ysr@777: /* xdono@905: * Copyright 2001-2008 Sun Microsystems, Inc. All Rights Reserved. ysr@777: * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. ysr@777: * ysr@777: * This code is free software; you can redistribute it and/or modify it ysr@777: * under the terms of the GNU General Public License version 2 only, as ysr@777: * published by the Free Software Foundation. ysr@777: * ysr@777: * This code is distributed in the hope that it will be useful, but WITHOUT ysr@777: * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or ysr@777: * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License ysr@777: * version 2 for more details (a copy is included in the LICENSE file that ysr@777: * accompanied this code). ysr@777: * ysr@777: * You should have received a copy of the GNU General Public License version ysr@777: * 2 along with this work; if not, write to the Free Software Foundation, ysr@777: * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. ysr@777: * ysr@777: * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, ysr@777: * CA 95054 USA or visit www.sun.com if you need additional information or ysr@777: * have any questions. ysr@777: * ysr@777: */ ysr@777: ysr@777: #include "incls/_precompiled.incl" ysr@777: #include "incls/_g1CollectedHeap.cpp.incl" ysr@777: ysr@777: // turn it on so that the contents of the young list (scan-only / ysr@777: // to-be-collected) are printed at "strategic" points before / during ysr@777: // / after the collection --- this is useful for debugging ysr@777: #define SCAN_ONLY_VERBOSE 0 ysr@777: // CURRENT STATUS ysr@777: // This file is under construction. Search for "FIXME". ysr@777: ysr@777: // INVARIANTS/NOTES ysr@777: // ysr@777: // All allocation activity covered by the G1CollectedHeap interface is ysr@777: // serialized by acquiring the HeapLock. This happens in ysr@777: // mem_allocate_work, which all such allocation functions call. ysr@777: // (Note that this does not apply to TLAB allocation, which is not part ysr@777: // of this interface: it is done by clients of this interface.) ysr@777: ysr@777: // Local to this file. ysr@777: ysr@777: // Finds the first HeapRegion. ysr@777: // No longer used, but might be handy someday. ysr@777: ysr@777: class FindFirstRegionClosure: public HeapRegionClosure { ysr@777: HeapRegion* _a_region; ysr@777: public: ysr@777: FindFirstRegionClosure() : _a_region(NULL) {} ysr@777: bool doHeapRegion(HeapRegion* r) { ysr@777: _a_region = r; ysr@777: return true; ysr@777: } ysr@777: HeapRegion* result() { return _a_region; } ysr@777: }; ysr@777: ysr@777: ysr@777: class RefineCardTableEntryClosure: public CardTableEntryClosure { ysr@777: SuspendibleThreadSet* _sts; ysr@777: G1RemSet* _g1rs; ysr@777: ConcurrentG1Refine* _cg1r; ysr@777: bool _concurrent; ysr@777: public: ysr@777: RefineCardTableEntryClosure(SuspendibleThreadSet* sts, ysr@777: G1RemSet* g1rs, ysr@777: ConcurrentG1Refine* cg1r) : ysr@777: _sts(sts), _g1rs(g1rs), _cg1r(cg1r), _concurrent(true) ysr@777: {} ysr@777: bool do_card_ptr(jbyte* card_ptr, int worker_i) { ysr@777: _g1rs->concurrentRefineOneCard(card_ptr, worker_i); ysr@777: if (_concurrent && _sts->should_yield()) { ysr@777: // Caller will actually yield. ysr@777: return false; ysr@777: } ysr@777: // Otherwise, we finished successfully; return true. ysr@777: return true; ysr@777: } ysr@777: void set_concurrent(bool b) { _concurrent = b; } ysr@777: }; ysr@777: ysr@777: ysr@777: class ClearLoggedCardTableEntryClosure: public CardTableEntryClosure { ysr@777: int _calls; ysr@777: G1CollectedHeap* _g1h; ysr@777: CardTableModRefBS* _ctbs; ysr@777: int _histo[256]; ysr@777: public: ysr@777: ClearLoggedCardTableEntryClosure() : ysr@777: _calls(0) ysr@777: { ysr@777: _g1h = G1CollectedHeap::heap(); ysr@777: _ctbs = (CardTableModRefBS*)_g1h->barrier_set(); ysr@777: for (int i = 0; i < 256; i++) _histo[i] = 0; ysr@777: } ysr@777: bool do_card_ptr(jbyte* card_ptr, int worker_i) { ysr@777: if (_g1h->is_in_reserved(_ctbs->addr_for(card_ptr))) { ysr@777: _calls++; ysr@777: unsigned char* ujb = (unsigned char*)card_ptr; ysr@777: int ind = (int)(*ujb); ysr@777: _histo[ind]++; ysr@777: *card_ptr = -1; ysr@777: } ysr@777: return true; ysr@777: } ysr@777: int calls() { return _calls; } ysr@777: void print_histo() { ysr@777: gclog_or_tty->print_cr("Card table value histogram:"); ysr@777: for (int i = 0; i < 256; i++) { ysr@777: if (_histo[i] != 0) { ysr@777: gclog_or_tty->print_cr(" %d: %d", i, _histo[i]); ysr@777: } ysr@777: } ysr@777: } ysr@777: }; ysr@777: ysr@777: class RedirtyLoggedCardTableEntryClosure: public CardTableEntryClosure { ysr@777: int _calls; ysr@777: G1CollectedHeap* _g1h; ysr@777: CardTableModRefBS* _ctbs; ysr@777: public: ysr@777: RedirtyLoggedCardTableEntryClosure() : ysr@777: _calls(0) ysr@777: { ysr@777: _g1h = G1CollectedHeap::heap(); ysr@777: _ctbs = (CardTableModRefBS*)_g1h->barrier_set(); ysr@777: } ysr@777: bool do_card_ptr(jbyte* card_ptr, int worker_i) { ysr@777: if (_g1h->is_in_reserved(_ctbs->addr_for(card_ptr))) { ysr@777: _calls++; ysr@777: *card_ptr = 0; ysr@777: } ysr@777: return true; ysr@777: } ysr@777: int calls() { return _calls; } ysr@777: }; ysr@777: ysr@777: YoungList::YoungList(G1CollectedHeap* g1h) ysr@777: : _g1h(g1h), _head(NULL), ysr@777: _scan_only_head(NULL), _scan_only_tail(NULL), _curr_scan_only(NULL), ysr@777: _length(0), _scan_only_length(0), ysr@777: _last_sampled_rs_lengths(0), apetrusenko@980: _survivor_head(NULL), _survivor_tail(NULL), _survivor_length(0) ysr@777: { ysr@777: guarantee( check_list_empty(false), "just making sure..." ); ysr@777: } ysr@777: ysr@777: void YoungList::push_region(HeapRegion *hr) { ysr@777: assert(!hr->is_young(), "should not already be young"); ysr@777: assert(hr->get_next_young_region() == NULL, "cause it should!"); ysr@777: ysr@777: hr->set_next_young_region(_head); ysr@777: _head = hr; ysr@777: ysr@777: hr->set_young(); ysr@777: double yg_surv_rate = _g1h->g1_policy()->predict_yg_surv_rate((int)_length); ysr@777: ++_length; ysr@777: } ysr@777: ysr@777: void YoungList::add_survivor_region(HeapRegion* hr) { apetrusenko@980: assert(hr->is_survivor(), "should be flagged as survivor region"); ysr@777: assert(hr->get_next_young_region() == NULL, "cause it should!"); ysr@777: ysr@777: hr->set_next_young_region(_survivor_head); ysr@777: if (_survivor_head == NULL) { apetrusenko@980: _survivor_tail = hr; ysr@777: } ysr@777: _survivor_head = hr; ysr@777: ysr@777: ++_survivor_length; ysr@777: } ysr@777: ysr@777: HeapRegion* YoungList::pop_region() { ysr@777: while (_head != NULL) { ysr@777: assert( length() > 0, "list should not be empty" ); ysr@777: HeapRegion* ret = _head; ysr@777: _head = ret->get_next_young_region(); ysr@777: ret->set_next_young_region(NULL); ysr@777: --_length; ysr@777: assert(ret->is_young(), "region should be very young"); ysr@777: ysr@777: // Replace 'Survivor' region type with 'Young'. So the region will ysr@777: // be treated as a young region and will not be 'confused' with ysr@777: // newly created survivor regions. ysr@777: if (ret->is_survivor()) { ysr@777: ret->set_young(); ysr@777: } ysr@777: ysr@777: if (!ret->is_scan_only()) { ysr@777: return ret; ysr@777: } ysr@777: ysr@777: // scan-only, we'll add it to the scan-only list ysr@777: if (_scan_only_tail == NULL) { ysr@777: guarantee( _scan_only_head == NULL, "invariant" ); ysr@777: ysr@777: _scan_only_head = ret; ysr@777: _curr_scan_only = ret; ysr@777: } else { ysr@777: guarantee( _scan_only_head != NULL, "invariant" ); ysr@777: _scan_only_tail->set_next_young_region(ret); ysr@777: } ysr@777: guarantee( ret->get_next_young_region() == NULL, "invariant" ); ysr@777: _scan_only_tail = ret; ysr@777: ysr@777: // no need to be tagged as scan-only any more ysr@777: ret->set_young(); ysr@777: ysr@777: ++_scan_only_length; ysr@777: } ysr@777: assert( length() == 0, "list should be empty" ); ysr@777: return NULL; ysr@777: } ysr@777: ysr@777: void YoungList::empty_list(HeapRegion* list) { ysr@777: while (list != NULL) { ysr@777: HeapRegion* next = list->get_next_young_region(); ysr@777: list->set_next_young_region(NULL); ysr@777: list->uninstall_surv_rate_group(); ysr@777: list->set_not_young(); ysr@777: list = next; ysr@777: } ysr@777: } ysr@777: ysr@777: void YoungList::empty_list() { ysr@777: assert(check_list_well_formed(), "young list should be well formed"); ysr@777: ysr@777: empty_list(_head); ysr@777: _head = NULL; ysr@777: _length = 0; ysr@777: ysr@777: empty_list(_scan_only_head); ysr@777: _scan_only_head = NULL; ysr@777: _scan_only_tail = NULL; ysr@777: _scan_only_length = 0; ysr@777: _curr_scan_only = NULL; ysr@777: ysr@777: empty_list(_survivor_head); ysr@777: _survivor_head = NULL; apetrusenko@980: _survivor_tail = NULL; ysr@777: _survivor_length = 0; ysr@777: ysr@777: _last_sampled_rs_lengths = 0; ysr@777: ysr@777: assert(check_list_empty(false), "just making sure..."); ysr@777: } ysr@777: ysr@777: bool YoungList::check_list_well_formed() { ysr@777: bool ret = true; ysr@777: ysr@777: size_t length = 0; ysr@777: HeapRegion* curr = _head; ysr@777: HeapRegion* last = NULL; ysr@777: while (curr != NULL) { ysr@777: if (!curr->is_young() || curr->is_scan_only()) { ysr@777: gclog_or_tty->print_cr("### YOUNG REGION "PTR_FORMAT"-"PTR_FORMAT" " ysr@777: "incorrectly tagged (%d, %d)", ysr@777: curr->bottom(), curr->end(), ysr@777: curr->is_young(), curr->is_scan_only()); ysr@777: ret = false; ysr@777: } ysr@777: ++length; ysr@777: last = curr; ysr@777: curr = curr->get_next_young_region(); ysr@777: } ysr@777: ret = ret && (length == _length); ysr@777: ysr@777: if (!ret) { ysr@777: gclog_or_tty->print_cr("### YOUNG LIST seems not well formed!"); ysr@777: gclog_or_tty->print_cr("### list has %d entries, _length is %d", ysr@777: length, _length); ysr@777: } ysr@777: ysr@777: bool scan_only_ret = true; ysr@777: length = 0; ysr@777: curr = _scan_only_head; ysr@777: last = NULL; ysr@777: while (curr != NULL) { ysr@777: if (!curr->is_young() || curr->is_scan_only()) { ysr@777: gclog_or_tty->print_cr("### SCAN-ONLY REGION "PTR_FORMAT"-"PTR_FORMAT" " ysr@777: "incorrectly tagged (%d, %d)", ysr@777: curr->bottom(), curr->end(), ysr@777: curr->is_young(), curr->is_scan_only()); ysr@777: scan_only_ret = false; ysr@777: } ysr@777: ++length; ysr@777: last = curr; ysr@777: curr = curr->get_next_young_region(); ysr@777: } ysr@777: scan_only_ret = scan_only_ret && (length == _scan_only_length); ysr@777: ysr@777: if ( (last != _scan_only_tail) || ysr@777: (_scan_only_head == NULL && _scan_only_tail != NULL) || ysr@777: (_scan_only_head != NULL && _scan_only_tail == NULL) ) { ysr@777: gclog_or_tty->print_cr("## _scan_only_tail is set incorrectly"); ysr@777: scan_only_ret = false; ysr@777: } ysr@777: ysr@777: if (_curr_scan_only != NULL && _curr_scan_only != _scan_only_head) { ysr@777: gclog_or_tty->print_cr("### _curr_scan_only is set incorrectly"); ysr@777: scan_only_ret = false; ysr@777: } ysr@777: ysr@777: if (!scan_only_ret) { ysr@777: gclog_or_tty->print_cr("### SCAN-ONLY LIST seems not well formed!"); ysr@777: gclog_or_tty->print_cr("### list has %d entries, _scan_only_length is %d", ysr@777: length, _scan_only_length); ysr@777: } ysr@777: ysr@777: return ret && scan_only_ret; ysr@777: } ysr@777: ysr@777: bool YoungList::check_list_empty(bool ignore_scan_only_list, ysr@777: bool check_sample) { ysr@777: bool ret = true; ysr@777: ysr@777: if (_length != 0) { ysr@777: gclog_or_tty->print_cr("### YOUNG LIST should have 0 length, not %d", ysr@777: _length); ysr@777: ret = false; ysr@777: } ysr@777: if (check_sample && _last_sampled_rs_lengths != 0) { ysr@777: gclog_or_tty->print_cr("### YOUNG LIST has non-zero last sampled RS lengths"); ysr@777: ret = false; ysr@777: } ysr@777: if (_head != NULL) { ysr@777: gclog_or_tty->print_cr("### YOUNG LIST does not have a NULL head"); ysr@777: ret = false; ysr@777: } ysr@777: if (!ret) { ysr@777: gclog_or_tty->print_cr("### YOUNG LIST does not seem empty"); ysr@777: } ysr@777: ysr@777: if (ignore_scan_only_list) ysr@777: return ret; ysr@777: ysr@777: bool scan_only_ret = true; ysr@777: if (_scan_only_length != 0) { ysr@777: gclog_or_tty->print_cr("### SCAN-ONLY LIST should have 0 length, not %d", ysr@777: _scan_only_length); ysr@777: scan_only_ret = false; ysr@777: } ysr@777: if (_scan_only_head != NULL) { ysr@777: gclog_or_tty->print_cr("### SCAN-ONLY LIST does not have a NULL head"); ysr@777: scan_only_ret = false; ysr@777: } ysr@777: if (_scan_only_tail != NULL) { ysr@777: gclog_or_tty->print_cr("### SCAN-ONLY LIST does not have a NULL tail"); ysr@777: scan_only_ret = false; ysr@777: } ysr@777: if (!scan_only_ret) { ysr@777: gclog_or_tty->print_cr("### SCAN-ONLY LIST does not seem empty"); ysr@777: } ysr@777: ysr@777: return ret && scan_only_ret; ysr@777: } ysr@777: ysr@777: void ysr@777: YoungList::rs_length_sampling_init() { ysr@777: _sampled_rs_lengths = 0; ysr@777: _curr = _head; ysr@777: } ysr@777: ysr@777: bool ysr@777: YoungList::rs_length_sampling_more() { ysr@777: return _curr != NULL; ysr@777: } ysr@777: ysr@777: void ysr@777: YoungList::rs_length_sampling_next() { ysr@777: assert( _curr != NULL, "invariant" ); ysr@777: _sampled_rs_lengths += _curr->rem_set()->occupied(); ysr@777: _curr = _curr->get_next_young_region(); ysr@777: if (_curr == NULL) { ysr@777: _last_sampled_rs_lengths = _sampled_rs_lengths; ysr@777: // gclog_or_tty->print_cr("last sampled RS lengths = %d", _last_sampled_rs_lengths); ysr@777: } ysr@777: } ysr@777: ysr@777: void ysr@777: YoungList::reset_auxilary_lists() { ysr@777: // We could have just "moved" the scan-only list to the young list. ysr@777: // However, the scan-only list is ordered according to the region ysr@777: // age in descending order, so, by moving one entry at a time, we ysr@777: // ensure that it is recreated in ascending order. ysr@777: ysr@777: guarantee( is_empty(), "young list should be empty" ); ysr@777: assert(check_list_well_formed(), "young list should be well formed"); ysr@777: ysr@777: // Add survivor regions to SurvRateGroup. ysr@777: _g1h->g1_policy()->note_start_adding_survivor_regions(); apetrusenko@980: _g1h->g1_policy()->finished_recalculating_age_indexes(true /* is_survivors */); ysr@777: for (HeapRegion* curr = _survivor_head; ysr@777: curr != NULL; ysr@777: curr = curr->get_next_young_region()) { ysr@777: _g1h->g1_policy()->set_region_survivors(curr); ysr@777: } ysr@777: _g1h->g1_policy()->note_stop_adding_survivor_regions(); ysr@777: ysr@777: if (_survivor_head != NULL) { ysr@777: _head = _survivor_head; ysr@777: _length = _survivor_length + _scan_only_length; apetrusenko@980: _survivor_tail->set_next_young_region(_scan_only_head); ysr@777: } else { ysr@777: _head = _scan_only_head; ysr@777: _length = _scan_only_length; ysr@777: } ysr@777: ysr@777: for (HeapRegion* curr = _scan_only_head; ysr@777: curr != NULL; ysr@777: curr = curr->get_next_young_region()) { ysr@777: curr->recalculate_age_in_surv_rate_group(); ysr@777: } ysr@777: _scan_only_head = NULL; ysr@777: _scan_only_tail = NULL; ysr@777: _scan_only_length = 0; ysr@777: _curr_scan_only = NULL; ysr@777: ysr@777: _survivor_head = NULL; apetrusenko@980: _survivor_tail = NULL; ysr@777: _survivor_length = 0; apetrusenko@980: _g1h->g1_policy()->finished_recalculating_age_indexes(false /* is_survivors */); ysr@777: ysr@777: assert(check_list_well_formed(), "young list should be well formed"); ysr@777: } ysr@777: ysr@777: void YoungList::print() { ysr@777: HeapRegion* lists[] = {_head, _scan_only_head, _survivor_head}; ysr@777: const char* names[] = {"YOUNG", "SCAN-ONLY", "SURVIVOR"}; ysr@777: ysr@777: for (unsigned int list = 0; list < ARRAY_SIZE(lists); ++list) { ysr@777: gclog_or_tty->print_cr("%s LIST CONTENTS", names[list]); ysr@777: HeapRegion *curr = lists[list]; ysr@777: if (curr == NULL) ysr@777: gclog_or_tty->print_cr(" empty"); ysr@777: while (curr != NULL) { ysr@777: gclog_or_tty->print_cr(" [%08x-%08x], t: %08x, P: %08x, N: %08x, C: %08x, " ysr@777: "age: %4d, y: %d, s-o: %d, surv: %d", ysr@777: curr->bottom(), curr->end(), ysr@777: curr->top(), ysr@777: curr->prev_top_at_mark_start(), ysr@777: curr->next_top_at_mark_start(), ysr@777: curr->top_at_conc_mark_count(), ysr@777: curr->age_in_surv_rate_group_cond(), ysr@777: curr->is_young(), ysr@777: curr->is_scan_only(), ysr@777: curr->is_survivor()); ysr@777: curr = curr->get_next_young_region(); ysr@777: } ysr@777: } ysr@777: ysr@777: gclog_or_tty->print_cr(""); ysr@777: } ysr@777: ysr@777: void G1CollectedHeap::stop_conc_gc_threads() { ysr@777: _cg1r->cg1rThread()->stop(); ysr@777: _czft->stop(); ysr@777: _cmThread->stop(); ysr@777: } ysr@777: ysr@777: ysr@777: void G1CollectedHeap::check_ct_logs_at_safepoint() { ysr@777: DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set(); ysr@777: CardTableModRefBS* ct_bs = (CardTableModRefBS*)barrier_set(); ysr@777: ysr@777: // Count the dirty cards at