines::_intrinsic_cos = (double (*)(double)) __ pc(); never@1609: never@1609: __ subq(rsp, 8); never@1609: __ movdbl(Address(rsp, 0), xmm0); never@1609: __ fld_d(Address(rsp, 0)); never@1609: __ trigfunc('c'); never@1609: __ fstp_d(Address(rsp, 0)); never@1609: __ movdbl(xmm0, Address(rsp, 0)); never@1609: __ addq(rsp, 8); never@1609: __ ret(0); never@1609: } never@1609: { never@1609: StubCodeMark mark(this, "StubRoutines", "tan"); never@1609: StubRoutines::_intrinsic_tan = (double (*)(double)) __ pc(); never@1609: never@1609: __ subq(rsp, 8); never@1609: __ movdbl(Address(rsp, 0), xmm0); never@1609: __ fld_d(Address(rsp, 0)); never@1609: __ trigfunc('t'); never@1609: __ fstp_d(Address(rsp, 0)); never@1609: __ movdbl(xmm0, Address(rsp, 0)); never@1609: __ addq(rsp, 8); never@1609: __ ret(0); never@1609: } never@1609: never@1609: // The intrinsic version of these seem to return the same value as never@1609: // the strict version. never@1609: StubRoutines::_intrinsic_exp = SharedRuntime::dexp; never@1609: StubRoutines::_intrinsic_pow = SharedRuntime::dpow; never@1609: } never@1609: duke@435: #undef __ duke@435: #define __ masm-> duke@435: duke@435: // Continuation point for throwing of implicit exceptions that are duke@435: // not handled in the current activation. Fabricates an exception duke@435: // oop and initiates normal exception dispatching in this duke@435: // frame. Since we need to preserve callee-saved values (currently duke@435: // only for C2, but done for C1 as well) we need a callee-saved oop duke@435: // map and therefore have to make these stubs into RuntimeStubs duke@435: // rather than BufferBlobs. If the compiler needs all registers to duke@435: // be preserved between the fault point and the exception handler duke@435: // then it must assume responsibility for that in duke@435: // AbstractCompiler::continuation_for_implicit_null_exception or duke@435: // continuation_for_implicit_division_by_zero_exception. All other duke@435: // implicit exceptions (e.g., NullPointerException or duke@435: // AbstractMethodError on entry) are either at call sites or duke@435: // otherwise assume that stack unwinding will be initiated, so duke@435: // caller saved registers were assumed volatile in the compiler. duke@435: address generate_throw_exception(const char* name, duke@435: address runtime_entry, duke@435: bool restore_saved_exception_pc) { duke@435: // Information about frame layout at time of blocking runtime call. duke@435: // Note that we only have to preserve callee-saved registers since duke@435: // the compilers are responsible for supplying a continuation point duke@435: // if they expect all registers to be preserved. duke@435: enum layout { duke@435: rbp_off = frame::arg_reg_save_area_bytes/BytesPerInt, duke@435: rbp_off2, duke@435: return_off, duke@435: return_off2, duke@435: framesize // inclusive of return address duke@435: }; duke@435: duke@435: int insts_size = 512; duke@435: int locs_size = 64; duke@435: duke@435: CodeBuffer code(name, insts_size, locs_size); duke@435: OopMapSet* oop_maps = new OopMapSet(); duke@435: MacroAssembler* masm = new MacroAssembler(&code); duke@435: duke@435: address start = __ pc(); duke@435: duke@435: // This is an inlined and slightly modified version of call_VM duke@435: // which has the ability to fetch the return PC out of duke@435: // thread-local storage and also sets up last_Java_sp slightly duke@435: // differently than the real call_VM duke@435: if (restore_saved_exception_pc) { never@739: __ movptr(rax, never@739: Address(r15_thread, never@739: in_bytes(JavaThread::saved_exception_pc_offset()))); never@739: __ push(rax); duke@435: } duke@435: duke@435: __ enter(); // required for proper stackwalking of RuntimeStub frame duke@435: duke@435: assert(is_even(framesize/2), "sp