duke@435: /* duke@435: * Copyright 2007 Sun Microsystems, Inc. All Rights Reserved. duke@435: * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. duke@435: * duke@435: * This code is free software; you can redistribute it and/or modify it duke@435: * under the terms of the GNU General Public License version 2 only, as duke@435: * published by the Free Software Foundation. duke@435: * duke@435: * This code is distributed in the hope that it will be useful, but WITHOUT duke@435: * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or duke@435: * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License duke@435: * version 2 for more details (a copy is included in the LICENSE file that duke@435: * accompanied this code). duke@435: * duke@435: * You should have received a copy of the GNU General Public License version duke@435: * 2 along with this work; if not, write to the Free Software Foundation, duke@435: * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. duke@435: * duke@435: * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, duke@435: * CA 95054 USA or visit www.sun.com if you need additional information or duke@435: * have any questions. duke@435: */ duke@435: duke@435: #include "incls/_precompiled.incl" duke@435: #include "incls/_vectornode.cpp.incl" duke@435: duke@435: //------------------------------VectorNode-------------------------------------- duke@435: duke@435: // Return vector type for an element type and vector length. duke@435: const Type* VectorNode::vect_type(BasicType elt_bt, uint len) { duke@435: assert(len <= VectorNode::max_vlen(elt_bt), "len in range"); duke@435: switch(elt_bt) { duke@435: case T_BOOLEAN: duke@435: case T_BYTE: duke@435: switch(len) { duke@435: case 2: return TypeInt::CHAR; duke@435: case 4: return TypeInt::INT; duke@435: case 8: return TypeLong::LONG; duke@435: } duke@435: break; duke@435: case T_CHAR: duke@435: case T_SHORT: duke@435: switch(len) { duke@435: case 2: return TypeInt::INT; duke@435: case 4: return TypeLong::LONG; duke@435: } duke@435: break; duke@435: case T_INT: duke@435: switch(len) { duke@435: case 2: return TypeLong::LONG; duke@435: } duke@435: break; duke@435: case T_LONG: duke@435: break; duke@435: case T_FLOAT: duke@435: switch(len) { duke@435: case 2: return Type::DOUBLE; duke@435: } duke@435: break; duke@435: case T_DOUBLE: duke@435: break; duke@435: } duke@435: ShouldNotReachHere(); duke@435: return NULL; duke@435: } duke@435: duke@435: // Scalar promotion duke@435: VectorNode* VectorNode::scalar2vector(Compile* C, Node* s, uint vlen, const Type* opd_t) { duke@435: BasicType bt = opd_t->array_element_basic_type(); duke@435: assert(vlen <= VectorNode::max_vlen(bt), "vlen in range"); duke@435: switch (bt) { duke@435: case T_BOOLEAN: duke@435: case T_BYTE: duke@435: if (vlen == 16) return new (C, 2) Replicate16BNode(s); duke@435: if (vlen == 8) return new (C, 2) Replicate8BNode(s); duke@435: if (vlen == 4) return new (C, 2) Replicate4BNode(s); duke@435: break; duke@435: case T_CHAR: duke@435: if (vlen == 8) return new (C, 2) Replicate8CNode(s); duke@435: if (vlen == 4) return new (C, 2) Replicate4CNode(s); duke@435: if (vlen == 2) return new (C, 2) Replicate2CNode(s); duke@435: break; duke@435: case T_SHORT: duke@435: if (vlen == 8) return new (C, 2) Replicate8SNode(s); duke@435: if (vlen == 4) return new (C, 2) Replicate4SNode(s); duke@435: if (vlen == 2) return new (C, 2) Replicate2SNode(s); duke@435: break; duke@435: case T_INT: duke@435: if (vlen == 4) return new (C, 2) Replicate4INode(s); duke@435: if (vlen == 2) return new (C, 2) Replicate2INode(s); duke@435: break; duke@435: case T_LONG: duke@435: if (vlen == 2) return new (C, 2) Replicate2LNode(s); duke@435: break; duke@435: case T_FLOAT: duke@435: if (vlen == 4) return new (C, 2) Replicate4FNode(s); duke@435: if (vlen == 2) return new (C, 2) Replicate2FNode(s); duke@435: break; duke@435: case T_DOUBLE: duke@435: if (vlen == 2) return new (C, 2) Replicate2DNode(s); duke@435: break; duke@435: } duke@435: ShouldNotReachHere(); duke@435: return NULL; duke@435: } duke@435: duke@435: // Return initial Pack node. Additional operands added with add_opd() calls. duke@435: PackNode* PackNode::make(Compile* C, Node* s, const Type* opd_t) { duke@435: BasicType bt = opd_t->array_element_basic_type(); duke@435: switch (bt) { duke@435: case T_BOOLEAN: duke@435: case T_BYTE: duke@435: return new (C, 2) PackBNode(s); duke@435: case T_CHAR: duke@435: return new (C, 2) PackCNode(s); duke@435: case T_SHORT: duke@435: return new (C, 2) PackSNode(s); duke@435: case T_INT: duke@435: return new (C, 2) PackINode(s); duke@435: case T_LONG: duke@435: return new (C, 2) PackLNode(s); duke@435: case T_FLOAT: duke@435: return new (C, 2) PackFNode(s); duke@435: case T_DOUBLE: duke@435: return new (C, 2) PackDNode(s); duke@435: } duke@435: ShouldNotReachHere(); duke@435: return NULL; duke@435: } duke@435: duke@435: // Create a binary tree form for Packs. [lo, hi) (half-open) range duke@435: Node* PackNode::binaryTreePack(Compile* C, int lo, int hi) { duke@435: int ct = hi - lo; duke@435: assert(is_power_of_2(ct), "power of 2"); duke@435: int mid = lo + ct/2; duke@435: Node* n1 = ct == 2 ? in(lo) : binaryTreePack(C, lo, mid); duke@435: Node* n2 = ct == 2 ? in(lo+1) : binaryTreePack(C, mid, hi ); kvn@464: int rslt_bsize = ct * type2aelembytes(elt_basic_type()); duke@435: if (bottom_type()->is_floatingpoint()) { duke@435: switch (rslt_bsize) { duke@435: case 8: return new (C, 3) PackFNode(n1, n2); duke@435: case 16: return new (C, 3) PackDNode(n1, n2); duke@435: } duke@435: } else { duke@435: assert(bottom_type()->isa_int() || bottom_type()->isa_long(), "int or long"); duke@435: switch (rslt_bsize) { duke@435: case 2: return new (C, 3) Pack2x1BNode(n1, n2); duke@435: case 4: return new (C, 3) Pack2x2BNode(n1, n2); duke@435: case 8: return new (C, 3) PackINode(n1, n2); duke@435: case 16: return new (C, 3) PackLNode(n1, n2); duke@435: } duke@435: } duke@435: ShouldNotReachHere(); duke@435: return NULL; duke@435: } duke@435: duke@435: // Return the vector operator for the specified scalar operation duke@435: // and vector length. One use is to check if the code generator duke@435: // supports the vector operation. duke@435: int VectorNode::opcode(int sopc, uint vlen, const Type* opd_t) { duke@435: BasicType bt = opd_t->array_element_basic_type(); duke@435: if (!(is_power_of_2(vlen) && vlen <= max_vlen(bt))) duke@435: return 0; // unimplemented duke@435: switch (sopc) { duke@435: case Op_AddI: duke@435: switch (bt) { duke@435: case T_BOOLEAN: duke@435: case T_BYTE: return Op_AddVB; duke@435: case T_CHAR: return Op_AddVC; duke@435: case T_SHORT: return Op_AddVS; duke@435: case T_INT: return Op_AddVI; duke@435: } duke@435: ShouldNotReachHere(); duke@435: case Op_AddL: duke@435: assert(bt == T_LONG, "must be"); duke@435: return Op_AddVL; duke@435: case Op_AddF: duke@435: assert(bt == T_FLOAT, "must be"); duke@435: return Op_AddVF; duke@435: case Op_AddD: duke@435: assert(bt == T_DOUBLE, "must be"); duke@435: return Op_AddVD; duke@435: case Op_SubI: duke@435: switch (bt) { duke@435: case T_BOOLEAN: duke@435: case T_BYTE: return Op_SubVB; duke@435: case T_CHAR: return Op_SubVC; duke@435: case T_SHORT: return Op_SubVS; duke@435: case T_INT: return Op_SubVI; duke@435: } duke@435: ShouldNotReachHere(); duke@435: case Op_SubL: duke@435: assert(bt == T_LONG, "must be"); duke@435: return Op_SubVL; duke@435: case Op_SubF: duke@435: assert(bt == T_FLOAT, "must be"); duke@435: return Op_SubVF; duke@435: case Op_SubD: duke@435: assert(bt == T_DOUBLE, "must be"); duke@435: return Op_SubVD; duke@435: case Op_MulF: duke@435: assert(bt == T_FLOAT, "must be"); duke@435: return Op_MulVF; duke@435: case Op_MulD: duke@435: assert(bt == T_DOUBLE, "must be"); duke@435: return Op_MulVD; duke@435: case Op_DivF: duke@435: assert(bt == T_FLOAT, "must be"); duke@435: return Op_DivVF; duke@435: case Op_DivD: duke@435: assert(bt == T_DOUBLE, "must be"); duke@435: return Op_DivVD; duke@435: case Op_LShiftI: duke@435: switch (bt) { duke@435: case T_BOOLEAN: duke@435: case T_BYTE: return Op_LShiftVB; duke@435: case T_CHAR: return Op_LShiftVC; duke@435: case T_SHORT: return Op_LShiftVS; duke@435: case T_INT: return Op_LShiftVI; duke@435: } duke@435: ShouldNotReachHere(); duke@435: case Op_URShiftI: duke@435: switch (bt) { duke@435: case T_BOOLEAN: duke@435: case T_BYTE: return Op_URShiftVB; duke@435: case T_CHAR: return Op_URShiftVC; duke@435: case T_SHORT: return Op_URShiftVS; duke@435: case T_INT: return Op_URShiftVI; duke@435: } duke@435: ShouldNotReachHere(); duke@435: case Op_AndI: duke@435: case Op_AndL: duke@435: return Op_AndV; duke@435: case Op_OrI: duke@435: case Op_OrL: duke@435: return Op_OrV; duke@435: case Op_XorI: duke@435: case Op_XorL: duke@435: return Op_XorV; duke@435: duke@435: case Op_LoadB: duke@435: case Op_LoadC: duke@435: case Op_LoadS: duke@435: case Op_LoadI: duke@435: case Op_LoadL: duke@435: case Op_LoadF: duke@435: case Op_LoadD: duke@435: return VectorLoadNode::opcode(sopc, vlen); duke@435: duke@435: case Op_StoreB: duke@435: case Op_StoreC: duke@435: case Op_StoreI: duke@435: case Op_StoreL: duke@435: case Op_StoreF: duke@435: case Op_StoreD: duke@435: return VectorStoreNode::opcode(sopc, vlen); duke@435: } duke@435: return 0; // Unimplemented duke@435: } duke@435: duke@435: // Helper for above. duke@435: int VectorLoadNode::opcode(int sopc, uint vlen) { duke@435: switch (sopc) { duke@435: case Op_LoadB: duke@435: switch (vlen) { duke@435: case 2: return 0; // Unimplemented duke@435: case 4: return Op_Load4B; duke@435: case 8: return Op_Load8B; duke@435: case 16: return Op_Load16B; duke@435: } duke@435: break; duke@435: case Op_LoadC: duke@435: switch (vlen) { duke@435: case 2: return Op_Load2C; duke@435: case 4: return Op_Load4C; duke@435: case 8: return Op_Load8C; duke@435: } duke@435: break; duke@435: case Op_LoadS: duke@435: switch (vlen) { duke@435: case 2: return Op_Load2S; duke@435: case 4: return Op_Load4S; duke@435: case 8: return Op_Load8S; duke@435: } duke@435: break; duke@435: case Op_LoadI: duke@435: switch (vlen) { duke@435: case 2: return Op_Load2I; duke@435: case 4: return Op_Load4I; duke@435: } duke@435: break; duke@435: case Op_LoadL: duke@435: if (vlen == 2) return Op_Load2L; duke@435: break; duke@435: case Op_LoadF: duke@435: switch (vlen) { duke@435: case 2: return Op_Load2F; duke@435: case 4: return Op_Load4F; duke@435: } duke@435: break; duke@435: case Op_LoadD: duke@435: if (vlen == 2) return Op_Load2D; duke@435: break; duke@435: } duke@435: return 0; // Unimplemented duke@435: } duke@435: duke@435: // Helper for above duke@435: int VectorStoreNode::opcode(int sopc, uint vlen) { duke@435: switch (sopc) { duke@435: case Op_StoreB: duke@435: switch (vlen) { duke@435: case 2: return 0; // Unimplemented duke@435: case 4: return Op_Store4B; duke@435: case 8: return Op_Store8B; duke@435: case 16: return Op_Store16B; duke@435: } duke@435: break; duke@435: case Op_StoreC: duke@435: switch (vlen) { duke@435: case 2: return Op_Store2C; duke@435: case 4: return Op_Store4C; duke@435: case 8: return Op_Store8C; duke@435: } duke@435: break; duke@435: case Op_StoreI: duke@435: switch (vlen) { duke@435: case 2: return Op_Store2I; duke@435: case 4: return Op_Store4I; duke@435: } duke@435: break; duke@435: case Op_StoreL: duke@435: if (vlen == 2) return Op_Store2L; duke@435: break; duke@435: case Op_StoreF: duke@435: switch (vlen) { duke@435: case 2: return Op_Store2F; duke@435: case 4: return Op_Store4F; duke@435: } duke@435: break; duke@435: case Op_StoreD: duke@435: if (vlen == 2) return Op_Store2D; duke@435: break; duke@435: } duke@435: return 0; // Unimplemented duke@435: } duke@435: duke@435: // Return the vector version of a scalar operation node. duke@435: VectorNode* VectorNode::make(Compile* C, int sopc, Node* n1, Node* n2, uint vlen, const Type* opd_t) { duke@435: int vopc = opcode(sopc, vlen, opd_t); duke@435: duke@435: switch (vopc) { duke@435: case Op_AddVB: return new (C, 3) AddVBNode(n1, n2, vlen); duke@435: case Op_AddVC: return new (C, 3) AddVCNode(n1, n2, vlen); duke@435: case Op_AddVS: return new (C, 3) AddVSNode(n1, n2, vlen); duke@435: case Op_AddVI: return new (C, 3) AddVINode(n1, n2, vlen); duke@435: case Op_AddVL: return new (C, 3) AddVLNode(n1, n2, vlen); duke@435: case Op_AddVF: return new (C, 3) AddVFNode(n1, n2, vlen); duke@435: case Op_AddVD: return new (C, 3) AddVDNode(n1, n2, vlen); duke@435: duke@435: case Op_SubVB: return new (C, 3) SubVBNode(n1, n2, vlen); duke@435: case Op_SubVC: return new (C, 3) SubVCNode(n1, n2, vlen); duke@435: case Op_SubVS: return new (C, 3) SubVSNode(n1, n2, vlen); duke@435: case Op_SubVI: return new (C, 3) SubVINode(n1, n2, vlen); duke@435: case Op_SubVL: return new (C, 3) SubVLNode(n1, n2, vlen); duke@435: case Op_SubVF: return new (C, 3) SubVFNode(n1, n2, vlen); duke@435: case Op_SubVD: return new (C, 3) SubVDNode(n1, n2, vlen); duke@435: duke@435: case Op_MulVF: return new (C, 3) MulVFNode(n1, n2, vlen); duke@435: case Op_MulVD: return new (C, 3) MulVDNode(n1, n2, vlen); duke@435: duke@435: case Op_DivVF: return new (C, 3) DivVFNode(n1, n2, vlen); duke@435: case Op_DivVD: return new (C, 3) DivVDNode(n1, n2, vlen); duke@435: duke@435: case Op_LShiftVB: return new (C, 3) LShiftVBNode(n1, n2, vlen); duke@435: case Op_LShiftVC: return new (C, 3) LShiftVCNode(n1, n2, vlen); duke@435: case Op_LShiftVS: return new (C, 3) LShiftVSNode(n1, n2, vlen); duke@435: case Op_LShiftVI: return new (C, 3) LShiftVINode(n1, n2, vlen); duke@435: duke@435: case Op_URShiftVB: return new (C, 3) URShiftVBNode(n1, n2, vlen); duke@435: case Op_URShiftVC: return new (C, 3) URShiftVCNode(n1, n2, vlen); duke@435: case Op_URShiftVS: return new (C, 3) URShiftVSNode(n1, n2, vlen); duke@435: case Op_URShiftVI: return new (C, 3) URShiftVINode(n1, n2, vlen); duke@435: duke@435: case Op_AndV: return new (C, 3) AndVNode(n1, n2, vlen, opd_t->array_element_basic_type()); duke@435: case Op_OrV: return new (C, 3) OrVNode (n1, n2, vlen, opd_t->array_element_basic_type()); duke@435: case Op_XorV: return new (C, 3) XorVNode(n1, n2, vlen, opd_t->array_element_basic_type()); duke@435: } duke@435: ShouldNotReachHere(); duke@435: return NULL; duke@435: } duke@435: duke@435: // Return the vector version of a scalar load node. duke@435: VectorLoadNode* VectorLoadNode::make(Compile* C, int opc, Node* ctl, Node* mem, duke@435: Node* adr, const TypePtr* atyp, uint vlen) { duke@435: int vopc = opcode(opc, vlen); duke@435: duke@435: switch(vopc) { duke@435: case Op_Load16B: return new (C, 3) Load16BNode(ctl, mem, adr, atyp); duke@435: case Op_Load8B: return new (C, 3) Load8BNode(ctl, mem, adr, atyp); duke@435: case Op_Load4B: return new (C, 3) Load4BNode(ctl, mem, adr, atyp); duke@435: duke@435: case Op_Load8C: return new (C, 3) Load8CNode(ctl, mem, adr, atyp); duke@435: case Op_Load4C: return new (C, 3) Load4CNode(ctl, mem, adr, atyp); duke@435: case Op_Load2C: return new (C, 3) Load2CNode(ctl, mem, adr, atyp); duke@435: duke@435: case Op_Load8S: return new (C, 3) Load8SNode(ctl, mem, adr, atyp); duke@435: case Op_Load4S: return new (C, 3) Load4SNode(ctl, mem, adr, atyp); duke@435: case Op_Load2S: return new (C, 3) Load2SNode(ctl, mem, adr, atyp); duke@435: duke@435: case Op_Load4I: return new (C, 3) Load4INode(ctl, mem, adr, atyp); duke@435: case Op_Load2I: return new (C, 3) Load2INode(ctl, mem, adr, atyp); duke@435: duke@435: case Op_Load2L: return new (C, 3) Load2LNode(ctl, mem, adr, atyp); duke@435: duke@435: case Op_Load4F: return new (C, 3) Load4FNode(ctl, mem, adr, atyp); duke@435: case Op_Load2F: return new (C, 3) Load2FNode(ctl, mem, adr, atyp); duke@435: duke@435: case Op_Load2D: return new (C, 3) Load2DNode(ctl, mem, adr, atyp); duke@435: } duke@435: ShouldNotReachHere(); duke@435: return NULL; duke@435: } duke@435: duke@435: // Return the vector version of a scalar store node. duke@435: VectorStoreNode* VectorStoreNode::make(Compile* C, int opc, Node* ctl, Node* mem, duke@435: Node* adr, const TypePtr* atyp, VectorNode* val, duke@435: uint vlen) { duke@435: int vopc = opcode(opc, vlen); duke@435: duke@435: switch(vopc) { duke@435: case Op_Store16B: return new (C, 4) Store16BNode(ctl, mem, adr, atyp, val); duke@435: case Op_Store8B: return new (C, 4) Store8BNode(ctl, mem, adr, atyp, val); duke@435: case Op_Store4B: return new (C, 4) Store4BNode(ctl, mem, adr, atyp, val); duke@435: duke@435: case Op_Store8C: return new (C, 4) Store8CNode(ctl, mem, adr, atyp, val); duke@435: case Op_Store4C: return new (C, 4) Store4CNode(ctl, mem, adr, atyp, val); duke@435: case Op_Store2C: return new (C, 4) Store2CNode(ctl, mem, adr, atyp, val); duke@435: duke@435: case Op_Store4I: return new (C, 4) Store4INode(ctl, mem, adr, atyp, val); duke@435: case Op_Store2I: return new (C, 4) Store2INode(ctl, mem, adr, atyp, val); duke@435: duke@435: case Op_Store2L: return new (C, 4) Store2LNode(ctl, mem, adr, atyp, val); duke@435: duke@435: case Op_Store4F: return new (C, 4) Store4FNode(ctl, mem, adr, atyp, val); duke@435: case Op_Store2F: return new (C, 4) Store2FNode(ctl, mem, adr, atyp, val); duke@435: duke@435: case Op_Store2D: return new (C, 4) Store2DNode(ctl, mem, adr, atyp, val); duke@435: } duke@435: ShouldNotReachHere(); duke@435: return NULL; duke@435: } duke@435: duke@435: // Extract a scalar element of vector. duke@435: Node* ExtractNode::make(Compile* C, Node* v, uint position, const Type* opd_t) { duke@435: BasicType bt = opd_t->array_element_basic_type(); duke@435: assert(position < VectorNode::max_vlen(bt), "pos in range"); duke@435: ConINode* pos = ConINode::make(C, (int)position); duke@435: switch (bt) { duke@435: case T_BOOLEAN: duke@435: case T_BYTE: duke@435: return new (C, 3) ExtractBNode(v, pos); duke@435: case T_CHAR: duke@435: return new (C, 3) ExtractCNode(v, pos); duke@435: case T_SHORT: duke@435: return new (C, 3) ExtractSNode(v, pos); duke@435: case T_INT: duke@435: return new (C, 3) ExtractINode(v, pos); duke@435: case T_LONG: duke@435: return new (C, 3) ExtractLNode(v, pos); duke@435: case T_FLOAT: duke@435: return new (C, 3) ExtractFNode(v, pos); duke@435: case T_DOUBLE: duke@435: return new (C, 3) ExtractDNode(v, pos); duke@435: } duke@435: ShouldNotReachHere(); duke@435: return NULL; duke@435: }