the start. ysr@777: CountNonCleanMemRegionClosure count1(this); ysr@777: ct_bs->mod_card_iterate(&count1); ysr@777: int orig_count = count1.n(); ysr@777: ysr@777: // First clear the logged cards. ysr@777: ClearLoggedCardTableEntryClosure clear; ysr@777: dcqs.set_closure(&clear); ysr@777: dcqs.apply_closure_to_all_completed_buffers(); ysr@777: dcqs.iterate_closure_all_threads(false); ysr@777: clear.print_histo(); ysr@777: ysr@777: // Now ensure that there's no dirty cards. ysr@777: CountNonCleanMemRegionClosure count2(this); ysr@777: ct_bs->mod_card_iterate(&count2); ysr@777: if (count2.n() != 0) { ysr@777: gclog_or_tty->print_cr("Card table has %d entries; %d originally", ysr@777: count2.n(), orig_count); ysr@777: } ysr@777: guarantee(count2.n() == 0, "Card table should be clean."); ysr@777: ysr@777: RedirtyLoggedCardTableEntryClosure redirty; ysr@777: JavaThread::dirty_card_queue_set().set_closure(&redirty); ysr@777: dcqs.apply_closure_to_all_completed_buffers(); ysr@777: dcqs.iterate_closure_all_threads(false); ysr@777: gclog_or_tty->print_cr("Log entries = %d, dirty cards = %d.", ysr@777: clear.calls(), orig_count); ysr@777: guarantee(redirty.calls() == clear.calls(), ysr@777: "Or else mechanism is broken."); ysr@777: ysr@777: CountNonCleanMemRegionClosure count3(this); ysr@777: ct_bs->mod_card_iterate(&count3); ysr@777: if (count3.n() != orig_count) { ysr@777: gclog_or_tty->print_cr("Should have restored them all: orig = %d, final = %d.", ysr@777: orig_count, count3.n()); ysr@777: guarantee(count3.n() >= orig_count, "Should have restored them all."); ysr@777: } ysr@777: ysr@777: JavaThread::dirty_card_queue_set().set_closure(_refine_cte_cl); ysr@777: } ysr@777: ysr@777: // Private class members. ysr@777: ysr@777: G1CollectedHeap* G1CollectedHeap::_g1h; ysr@777: ysr@777: // Private methods. ysr@777: ysr@777: // Finds a HeapRegion that can be used to allocate a given size of block. ysr@777: ysr@777: ysr@777: HeapRegion* G1CollectedHeap::newAllocRegion_work(size_t word_size, ysr@777: bool do_expand, ysr@777: bool zero_filled) { ysr@777: ConcurrentZFThread::note_region_alloc(); ysr@777: HeapRegion* res = alloc_free_region_from_lists(zero_filled); ysr@777: if (res == NULL && do_expand) { ysr@777: expand(word_size * HeapWordSize); ysr@777: res = alloc_free_region_from_lists(zero_filled); ysr@777: assert(res == NULL || ysr@777: (!res->isHumongous() && ysr@777: (!zero_filled || ysr@777: res->zero_fill_state() == HeapRegion::Allocated)), ysr@777: "Alloc Regions must be zero filled (and non-H)"); ysr@777: } ysr@777: if (res != NULL && res->is_empty()) _free_regions--; ysr@777: assert(res == NULL || ysr@777: (!res->isHumongous() && ysr@777: (!zero_filled || ysr@777: res->zero_fill_state() == HeapRegion::Allocated)), ysr@777: "Non-young alloc Regions must be zero filled (and non-H)"); ysr@777: ysr@777: if (G1TraceRegions) { ysr@777: if (res != NULL) { ysr@777: gclog_or_tty->print_cr("new alloc region %d:["PTR_FORMAT", "PTR_FORMAT"], " ysr@777: "top "PTR_FORMAT, ysr@777: res->hrs_index(), res->bottom(), res->end(), res->top()); ysr@777: } ysr@777: } ysr@777: ysr@777: return res; ysr@777: } ysr@777: ysr@777: HeapRegion* G1CollectedHeap::newAllocRegionWithExpansion(int purpose, ysr@777: size_t word_size, ysr@777: bool zero_filled) { ysr@777: HeapRegion* alloc_region = NULL; ysr@777: if (_gc_alloc_region_counts[purpose] < g1_policy()->max_regions(purpose)) { ysr@777: alloc_region = newAllocRegion_work(word_size, true, zero_filled); ysr@777: if (purpose == GCAllocForSurvived && alloc_region != NULL) { apetrusenko@980: alloc_region->set_survivor(); ysr@777: } ysr@777: ++_gc_alloc_region_counts[purpose]; ysr@777: } else { ysr@777: g1_policy()->note_alloc_region_limit_reached(purpose); ysr@777: } ysr@777: return alloc_region; ysr@777: } ysr@777: ysr@777: // If could fit into free regions w/o expansion, try. ysr@777: // Otherwise, if can expand, do so. ysr@777: // Otherwise, if using ex regions might help, try with ex given back. ysr@777: HeapWord* G1CollectedHeap::humongousObjAllocate(size_t word_size) { ysr@777: assert(regions_accounted_for(), "Region leakage!"); ysr@777: ysr@777: // We can't allocate H regions while cleanupComplete is running, since ysr@777: // some of the regions we find to be empty might not yet be added to the ysr@777: // unclean list. (If we're already at a safepoint, this call is ysr@777: // unnecessary, not to mention wrong.) ysr@777: if (!SafepointSynchronize::is_at_safepoint()) ysr@777: wait_for_cleanup_complete(); ysr@777: ysr@777: size_t num_regions = ysr@777: round_to(word_size, HeapRegion::GrainWords) / HeapRegion::GrainWords; ysr@777: ysr@777: // Special case if < one region??? ysr@777: ysr@777: // Remember the ft size. ysr@777: size_t x_size = expansion_regions(); ysr@777: ysr@777: HeapWord* res = NULL; ysr@777: bool eliminated_allocated_from_lists = false; ysr@777: ysr@777: // Can the allocation potentially fit in the free regions? ysr@777: if (free_regions() >= num_regions) { ysr@777: res = _hrs->obj_allocate(word_size); ysr@777: } ysr@777: if (res == NULL) { ysr@777: // Try expansion. ysr@777: size_t fs = _hrs->free_suffix(); ysr@777: if (fs + x_size >= num_regions) { ysr@777: expand((num_regions - fs) * HeapRegion::GrainBytes); ysr@777: res = _hrs->obj_allocate(word_size); ysr@777: assert(res != NULL, "This should have worked."); ysr@777: } else { ysr@777: // Expansion won't help. Are there enough free regions if we get rid ysr@777: // of reservations? ysr@777: size_t avail = free_regions(); ysr@777: if (avail >= num_regions) { ysr@777: res = _hrs->obj_allocate(word_size); ysr@777: if (res != NULL) { ysr@777: remove_allocated_regions_from_lists(); ysr@777: eliminated_allocated_from_lists = true; ysr@777: } ysr@777: } ysr@777: } ysr@777: } ysr@777: if (res != NULL) { ysr@777: // Increment by the number of regions allocated. ysr@777: // FIXME: Assumes regions all of size GrainBytes. ysr@777: #ifndef PRODUCT ysr@777: mr_bs()->verify_clean_region(MemRegion(res, res + num_regions * ysr@777: HeapRegion::GrainWords)); ysr@777: #endif ysr@777: if (!eliminated_allocated_from_lists) ysr@777: remove_allocated_regions_from_lists(); ysr@777: _summary_bytes_used += word_size * HeapWordSize; ysr@777: _free_regions -= num_regions; ysr@777: _num_humongous_regions += (int) num_regions; ysr@777: } ysr@777: assert(regions_accounted_for(), "Region Leakage"); ysr@777: return res; ysr@777: } ysr@777: ysr@777: HeapWord* ysr@777: G1CollectedHeap::attempt_allocation_slow(size_t word_size, ysr@777: bool permit_collection_pause) { ysr@777: HeapWord* res = NULL; ysr@777: HeapRegion* allocated_young_region = NULL; ysr@777: ysr@777: assert( SafepointSynchronize::is_at_safepoint() || ysr@777: Heap_lock->owned_by_self(), "pre condition of the call" ); ysr@777: ysr@777: if (isHumongous(word_size)) { ysr@777: // Allocation of a humongous object can, in a sense, complete a ysr@777: // partial region, if the previous alloc was also humongous, and ysr@777: // caused the test below to succeed. ysr@777: if (permit_collection_pause) ysr@777: do_collection_pause_if_appropriate(word_size); ysr@777: res = humongousObjAllocate(word_size); ysr@777: assert(_cur_alloc_region == NULL ysr@777: || !_cur_alloc_region->isHumongous(), ysr@777: "Prevent a regression of this bug."); ysr@777: ysr@777: } else { iveresov@789: // We may have concurrent cleanup working at the time. Wait for it iveresov@789: // to complete. In the future we would probably want to make the iveresov@789: // concurrent cleanup truly concurrent by decoupling it from the iveresov@789: // allocation. iveresov@789: if (!SafepointSynchronize::is_at_safepoint()) iveresov@789: wait_for_cleanup_complete(); ysr@777: // If we do a collection pause, this will be reset to a non-NULL ysr@777: // value. If we don't, nulling here ensures that we allocate a new ysr@777: // region below. ysr@777: if (_cur_alloc_region != NULL) { ysr@777: // We're finished with the _cur_alloc_region. ysr@777: _summary_bytes_used += _cur_alloc_region->used(); ysr@777: _cur_alloc_region = NULL; ysr@777: } ysr@777: assert(_cur_alloc_region == NULL, "Invariant."); ysr@777: // Completion of a heap region is perhaps a good point at which to do ysr@777: // a collection pause. ysr@777: if (permit_collection_pause) ysr@777: do_collection_pause_if_appropriate(word_size); ysr@777: // Make sure we have an allocation region available. ysr@777: if (_cur_alloc_region == NULL) { ysr@777: if (!SafepointSynchronize::is_at_safepoint()) ysr@777: wait_for_cleanup_complete(); ysr@777: bool next_is_young = should_set_young_locked(); ysr@777: // If the next region is not young, make sure it's zero-filled. ysr@777: _cur_alloc_region = newAllocRegion(word_size, !next_is_young); ysr@777: if (_cur_alloc_region != NULL) { ysr@777: _summary_bytes_used -= _cur_alloc_region->used(); ysr@777: if (next_is_young) { ysr@777: set_region_short_lived_locked(_cur_alloc_region); ysr@777: allocated_young_region = _cur_alloc_region; ysr@777: } ysr@777: } ysr@777: } ysr@777: assert(_cur_alloc_region == NULL || !_cur_alloc_region->isHumongous(), ysr@777: "Prevent a regression of this bug."); ysr@777: ysr@777: // Now retry the allocation. ysr@777: if (_cur_alloc_region != NULL) { ysr@777: res = _cur_alloc_region->allocate(word_size); ysr@777: } ysr@777: } ysr@777: ysr@777: // NOTE: fails frequently in PRT ysr@777: assert(regions_accounted_for(), "Region leakage!"); ysr@777: ysr@777: if (res != NULL) { ysr@777: if (!SafepointSynchronize::is_at_safepoint()) { ysr@777: assert( permit_collection_pause, "invariant" ); ysr@777: assert( Heap_lock->owned_by_self(), "invariant" ); ysr@777: Heap_lock->unlock(); ysr@777: } ysr@777: ysr@777: if (allocated_young_region != NULL) { ysr@777: HeapRegion* hr = allocated_young_region; ysr@777: HeapWord* bottom = hr->bottom(); ysr@777: HeapWord* end = hr->end(); ysr@777: MemRegion mr(bottom, end); ysr@777: ((CardTableModRefBS*)_g1h->barrier_set())->dirty(mr); ysr@777: } ysr@777: } ysr@777: ysr@777: assert( SafepointSynchronize::is_at_safepoint() || ysr@777: (res == NULL && Heap_lock->owned_by_self()) || ysr@777: (res != NULL && !Heap_lock->owned_by_self()), ysr@777: "post condition of the call" ); ysr@777: ysr@777: return res; ysr@777: } ysr@777: ysr@777: HeapWord* ysr@777: G1CollectedHeap::mem_allocate(size_t word_size, ysr@777: bool is_noref, ysr@777: bool is_tlab, ysr@777: bool* gc_overhead_limit_was_exceeded) { ysr@777: debug_only(check_for_valid_allocation_state()); ysr@777: assert(no_gc_in_progress(), "Allocation during gc not allowed"); ysr@777: HeapWord* result = NULL; ysr@777: ysr@777: // Loop until the allocation is satisified, ysr@777: // or unsatisfied after GC. ysr@777: for (int try_count = 1; /* return or throw */; try_count += 1) { ysr@777: int gc_count_before; ysr@777: { ysr@777: Heap_lock->lock(); ysr@777: result = attempt_allocation(word_size); ysr@777: if (result != NULL) { ysr@777: // attempt_allocation should have unlocked the heap lock ysr@777: assert(is_in(result), "result not in heap"); ysr@777: return result; ysr@777: } ysr@777: // Read the gc count while the heap lock is held. ysr@777: gc_count_before = SharedHeap::heap()->total_collections(); ysr@777: Heap_lock->unlock(); ysr@777: } ysr@777: ysr@777: // Create the garbage collection operation... ysr@777: VM_G1CollectForAllocation op(word_size, ysr@777: gc_count_before); ysr@777: ysr@777: // ...and get the VM thread to execute it. ysr@777: VMThread::execute(&op); ysr@777: if (op.prologue_succeeded()) { ysr@777: result = op.result(); ysr@777: assert(result == NULL || is_in(result), "result not in heap"); ysr@777: return result; ysr@777: } ysr@777: ysr@777: // Give a warning if we seem to be looping forever. ysr@777: if ((QueuedAllocationWarningCount > 0) && ysr@777: (try_count % QueuedAllocationWarningCount == 0)) { ysr@777: warning("G1CollectedHeap::mem_allocate_work retries %d times", ysr@777: try_count); ysr@777: } ysr@777: } ysr@777: } ysr@777: ysr@777: void G1CollectedHeap::abandon_cur_alloc_region() { ysr@777: if (_cur_alloc_region != NULL) { ysr@777: // We're finished with the _cur_alloc_region. ysr@777: if (_cur_alloc_region->is_empty()) { ysr@777: _free_regions++; ysr@777: free_region(_cur_alloc_region); ysr@777: } else { ysr@777: _summary_bytes_used += _cur_alloc_region->used(); ysr@777: } ysr@777: _cur_alloc_region = NULL; ysr@777: } ysr@777: } ysr@777: ysr@777: class PostMCRemSetClearClosure: public HeapRegionClosure { ysr@777: ModRefBarrierSet* _mr_bs; ysr@777: public: ysr@777: PostMCRemSetClearClosure(ModRefBarrierSet* mr_bs) : _mr_bs(mr_bs) {} ysr@777: bool doHeapRegion(HeapRegion* r) { ysr@777: r->reset_gc_time_stamp(); ysr@777: if (r->continuesHumongous()) ysr@777: return false; ysr@777: HeapRegionRemSet* hrrs = r->rem_set(); ysr@777: if (hrrs != NULL) hrrs->clear(); ysr@777: // You might think here that we could clear just the cards ysr@777: // corresponding to the used region. But no: if we leave a dirty card ysr@777: // in a region we might allocate into, then it would prevent that card ysr@777: // from being enqueued, and cause it to be missed. ysr@777: // Re: the performance cost: we shouldn't be doing full GC anyway! ysr@777: _mr_bs->clear(MemRegion(r->bottom(), r->end())); ysr@777: return false; ysr@777: } ysr@777: }; ysr@777: ysr@777: ysr@777: class PostMCRemSetInvalidateClosure: public HeapRegionClosure { ysr@777: ModRefBarrierSet* _mr_bs; ysr@777: public: ysr@777: PostMCRemSetInvalidateClosure(ModRefBarrierSet* mr_bs) : _mr_bs(mr_bs) {} ysr@777: bool doHeapRegion(HeapRegion* r) { ysr@777: if (r->continuesHumongous()) return false; ysr@777: if (r->used_region().word_size() != 0) { ysr@777: _mr_bs->invalidate(r->used_region(), true /*whole heap*/); ysr@777: } ysr@777: return false; ysr@777: } ysr@777: }; ysr@777: ysr@777: void G1CollectedHeap::do_collection(bool full, bool clear_all_soft_refs, ysr@777: size_t word_size) { ysr@777: ResourceMark rm; ysr@777: ysr@777: if (full && DisableExplicitGC) { ysr@777: gclog_or_tty->print("\n\n\nDisabling Explicit GC\n\n\n"); ysr@777: return; ysr@777: } ysr@777: ysr@777: assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint"); ysr@777: assert(Thread::current() == VMThread::vm_thread(), "should be in vm thread"); ysr@777: ysr@777: if (GC_locker::is_active()) { ysr@777: return; // GC is disabled (e.g. JNI GetXXXCritical operation) ysr@777: } ysr@777: ysr@777: { ysr@777: IsGCActiveMark x; ysr@777: ysr@777: // Timing ysr@777: gclog_or_tty->date_stamp(PrintGC && PrintGCDateStamps); ysr@777: TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty); ysr@777: TraceTime t(full ? "Full GC (System.gc())" : "Full GC", PrintGC, true, gclog_or_tty); ysr@777: ysr@777: double start = os::elapsedTime(); ysr@777: GCOverheadReporter::recordSTWStart(start); ysr@777: g1_policy()->record_full_collection_start(); ysr@777: ysr@777: gc_prologue(true); ysr@777: increment_total_collections(); ysr@777: ysr@777: size_t g1h_prev_used = used(); ysr@777: assert(used() == recalculate_used(), "Should be equal"); ysr@777: ysr@777: if (VerifyBeforeGC && total_collections() >= VerifyGCStartAt) { ysr@777: HandleMark hm; // Discard invalid handles created during verification ysr@777: prepare_for_verify(); ysr@777: gclog_or_tty->print(" VerifyBeforeGC:"); ysr@777: Universe::verify(true); ysr@777: } ysr@777: assert(regions_accounted_for(), "Region leakage!"); ysr@777: ysr@777: COMPILER2_PRESENT(DerivedPointerTable::clear()); ysr@777: ysr@777: // We want to discover references, but not process them yet. ysr@777: // This mode is disabled in ysr@777: // instanceRefKlass::process_discovered_references if the ysr@777: // generation does some collection work, or ysr@777: // instanceRefKlass::enqueue_discovered_references if the ysr@777: // generation returns without doing any work. ysr@777: ref_processor()->disable_discovery(); ysr@777: ref_processor()->abandon_partial_discovery(); ysr@777: ref_processor()->verify_no_references_recorded(); ysr@777: ysr@777: // Abandon current iterations of concurrent marking and concurrent ysr@777: // refinement, if any are in progress. ysr@777: concurrent_mark()->abort(); ysr@777: ysr@777: // Make sure we'll choose a new allocation region afterwards. ysr@777: abandon_cur_alloc_region(); ysr@777: assert(_cur_alloc_region == NULL, "Invariant."); ysr@777: g1_rem_set()->as_HRInto_G1RemSet()->cleanupHRRS(); ysr@777: tear_down_region_lists(); ysr@777: set_used_regions_to_need_zero_fill(); ysr@777: if (g1_policy()->in_young_gc_mode()) { ysr@777: empty_young_list(); ysr@777: g1_policy()->set_full_young_gcs(true); ysr@777: } ysr@777: ysr@777: // Temporarily make reference _discovery_ single threaded (non-MT). ysr@777: ReferenceProcessorMTMutator rp_disc_ser(ref_processor(), false); ysr@777: ysr@777: // Temporarily make refs discovery atomic ysr@777: ReferenceProcessorAtomicMutator rp_disc_atomic(ref_processor(), true); ysr@777: ysr@777: // Temporarily clear _is_alive_non_header ysr@777: ReferenceProcessorIsAliveMutator rp_is_alive_null(ref_processor(), NULL); ysr@777: ysr@777: ref_processor()->enable_discovery(); ysr@892: ref_processor()->setup_policy(clear_all_soft_refs); ysr@777: ysr@777: // Do collection work ysr@777: { ysr@777: HandleMark hm; // Discard invalid handles created during gc ysr@777: G1MarkSweep::invoke_at_safepoint(ref_processor(), clear_all_soft_refs); ysr@777: } ysr@777: // Because freeing humongous regions may have added some unclean ysr@777: // regions, it is necessary to tear down again before rebuilding. ysr@777: tear_down_region_lists(); ysr@777: rebuild_region_lists(); ysr@777: ysr@777: _summary_bytes_used = recalculate_used(); ysr@777: ysr@777: ref_processor()->enqueue_discovered_references(); ysr@777: ysr@777: COMPILER2_PRESENT(DerivedPointerTable::update_pointers()); ysr@777: ysr@777: if (VerifyAfterGC && total_collections() >= VerifyGCStartAt) { ysr@777: HandleMark hm; // Discard invalid handles created during verification ysr@777: gclog_or_tty->print(" VerifyAfterGC:"); ysr@777: Universe::verify(false); ysr@777: } ysr@777: NOT_PRODUCT(ref_processor()->verify_no_references_recorded()); ysr@777: ysr@777: reset_gc_time_stamp(); ysr@777: // Since everything potentially moved, we will clear all remembered ysr@777: // sets, and clear all cards. Later we will also cards in the used ysr@777: // portion of the heap after the resizing (which could be a shrinking.) ysr@777: // We will also reset the GC time stamps of the regions. ysr@777: PostMCRemSetClearClosure rs_clear(mr_bs()); ysr@777: heap_region_iterate(&rs_clear); ysr@777: ysr@777: // Resize the heap if necessary. ysr@777: resize_if_necessary_after_full_collection(full ? 