not 16-byte aligned"); duke@435: duke@435: // return address and rbp are already in place never@739: __ subptr(rsp, (framesize-4) << LogBytesPerInt); // prolog duke@435: duke@435: int frame_complete = __ pc() - start; duke@435: duke@435: // Set up last_Java_sp and last_Java_fp duke@435: __ set_last_Java_frame(rsp, rbp, NULL); duke@435: duke@435: // Call runtime never@739: __ movptr(c_rarg0, r15_thread); duke@435: BLOCK_COMMENT("call runtime_entry"); duke@435: __ call(RuntimeAddress(runtime_entry)); duke@435: duke@435: // Generate oop map duke@435: OopMap* map = new OopMap(framesize, 0); duke@435: duke@435: oop_maps->add_gc_map(__ pc() - start, map); duke@435: duke@435: __ reset_last_Java_frame(true, false); duke@435: duke@435: __ leave(); // required for proper stackwalking of RuntimeStub frame duke@435: duke@435: // check for pending exceptions duke@435: #ifdef ASSERT duke@435: Label L; never@739: __ cmpptr(Address(r15_thread, Thread::pending_exception_offset()), never@739: (int32_t) NULL_WORD); duke@435: __ jcc(Assembler::notEqual, L); duke@435: __ should_not_reach_here(); duke@435: __ bind(L); duke@435: #endif // ASSERT duke@435: __ jump(RuntimeAddress(StubRoutines::forward_exception_entry())); duke@435: duke@435: duke@435: // codeBlob framesize is in words (not VMRegImpl::slot_size) duke@435: RuntimeStub* stub = duke@435: RuntimeStub::new_runtime_stub(name, duke@435: &code, duke@435: frame_complete, duke@435: (framesize >> (LogBytesPerWord - LogBytesPerInt)), duke@435: oop_maps, false); duke@435: return stub->entry_point(); duke@435: } duke@435: duke@435: // Initialization duke@435: void generate_initial() { duke@435: // Generates all stubs and initializes the entry points duke@435: duke@435: // This platform-specific stub is needed by generate_call_stub() never@739: StubRoutines::x86::_mxcsr_std = generate_fp_mask("mxcsr_std", 0x0000000000001F80); duke@435: duke@435: // entry points that exist in all platforms Note: This is code duke@435: // that could be shared among different platforms - however the duke@435: // benefit seems to be smaller than the disadvantage of having a duke@435: // much more complicated generator structure. See also comment in duke@435: // stubRoutines.hpp. duke@435: duke@435: StubRoutines::_forward_exception_entry = generate_forward_exception(); duke@435: duke@435: StubRoutines::_call_stub_entry = duke@435: generate_call_stub(StubRoutines::_call_stub_return_address); duke@435: duke@435: // is referenced by megamorphic call duke@435: StubRoutines::_catch_exception_entry = generate_catch_exception(); duke@435: duke@435: // atomic calls duke@435: StubRoutines::_atomic_xchg_entry = generate_atomic_xchg(); duke@435: StubRoutines::_atomic_xchg_ptr_entry = generate_atomic_xchg_ptr(); duke@435: StubRoutines::_atomic_cmpxchg_entry = generate_atomic_cmpxchg(); duke@435: StubRoutines::_atomic_cmpxchg_long_entry = generate_atomic_cmpxchg_long(); duke@435: StubRoutines::_atomic_add_entry = generate_atomic_add(); duke@435: StubRoutines::_atomic_add_ptr_entry = generate_atomic_add_ptr(); duke@435: StubRoutines::_fence_entry = generate_orderaccess_fence(); duke@435: duke@435: StubRoutines::_handler_for_unsafe_access_entry = duke@435: generate_handler_for_unsafe_access(); duke@435: duke@435: // platform dependent never@739: StubRoutines::x86::_get_previous_fp_entry = generate_get_previous_fp(); never@739: never@739: StubRoutines::x86::_verify_mxcsr_entry = generate_verify_mxcsr(); duke@435: } duke@435: duke@435: void generate_all() { duke@435: // Generates all stubs and initializes the entry points duke@435: duke@435: // These entry points require SharedInfo::stack0 to be set up in duke@435: // non-core builds and need to be relocatable, so they each duke@435: // fabricate a RuntimeStub internally. duke@435: StubRoutines::_throw_AbstractMethodError_entry = duke@435: generate_throw_exception("AbstractMethodError throw_exception", duke@435: CAST_FROM_FN_PTR(address, duke@435: SharedRuntime:: duke@435: throw_AbstractMethodError), duke@435: false); duke@435: dcubed@451: StubRoutines::_throw_IncompatibleClassChangeError_entry = dcubed@451: generate_throw_exception("IncompatibleClassChangeError throw_exception", dcubed@451: CAST_FROM_FN_PTR(address, dcubed@451: SharedRuntime:: dcubed@451: throw_IncompatibleClassChangeError), dcubed@451: false); dcubed@451: duke@435: StubRoutines::_throw_ArithmeticException_entry = duke@435: generate_throw_exception("ArithmeticException throw_exception", duke@435: CAST_FROM_FN_PTR(address, duke@435: SharedRuntime:: duke@435: throw_ArithmeticException), duke@435: true); duke@435: duke@435: StubRoutines::_throw_NullPointerException_entry = duke@435: generate_throw_exception("NullPointerException throw_exception", duke@435: CAST_FROM_FN_PTR(address, duke@435: SharedRuntime:: duke@435: throw_NullPointerException), duke@435: true); duke@435: duke@435: StubRoutines::_throw_NullPointerException_at_call_entry = duke@435: generate_throw_exception("NullPointerException at call throw_exception", duke@435: CAST_FROM_FN_PTR(address, duke@435: SharedRuntime:: duke@435: throw_NullPointerException_at_call), duke@435: false); duke@435: duke@435: StubRoutines::_throw_StackOverflowError_entry = duke@435: generate_throw_exception("StackOverflowError throw_exception", duke@435: CAST_FROM_FN_PTR(address, duke@435: SharedRuntime:: duke@435: throw_StackOverflowError), duke@435: false); duke@435: duke@435: // entry points that are platform specific never@739: StubRoutines::x86::_f2i_fixup = generate_f2i_fixup(); never@739: StubRoutines::x86::_f2l_fixup = generate_f2l_fixup(); never@739: StubRoutines::x86::_d2i_fixup = generate_d2i_fixup(); never@739: StubRoutines::x86::_d2l_fixup = generate_d2l_fixup(); never@739: never@739: StubRoutines::x86::_float_sign_mask = generate_fp_mask("float_sign_mask", 0x7FFFFFFF7FFFFFFF); never@739: StubRoutines::x86::_float_sign_flip = generate_fp_mask("float_sign_flip", 0x8000000080000000); never@739: StubRoutines::x86::_double_sign_mask = generate_fp_mask("double_sign_mask", 0x7FFFFFFFFFFFFFFF); never@739: StubRoutines::x86::_double_sign_flip = generate_fp_mask("double_sign_flip", 0x8000000000000000); duke@435: duke@435: // support for verify_oop (must happen after universe_init) duke@435: StubRoutines::_verify_oop_subroutine_entry = generate_verify_oop(); duke@435: duke@435: // arraycopy stubs used by compilers duke@435: generate_arraycopy_stubs(); twisti@1543: never@1609: generate_math_stubs(); duke@435: } duke@435: duke@435: public: duke@435: StubGenerator(CodeBuffer* code, bool all) : StubCodeGenerator(code) { duke@435: if (all) { duke@435: generate_all(); duke@435: } else { duke@435: generate_initial(); duke@435: } duke@435: } duke@435: }; // end class declaration duke@435: duke@435: address StubGenerator::disjoint_byte_copy_entry = NULL; duke@435: address StubGenerator::disjoint_short_copy_entry = NULL; duke@435: address StubGenerator::disjoint_int_copy_entry = NULL; duke@435: address StubGenerator::disjoint_long_copy_entry = NULL; duke@435: address StubGenerator::disjoint_oop_copy_entry = NULL; duke@435: duke@435: address StubGenerator::byte_copy_entry = NULL; duke@435: address StubGenerator::short_copy_entry = NULL; duke@435: address StubGenerator::int_copy_entry = NULL; duke@435: address StubGenerator::long_copy_entry = NULL; duke@435: address StubGenerator::oop_copy_entry = NULL; duke@435: duke@435: address StubGenerator::checkcast_copy_entry = NULL; duke@435: duke@435: void StubGenerator_generate(CodeBuffer* code, bool all) { duke@435: StubGenerator g(code, all); duke@435: }