0 : word_size); ysr@777: ysr@777: // Since everything potentially moved, we will clear all remembered ysr@777: // sets, but also dirty all cards corresponding to used regions. ysr@777: PostMCRemSetInvalidateClosure rs_invalidate(mr_bs()); ysr@777: heap_region_iterate(&rs_invalidate); ysr@777: if (_cg1r->use_cache()) { ysr@777: _cg1r->clear_and_record_card_counts(); ysr@777: _cg1r->clear_hot_cache(); ysr@777: } ysr@777: ysr@777: if (PrintGC) { ysr@777: print_size_transition(gclog_or_tty, g1h_prev_used, used(), capacity()); ysr@777: } ysr@777: ysr@777: if (true) { // FIXME ysr@777: // Ask the permanent generation to adjust size for full collections ysr@777: perm()->compute_new_size(); ysr@777: } ysr@777: ysr@777: double end = os::elapsedTime(); ysr@777: GCOverheadReporter::recordSTWEnd(end); ysr@777: g1_policy()->record_full_collection_end(); ysr@777: jmasa@981: #ifdef TRACESPINNING jmasa@981: ParallelTaskTerminator::print_termination_counts(); jmasa@981: #endif jmasa@981: ysr@777: gc_epilogue(true); ysr@777: ysr@777: // Abandon concurrent refinement. This must happen last: in the ysr@777: // dirty-card logging system, some cards may be dirty by weak-ref ysr@777: // processing, and may be enqueued. But the whole card table is ysr@777: // dirtied, so this should abandon those logs, and set "do_traversal" ysr@777: // to true. ysr@777: concurrent_g1_refine()->set_pya_restart(); ysr@777: ysr@777: assert(regions_accounted_for(), "Region leakage!"); ysr@777: } ysr@777: ysr@777: if (g1_policy()->in_young_gc_mode()) { ysr@777: _young_list->reset_sampled_info(); ysr@777: assert( check_young_list_empty(false, false), ysr@777: "young list should be empty at this point"); ysr@777: } ysr@777: } ysr@777: ysr@777: void G1CollectedHeap::do_full_collection(bool clear_all_soft_refs) { ysr@777: do_collection(true, clear_all_soft_refs, 0); ysr@777: } ysr@777: ysr@777: // This code is mostly copied from TenuredGeneration. ysr@777: void ysr@777: G1CollectedHeap:: ysr@777: resize_if_necessary_after_full_collection(size_t word_size) { ysr@777: assert(MinHeapFreeRatio <= MaxHeapFreeRatio, "sanity check"); ysr@777: ysr@777: // Include the current allocation, if any, and bytes that will be ysr@777: // pre-allocated to support collections, as "used". ysr@777: const size_t used_after_gc = used(); ysr@777: const size_t capacity_after_gc = capacity(); ysr@777: const size_t free_after_gc = capacity_after_gc - used_after_gc; ysr@777: ysr@777: // We don't have floating point command-line arguments ysr@777: const double minimum_free_percentage = (double) MinHeapFreeRatio / 100; ysr@777: const double maximum_used_percentage = 1.0 - minimum_free_percentage; ysr@777: const double maximum_free_percentage = (double) MaxHeapFreeRatio / 100; ysr@777: const double minimum_used_percentage = 1.0 - maximum_free_percentage; ysr@777: ysr@777: size_t minimum_desired_capacity = (size_t) (used_after_gc / maximum_used_percentage); ysr@777: size_t maximum_desired_capacity = (size_t) (used_after_gc / minimum_used_percentage); ysr@777: ysr@777: // Don't shrink less than the initial size. ysr@777: minimum_desired_capacity = ysr@777: MAX2(minimum_desired_capacity, ysr@777: collector_policy()->initial_heap_byte_size()); ysr@777: maximum_desired_capacity = ysr@777: MAX2(maximum_desired_capacity, ysr@777: collector_policy()->initial_heap_byte_size()); ysr@777: ysr@777: // We are failing here because minimum_desired_capacity is ysr@777: assert(used_after_gc <= minimum_desired_capacity, "sanity check"); ysr@777: assert(minimum_desired_capacity <= maximum_desired_capacity, "sanity check"); ysr@777: ysr@777: if (PrintGC && Verbose) { ysr@777: const double free_percentage = ((double)free_after_gc) / capacity(); ysr@777: gclog_or_tty->print_cr("Computing new size after full GC "); ysr@777: gclog_or_tty->print_cr(" " ysr@777: " minimum_free_percentage: %6.2f", ysr@777: minimum_free_percentage); ysr@777: gclog_or_tty->print_cr(" " ysr@777: " maximum_free_percentage: %6.2f", ysr@777: maximum_free_percentage); ysr@777: gclog_or_tty->print_cr(" " ysr@777: " capacity: %6.1fK" ysr@777: " minimum_desired_capacity: %6.1fK" ysr@777: " maximum_desired_capacity: %6.1fK", ysr@777: capacity() / (double) K, ysr@777: minimum_desired_capacity / (double) K, ysr@777: maximum_desired_capacity / (double) K); ysr@777: gclog_or_tty->print_cr(" " ysr@777: " free_after_gc : %6.1fK" ysr@777: " used_after_gc : %6.1fK", ysr@777: free_after_gc / (double) K, ysr@777: used_after_gc / (double) K); ysr@777: gclog_or_tty->print_cr(" " ysr@777: " free_percentage: %6.2f", ysr@777: free_percentage); ysr@777: } ysr@777: if (capacity() < minimum_desired_capacity) { ysr@777: // Don't expand unless it's significant ysr@777: size_t expand_bytes = minimum_desired_capacity - capacity_after_gc; ysr@777: expand(expand_bytes); ysr@777: if (PrintGC && Verbose) { ysr@777: gclog_or_tty->print_cr(" expanding:" ysr@777: " minimum_desired_capacity: %6.1fK" ysr@777: " expand_bytes: %6.1fK", ysr@777: minimum_desired_capacity / (double) K, ysr@777: expand_bytes / (double) K); ysr@777: } ysr@777: ysr@777: // No expansion, now see if we want to shrink ysr@777: } else if (capacity() > maximum_desired_capacity) { ysr@777: // Capacity too large, compute shrinking size ysr@777: size_t shrink_bytes = capacity_after_gc - maximum_desired_capacity; ysr@777: shrink(shrink_bytes); ysr@777: if (PrintGC && Verbose) { ysr@777: gclog_or_tty->print_cr(" " ysr@777: " shrinking:" ysr@777: " initSize: %.1fK" ysr@777: " maximum_desired_capacity: %.1fK", ysr@777: collector_policy()->initial_heap_byte_size() / (double) K, ysr@777: maximum_desired_capacity / (double) K); ysr@777: gclog_or_tty->print_cr(" " ysr@777: " shrink_bytes: %.1fK", ysr@777: shrink_bytes / (double) K); ysr@777: } ysr@777: } ysr@777: } ysr@777: ysr@777: ysr@777: HeapWord* ysr@777: G1CollectedHeap::satisfy_failed_allocation(size_t word_size) { ysr@777: HeapWord* result = NULL; ysr@777: ysr@777: // In a G1 heap, we're supposed to keep allocation from failing by ysr@777: // incremental pauses. Therefore, at least for now, we'll favor ysr@777: // expansion over collection. (This might change in the future if we can ysr@777: // do something smarter than full collection to satisfy a failed alloc.) ysr@777: ysr@777: result = expand_and_allocate(word_size); ysr@777: if (result != NULL) { ysr@777: assert(is_in(result), "result not in heap"); ysr@777: return result; ysr@777: } ysr@777: ysr@777: // OK, I guess we have to try collection. ysr@777: ysr@777: do_collection(false, false, word_size); ysr@777: ysr@777: result = attempt_allocation(word_size, /*permit_collection_pause*/false); ysr@777: ysr@777: if (result != NULL) { ysr@777: assert(is_in(result), "result not in heap"); ysr@777: return result; ysr@777: } ysr@777: ysr@777: // Try collecting soft references. ysr@777: do_collection(false, true, word_size); ysr@777: result = attempt_allocation(word_size, /*permit_collection_pause*/false); ysr@777: if (result != NULL) { ysr@777: assert(is_in(result), "result not in heap"); ysr@777: return result; ysr@777: } ysr@777: ysr@777: // What else? We might try synchronous finalization later. If the total ysr@777: // space available is large enough for the allocation, then a more ysr@777: // complete compaction phase than we've tried so far might be ysr@777: // appropriate. ysr@777: return NULL; ysr@777: } ysr@777: ysr@777: // Attempting to expand the heap sufficiently ysr@777: // to support an allocation of the given "word_size". If ysr@777: // successful, perform the allocation and return the address of the ysr@777: // allocated block, or else "NULL". ysr@777: ysr@777: HeapWord* G1CollectedHeap::expand_and_allocate(size_t word_size) { ysr@777: size_t expand_bytes = word_size * HeapWordSize; ysr@777: if (expand_bytes < MinHeapDeltaBytes) { ysr@777: expand_bytes = MinHeapDeltaBytes; ysr@777: } ysr@777: expand(expand_bytes); ysr@777: assert(regions_accounted_for(), "Region leakage!"); ysr@777: HeapWord* result = attempt_allocation(word_size, false /* permit_collection_pause */); ysr@777: return result; ysr@777: } ysr@777: ysr@777: size_t G1CollectedHeap::free_region_if_totally_empty(HeapRegion* hr) { ysr@777: size_t pre_used = 0; ysr@777: size_t cleared_h_regions = 0; ysr@777: size_t freed_regions = 0; ysr@777: UncleanRegionList local_list; ysr@777: free_region_if_totally_empty_work(hr, pre_used, cleared_h_regions, ysr@777: freed_regions, &local_list); ysr@777: ysr@777: finish_free_region_work(pre_used, cleared_h_regions, freed_regions, ysr@777: &local_list); ysr@777: return pre_used; ysr@777: } ysr@777: ysr@777: void ysr@777: G1CollectedHeap::free_region_if_totally_empty_work(HeapRegion* hr, ysr@777: size_t& pre_used, ysr@777: size_t& cleared_h, ysr@777: size_t& freed_regions, ysr@777: UncleanRegionList* list, ysr@777: bool par) { ysr@777: assert(!hr->continuesHumongous(), "should have filtered these out"); ysr@777: size_t res = 0; ysr@777: if (!hr->popular() && hr->used() > 0 && hr->garbage_bytes() == hr->used()) { ysr@777: if (!hr->is_young()) { ysr@777: if (G1PolicyVerbose > 0) ysr@777: gclog_or_tty->print_cr("Freeing empty region "PTR_FORMAT "(" SIZE_FORMAT " bytes)" ysr@777: " during cleanup", hr, hr->used()); ysr@777: free_region_work(hr, pre_used, cleared_h, freed_regions, list, par); ysr@777: } ysr@777: } ysr@777: } ysr@777: ysr@777: // FIXME: both this and shrink could probably be more efficient by ysr@777: // doing one "VirtualSpace::expand_by" call rather than several. ysr@777: void G1CollectedHeap::expand(size_t expand_bytes) { ysr@777: size_t old_mem_size = _g1_storage.committed_size(); ysr@777: // We expand by a minimum of 1K. ysr@777: expand_bytes = MAX2(expand_bytes, (size_t)K); ysr@777: size_t aligned_expand_bytes = ysr@777: ReservedSpace::page_align_size_up(expand_bytes); ysr@777: aligned_expand_bytes = align_size_up(aligned_expand_bytes, ysr@777: HeapRegion::GrainBytes); ysr@777: expand_bytes = aligned_expand_bytes; ysr@777: while (expand_bytes > 0) { ysr@777: HeapWord* base = (HeapWord*)_g1_storage.high(); ysr@777: // Commit more storage. ysr@777: bool successful = _g1_storage.expand_by(HeapRegion::GrainBytes); ysr@777: if (!successful) { ysr@777: expand_bytes = 0; ysr@777: } else { ysr@777: expand_bytes -= HeapRegion::GrainBytes; ysr@777: // Expand the committed region. ysr@777: HeapWord* high = (HeapWord*) _g1_storage.high(); ysr@777: _g1_committed.set_end(high); ysr@777: // Create a new HeapRegion. ysr@777: MemRegion mr(base, high); ysr@777: bool is_zeroed = !_g1_max_committed.contains(base); ysr@777: HeapRegion* hr = new HeapRegion(_bot_shared, mr, is_zeroed); ysr@777: ysr@777: // Now update max_committed if necessary. ysr@777: _g1_max_committed.set_end(MAX2(_g1_max_committed.end(), high)); ysr@777: ysr@777: // Add it to the HeapRegionSeq. ysr@777: _hrs->insert(hr); ysr@777: // Set the zero-fill state, according to whether it's already ysr@777: // zeroed. ysr@777: { ysr@777: MutexLockerEx x(ZF_mon, Mutex::_no_safepoint_check_flag); ysr@777: if (is_zeroed) { ysr@777: hr->set_zero_fill_complete(); ysr@777: put_free_region_on_list_locked(hr); ysr@777: } else { ysr@777: hr->set_zero_fill_needed(); ysr@777: put_region_on_unclean_list_locked(hr); ysr@777: } ysr@777: } ysr@777: _free_regions++; ysr@777: // And we used up an expansion region to create it. ysr@777: _expansion_regions--; ysr@777: // Tell the cardtable about it. ysr@777: Universe::heap()->barrier_set()->resize_covered_region(_g1_committed); ysr@777: // And the offset table as well. ysr@777: _bot_shared->resize(_g1_committed.word_size()); ysr@777: } ysr@777: } ysr@777: if (Verbose && PrintGC) { ysr@777: size_t new_mem_size = _g1_storage.committed_size(); ysr@777: gclog_or_tty->print_cr("Expanding garbage-first heap from %ldK by %ldK to %ldK", ysr@777: old_mem_size/K, aligned_expand_bytes/K, ysr@777: new_mem_size/K); ysr@777: } ysr@777: } ysr@777: ysr@777: void G1CollectedHeap::shrink_helper(size_t shrink_bytes) ysr@777: { ysr@777: size_t old_mem_size = _g1_storage.committed_size(); ysr@777: size_t aligned_shrink_bytes = ysr@777: ReservedSpace::page_align_size_down(shrink_bytes); ysr@777: aligned_shrink_bytes = align_size_down(aligned_shrink_bytes, ysr@777: HeapRegion::GrainBytes); ysr@777: size_t num_regions_deleted = 0; ysr@777: MemRegion mr = _hrs->shrink_by(aligned_shrink_bytes, num_regions_deleted); ysr@777: ysr@777: assert(mr.end() == (HeapWord*)_g1_storage.high(), "Bad shrink!"); ysr@777: if (mr.byte_size() > 0) ysr@777: _g1_storage.shrink_by(mr.byte_size()); ysr@777: assert(mr.start() == (HeapWord*)_g1_storage.high(), "Bad shrink!"); ysr@777: ysr@777: _g1_committed.set_end(mr.start()); ysr@777: _free_regions -= num_regions_deleted; ysr@777: _expansion_regions += num_regions_deleted; ysr@777: ysr@777: // Tell the cardtable about it. ysr@777: Universe::heap()->barrier_set()->resize_covered_region(_g1_committed); ysr@777: ysr@777: // And the offset table as well. ysr@777: _bot_shared->resize(_g1_committed.word_size()); ysr@777: ysr@777: HeapRegionRemSet::shrink_heap(n_regions()); ysr@777: ysr@777: if (Verbose && PrintGC) { ysr@777: size_t new_mem_size = _g1_storage.committed_size(); ysr@777: gclog_or_tty->print_cr("Shrinking garbage-first heap from %ldK by %ldK to %ldK", ysr@777: old_mem_size/K, aligned_shrink_bytes/K, ysr@777: new_mem_size/K); ysr@777: } ysr@777: } ysr@777: ysr@777: void G1CollectedHeap::shrink(size_t shrink_bytes) { ysr@777: release_gc_alloc_regions(); ysr@777: tear_down_region_lists(); // We will rebuild them in a moment. ysr@777: shrink_helper(shrink_bytes); ysr@777: rebuild_region_lists(); ysr@777: } ysr@777: ysr@777: // Public methods. ysr@777: ysr@777: #ifdef _MSC_VER // the use of 'this' below gets a warning, make it go away ysr@777: #pragma warning( disable:4355 ) // 'this' : used in base member initializer list ysr@777: #endif // _MSC_VER ysr@777: ysr@777: ysr@777: G1CollectedHeap::G1CollectedHeap(G1CollectorPolicy* policy_) : ysr@777: SharedHeap(policy_), ysr@777: _g1_policy(policy_), ysr@777: _ref_processor(NULL), ysr@777: _process_strong_tasks(new SubTasksDone(G1H_PS_NumElements)), ysr@777: _bot_shared(NULL), ysr@777: _par_alloc_during_gc_lock(Mutex::leaf, "par alloc during GC lock"), ysr@777: _objs_with_preserved_marks(NULL), _preserved_marks_of_objs(NULL), ysr@777: _evac_failure_scan_stack(NULL) , ysr@777: _mark_in_progress(false), ysr@777: _cg1r(NULL), _czft(NULL), _summary_bytes_used(0), ysr@777: _cur_alloc_region(NULL), ysr@777: _refine_cte_cl(NULL), ysr@777: _free_region_list(NULL), _free_region_list_size(0), ysr@777: _free_regions(0), ysr@777: _popular_object_boundary(NULL), ysr@777: _cur_pop_hr_index(0), ysr@777: _popular_regions_to_be_evacuated(NULL), ysr@777: _pop_obj_rc_at_copy(), ysr@777: _full_collection(false), ysr@777: _unclean_region_list(), ysr@777: _unclean_regions_coming(false), ysr@777: _young_list(new YoungList(this)), ysr@777: _gc_time_stamp(0), tonyp@961: _surviving_young_words(NULL), tonyp@961: _in_cset_fast_test(NULL), tonyp@961: _in_cset_fast_test_base(NULL) ysr@777: { ysr@777: _g1h = this; // To catch bugs. ysr@777: if (_process_strong_tasks == NULL || !_process_strong_tasks->valid()) { ysr@777: vm_exit_during_initialization("Failed necessary allocation."); ysr@777: } ysr@777: int n_queues = MAX2((int)ParallelGCThreads, 1); ysr@777: _task_queues = new RefToScanQueueSet(n_queues); ysr@777: ysr@777: int n_rem_sets = HeapRegionRemSet::num_par_rem_sets(); ysr@777: assert(n_rem_sets > 0, "Invariant."); ysr@777: ysr@777: HeapRegionRemSetIterator** iter_arr = ysr@777: NEW_C_HEAP_ARRAY(HeapRegionRemSetIterator*, n_queues); ysr@777: for (int i = 0; i < n_queues; i++) { ysr@777: iter_arr[i] = new HeapRegionRemSetIterator(); ysr@777: } ysr@777: _rem_set_iterator = iter_arr; ysr@777: ysr@777: for (int i = 0; i < n_queues; i++) { ysr@777: RefToScanQueue* q = new RefToScanQueue(); ysr@777: q->initialize(); ysr@777: _task_queues->register_queue(i, q); ysr@777: } ysr@777: ysr@777: for (int ap = 0; ap < GCAllocPurposeCount; ++ap) { ysr@777: _gc_alloc_regions[ap] = NULL; ysr@777: _gc_alloc_region_counts[ap] = 0; ysr@777: } ysr@777: guarantee(_task_queues != NULL, "task_queues allocation failure."); ysr@777: } ysr@777: ysr@777: jint G1CollectedHeap::initialize() { ysr@777: os::enable_vtime(); ysr@777: ysr@777: // Necessary to satisfy locking discipline assertions. ysr@777: ysr@777: MutexLocker x(Heap_lock); ysr@777: ysr@777: // While there are no constraints in the GC code that HeapWordSize ysr@777: // be any particular value, there are multiple other areas in the ysr@777: // system which believe this to be true (e.g. oop->object_size in some ysr@777: // cases incorrectly returns the size in wordSize units rather than ysr@777: // HeapWordSize). ysr@777: guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize"); ysr@777: ysr@777: size_t init_byte_size = collector_policy()->initial_heap_byte_size(); ysr@777: size_t max_byte_size = collector_policy()->max_heap_byte_size(); ysr@777: ysr@777: // Ensure that the sizes are properly aligned. ysr@777: Universe::check_alignment(init_byte_size, HeapRegion::GrainBytes, "g1 heap"); ysr@777: Universe::check_alignment(max_byte_size, HeapRegion::GrainBytes, "g1 heap"); ysr@777: ysr@777: // We allocate this in any case, but only do no work if the command line ysr@777: // param is off. ysr@777: _cg1r = new ConcurrentG1Refine(); ysr@777: ysr@777: // Reserve the maximum. ysr@777: PermanentGenerationSpec* pgs = collector_policy()->permanent_generation(); ysr@777: // Includes the perm-gen. ysr@777: ReservedSpace heap_rs(max_byte_size + pgs->max_size(), ysr@777: HeapRegion::GrainBytes, ysr@777: false /*ism*/); ysr@777: ysr@777: if (!heap_rs.is_reserved()) { ysr@777: vm_exit_during_initialization("Could not reserve enough space for object heap"); ysr@777: return JNI_ENOMEM; ysr@777: } ysr@777: ysr@777: // It is important to do this in a way such that concurrent readers can't ysr@777: // temporarily think somethings in the heap. (I've actually seen this ysr@777: // happen in asserts: DLD.) ysr@777: _reserved.set_word_size(0); ysr@777: _reserved.set_start((HeapWord*)heap_rs.base()); ysr@777: _reserved.set_end((HeapWord*)(heap_rs.base() + heap_rs.size())); ysr@777: ysr@777: _expansion_regions = max_byte_size/HeapRegion::GrainBytes; ysr@777: ysr@777: _num_humongous_regions = 0; ysr@777: ysr@777: // Create the gen rem set (and barrier set) for the entire reserved region. ysr@777: _rem_set = collector_policy()->create_rem_set(_reserved, 2); ysr@777: set_barrier_set(rem_set()->bs()); ysr@777: if (barrier_set()->is_a(BarrierSet::ModRef)) { ysr@777: _mr_bs = (ModRefBarrierSet*)_barrier_set; ysr@777: } else { ysr@777: vm_exit_during_initialization("G1 requires a mod ref bs."); ysr@777: return JNI_ENOMEM; ysr@777: } ysr@777: ysr@777: // Also create a G1 rem set. ysr@777: if (G1UseHRIntoRS) { ysr@777: if (mr_bs()->is_a(BarrierSet::CardTableModRef)) { ysr@777: _g1_rem_set = new HRInto_G1RemSet(this, (CardTableModRefBS*)mr_bs()); ysr@777: } else { ysr@777: vm_exit_during_initialization("G1 requires a cardtable mod ref bs."); ysr@777: return JNI_ENOMEM; ysr@777: } ysr@777: } else { ysr@777: _g1_rem_set = new StupidG1RemSet(this); ysr@777: } ysr@777: ysr@777: // Carve out the G1 part of the heap. ysr@777: ysr@777: ReservedSpace g1_rs = heap_rs.first_part(max_byte_size); ysr@777: _g1_reserved = MemRegion((HeapWord*)g1_rs.base(), ysr@777: g1_rs.size()/HeapWordSize); ysr@777: ReservedSpace perm_gen_rs = heap_rs.last_part(max_byte_size); ysr@777: ysr@777: _perm_gen = pgs->init(perm_gen_rs, pgs->init_size(), rem_set()); ysr@777: ysr@777: _g1_storage.initialize(g1_rs, 0); ysr@777: _g1_committed = MemRegion((HeapWord*)_g1_storage.low(), (size_t) 0); ysr@777: _g1_max_committed = _g1_committed; iveresov@828: _hrs = new HeapRegionSeq(_expansion_regions); ysr@777: guarantee(_hrs != NULL, "Couldn't allocate HeapRegionSeq"); ysr@777: guarantee(_cur_alloc_region == NULL, "from constructor"); ysr@777: ysr@777: _bot_shared = new G1BlockOffsetSharedArray(_reserved, ysr@777: heap_word_size(init_byte_size)); ysr@777: ysr@777: _g1h = this; ysr@777: ysr@777: // Create the ConcurrentMark data structure and thread. ysr@777: // (Must do this late, so that "max_regions" is defined.) ysr@777: _cm = new ConcurrentMark(heap_rs, (int) max_regions()); ysr@777: _cmThread = _cm->cmThread(); ysr@777: ysr@777: // ...and the concurrent zero-fill thread, if necessary. ysr@777: if (G1ConcZeroFill) { ysr@777: _czft = new ConcurrentZFThread(); ysr@777: } ysr@777: ysr@777: ysr@777: ysr@777: // Allocate the popular regions; take them off free lists. ysr@777: size_t pop_byte_size = G1NumPopularRegions * HeapRegion::GrainBytes; ysr@777: expand(pop_byte_size); ysr@777: _popular_object_boundary = ysr@777: _g1_reserved.start() + (G1NumPopularRegions * HeapRegion::GrainWords); ysr@777: for (int i = 0; i < G1NumPopularRegions; i++) { ysr@777: HeapRegion* hr = newAllocRegion(HeapRegion::GrainWords); ysr@777: // assert(hr != NULL && hr->bottom() < _popular_object_boundary, ysr@777: // "Should be enough, and all should be below boundary."); ysr@777: hr->set_popular(true); ysr@777: } ysr@777: assert(_cur_pop_hr_index == 0, "Start allocating at the first region."); ysr@777: ysr@777: // Initialize the from_card cache structure of HeapRegionRemSet. ysr@777: HeapRegionRemSet::init_heap(max_regions()); ysr@777: ysr@777: // Now expand into the rest of the initial heap size. ysr@777: expand(init_byte_size - pop_byte_size); ysr@777: ysr@777: // Perform any initialization actions delegated to the policy. ysr@777: g1_policy()->init(); ysr@777: ysr@777: g1_policy()->note_start_of_mark_thread(); ysr@777: ysr@777: _refine_cte_cl = ysr@777: new RefineCardTableEntryClosure(ConcurrentG1RefineThread::sts(), ysr@777: g1_rem_set(), ysr@777: concurrent_g1_refine()); ysr@777: JavaThread::dirty_card_queue_set().set_closure(_refine_cte_cl); ysr@777: ysr@777: JavaThread::satb_mark_queue_set().initialize(SATB_Q_CBL_mon, ysr@777: SATB_Q_FL_lock, ysr@777: 0, ysr@777: Shared_SATB_Q_lock); ysr@777: if (G1RSBarrierUseQueue) { ysr@777: JavaThread::dirty_card_queue_set().initialize(DirtyCardQ_CBL_mon, ysr@777: DirtyCardQ_FL_lock, ysr@777: G1DirtyCardQueueMax, ysr@777: Shared_DirtyCardQ_lock); ysr@777: } ysr@777: // In case we're keeping closure specialization stats, initialize those ysr@777: // counts and that mechanism. ysr@777: SpecializationStats::clear(); ysr@777: ysr@777: _gc_alloc_region_list = NULL; ysr@777: ysr@777: // Do later initialization work for concurrent refinement. ysr@777: _cg1r->init(); ysr@777: ysr@777: const char* group_names[] = { "CR", "ZF", "CM", "CL" }; ysr@777: GCOverheadReporter::initGCOverheadReporter(4, group_names); ysr@777: ysr@777: return JNI_OK; ysr@777: } ysr@777: ysr@777: void G1CollectedHeap::ref_processing_init() { ysr@777: SharedHeap::ref_processing_init(); ysr@777: MemRegion mr = reserved_region(); ysr@777: _ref_processor = ReferenceProcessor::create_ref_processor( ysr@777: mr, // span ysr@777: false, // Reference discovery is not atomic ysr@777: // (though it shouldn't matter here.) ysr@777: true, // mt_discovery ysr@777: NULL, // is alive closure: need to fill this in for efficiency ysr@777: ParallelGCThreads, ysr@777: ParallelRefProcEnabled, ysr@777: true); // Setting next fields of discovered ysr@777: // lists requires a barrier. ysr@777: } ysr@777: ysr@777: size_t G1CollectedHeap::capacity() const { ysr@777: return _g1_committed.byte_size(); ysr@777: } ysr@777: ysr@777: void G1CollectedHeap::iterate_dirty_card_closure(bool concurrent, ysr@777: int worker_i) { ysr@777: DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set(); ysr@777: int n_completed_buffers = 0; ysr@777: while (dcqs.apply_closure_to_completed_buffer(worker_i, 0, true)) { ysr@777: n_completed_buffers++; ysr@777: } ysr@777: g1_policy()->record_update_rs_processed_buffers(worker_i, ysr@777: (double) n_completed_buffers); ysr@777: dcqs.clear_n_completed_buffers(); ysr@777: // Finish up the queue... ysr@777: if (worker_i == 0) concurrent_g1_refine()->clean_up_cache(worker_i, ysr@777: g1_rem_set()); ysr@777: assert(!dcqs.completed_buffers_exist_dirty(), "Completed buffers exist!"); ysr@777: } ysr@777: ysr@777: ysr@777: // Computes the sum of the storage used by the various regions. ysr@777: ysr@777: size_t G1CollectedHeap::used() const { ysr@777: assert(Heap_lock->owner() != NULL, ysr@777: "Should be owned on this thread's behalf."); ysr@777: size_t result = _summary_bytes_used; ysr@777: if (_cur_alloc_region != NULL) ysr@777: result += _cur_alloc_region->used(); ysr@777: return result; ysr@777: } ysr@777: ysr@777: class SumUsedClosure: public HeapRegionClosure { ysr@777: size_t _used; ysr@777: public: ysr@777: SumUsedClosure() : _used(0) {} ysr@777: bool doHeapRegion(HeapRegion* r) { ysr@777: if (!r->continuesHumongous()) { ysr@777: _used += r->used(); ysr@777: } ysr@777: return false; ysr@777: } ysr@777: size_t result() { return _used; } ysr@777: }; ysr@777: ysr@777: size_t G1CollectedHeap::recalculate_used() const { ysr@777: SumUsedClosure blk; ysr@777: _hrs->iterate(&blk); ysr@777: return blk.result(); ysr@777: } ysr@777: ysr@777: #ifndef PRODUCT ysr@777: class SumUsedRegionsClosure: public HeapRegionClosure { ysr@777: size_t _num; ysr@777: public: ysr@777: // _num is set to 1 to account for the popular region ysr@777: SumUsedRegionsClosure() : _num(G1NumPopularRegions) {} ysr@777: bool doHeapRegion(HeapRegion* r) { ysr@777: if (r->continuesHumongous() || r->used() > 0 || r->is_gc_alloc_region()) { ysr@777: _num += 1; ysr@777: } ysr@777: return false; ysr@777: } ysr@777: size_t result() { return _num; } ysr@777: }; ysr@777: ysr@777: size_t G1CollectedHeap::recalculate_used_regions() const { ysr@777: SumUsedRegionsClosure blk; ysr@777: _hrs->iterate(&blk); ysr@777: return blk.result(); ysr@777: } ysr@777: #endif // PRODUCT ysr@777: ysr@777: size_t G1CollectedHeap::unsafe_max_alloc() { ysr@777: if (_free_regions > 0) return HeapRegion::GrainBytes; ysr@777: // otherwise, is there space in the current allocation region? ysr@777: ysr@777: // We need to store the current allocation region in a local variable ysr@777: // here. The problem is that this method doesn't take any locks and ysr@777: // there may be other threads which overwrite the current allocation ysr@777: // region field. attempt_allocation(), for example, sets it to NULL ysr@777: // and this can happen *after* the NULL check here but before the call ysr@777: // to free(), resulting in a SIGSEGV. Note that this doesn't appear ysr@777: // to be a problem in the optimized build, since the two loads of the ysr@777: // current allocation region field are optimized away. ysr@777: HeapRegion* car = _cur_alloc_region; ysr@777: ysr@777: // FIXME: should iterate over all regions? ysr@777: if (car == NULL) { ysr@777: return 0; ysr@777: } ysr@777: return car->free(); ysr@777: } ysr@777: ysr@777: void G1CollectedHeap::collect(GCCause::Cause cause) { ysr@777: // The caller doesn't have the Heap_lock ysr@777: assert(!Heap_lock->owned_by_self(), "this thread should not own the Heap_lock"); ysr@777: MutexLocker ml(Heap_lock); ysr@777: collect_locked(cause); ysr@777: } ysr@777: ysr@777: void G1CollectedHeap::collect_as_vm_thread(GCCause::Cause cause) { ysr@777: assert(Thread::current()->is_VM_thread(), "Precondition#1"); ysr@777: assert(Heap_lock->is_locked(), "Precondition#2"); ysr@777: GCCauseSetter gcs(this, cause); ysr@777: switch (cause) { ysr@777: case GCCause::_heap_inspection: ysr@777: case GCCause::_heap_dump: { ysr@777: HandleMark hm; ysr@777: do_full_collection(false); // don't clear all soft refs ysr@777: break; ysr@777: } ysr@777: default: // XXX FIX ME ysr@777: ShouldNotReachHere(); // Unexpected use of this function ysr@777: } ysr@777: } ysr@777: ysr@777: ysr@777: void G1CollectedHeap::collect_locked(GCCause::Cause cause) { ysr@777: // Don't want to do a GC until cleanup is completed. ysr@777: wait_for_cleanup_complete(); ysr@777: ysr@777: // Read the GC count while holding the Heap_lock ysr@777: int gc_count_before = SharedHeap::heap()->total_collections(); ysr@777: { ysr@777: MutexUnlocker mu(Heap_lock); // give up heap lock, execute gets it back ysr@777: VM_G1CollectFull op(gc_count_before, cause); ysr@777: VMThread::execute(&op); ysr@777: } ysr@777: } ysr@777: ysr@777: bool G1CollectedHeap::is_in(const void* p) const { ysr@777: if (_g1_committed.contains(p)) { ysr@777: HeapRegion* hr = _hrs->addr_to_region(p); ysr@777: return hr->is_in(p); ysr@777: } else { ysr@777: return _perm_gen->as_gen()->is_in(p); ysr@777: } ysr@777: } ysr@777: ysr@777: // Iteration functions. ysr@777: ysr@777: // Iterates an OopClosure over all ref-containing fields of objects ysr@777: // within a HeapRegion. ysr@777: ysr@777: class IterateOopClosureRegionClosure: public HeapRegionClosure { ysr@777: MemRegion _mr; ysr@777: OopClosure* _cl; ysr@777: public: ysr@777: IterateOopClosureRegionClosure(MemRegion mr, OopClosure* cl) ysr@777: : _mr(mr), _cl(cl) {} ysr@777: bool doHeapRegion(HeapRegion* r) { ysr@777: if (! r->continuesHumongous()) { ysr@777: r->oop_iterate(_cl); ysr@777: } ysr@777: return false; ysr@777: } ysr@777: }; ysr@777: ysr@777: void G1CollectedHeap::oop_iterate(OopClosure* cl) { ysr@777: IterateOopClosureRegionClosure blk(_g1_committed, cl); ysr@777: _hrs->iterate(&blk); ysr@777: } ysr@777: ysr@777: void G1CollectedHeap::oop_iterate(MemRegion mr, OopClosure* cl) { ysr@777: IterateOopClosureRegionClosure blk(mr, cl); ysr@777: _hrs->iterate(&blk); ysr@777: } ysr@777: ysr@777: // Iterates an ObjectClosure over all objects within a HeapRegion. ysr@777: ysr@777: class IterateObjectClosureRegionClosure: public HeapRegionClosure { ysr@777: ObjectClosure* _cl; ysr@777: public: ysr@777: IterateObjectClosureRegionClosure(ObjectClosure* cl) : _cl(cl) {} ysr@777: bool doHeapRegion(HeapRegion* r) { ysr@777: if (! r->continuesHumongous()) { ysr@777: r->object_iterate(_cl); ysr@777: } ysr@777: return false; ysr@777: } ysr@777: }; ysr@777: ysr@777: void G1CollectedHeap::object_iterate(ObjectClosure* cl) { ysr@777: IterateObjectClosureRegionClosure blk(cl); ysr@777: _hrs->iterate(&blk); ysr@777: } ysr@777: ysr@777: void G1CollectedHeap::object_iterate_since_last_GC(ObjectClosure* cl) { ysr@777: // FIXME: is this right? ysr@777: guarantee(false, "object_iterate_since_last_GC not supported by G1 heap"); ysr@777: } ysr@777: ysr@777: // Calls a SpaceClosure on a HeapRegion. ysr@777: ysr@777: class SpaceClosureRegionClosure: public HeapRegionClosure { ysr@777: SpaceClosure* _cl; ysr@777: public: ysr@777: SpaceClosureRegionClosure(SpaceClosure* cl) : _cl(cl) {} ysr@777: bool doHeapRegion(HeapRegion* r) { ysr@777: _cl->do_space(r); ysr@777: return false; ysr@777: } ysr@777: }; ysr@777: ysr@777: void G1CollectedHeap::space_iterate(SpaceClosure* cl) { ysr@777: SpaceClosureRegionClosure blk(cl); ysr@777: _hrs->iterate(&blk); ysr@777: } ysr@777: ysr@777: void G1CollectedHeap::heap_region_iterate(HeapRegionClosure* cl) { ysr@777: _hrs->iterate(cl); ysr@777: } ysr@777: ysr@777: void G1CollectedHeap::heap_region_iterate_from(HeapRegion* r, ysr@777: HeapRegionClosure* cl) { ysr@777: _hrs->iterate_from(r, cl); ysr@777: } ysr@777: ysr@777: void ysr@777: G1CollectedHeap::heap_region_iterate_from(int idx, HeapRegionClosure* cl) { ysr@777: _hrs->iterate_from(idx, cl); ysr@777: } ysr@777: ysr@777: HeapRegion* G1CollectedHeap::region_at(size_t idx) { return _hrs->at(idx); } ysr@777: ysr@777: void ysr@777: G1CollectedHeap::heap_region_par_iterate_chunked(HeapRegionClosure* cl, ysr@777: int worker, ysr@777: jint claim_value) { tonyp@790: const size_t regions = n_regions(); tonyp@790: const size_t worker_num = (ParallelGCThreads > 0 ? ParallelGCThreads : 1); tonyp@790: // try to spread out the starting points of the workers tonyp@790: const size_t start_index = regions / worker_num * (size_t) worker; tonyp@790: tonyp@790: // each worker will actually look at all regions tonyp@790: for (size_t count = 0; count < regions; ++count) { tonyp@790: const size_t index = (start_index + count) % regions; tonyp@790: assert(0 <= index && index < regions, "sanity"); tonyp@790: HeapRegion* r = region_at(index); tonyp@790: // we'll ignore "continues humongous" regions (we'll process them tonyp@790: // when we come across their corresponding "start humongous" tonyp@790: // region) and regions already claimed tonyp@790: if (r->claim_value() == claim_value || r->continuesHumongous()) { tonyp@790: continue; tonyp@790: } tonyp@790: // OK, try to claim it ysr@777: if (r->claimHeapRegion(claim_value)) { tonyp@790: // success! tonyp@790: assert(!r->continuesHumongous(), "sanity"); tonyp@790: if (r->startsHumongous()) { tonyp@790: // If the region is "starts humongous" we'll iterate over its tonyp@790: // "continues humongous" first; in fact we'll do them tonyp@790: // first. The order is important. In on case, calling the tonyp@790: // closure on the "starts humongous" region might de-allocate tonyp@790: // and clear all its "continues humongous" regions and, as a tonyp@790: // result, we might end up processing them twice. So, we'll do tonyp@790: // them first (notice: most closures will ignore them anyway) and tonyp@790: // then we'll do the "starts humongous" region. tonyp@790: for (size_t ch_index = index + 1; ch_index < regions; ++ch_index) { tonyp@790: HeapRegion* chr = region_at(ch_index); tonyp@790: tonyp@790: // if the region has already been claimed or it's not tonyp@790: // "continues humongous" we're done tonyp@790: if (chr->claim_value() == claim_value || tonyp@790: !chr->continuesHumongous()) { tonyp@790: break; tonyp@790: } tonyp@790: tonyp@790: // Noone should have claimed it directly. We can given tonyp@790: // that we claimed its "starts humongous" region. tonyp@790: assert(chr->claim_value() != claim_value, "sanity"); tonyp@790: assert(chr->humongous_start_region() == r, "sanity"); tonyp@790: tonyp@790: if (chr->claimHeapRegion(claim_value)) { tonyp@790: // we should always be able to claim it; noone else should tonyp@790: // be trying to claim this region tonyp@790: tonyp@790: bool res2 = cl->doHeapRegion(chr); tonyp@790: assert(!res2, "Should not abort"); tonyp@790: tonyp@790: // Right now, this holds (i.e., no closure that actually tonyp@790: // does something with "continues humongous" regions tonyp@790: // clears them). We might have to weaken it in the future, tonyp@790: // but let's leave these two asserts here for extra safety. tonyp@790: assert(chr->continuesHumongous(), "should still be the case"); tonyp@790: assert(chr->humongous_start_region() == r, "sanity"); tonyp@790: } else { tonyp@790: guarantee(false, "we should not reach here"); tonyp@790: } tonyp@790: } tonyp@790: } tonyp@790: tonyp@790: assert(!r->continuesHumongous(), "sanity"); tonyp@790: bool res = cl->doHeapRegion(r); tonyp@790: assert(!res, "Should not abort"); tonyp@790: } tonyp@790: } tonyp@790: } tonyp@790: tonyp@825: class ResetClaimValuesClosure: public HeapRegionClosure { tonyp@825: public: tonyp@825: bool doHeapRegion(HeapRegion* r) { tonyp@825: r->set_claim_value(HeapRegion::InitialClaimValue); tonyp@825: return false; tonyp@825: } tonyp@825: }; tonyp@825: tonyp@825: void tonyp@825: G1CollectedHeap::reset_heap_region_claim_values() { tonyp@825: ResetClaimValuesClosure blk; tonyp@825: heap_region_iterate(&blk); tonyp@825: } tonyp@825: tonyp@790: #ifdef ASSERT tonyp@790: // This checks whether all regions in the heap have the correct claim tonyp@790: // value. I also piggy-backed on this a check to ensure that the tonyp@790: // humongous_start_region() information on "continues humongous" tonyp@790: // regions is correct. tonyp@790: tonyp@790: class CheckClaimValuesClosure : public HeapRegionClosure { tonyp@790: private: tonyp@790: jint _claim_value; tonyp@790: size_t _failures; tonyp@790: HeapRegion* _sh_region; tonyp@790: public: tonyp@790: CheckClaimValuesClosure(jint claim_value) : tonyp@790: _claim_value(claim_value), _failures(0), _sh_region(NULL) { } tonyp@790: bool doHeapRegion(HeapRegion* r) { tonyp@790: if (r->claim_value() != _claim_value) { tonyp@790: gclog_or_tty->print_cr("Region ["PTR_FORMAT","PTR_FORMAT"), " tonyp@790: "claim value = %d, should be %d", tonyp@790: r->bottom(), r->end(), r->claim_value(), tonyp@790: _claim_value); tonyp@790: ++_failures; tonyp@790: } tonyp@790: if (!r->isHumongous()) { tonyp@790: _sh_region = NULL; tonyp@790: } else if (r->startsHumongous()) { tonyp@790: _sh_region = r; tonyp@790: } else if (r->continuesHumongous()) { tonyp@790: if (r->humongous_start_region() != _sh_region) { tonyp@790: gclog_or_tty->print_cr("Region ["PTR_FORMAT","PTR_FORMAT"), " tonyp@790: "HS = "PTR_FORMAT", should be "PTR_FORMAT, tonyp@790: r->bottom(), r->end(), tonyp@790: r->humongous_start_region(), tonyp@790: _sh_region); tonyp@790: ++_failures; ysr@777: } ysr@777: } tonyp@790: return false; tonyp@790: } tonyp@790: size_t failures() { tonyp@790: return _failures; tonyp@790: } tonyp@790: }; tonyp@790: tonyp@790: bool G1CollectedHeap::check_heap_region_claim_values(jint claim_value) { tonyp@790: CheckClaimValuesClosure cl(claim_value); tonyp@790: heap_region_iterate(&cl); tonyp@790: return cl.failures() == 0; tonyp@790: } tonyp@790: #endif // ASSERT ysr@777: ysr@777: void G1CollectedHeap::collection_set_iterate(HeapRegionClosure* cl) { ysr@777: HeapRegion* r = g1_policy()->collection_set(); ysr@777: while (r != NULL) { ysr@777: HeapRegion* next = r->next_in_collection_set(); ysr@777: if (cl->doHeapRegion(r)) { ysr@777: cl->incomplete(); ysr@777: return; ysr@777: } ysr@777: r = next; ysr@777: } ysr@777: } ysr@777: ysr@777: void G1CollectedHeap::collection_set_iterate_from(HeapRegion* r, ysr@777: HeapRegionClosure *cl) { ysr@777: assert(r->in_collection_set(), ysr@777: "Start region must be a member of the collection set."); ysr@777: HeapRegion* cur = r; ysr@777: while (cur != NULL) { ysr@777: HeapRegion* next = cur->next_in_collection_set(); ysr@777: if (cl->doHeapRegion(cur) && false) { ysr@777: cl->incomplete(); ysr@777: return; ysr@777: } ysr@777: cur = next; ysr@777: } ysr@777: cur = g1_policy()->collection_set(); ysr@777: while (cur != r) { ysr@777: HeapRegion* next = cur->next_in_collection_set(); ysr@777: if (cl->doHeapRegion(cur) && false) { ysr@777: cl->incomplete(); ysr@777: return; ysr@777: } ysr@777: cur = next; ysr@777: } ysr@777: } ysr@777: ysr@777: CompactibleSpace* G1CollectedHeap::first_compactible_space() { ysr@777: return _hrs->length() > 0 ? _hrs->at(0) : NULL; ysr@777: } ysr@777: ysr@777: ysr@777: Space* G1CollectedHeap::space_containing(const void* addr) const { ysr@777: Space* res = heap_region_containing(addr); ysr@777: if (res == NULL) ysr@777: res = perm_gen()->space_containing(addr); ysr@777: return res; ysr@777: } ysr@777: ysr@777: HeapWord* G1CollectedHeap::block_start(const void* addr) const { ysr@777: Space* sp = space_containing(addr); ysr@777: if (sp != NULL) { ysr@777: return sp->block_start(addr); ysr@777: } ysr@777: return NULL; ysr@777: } ysr@777: ysr@777: size_t G1CollectedHeap::block_size(const HeapWord* addr) const { ysr@777: Space* sp = space_containing(addr); ysr@777: assert(sp != NULL, "block_size of address outside of heap"); ysr@777: return sp->block_size(addr); ysr@777: } ysr@777: ysr@777: bool G1CollectedHeap::block_is_obj(const HeapWord* addr) const { ysr@777: Space* sp = space_containing(addr); ysr@777: return sp->block_is_obj(addr); ysr@777: } ysr@777: ysr@777: bool G1CollectedHeap::supports_tlab_allocation() const { ysr@777: return true; ysr@777: } ysr@777: ysr@777: size_t G1CollectedHeap::tlab_capacity(Thread* ignored) const { ysr@777: return HeapRegion::GrainBytes; ysr@777: } ysr@777: ysr@777: size_t G1CollectedHeap::unsafe_max_tlab_alloc(Thread* ignored) const { ysr@777: // Return the remaining space in the cur alloc region, but not less than ysr@777: // the min TLAB size. ysr@777: // Also, no more than half the region size, since we can't allow tlabs to ysr@777: // grow big enough to accomodate humongous objects. ysr@777: ysr@777: // We need to story it locally, since it might change between when we ysr@777: // test for NULL and when we use it later. ysr@777: ContiguousSpace* cur_alloc_space = _cur_alloc_region; ysr@777: if (cur_alloc_space == NULL) { ysr@777: return HeapRegion::GrainBytes/2; ysr@777: } else { ysr@777: return MAX2(MIN2(cur_alloc_space->free(), ysr@777: (size_t)(HeapRegion::GrainBytes/2)), ysr@777: (size_t)MinTLABSize); ysr@777: } ysr@777: } ysr@777: ysr@777: HeapWord* G1CollectedHeap::allocate_new_tlab(size_t size) { ysr@777: bool dummy; ysr@777: return G1CollectedHeap::mem_allocate(size, false, true, &dummy); ysr@777: } ysr@777: ysr@777: bool G1CollectedHeap::allocs_are_zero_filled() { ysr@777: return false; ysr@777: } ysr@777: ysr@777: size_t G1CollectedHeap::large_typearray_limit() { ysr@777: // FIXME ysr@777: return HeapRegion::GrainBytes/HeapWordSize; ysr@777: } ysr@777: ysr@777: size_t G1CollectedHeap::max_capacity() const { ysr@777: return _g1_committed.byte_size(); ysr@777: } ysr@777: ysr@777: jlong G1CollectedHeap::millis_since_last_gc() { ysr@777: // assert(false, "NYI"); ysr@777: return 0; ysr@777: } ysr@777: ysr@777: ysr@777: void G1CollectedHeap::prepare_for_verify() { ysr@777: if (SafepointSynchronize::is_at_safepoint() || ! UseTLAB) { ysr@777: ensure_parsability(false); ysr@777: } ysr@777: g1_rem_set()->prepare_for_verify(); ysr@777: } ysr@777: ysr@777: class VerifyLivenessOopClosure: public OopClosure { ysr@777: G1CollectedHeap* g1h; ysr@777: public: ysr@777: VerifyLivenessOopClosure(G1CollectedHeap* _g1h) { ysr@777: g1h = _g1h; ysr@777: } ysr@777: void do_oop(narrowOop *p) { ysr@777: guarantee(false, "NYI"); ysr@777: } ysr@777: void do_oop(oop *p) { ysr@777: oop obj = *p; ysr@777: assert(obj == NULL || !g1h->is_obj_dead(obj), ysr@777: "Dead object referenced by a not dead object"); ysr@777: } ysr@777: }; ysr@777: ysr@777: class VerifyObjsInRegionClosure: public ObjectClosure { ysr@777: G1CollectedHeap* _g1h; ysr@777: size_t _live_bytes; ysr@777: HeapRegion *_hr; ysr@777: public: ysr@777: VerifyObjsInRegionClosure(HeapRegion *hr) : _live_bytes(0), _hr(hr) { ysr@777: _g1h = G1CollectedHeap::heap(); ysr@777: } ysr@777: void do_object(oop o) { ysr@777: VerifyLivenessOopClosure isLive(_g1h); ysr@777: assert(o != NULL, "Huh?"); ysr@777: if (!_g1h->is_obj_dead(o)) { ysr@777: o->oop_iterate(&isLive); ysr@777: if (!_hr->obj_allocated_since_prev_marking(o)) ysr@777: _live_bytes += (o->size() * HeapWordSize); ysr@777: } ysr@777: } ysr@777: size_t live_bytes() { return _live_bytes; } ysr@777: }; ysr@777: ysr@777: class PrintObjsInRegionClosure : public ObjectClosure { ysr@777: HeapRegion *_hr; ysr@777: G1CollectedHeap *_g1; ysr@777: public: ysr@777: PrintObjsInRegionClosure(HeapRegion *hr) : _hr(hr) { ysr@777: _g1 = G1CollectedHeap::heap(); ysr@777: }; ysr@777: ysr@777: void do_object(oop o) { ysr@777: if (o != NULL) { ysr@777: HeapWord *start = (HeapWord *) o; ysr@777: size_t word_sz = o->size(); ysr@777: gclog_or_tty->print("\nPrinting obj "PTR_FORMAT" of size " SIZE_FORMAT ysr@777: " isMarkedPrev %d isMarkedNext %d isAllocSince %d\n", ysr@777: (void*) o, word_sz, ysr@777: _g1->isMarkedPrev(o), ysr@777: _g1->isMarkedNext(o), ysr@777: _hr->obj_allocated_since_prev_marking(o)); ysr@777: HeapWord *end = start + word_sz; ysr@777: HeapWord *cur; ysr@777: int *val; ysr@777: for (cur = start; cur < end; cur++) { ysr@777: val = (int *) cur; ysr@777: gclog_or_tty->print("\t "PTR_FORMAT":"PTR_FORMAT"\n", val, *val); ysr@777: } ysr@777: } ysr@777: } ysr@777: }; ysr@777: ysr@777: class VerifyRegionClosure: public HeapRegionClosure { ysr@777: public: ysr@777: bool _allow_dirty; tonyp@825: bool _par; tonyp@825: VerifyRegionClosure(bool allow_dirty, bool par = false) tonyp@825: : _allow_dirty(allow_dirty), _par(par) {} ysr@777: bool doHeapRegion(HeapRegion* r) { tonyp@825: guarantee(_par || r->claim_value() == HeapRegion::InitialClaimValue, tonyp@825: "Should be unclaimed at verify points."); ysr@777: if (r->isHumongous()) { ysr@777: if (r->startsHumongous()) { ysr@777: // Verify the single H object. ysr@777: oop(r->bottom())->verify(); ysr@777: size_t word_sz = oop(r->bottom())->size(); ysr@777: guarantee(r->top() == r->bottom() + word_sz, ysr@777: "Only one object in a humongous region"); ysr@777: } ysr@777: } else { ysr@777: VerifyObjsInRegionClosure not_dead_yet_cl(r); ysr@777: r->verify(_allow_dirty); ysr@777: r->object_iterate(¬_dead_yet_cl); ysr@777: guarantee(r->max_live_bytes() >= not_dead_yet_cl.live_bytes(), ysr@777: "More live objects than counted in last complete marking."); ysr@777: } ysr@777: return false; ysr@777: } ysr@777: }; ysr@777: ysr@777: class VerifyRootsClosure: public OopsInGenClosure { ysr@777: private: ysr@777: G1CollectedHeap* _g1h; ysr@777: bool _failures; ysr@777: ysr@777: public: ysr@777: VerifyRootsClosure() : ysr@777: _g1h(G1CollectedHeap::heap()), _failures(false) { } ysr@777: ysr@777: bool failures() { return _failures; } ysr@777: ysr@777: void do_oop(narrowOop* p) { ysr@777: guarantee(false, "NYI"); ysr@777: } ysr@777: ysr@777: void do_oop(oop* p) { ysr@777: oop obj = *p; ysr@777: if (obj != NULL) { ysr@777: if (_g1h->is_obj_dead(obj)) { ysr@777: gclog_or_tty->print_cr("Root location "PTR_FORMAT" " ysr@777: "points to dead obj "PTR_FORMAT, p, (void*) obj); ysr@777: obj->print_on(gclog_or_tty); ysr@777: _failures = true; ysr@777: } ysr@777: } ysr@777: } ysr@777: }; ysr@777: tonyp@825: // This is the task used for parallel heap verification. tonyp@825: tonyp@825: class G1ParVerifyTask: public AbstractGangTask { tonyp@825: private: tonyp@825: G1CollectedHeap* _g1h; tonyp@825: bool _allow_dirty; tonyp@825: tonyp@825: public: tonyp@825: G1ParVerifyTask(G1CollectedHeap* g1h, bool allow_dirty) : tonyp@825: AbstractGangTask("Parallel verify task"), tonyp@825: _g1h(g1h), _allow_dirty(allow_dirty) { } tonyp@825: tonyp@825: void work(int worker_i) { tonyp@825: VerifyRegionClosure blk(_allow_dirty, true); tonyp@825: _g1h->heap_region_par_iterate_chunked(&blk, worker_i, tonyp@825: HeapRegion::ParVerifyClaimValue); tonyp@825: } tonyp@825: }; tonyp@825: ysr@777: void G1CollectedHeap::verify(bool allow_dirty, bool silent) { ysr@777: if (SafepointSynchronize::is_at_safepoint() || ! UseTLAB) { ysr@777: if (!silent) { gclog_or_tty->print("roots "); } ysr@777: VerifyRootsClosure rootsCl; ysr@777: process_strong_roots(false, ysr@777: SharedHeap::SO_AllClasses, ysr@777: &rootsCl, ysr@777: &rootsCl); ysr@777: rem_set()->invalidate(perm_gen()->used_region(), false); ysr@777: if (!silent) { gclog_or_tty->print("heapRegions "); } tonyp@825: if (GCParallelVerificationEnabled && ParallelGCThreads > 1) { tonyp@825: assert(check_heap_region_claim_values(HeapRegion::InitialClaimValue), tonyp@825: "sanity check"); tonyp@825: tonyp@825: G1ParVerifyTask task(this, allow_dirty); tonyp@825: int n_workers = workers()->total_workers(); tonyp@825: set_par_threads(n_workers); tonyp@825: workers()->run_task(&task); tonyp@825: set_par_threads(0); tonyp@825: tonyp@825: assert(check_heap_region_claim_values(HeapRegion::ParVerifyClaimValue), tonyp@825: "sanity check"); tonyp@825: tonyp@825: reset_heap_region_claim_values(); tonyp@825: tonyp@825: assert(check_heap_region_claim_values(HeapRegion::InitialClaimValue), tonyp@825: "sanity check"); tonyp@825: } else { tonyp@825: VerifyRegionClosure blk(allow_dirty); tonyp@825: _hrs->iterate(&blk); tonyp@825: } ysr@777: if (!silent) gclog_or_tty->print("remset "); ysr@777: rem_set()->verify(); ysr@777: guarantee(!rootsCl.failures(), "should not have had failures"); ysr@777: } else { ysr@777: if (!silent) gclog_or_tty->print("(SKIPPING roots, heapRegions, remset) "); ysr@777: } ysr@777: } ysr@777: ysr@777: class PrintRegionClosure: public HeapRegionClosure { ysr@777: outputStream* _st; ysr@777: public: ysr@777: PrintRegionClosure(outputStream* st) : _st(st) {} ysr@777: bool doHeapRegion(HeapRegion* r) { ysr@777: r->print_on(_st); ysr@777: return false; ysr@777: } ysr@777: }; ysr@777: ysr@777: void G1CollectedHeap::print() const { print_on(gclog_or_tty); } ysr@777: ysr@777: void G1CollectedHeap::print_on(outputStream* st) const { ysr@777: PrintRegionClosure blk(st); ysr@777: _hrs->iterate(&blk); ysr@777: } ysr@777: ysr@777: void G1CollectedHeap::print_gc_threads_on(outputStream* st) const { ysr@777: if (ParallelGCThreads > 0) { ysr@777: workers()->print_worker_threads(); ysr@777: } ysr@777: st->print("\"G1 concurrent mark GC Thread\" "); ysr@777: _cmThread->print(); ysr@777: st->cr(); ysr@777: st->print("\"G1 concurrent refinement GC Thread\" "); ysr@777: _cg1r->cg1rThread()->print_on(st); ysr@777: st->cr(); ysr@777: st->print("\"G1 zero-fill GC Thread\" "); ysr@777: _czft->print_on(st); ysr@777: st->cr(); ysr@777: } ysr@777: ysr@777: void G1CollectedHeap::gc_threads_do(ThreadClosure* tc) const { ysr@777: if (ParallelGCThreads > 0) { ysr@777: workers()->threads_do(tc); ysr@777: } ysr@777: tc->do_thread(_cmThread); ysr@777: tc->do_thread(_cg1r->cg1rThread()); ysr@777: tc->do_thread(_czft); ysr@777: } ysr@777: ysr@777: void G1CollectedHeap::print_tracing_info() const { ysr@777: concurrent_g1_refine()->print_final_card_counts(); ysr@777: ysr@777: // We'll overload this to mean "trace GC pause statistics." ysr@777: if (TraceGen0Time || TraceGen1Time) { ysr@777: // The "G1CollectorPolicy" is keeping track of these stats, so delegate ysr@777: // to that. ysr@777: g1_policy()->print_tracing_info(); ysr@777: } ysr@777: if (SummarizeG1RSStats) { ysr@777: g1_rem_set()->print_summary_info(); ysr@777: } ysr@777: if (SummarizeG1ConcMark) { ysr@777: concurrent_mark()->print_summary_info(); ysr@777: } ysr@777: if (SummarizeG1ZFStats) { ysr@777: ConcurrentZFThread::print_summary_info(); ysr@777: } ysr@777: if (G1SummarizePopularity) { ysr@777: print_popularity_summary_info(); ysr@777: } ysr@777: g1_policy()->print_yg_surv_rate_info(); ysr@777: ysr@777: GCOverheadReporter::printGCOverhead(); ysr@777: ysr@777: SpecializationStats::print(); ysr@777: } ysr@777: ysr@777: ysr@777: int G1CollectedHeap::addr_to_arena_id(void* addr) const { ysr@777: HeapRegion* hr = heap_region_containing(addr); ysr@777: if (hr == NULL) { ysr@777: return 0; ysr@777: } else { ysr@777: return 1; ysr@777: } ysr@777: } ysr@777: ysr@777: G1CollectedHeap* G1CollectedHeap::heap() { ysr@777: assert(_sh->kind() == CollectedHeap::G1CollectedHeap, ysr@777: "not a garbage-first heap"); ysr@777: return _g1h; ysr@777: } ysr@777: ysr@777: void G1CollectedHeap::gc_prologue(bool full /* Ignored */) { ysr@777: if (PrintHeapAtGC){ ysr@777: gclog_or_tty->print_cr(" {Heap before GC collections=%d:", total_collections()); ysr@777: Universe::print(); ysr@777: } ysr@777: assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer"); ysr@777: // Call allocation profiler ysr@777: AllocationProfiler::iterate_since_last_gc(); ysr@777: // Fill TLAB's and such ysr@777: ensure_parsability(true); ysr@777: } ysr@777: ysr@777: void G1CollectedHeap::gc_epilogue(bool full /* Ignored */) { ysr@777: // FIXME: what is this about? ysr@777: // I'm ignoring the "fill_newgen()" call if "alloc_event_enabled" ysr@777: // is set. ysr@777: COMPILER2_PRESENT(assert(DerivedPointerTable::is_empty(), ysr@777: "derived pointer present")); ysr@777: ysr@777: if (PrintHeapAtGC){ ysr@777: gclog_or_tty->print_cr(" Heap after GC collections=%d:", total_collections()); ysr@777: Universe::print(); ysr@777: gclog_or_tty->print("} "); ysr@777: } ysr@777: } ysr@777: ysr@777: void G1CollectedHeap::do_collection_pause() { ysr@777: // Read the GC count while holding the Heap_lock ysr@777: // we need to do this _before_ wait_for_cleanup_complete(), to ysr@777: // ensure that we do not give up the heap lock and potentially ysr@777: // pick up the wrong count ysr@777: int gc_count_before = SharedHeap::heap()->total_collections(); ysr@777: ysr@777: // Don't want to do a GC pause while cleanup is being completed! ysr@777: wait_for_cleanup_complete(); ysr@777: ysr@777: g1_policy()->record_stop_world_start(); ysr@777: { ysr@777: MutexUnlocker mu(Heap_lock); // give up heap lock, execute gets it back ysr@777: VM_G1IncCollectionPause op(gc_count_before); ysr@777: VMThread::execute(&op); ysr@777: } ysr@777: } ysr@777: ysr@777: void ysr@777: G1CollectedHeap::doConcurrentMark() { ysr@777: if (G1ConcMark) { ysr@777: MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag); ysr@777: if (!_cmThread->in_progress()) { ysr@777: _cmThread->set_started(); ysr@777: CGC_lock->notify(); ysr@777: } ysr@777: } ysr@777: } ysr@777: ysr@777: class VerifyMarkedObjsClosure: public ObjectClosure { ysr@777: G1CollectedHeap* _g1h; ysr@777: public: ysr@777: VerifyMarkedObjsClosure(G1CollectedHeap* g1h) : _g1h(g1h) {} ysr@777: void do_object(oop obj) { ysr@777: assert(obj->mark()->is_marked() ? !_g1h->is_obj_dead(obj) : true, ysr@777: "markandsweep mark should agree with concurrent deadness"); ysr@777: } ysr@777: }; ysr@777: ysr@777: void ysr@777: G1CollectedHeap::checkConcurrentMark() { ysr@777: VerifyMarkedObjsClosure verifycl(this); ysr@777: doConcurrentMark(); ysr@777: // MutexLockerEx x(getMarkBitMapLock(), ysr@777: // Mutex::_no_safepoint_check_flag); ysr@777: object_iterate(&verifycl); ysr@777: } ysr@777: ysr@777: void G1CollectedHeap::do_sync_mark() { ysr@777: _cm->checkpointRootsInitial(); ysr@777: _cm->markFromRoots(); ysr@777: _cm->checkpointRootsFinal(false); ysr@777: } ysr@777: ysr@777: // ysr@777: ysr@777: double G1CollectedHeap::predict_region_elapsed_time_ms(HeapRegion *hr, ysr@777: bool young) { ysr@777: return _g1_policy->predict_region_elapsed_time_ms(hr, young); ysr@777: } ysr@777: ysr@777: void G1CollectedHeap::check_if_region_is_too_expensive(double ysr@777: predicted_time_ms) { ysr@777: _g1_policy->check_if_region_is_too_expensive(predicted_time_ms); ysr@777: } ysr@777: ysr@777: size_t G1CollectedHeap::pending_card_num() { ysr@777: size_t extra_cards = 0; ysr@777: JavaThread *curr = Threads::first(); ysr@777: while (curr != NULL) { ysr@777: DirtyCardQueue& dcq = curr->dirty_card_queue(); ysr@777: extra_cards += dcq.size(); ysr@777: curr = curr->next(); ysr@777: } ysr@777: DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set(); ysr@777: size_t buffer_size = dcqs.buffer_size(); ysr@777: size_t buffer_num = dcqs.completed_buffers_num(); ysr@777: return buffer_size * buffer_num + extra_cards; ysr@777: } ysr@777: ysr@777: size_t G1CollectedHeap::max_pending_card_num() { ysr@777: DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set(); ysr@777: size_t buffer_size = dcqs.buffer_size(); ysr@777: size_t buffer_num = dcqs.completed_buffers_num(); ysr@777: int thread_num = Threads::number_of_threads(); ysr@777: return (buffer_num + thread_num) * buffer_size; ysr@777: } ysr@777: ysr@777: size_t G1CollectedHeap::cards_scanned() { ysr@777: HRInto_G1RemSet* g1_rset = (HRInto_G1RemSet*) g1_rem_set(); ysr@777: return g1_rset->cardsScanned(); ysr@777: } ysr@777: ysr@777: void ysr@777: G1CollectedHeap::setup_surviving_young_words() { ysr@777: guarantee( _surviving_young_words == NULL, "pre-condition" ); ysr@777: size_t array_length = g1_policy()->young_cset_length(); ysr@777: _surviving_young_words = NEW_C_HEAP_ARRAY(size_t, array_length); ysr@777: if (_surviving_young_words == NULL) { ysr@777: vm_exit_out_of_memory(sizeof(size_t) * array_length, ysr@777: "Not enough space for young surv words summary."); ysr@777: } ysr@777: memset(_surviving_young_words, 0, array_length * sizeof(size_t)); ysr@777: for (size_t i = 0; i < array_length; ++i) { ysr@777: guarantee( _surviving_young_words[i] == 0, "invariant" ); ysr@777: } ysr@777: } ysr@777: ysr@777: void ysr@777: G1CollectedHeap::update_surviving_young_words(size_t* surv_young_words) { ysr@777: MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag); ysr@777: size_t array_length = g1_policy()->young_cset_length(); ysr@777: for (size_t i = 0; i < array_length; ++i) ysr@777: _surviving_young_words[i] += surv_young_words[i]; ysr@777: } ysr@777: ysr@777: void ysr@777: G1CollectedHeap::cleanup_surviving_young_words() { ysr@777: guarantee( _surviving_young_words != NULL, "pre-condition" ); ysr@777: FREE_C_HEAP_ARRAY(size_t, _surviving_young_words); ysr@777: _surviving_young_words = NULL; ysr@777: } ysr@777: ysr@777: // ysr@777: ysr@777: void ysr@777: G1CollectedHeap::do_collection_pause_at_safepoint(HeapRegion* popular_region) { ysr@777: char verbose_str[128]; ysr@777: sprintf(verbose_str, "GC pause "); ysr@777: if (popular_region != NULL) ysr@777: strcat(verbose_str, "(popular)"); ysr@777: else if (g1_policy()->in_young_gc_mode()) { ysr@777: if (g1_policy()->full_young_gcs()) ysr@777: strcat(verbose_str, "(young)"); ysr@777: else ysr@777: strcat(verbose_str, "(partial)"); ysr@777: } ysr@777: bool reset_should_initiate_conc_mark = false; ysr@777: if (popular_region != NULL && g1_policy()->should_initiate_conc_mark()) { ysr@777: // we currently do not allow an initial mark phase to be piggy-backed ysr@777: // on a popular pause ysr@777: reset_should_initiate_conc_mark = true; ysr@777: g1_policy()->unset_should_initiate_conc_mark(); ysr@777: } ysr@777: if (g1_policy()->should_initiate_conc_mark()) ysr@777: strcat(verbose_str, " (initial-mark)"); ysr@777: ysr@777: GCCauseSetter x(this, (popular_region == NULL ? ysr@777: GCCause::_g1_inc_collection_pause : ysr@777: GCCause::_g1_pop_region_collection_pause)); ysr@777: ysr@777: // if PrintGCDetails is on, we'll print long statistics information ysr@777: // in the collector policy code, so let's not print this as the output ysr@777: // is messy if we do. ysr@777: gclog_or_tty->date_stamp(PrintGC && PrintGCDateStamps); ysr@777: TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty); ysr@777: TraceTime t(verbose_str, PrintGC && !PrintGCDetails, true, gclog_or_tty); ysr@777: ysr@777: ResourceMark rm; ysr@777: assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint"); ysr@777: assert(Thread::current() == VMThread::vm_thread(), "should be in vm thread"); ysr@777: guarantee(!is_gc_active(), "collection is not reentrant"); ysr@777: assert(regions_accounted_for(), "Region leakage!"); iveresov@788: iveresov@788: increment_gc_time_stamp(); ysr@777: ysr@777: if (g1_policy()->in_young_gc_mode()) { ysr@777: assert(check_young_list_well_formed(), ysr@777: "young list should be well formed"); ysr@777: } ysr@777: ysr@777: if (GC_locker::is_active()) { ysr@777: return; // GC is disabled (e.g. JNI GetXXXCritical operation) ysr@777: } ysr@777: ysr@777: bool abandoned = false; ysr@777: { // Call to jvmpi::post_class_unload_events must occur outside of active GC ysr@777: IsGCActiveMark x; ysr@777: ysr@777: gc_prologue(false); ysr@777: increment_total_collections(); ysr@777: ysr@777: #if G1_REM_SET_LOGGING ysr@777: gclog_or_tty->print_cr("\nJust chose CS, heap:"); ysr@777: print(); ysr@777: #endif ysr@777: ysr@777: if (VerifyBeforeGC && total_collections() >= VerifyGCStartAt) { ysr@777: HandleMark hm; // Discard invalid handles created during verification ysr@777: prepare_for_verify(); ysr@777: gclog_or_tty->print(" VerifyBeforeGC:"); ysr@777: Universe::verify(false); ysr@777: } ysr@777: ysr@777: COMPILER2_PRESENT(DerivedPointerTable::clear()); ysr@777: ysr@888: // We want to turn off ref discovery, if necessary, and turn it back on ysr@777: // on again later if we do. ysr@777: bool was_enabled = ref_processor()->discovery_enabled(); ysr@777: if (was_enabled) ref_processor()->disable_discovery(); ysr@777: ysr@777: // Forget the current alloc region (we might even choose it to be part ysr@777: // of the collection set!). ysr@777: abandon_cur_alloc_region(); ysr@777: ysr@777: // The elapsed time induced by the start time below deliberately elides ysr@777: // the possible verification above. ysr@777: double start_time_sec = os::elapsedTime(); ysr@777: GCOverheadReporter::recordSTWStart(start_time_sec); ysr@777: size_t start_used_bytes = used(); ysr@777: if (!G1ConcMark) { ysr@777: do_sync_mark(); ysr@777: } ysr@777: ysr@777: g1_policy()->record_collection_pause_start(start_time_sec, ysr@777: start_used_bytes); ysr@777: tonyp@961: guarantee(_in_cset_fast_test == NULL, "invariant"); tonyp@961: guarantee(_in_cset_fast_test_base == NULL, "invariant"); tonyp@961: _in_cset_fast_test_length = n_regions(); tonyp@961: _in_cset_fast_test_base = tonyp@961: NEW_C_HEAP_ARRAY(bool, _in_cset_fast_test_length); tonyp@961: memset(_in_cset_fast_test_base, false, tonyp@961: _in_cset_fast_test_length * sizeof(bool)); tonyp@961: // We're biasing _in_cset_fast_test to avoid subtracting the tonyp@961: // beginning of the heap every time we want to index; basically tonyp@961: // it's the same with what we do with the card table. tonyp@961: _in_cset_fast_test = _in_cset_fast_test_base - tonyp@961: ((size_t) _g1_reserved.start() >> HeapRegion::LogOfHRGrainBytes); tonyp@961: ysr@777: #if SCAN_ONLY_VERBOSE ysr@777: _young_list->print(); ysr@777: #endif // SCAN_ONLY_VERBOSE ysr@777: ysr@777: if (g1_policy()->should_initiate_conc_mark()) { ysr@777: concurrent_mark()->checkpointRootsInitialPre(); ysr@777: } ysr@777: save_marks(); ysr@777: twisti@1040: // We must do this before any possible evacuation that should propagate ysr@777: // marks, including evacuation of popular objects in a popular pause. ysr@777: if (mark_in_progress()) { ysr@777: double start_time_sec = os::elapsedTime(); ysr@777: ysr@777: _cm->drainAllSATBBuffers(); ysr@777: double finish_mark_ms = (os::elapsedTime() - start_time_sec) * 1000.0; ysr@777: g1_policy()->record_satb_drain_time(finish_mark_ms); ysr@777: ysr@777: } ysr@777: // Record the number of elements currently on the mark stack, so we ysr@777: // only iterate over these. (Since evacuation may add to the mark ysr@777: // stack, doing more exposes race conditions.) If no mark is in ysr@777: // progress, this will be zero. ysr@777: _cm->set_oops_do_bound(); ysr@777: ysr@777: assert(regions_accounted_for(), "Region leakage."); ysr@777: ysr@777: bool abandoned = false; ysr@777: ysr@777: if (mark_in_progress()) ysr@777: concurrent_mark()->newCSet(); ysr@777: ysr@777: // Now choose the CS. ysr@777: if (popular_region == NULL) { ysr@777: g1_policy()->choose_collection_set(); ysr@777: } else { ysr@777: // We may be evacuating a single region (for popularity). ysr@777: g1_policy()->record_popular_pause_preamble_start(); ysr@777: popularity_pause_preamble(popular_region); ysr@777: g1_policy()->record_popular_pause_preamble_end(); ysr@777: abandoned = (g1_policy()->collection_set() == NULL); ysr@777: // Now we allow more regions to be added (we have to collect ysr@777: // all popular regions). ysr@777: if (!abandoned) { ysr@777: g1_policy()->choose_collection_set(popular_region); ysr@777: } ysr@777: } ysr@777: // We may abandon a pause if we find no region that will fit in the MMU ysr@777: // pause. ysr@777: abandoned = (g1_policy()->collection_set() == NULL); ysr@777: ysr@777: // Nothing to do if we were unable to choose a collection set. ysr@777: if (!abandoned) { ysr@777: #if G1_REM_SET_LOGGING ysr@777: gclog_or_tty->print_cr("\nAfter pause, heap:"); ysr@777: print(); ysr@777: #endif ysr@777: ysr@777: setup_surviving_young_words(); ysr@777: ysr@777: // Set up the gc allocation regions. ysr@777: get_gc_alloc_regions(); ysr@777: ysr@777: // Actually do the work... ysr@777: evacuate_collection_set(); ysr@777: free_collection_set(g1_policy()->collection_set()); ysr@777: g1_policy()->clear_collection_set(); ysr@777: tonyp@961: FREE_C_HEAP_ARRAY(bool, _in_cset_fast_test_base); tonyp@961: // this is more for peace of mind; we're nulling them here and tonyp@961: // we're expecting them to be null at the beginning of the next GC tonyp@961: _in_cset_fast_test = NULL; tonyp@961: _in_cset_fast_test_base = NULL; tonyp@961: ysr@777: if (popular_region != NULL) { ysr@777: // We have to wait until now, because we don't want the region to ysr@777: // be rescheduled for pop-evac during RS update. ysr@777: popular_region->set_popular_pending(false); ysr@777: } ysr@777: ysr@777: release_gc_alloc_regions(); ysr@777: ysr@777: cleanup_surviving_young_words(); ysr@777: ysr@777: if (g1_policy()->in_young_gc_mode()) { ysr@777: _young_list->reset_sampled_info(); ysr@777: assert(check_young_list_empty(true), ysr@777: "young list should be empty"); ysr@777: ysr@777: #if SCAN_ONLY_VERBOSE ysr@777: _young_list->print(); ysr@777: #endif // SCAN_ONLY_VERBOSE ysr@777: apetrusenko@980: g1_policy()->record_survivor_regions(_young_list->survivor_length(), apetrusenko@980: _young_list->first_survivor_region(), apetrusenko@980: _young_list->last_survivor_region()); ysr@777: _young_list->reset_auxilary_lists(); ysr@777: } ysr@777: } else { ysr@777: COMPILER2_PRESENT(DerivedPointerTable::update_pointers()); ysr@777: } ysr@777: ysr@777: if (evacuation_failed()) { ysr@777: _summary_bytes_used = recalculate_used(); ysr@777: } else { ysr@777: // The "used" of the the collection set have already been subtracted ysr@777: // when they were freed. Add in the bytes evacuated. ysr@777: _summary_bytes_used += g1_policy()->bytes_in_to_space(); ysr@777: } ysr@777: ysr@777: if (g1_policy()->in_young_gc_mode() && ysr@777: g1_policy()->should_initiate_conc_mark()) { ysr@777: concurrent_mark()->checkpointRootsInitialPost(); ysr@777: set_marking_started(); ysr@777: doConcurrentMark(); ysr@777: } ysr@777: ysr@777: #if SCAN_ONLY_VERBOSE ysr@777: _young_list->print(); ysr@777: #endif // SCAN_ONLY_VERBOSE ysr@777: ysr@777: double end_time_sec = os::elapsedTime(); apetrusenko@980: if (!evacuation_failed()) { apetrusenko@980: g1_policy()->record_pause_time((end_time_sec - start_time_sec)*1000.0); apetrusenko@980: } ysr@777: GCOverheadReporter::recordSTWEnd(end_time_sec); ysr@777: g1_policy()->record_collection_pause_end(popular_region != NULL, ysr@777: abandoned); ysr@777: ysr@777: assert(regions_accounted_for(), "Region leakage."); ysr@777: ysr@777: if (VerifyAfterGC && total_collections() >= VerifyGCStartAt) { ysr@777: HandleMark hm; // Discard invalid handles created during verification ysr@777: gclog_or_tty->print(" VerifyAfterGC:"); ysr@777: Universe::verify(false); ysr@777: } ysr@777: ysr@777: if (was_enabled) ref_processor()->enable_discovery(); ysr@777: ysr@777: { ysr@777: size_t expand_bytes = g1_policy()->expansion_amount(); ysr@777: if (expand_bytes > 0) { ysr@777: size_t bytes_before = capacity(); ysr@777: expand(expand_bytes); ysr@777: } ysr@777: } ysr@777: jmasa@981: if (mark_in_progress()) { ysr@777: concurrent_mark()->update_g1_committed(); jmasa@981: } jmasa@981: jmasa@981: #ifdef TRACESPINNING jmasa@981: ParallelTaskTerminator::print_termination_counts(); jmasa@981: #endif ysr@777: ysr@777: gc_epilogue(false); ysr@777: } ysr@777: ysr@777: assert(verify_region_lists(), "Bad region lists."); ysr@777: ysr@777: if (reset_should_initiate_conc_mark) ysr@777: g1_policy()->set_should_initiate_conc_mark(); ysr@777: ysr@777: if (ExitAfterGCNum > 0 && total_collections() == ExitAfterGCNum) { ysr@777: gclog_or_tty->print_cr("Stopping after GC #%d", ExitAfterGCNum); ysr@777: print_tracing_info(); ysr@777: vm_exit(-1); ysr@777: } ysr@777: } ysr@777: ysr@777: void G1CollectedHeap::set_gc_alloc_region(int purpose, HeapRegion* r) { ysr@777: assert(purpose >= 0 && purpose < GCAllocPurposeCount, "invalid purpose"); ysr@777: HeapWord* original_top = NULL; ysr@777: if (r != NULL) ysr@777: original_top = r->top(); ysr@777: ysr@777: // We will want to record the used space in r as being there before gc. ysr@777: // One we install it as a GC alloc region it's eligible for allocation. ysr@777: // So record it now and use it later. ysr@777: size_t r_used = 0; ysr@777: if (r != NULL) { ysr@777: r_used = r->used(); ysr@777: ysr@777: if (ParallelGCThreads > 0) { ysr@777: // need to take the lock to guard against two threads calling ysr@777: // get_gc_alloc_region concurrently (very unlikely but...) ysr@777: MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag); ysr@777: r->save_marks(); ysr@777: } ysr@777: } ysr@777: HeapRegion* old_alloc_region = _gc_alloc_regions[purpose]; ysr@777: _gc_alloc_regions[purpose] = r; ysr@777: if (old_alloc_region != NULL) { ysr@777: // Replace aliases too. ysr@777: for (int ap = 0; ap < GCAllocPurposeCount; ++ap) { ysr@777: if (_gc_alloc_regions[ap] == old_alloc_region) { ysr@777: _gc_alloc_regions[ap] = r; ysr@777: } ysr@777: } ysr@777: } ysr@777: if (r != NULL) { ysr@777: push_gc_alloc_region(r); ysr@777: if (mark_in_progress() && original_top != r->next_top_at_mark_start()) { ysr@777: // We are using a region as a GC alloc region after it has been used ysr@777: // as a mutator allocation region during the current marking cycle. ysr@777: // The mutator-allocated objects are currently implicitly marked, but ysr@777: // when we move hr->next_top_at_mark_start() forward at the the end ysr@777: // of the GC pause, they won't be. We therefore mark all objects in ysr@777: // the "gap". We do this object-by-object, since marking densely ysr@777: // does not currently work right with marking bitmap iteration. This ysr@777: // means we rely on TLAB filling at the start of pauses, and no ysr@777: // "resuscitation" of filled TLAB's. If we want to do this, we need ysr@777: // to fix the marking bitmap iteration. ysr@777: HeapWord* curhw = r->next_top_at_mark_start(); ysr@777: HeapWord* t = original_top; ysr@777: ysr@777: while (curhw < t) { ysr@777: oop cur = (oop)curhw; ysr@777: // We'll assume parallel for generality. This is rare code. ysr@777: concurrent_mark()->markAndGrayObjectIfNecessary(cur); // can't we just mark them? ysr@777: curhw = curhw + cur->size(); ysr@777: } ysr@777: assert(curhw == t, "Should have parsed correctly."); ysr@777: } ysr@777: if (G1PolicyVerbose > 1) { ysr@777: gclog_or_tty->print("New alloc region ["PTR_FORMAT", "PTR_FORMAT", " PTR_FORMAT") " ysr@777: "for survivors:", r->bottom(), original_top, r->end()); ysr@777: r->print(); ysr@777: } ysr@777: g1_policy()->record_before_bytes(r_used); ysr@777: } ysr@777: } ysr@777: ysr@777: void G1CollectedHeap::push_gc_alloc_region(HeapRegion* hr) { ysr@777: assert(Thread::current()->is_VM_thread() || ysr@777: par_alloc_during_gc_lock()->owned_by_self(), "Precondition"); ysr@777: assert(!hr->is_gc_alloc_region() && !hr->in_collection_set(), ysr@777: "Precondition."); ysr@777: hr->set_is_gc_alloc_region(true); ysr@777: hr->set_next_gc_alloc_region(_gc_alloc_region_list); ysr@777: _gc_alloc_region_list = hr; ysr@777: } ysr@777: ysr@777: #ifdef G1_DEBUG ysr@777: class FindGCAllocRegion: public HeapRegionClosure { ysr@777: public: ysr@777: bool doHeapRegion(HeapRegion* r) { ysr@777: if (r->is_gc_alloc_region()) { ysr@777: gclog_or_tty->print_cr("Region %d ["PTR_FORMAT"...] is still a gc_alloc_region.", ysr@777: r->hrs_index(), r->bottom()); ysr@777: } ysr@777: return false; ysr@777: } ysr@777: }; ysr@777: #endif // G1_DEBUG ysr@777: ysr@777: void G1CollectedHeap::forget_alloc_region_list() { ysr@777: assert(Thread::current()->is_VM_thread(), "Precondition"); ysr@777: while (_gc_alloc_region_list != NULL) { ysr@777: HeapRegion* r = _gc_alloc_region_list; ysr@777: assert(r->is_gc_alloc_region(), "Invariant."); ysr@777: _gc_alloc_region_list = r->next_gc_alloc_region(); ysr@777: r->set_next_gc_alloc_region(NULL); ysr@777: r->set_is_gc_alloc_region(false); apetrusenko@980: if (r->is_survivor()) { apetrusenko@980: if (r->is_empty()) { apetrusenko@980: r->set_not_young(); apetrusenko@980: } else { apetrusenko@980: _young_list->add_survivor_region(r); apetrusenko@980: } apetrusenko@980: } ysr@777: if (r->is_empty()) { ysr@777: ++_free_regions; ysr@777: } ysr@777: } ysr@777: #ifdef G1_DEBUG ysr@777: FindGCAllocRegion fa; ysr@777: heap_region_iterate(&fa); ysr@777: #endif // G1_DEBUG ysr@777: } ysr@777: ysr@777: ysr@777: bool G1CollectedHeap::check_gc_alloc_regions() { ysr@777: // TODO: allocation regions check ysr@777: return true; ysr@777: } ysr@777: ysr@777: void G1CollectedHeap::get_gc_alloc_regions() { ysr@777: for (int ap = 0; ap < GCAllocPurposeCount; ++ap) { ysr@777: // Create new GC alloc regions. ysr@777: HeapRegion* alloc_region = _gc_alloc_regions[ap]; ysr@777: // Clear this alloc region, so that in case it turns out to be ysr@777: // unacceptable, we end up with no allocation region, rather than a bad ysr@777: // one. ysr@777: _gc_alloc_regions[ap] = NULL; ysr@777: if (alloc_region == NULL || alloc_region->in_collection_set()) { ysr@777: // Can't re-use old one. Allocate a new one. ysr@777: alloc_region = newAllocRegionWithExpansion(ap, 0); ysr@777: } ysr@777: if (alloc_region != NULL) { ysr@777: set_gc_alloc_region(ap, alloc_region); ysr@777: } ysr@777: } ysr@777: // Set alternative regions for allocation purposes that have reached ysr@777: // thier limit. ysr@777: for (int ap = 0; ap < GCAllocPurposeCount; ++ap) { ysr@777: GCAllocPurpose alt_purpose = g1_policy()->alternative_purpose(ap); ysr@777: if (_gc_alloc_regions[ap] == NULL && alt_purpose != ap) { ysr@777: _gc_alloc_regions[ap] = _gc_alloc_regions[alt_purpose]; ysr@777: } ysr@777: } ysr@777: assert(check_gc_alloc_regions(), "alloc regions messed up"); ysr@777: } ysr@777: ysr@777: void G1CollectedHeap::release_gc_alloc_regions() { ysr@777: // We keep a separate list of all regions that have been alloc regions in ysr@777: // the current collection pause. Forget that now. ysr@777: forget_alloc_region_list(); ysr@777: ysr@777: // The current alloc regions contain objs that have survived ysr@777: // collection. Make them no longer GC alloc regions. ysr@777: for (int ap = 0; ap < GCAllocPurposeCount; ++ap) { ysr@777: HeapRegion* r = _gc_alloc_regions[ap]; ysr@777: if (r != NULL && r->is_empty()) { ysr@777: { ysr@777: MutexLockerEx x(ZF_mon, Mutex::_no_safepoint_check_flag); ysr@777: r->set_zero_fill_complete(); ysr@777: put_free_region_on_list_locked(r); ysr@777: } ysr@777: } ysr@777: // set_gc_alloc_region will also NULLify all aliases to the region ysr@777: set_gc_alloc_region(ap, NULL); ysr@777: _gc_alloc_region_counts[ap] = 0; ysr@777: } ysr@777: } ysr@777: ysr@777: void G1CollectedHeap::init_for_evac_failure(OopsInHeapRegionClosure* cl) { ysr@777: _drain_in_progress = false; ysr@777: set_evac_failure_closure(cl); ysr@777: _evac_failure_scan_stack = new (ResourceObj::C_HEAP) GrowableArray(40, true); ysr@777: } ysr@777: ysr@777: void G1CollectedHeap::finalize_for_evac_failure() { ysr@777: assert(_evac_failure_scan_stack != NULL && ysr@777: _evac_failure_scan_stack->length() == 0, ysr@777: "Postcondition"); ysr@777: assert(!_drain_in_progress, "Postcondition"); ysr@777: // Don't have to delete, since the scan stack is a resource object. ysr@777: _evac_failure_scan_stack = NULL; ysr@777: } ysr@777: ysr@777: ysr@777: ysr@777: // *** Sequential G1 Evacuation ysr@777: ysr@777: HeapWord* G1CollectedHeap::allocate_during_gc(GCAllocPurpose purpose, size_t word_size) { ysr@777: HeapRegion* alloc_region = _gc_alloc_regions[purpose]; ysr@777: // let the caller handle alloc failure ysr@777: if (alloc_region == NULL) return NULL; ysr@777: assert(isHumongous(word_size) || !alloc_region->isHumongous(), ysr@777: "Either the object is humongous or the region isn't"); ysr@777: HeapWord* block = alloc_region->allocate(word_size); ysr@777: if (block == NULL) { ysr@777: block = allocate_during_gc_slow(purpose, alloc_region, false, word_size); ysr@777: } ysr@777: return block; ysr@777: } ysr@777: ysr@777: class G1IsAliveClosure: public BoolObjectClosure { ysr@777: G1CollectedHeap* _g1; ysr@777: public: ysr@777: G1IsAliveClosure(G1CollectedHeap* g1) : _g1(g1) {} ysr@777: void do_object(oop p) { assert(false, "Do not call."); } ysr@777: bool do_object_b(oop p) { ysr@777: // It is reachable if it is outside the collection set, or is inside ysr@777: // and forwarded. ysr@777: ysr@777: #ifdef G1_DEBUG ysr@777: gclog_or_tty->print_cr("is alive "PTR_FORMAT" in CS %d forwarded %d overall %d", ysr@777: (void*) p, _g1->obj_in_cs(p), p->is_forwarded(), ysr@777: !_g1->obj_in_cs(p) || p->is_forwarded()); ysr@777: #endif // G1_DEBUG ysr@777: ysr@777: return !_g1->obj_in_cs(p) || p->is_forwarded(); ysr@777: } ysr@777: }; ysr@777: ysr@777: class G1KeepAliveClosure: public OopClosure { ysr@777: G1CollectedHeap* _g1; ysr@777: public: ysr@777: G1KeepAliveClosure(G1CollectedHeap* g1) : _g1(g1) {} ysr@777: void do_oop(narrowOop* p) { ysr@777: guarantee(false, "NYI"); ysr@777: } ysr@777: void do_oop(oop* p) { ysr@777: oop obj = *p; ysr@777: #ifdef G1_DEBUG ysr@777: if (PrintGC && Verbose) { ysr@777: gclog_or_tty->print_cr("keep alive *"PTR_FORMAT" = "PTR_FORMAT" "PTR_FORMAT, ysr@777: p, (void*) obj, (void*) *p); ysr@777: } ysr@777: #endif // G1_DEBUG ysr@777: ysr@777: if (_g1->obj_in_cs(obj)) { ysr@777: assert( obj->is_forwarded(), "invariant" ); ysr@777: *p = obj->forwardee(); ysr@777: ysr@777: #ifdef G1_DEBUG ysr@777: gclog_or_tty->print_cr(" in CSet: moved "PTR_FORMAT" -> "PTR_FORMAT, ysr@777: (void*) obj, (void*) *p); ysr@777: #endif // G1_DEBUG ysr@777: } ysr@777: } ysr@777: }; ysr@777: ysr@777: class RecreateRSetEntriesClosure: public OopClosure { ysr@777: private: ysr@777: G1CollectedHeap* _g1; ysr@777: G1RemSet* _g1_rem_set; ysr@777: HeapRegion* _from; ysr@777: public: ysr@777: RecreateRSetEntriesClosure(G1CollectedHeap* g1, HeapRegion* from) : ysr@777: _g1(g1), _g1_rem_set(g1->g1_rem_set()), _from(from) ysr@777: {} ysr@777: ysr@777: void do_oop(narrowOop* p) { ysr@777: guarantee(false, "NYI"); ysr@777: } ysr@777: void do_oop(oop* p) { ysr@777: assert(_from->is_in_reserved(p), "paranoia"); ysr@777: if (*p != NULL) { ysr@777: _g1_rem_set->write_ref(_from, p); ysr@777: } ysr@777: } ysr@777: }; ysr@777: ysr@777: class RemoveSelfPointerClosure: public ObjectClosure { ysr@777: private: ysr@777: G1CollectedHeap* _g1; ysr@777: ConcurrentMark* _cm; ysr@777: HeapRegion* _hr; ysr@777: size_t _prev_marked_bytes; ysr@777: size_t _next_marked_bytes; ysr@777: public: ysr@777: RemoveSelfPointerClosure(G1CollectedHeap* g1, HeapRegion* hr) : ysr@777: _g1(g1), _cm(_g1->concurrent_mark()), _hr(hr), ysr@777: _prev_marked_bytes(0), _next_marked_bytes(0) ysr@777: {} ysr@777: ysr@777: size_t prev_marked_bytes() { return _prev_marked_bytes; } ysr@777: size_t next_marked_bytes() { return _next_marked_bytes; } ysr@777: iveresov@787: // The original idea here was to coalesce evacuated and dead objects. iveresov@787: // However that caused complications with the block offset table (BOT). iveresov@787: // In particular if there were two TLABs, one of them partially refined. iveresov@787: // |----- TLAB_1--------|----TLAB_2-~~~(partially refined part)~~~| iveresov@787: // The BOT entries of the unrefined part of TLAB_2 point to the start iveresov@787: // of TLAB_2. If the last object of the TLAB_1 and the first object iveresov@787: // of TLAB_2 are coalesced, then the cards of the unrefined part iveresov@787: // would point into middle of the filler object. iveresov@787: // iveresov@787: // The current approach is to not coalesce and leave the BOT contents intact. iveresov@787: void do_object(oop obj) { iveresov@787: if (obj->is_forwarded() && obj->forwardee() == obj) { iveresov@787: // The object failed to move. iveresov@787: assert(!_g1->is_obj_dead(obj), "We should not be preserving dead objs."); iveresov@787: _cm->markPrev(obj); iveresov@787: assert(_cm->isPrevMarked(obj), "Should be marked!"); iveresov@787: _prev_marked_bytes += (obj->size() * HeapWordSize); iveresov@787: if (_g1->mark_in_progress() && !_g1->is_obj_ill(obj)) { iveresov@787: _cm->markAndGrayObjectIfNecessary(obj); iveresov@787: } iveresov@787: obj->set_mark(markOopDesc::prototype()); iveresov@787: // While we were processing RSet buffers during the iveresov@787: // collection, we actually didn't scan any cards on the iveresov@787: // collection set, since we didn't want to update remebered iveresov@787: // sets with entries that point into the collection set, given iveresov@787: // that live objects fromthe collection set are about to move iveresov@787: // and such entries will be stale very soon. This change also iveresov@787: // dealt with a reliability issue which involved scanning a iveresov@787: // card in the collection set and coming across an array that iveresov@787: // was being chunked and looking malformed. The problem is iveresov@787: // that, if evacuation fails, we might have remembered set iveresov@787: // entries missing given that we skipped cards on the iveresov@787: // collection set. So, we'll recreate such entries now. iveresov@787: RecreateRSetEntriesClosure cl(_g1, _hr); iveresov@787: obj->oop_iterate(&cl); iveresov@787: assert(_cm->isPrevMarked(obj), "Should be marked!"); iveresov@787: } else { iveresov@787: // The object has been either evacuated or is dead. Fill it with a iveresov@787: // dummy object. iveresov@787: MemRegion mr((HeapWord*)obj, obj->size()); jcoomes@916: CollectedHeap::fill_with_object(mr); ysr@777: _cm->clearRangeBothMaps(mr); ysr@777: } ysr@777: } ysr@777: }; ysr@777: ysr@777: void G1CollectedHeap::remove_self_forwarding_pointers() { ysr@777: HeapRegion* cur = g1_policy()->collection_set(); ysr@777: ysr@777: while (cur != NULL) { ysr@777: assert(g1_policy()->assertMarkedBytesDataOK(), "Should be!"); ysr@777: ysr@777: if (cur->evacuation_failed()) { ysr@777: RemoveSelfPointerClosure rspc(_g1h, cur); ysr@777: assert(cur->in_collection_set(), "bad CS"); ysr@777: cur->object_iterate(&rspc); ysr@777: ysr@777: // A number of manipulations to make the TAMS be the current top, ysr@777: // and the marked bytes be the ones observed in the iteration. ysr@777: if (_g1h->concurrent_mark()->at_least_one_mark_complete()) { ysr@777: // The comments below are the postconditions achieved by the ysr@777: // calls. Note especially the last such condition, which says that ysr@777: // the count of marked bytes has been properly restored. ysr@777: cur->note_start_of_marking(false); ysr@777: // _next_top_at_mark_start == top, _next_marked_bytes == 0 ysr@777: cur->add_to_marked_bytes(rspc.prev_marked_bytes()); ysr@777: // _next_marked_bytes == prev_marked_bytes. ysr@777: cur->note_end_of_marking(); ysr@777: // _prev_top_at_mark_start == top(), ysr@777: // _prev_marked_bytes == prev_marked_bytes ysr@777: } ysr@777: // If there is no mark in progress, we modified the _next variables ysr@777: // above needlessly, but harmlessly. ysr@777: if (_g1h->mark_in_progress()) { ysr@777: cur->note_start_of_marking(false); ysr@777: // _next_top_at_mark_start == top, _next_marked_bytes == 0 ysr@777: // _next_marked_bytes == next_marked_bytes. ysr@777: } ysr@777: ysr@777: // Now make sure the region has the right index in the sorted array. ysr@777: g1_policy()->note_change_in_marked_bytes(cur); ysr@777: } ysr@777: cur = cur->next_in_collection_set(); ysr@777: } ysr@777: assert(g1_policy()->assertMarkedBytesDataOK(), "Should be!"); ysr@777: ysr@777: // Now restore saved marks, if any. ysr@777: if (_objs_with_preserved_marks != NULL) { ysr@777: assert(_preserved_marks_of_objs != NULL, "Both or none."); ysr@777: assert(_objs_with_preserved_marks->length() == ysr@777: _preserved_marks_of_objs->length(), "Both or none."); ysr@777: guarantee(_objs_with_preserved_marks->length() == ysr@777: _preserved_marks_of_objs->length(), "Both or none."); ysr@777: for (int i = 0; i < _objs_with_preserved_marks->length(); i++) { ysr@777: oop obj = _objs_with_preserved_marks->at(i); ysr@777: markOop m = _preserved_marks_of_objs->at(i); ysr@777: obj->set_mark(m); ysr@777: } ysr@777: // Delete the preserved marks growable arrays (allocated on the C heap). ysr@777: delete _objs_with_preserved_marks; ysr@777: delete _preserved_marks_of_objs; ysr@777: _objs_with_preserved_marks = NULL; ysr@777: _preserved_marks_of_objs = NULL; ysr@777: } ysr@777: } ysr@777: ysr@777: void G1CollectedHeap::push_on_evac_failure_scan_stack(oop obj) { ysr@777: _evac_failure_scan_stack->push(obj); ysr@777: } ysr@777: ysr@777: void G1CollectedHeap::drain_evac_failure_scan_stack() { ysr@777: assert(_evac_failure_scan_stack != NULL, "precondition"); ysr@777: ysr@777: while (_evac_failure_scan_stack->length() > 0) { ysr@777: oop obj = _evac_failure_scan_stack->pop(); ysr@777: _evac_failure_closure->set_region(heap_region_containing(obj)); ysr@777: obj->oop_iterate_backwards(_evac_failure_closure); ysr@777: } ysr@777: } ysr@777: ysr@777: void G1CollectedHeap::handle_evacuation_failure(oop old) { ysr@777: markOop m = old->mark(); ysr@777: // forward to self ysr@777: assert(!old->is_forwarded(), "precondition"); ysr@777: ysr@777: old->forward_to(old); ysr@777: handle_evacuation_failure_common(old, m); ysr@777: } ysr@777: ysr@777: oop ysr@777: G1CollectedHeap::handle_evacuation_failure_par(OopsInHeapRegionClosure* cl, ysr@777: oop old) { ysr@777: markOop m = old->mark(); ysr@777: oop forward_ptr = old->forward_to_atomic(old); ysr@777: if (forward_ptr == NULL) { ysr@777: // Forward-to-self succeeded. ysr@777: if (_evac_failure_closure != cl) { ysr@777: MutexLockerEx x(EvacFailureStack_lock, Mutex::_no_safepoint_check_flag); ysr@777: assert(!_drain_in_progress, ysr@777: "Should only be true while someone holds the lock."); ysr@777: // Set the global evac-failure closure to the current thread's. ysr@777: assert(_evac_failure_closure == NULL, "Or locking has failed."); ysr@777: set_evac_failure_closure(cl); ysr@777: // Now do the common part. ysr@777: handle_evacuation_failure_common(old, m); ysr@777: // Reset to NULL. ysr@777: set_evac_failure_closure(NULL); ysr@777: } else { ysr@777: // The lock is already held, and this is recursive. ysr@777: assert(_drain_in_progress, "This should only be the recursive case."); ysr@777: handle_evacuation_failure_common(old, m); ysr@777: } ysr@777: return old; ysr@777: } else { ysr@777: // Someone else had a place to copy it. ysr@777: return forward_ptr; ysr@777: } ysr@777: } ysr@777: ysr@777: void G1CollectedHeap::handle_evacuation_failure_common(oop old, markOop m) { ysr@777: set_evacuation_failed(true); ysr@777: ysr@777: preserve_mark_if_necessary(old, m); ysr@777: ysr@777: HeapRegion* r = heap_region_containing(old); ysr@777: if (!r->evacuation_failed()) { ysr@777: r->set_evacuation_failed(true); ysr@777: if (G1TraceRegions) { ysr@777: gclog_or_tty->print("evacuation failed in heap region "PTR_FORMAT" " ysr@777: "["PTR_FORMAT","PTR_FORMAT")\n", ysr@777: r, r->bottom(), r->end()); ysr@777: } ysr@777: } ysr@777: ysr@777: push_on_evac_failure_scan_stack(old); ysr@777: ysr@777: if (!_drain_in_progress) { ysr@777: // prevent recursion in copy_to_survivor_space() ysr@777: _drain_in_progress = true; ysr@777: drain_evac_failure_scan_stack(); ysr@777: _drain_in_progress = false; ysr@777: } ysr@777: } ysr@777: ysr@777: void G1CollectedHeap::preserve_mark_if_necessary(oop obj, markOop m) { ysr@777: if (m != markOopDesc::prototype()) { ysr@777: if (_objs_with_preserved_marks == NULL) { ysr@777: assert(_preserved_marks_of_objs == NULL, "Both or none."); ysr@777: _objs_with_preserved_marks = ysr@777: new (ResourceObj::C_HEAP) GrowableArray(40, true); ysr@777: _preserved_marks_of_objs = ysr@777: new (ResourceObj::C_HEAP) GrowableArray(40, true); ysr@777: } ysr@777: _objs_with_preserved_marks->push(obj); ysr@777: _preserved_marks_of_objs->push(m); ysr@777: } ysr@777: } ysr@777: ysr@777: // *** Parallel G1 Evacuation ysr@777: ysr@777: HeapWord* G1CollectedHeap::par_allocate_during_gc(GCAllocPurpose purpose, ysr@777: size_t word_size) { ysr@777: HeapRegion* alloc_region = _gc_alloc_regions[purpose]; ysr@777: // let the caller handle alloc failure ysr@777: if (alloc_region == NULL) return NULL; ysr@777: ysr@777: HeapWord* block = alloc_region->par_allocate(word_size); ysr@777: if (block == NULL) { ysr@777: MutexLockerEx x(par_alloc_during_gc_lock(), ysr@777: Mutex::_no_safepoint_check_flag); ysr@777: block = allocate_during_gc_slow(purpose, alloc_region, true, word_size); ysr@777: } ysr@777: return block; ysr@777: } ysr@777: apetrusenko@980: void G1CollectedHeap::retire_alloc_region(HeapRegion* alloc_region, apetrusenko@980: bool par) { apetrusenko@980: // Another thread might have obtained alloc_region for the given apetrusenko@980: // purpose, and might be attempting to allocate in it, and might apetrusenko@980: // succeed. Therefore, we can't do the "finalization" stuff on the apetrusenko@980: // region below until we're sure the last allocation has happened. apetrusenko@980: // We ensure this by allocating the remaining space with a garbage apetrusenko@980: // object. apetrusenko@980: if (par) par_allocate_remaining_space(alloc_region); apetrusenko@980: // Now we can do the post-GC stuff on the region. apetrusenko@980: alloc_region->note_end_of_copying(); apetrusenko@980: g1_policy()->record_after_bytes(alloc_region->used()); apetrusenko@980: } apetrusenko@980: ysr@777: HeapWord* ysr@777: G1CollectedHeap::allocate_during_gc_slow(GCAllocPurpose purpose, ysr@777: HeapRegion* alloc_region, ysr@777: bool par, ysr@777: size_t word_size) { ysr@777: HeapWord* block = NULL; ysr@777: // In the parallel case, a previous thread to obtain the lock may have ysr@777: // already assigned a new gc_alloc_region. ysr@777: if (alloc_region != _gc_alloc_regions[purpose]) { ysr@777: assert(par, "But should only happen in parallel case."); ysr@777: alloc_region = _gc_alloc_regions[purpose]; ysr@777: if (alloc_region == NULL) return NULL; ysr@777: block = alloc_region->par_allocate(word_size); ysr@777: if (block != NULL) return block; ysr@777: // Otherwise, continue; this new region is empty, too. ysr@777: } ysr@777: assert(alloc_region != NULL, "We better have an allocation region"); apetrusenko@980: retire_alloc_region(alloc_region, par); ysr@777: ysr@777: if (_gc_alloc_region_counts[purpose] >= g1_policy()->max_regions(purpose)) { ysr@777: // Cannot allocate more regions for the given purpose. ysr@777: GCAllocPurpose alt_purpose = g1_policy()->alternative_purpose(purpose); ysr@777: // Is there an alternative? ysr@777: if (purpose != alt_purpose) { ysr@777: HeapRegion* alt_region = _gc_alloc_regions[alt_purpose]; ysr@777: // Has not the alternative region been aliased? apetrusenko@980: if (alloc_region != alt_region && alt_region != NULL) { ysr@777: // Try to allocate in the alternative region. ysr@777: if (par) { ysr@777: block = alt_region->par_allocate(word_size); ysr@777: } else { ysr@777: block = alt_region->allocate(word_size); ysr@777: } ysr@777: // Make an alias. ysr@777: _gc_alloc_regions[purpose] = _gc_alloc_regions[alt_purpose]; apetrusenko@980: if (block != NULL) { apetrusenko@980: return block; apetrusenko@980: } apetrusenko@980: retire_alloc_region(alt_region, par); ysr@777: } ysr@777: // Both the allocation region and the alternative one are full ysr@777: // and aliased, replace them with a new allocation region. ysr@777: purpose = alt_purpose; ysr@777: } else { ysr@777: set_gc_alloc_region(purpose, NULL); ysr@777: return NULL; ysr@777: } ysr@777: } ysr@777: ysr@777: // Now allocate a new region for allocation. ysr@777: alloc_region = newAllocRegionWithExpansion(purpose, word_size, false /*zero_filled*/); ysr@777: ysr@777: // let the caller handle alloc failure ysr@777: if (alloc_region != NULL) { ysr@777: ysr@777: assert(check_gc_alloc_regions(), "alloc regions messed up"); ysr@777: assert(alloc_region->saved_mark_at_top(), ysr@777: "Mark should have been saved already."); ysr@777: // We used to assert that the region was zero-filled here, but no ysr@777: // longer. ysr@777: ysr@777: // This must be done last: once it's installed, other regions may ysr@777: // allocate in it (without holding the lock.) ysr@777: set_gc_alloc_region(purpose, alloc_region); ysr@777: ysr@777: if (par) { ysr@777: block = alloc_region->par_allocate(word_size); ysr@777: } else { ysr@777: block = alloc_region->allocate(word_size); ysr@777: } ysr@777: // Caller handles alloc failure. ysr@777: } else { ysr@777: // This sets other apis using the same old alloc region to NULL, also. ysr@777: set_gc_alloc_region(purpose, NULL); ysr@777: } ysr@777: return block; // May be NULL. ysr@777: } ysr@777: ysr@777: void G1CollectedHeap::par_allocate_remaining_space(HeapRegion* r) { ysr@777: HeapWord* block = NULL; ysr@777: size_t free_words; ysr@777: do { ysr@777: free_words = r->free()/HeapWordSize; ysr@777: // If there's too little space, no one can allocate, so we're done. ysr@777: if (free_words < (size_t)oopDesc::header_size()) return; ysr@777: // Otherwise, try to claim it. ysr@777: block = r->par_allocate(free_words); ysr@777: } while (block == NULL); jcoomes@916: fill_with_object(block, free_words); ysr@777: } ysr@777: ysr@777: #define use_local_bitmaps 1 ysr@777: #define verify_local_bitmaps 0 ysr@777: ysr@777: #ifndef PRODUCT ysr@777: ysr@777: class GCLabBitMap; ysr@777: class GCLabBitMapClosure: public BitMapClosure { ysr@777: private: ysr@777: ConcurrentMark* _cm; ysr@777: GCLabBitMap* _bitmap; ysr@777: ysr@777: public: ysr@777: GCLabBitMapClosure(ConcurrentMark* cm, ysr@777: GCLabBitMap* bitmap) { ysr@777: _cm = cm; ysr@777: _bitmap = bitmap; ysr@777: } ysr@777: ysr@777: virtual bool do_bit(size_t offset); ysr@777: }; ysr@777: ysr@777: #endif // PRODUCT ysr@777: ysr@777: #define oop_buffer_length 256 ysr@777: ysr@777: class GCLabBitMap: public BitMap { ysr@777: private: ysr@777: ConcurrentMark* _cm; ysr@777: ysr@777: int _shifter; ysr@777: size_t _bitmap_word_covers_words; ysr@777: ysr@777: // beginning of the heap ysr@777: HeapWord* _heap_start; ysr@777: ysr@777: // this is the actual start of the GCLab ysr@777: HeapWord* _real_start_word; ysr@777: ysr@777: // this is the actual end of the GCLab ysr@777: HeapWord* _real_end_word; ysr@777: ysr@777: // this is the first word, possibly located before the actual start ysr@777: // of the GCLab, that corresponds to the first bit of the bitmap ysr@777: HeapWord* _start_word; ysr@777: ysr@777: // size of a GCLab in words ysr@777: size_t _gclab_word_size; ysr@777: ysr@777: static int shifter() { ysr@777: return MinObjAlignment - 1; ysr@777: } ysr@777: ysr@777: // how many heap words does a single bitmap word corresponds to? ysr@777: static size_t bitmap_word_covers_words() { ysr@777: return BitsPerWord << shifter(); ysr@777: } ysr@777: ysr@777: static size_t gclab_word_size() { ysr@777: return ParallelGCG1AllocBufferSize / HeapWordSize; ysr@777: } ysr@777: ysr@777: static size_t bitmap_size_in_bits() { ysr@777: size_t bits_in_bitmap = gclab_word_size() >> shifter(); ysr@777: // We are going to ensure that the beginning of a word in this ysr@777: // bitmap also corresponds to the beginning of a word in the ysr@777: // global marking bitmap. To handle the case where a GCLab ysr@777: // starts from the middle of the bitmap, we need to add enough ysr@777: // space (i.e. up to a bitmap word) to ensure that we have ysr@777: // enough bits in the bitmap. ysr@777: return bits_in_bitmap + BitsPerWord - 1; ysr@777: } ysr@777: public: ysr@777: GCLabBitMap(HeapWord* heap_start) ysr@777: : BitMap(bitmap_size_in_bits()), ysr@777: _cm(G1CollectedHeap::heap()->concurrent_mark()), ysr@777: _shifter(shifter()), ysr@777: _bitmap_word_covers_words(bitmap_word_covers_words()), ysr@777: _heap_start(heap_start), ysr@777: _gclab_word_size(gclab_word_size()), ysr@777: _real_start_word(NULL), ysr@777: _real_end_word(NULL), ysr@777: _start_word(NULL) ysr@777: { ysr@777: guarantee( size_in_words() >= bitmap_size_in_words(), ysr@777: "just making sure"); ysr@777: } ysr@777: ysr@777: inline unsigned heapWordToOffset(HeapWord* addr) { ysr@777: unsigned offset = (unsigned) pointer_delta(addr, _start_word) >> _shifter; ysr@777: assert(offset < size(), "offset should be within bounds"); ysr@777: return offset; ysr@777: } ysr@777: ysr@777: inline HeapWord* offsetToHeapWord(size_t offset) { ysr@777: HeapWord* addr = _start_word + (offset << _shifter); ysr@777: assert(_real_start_word <= addr && addr < _real_end_word, "invariant"); ysr@777: return addr; ysr@777: } ysr@777: ysr@777: bool fields_well_formed() { ysr@777: bool ret1 = (_real_start_word == NULL) && ysr@777: (_real_end_word == NULL) && ysr@777: (_start_word == NULL); ysr@777: if (ret1) ysr@777: return true; ysr@777: ysr@777: bool ret2 = _real_start_word >= _start_word && ysr@777: _start_word < _real_end_word && ysr@777: (_real_start_word + _gclab_word_size) == _real_end_word && ysr@777: (_start_word + _gclab_word_size + _bitmap_word_covers_words) ysr@777: > _real_end_word; ysr@777: return ret2; ysr@777: } ysr@777: ysr@777: inline bool mark(HeapWord* addr) { ysr@777: guarantee(use_local_bitmaps, "invariant"); ysr@777: assert(fields_well_formed(), "invariant"); ysr@777: ysr@777: if (addr >= _real_start_word && addr < _real_end_word) { ysr@777: assert(!isMarked(addr), "should not have already been marked"); ysr@777: ysr@777: // first mark it on the bitmap ysr@777: at_put(heapWordToOffset(addr), true); ysr@777: ysr@777: return true; ysr@777: } else { ysr@777: return false; ysr@777: } ysr@777: } ysr@777: ysr@777: inline bool isMarked(HeapWord* addr) { ysr@777: guarantee(use_local_bitmaps, "invariant"); ysr@777: assert(fields_well_formed(), "invariant"); ysr@777: ysr@777: return at(heapWordToOffset(addr)); ysr@777: } ysr@777: ysr@777: void set_buffer(HeapWord* start) { ysr@777: guarantee(use_local_bitmaps, "invariant"); ysr@777: clear(); ysr@777: ysr@777: assert(start != NULL, "invariant"); ysr@777: _real_start_word = start; ysr@777: _real_end_word = start + _gclab_word_size; ysr@777: ysr@777: size_t diff = ysr@777: pointer_delta(start, _heap_start) % _bitmap_word_covers_words; ysr@777: _start_word = start - diff; ysr@777: ysr@777: assert(fields_well_formed(), "invariant"); ysr@777: } ysr@777: ysr@777: #ifndef PRODUCT ysr@777: void verify() { ysr@777: // verify that the marks have been propagated ysr@777: GCLabBitMapClosure cl(_cm, this); ysr@777: iterate(&cl); ysr@777: } ysr@777: #endif // PRODUCT ysr@777: ysr@777: void retire() { ysr@777: guarantee(use_local_bitmaps, "invariant"); ysr@777: assert(fields_well_formed(), "invariant"); ysr@777: ysr@777: if (_start_word != NULL) { ysr@777: CMBitMap* mark_bitmap = _cm->nextMarkBitMap(); ysr@777: ysr@777: // this means that the bitmap was set up for the GCLab ysr@777: assert(_real_start_word != NULL && _real_end_word != NULL, "invariant"); ysr@777: ysr@777: mark_bitmap->mostly_disjoint_range_union(this, ysr@777: 0, // always start from the start of the bitmap ysr@777: _start_word, ysr@777: size_in_words()); ysr@777: _cm->grayRegionIfNecessary(MemRegion(_real_start_word, _real_end_word)); ysr@777: ysr@777: #ifndef PRODUCT ysr@777: if (use_local_bitmaps && verify_local_bitmaps) ysr@777: verify(); ysr@777: #endif // PRODUCT ysr@777: } else { ysr@777: assert(_real_start_word == NULL && _real_end_word == NULL, "invariant"); ysr@777: } ysr@777: } ysr@777: ysr@777: static size_t bitmap_size_in_words() { ysr@777: return (bitmap_size_in_bits() + BitsPerWord - 1) / BitsPerWord; ysr@777: } ysr@777: }; ysr@777: ysr@777: #ifndef PRODUCT ysr@777: ysr@777: bool GCLabBitMapClosure::do_bit(size_t offset) { ysr@777: HeapWord* addr = _bitmap->offsetToHeapWord(offset); ysr@777: guarantee(_cm->isMarked(oop(addr)), "it should be!"); ysr@777: return true; ysr@777: } ysr@777: ysr@777: #endif // PRODUCT ysr@777: ysr@777: class G1ParGCAllocBuffer: public ParGCAllocBuffer { ysr@777: private: ysr@777: bool _retired; ysr@777: bool _during_marking; ysr@777: GCLabBitMap _bitmap; ysr@777: ysr@777: public: ysr@777: G1ParGCAllocBuffer() : ysr@777: ParGCAllocBuffer(ParallelGCG1AllocBufferSize / HeapWordSize), ysr@777: _during_marking(G1CollectedHeap::heap()->mark_in_progress()), ysr@777: _bitmap(G1CollectedHeap::heap()->reserved_region().start()), ysr@777: _retired(false) ysr@777: { } ysr@777: ysr@777: inline bool mark(HeapWord* addr) { ysr@777: guarantee(use_local_bitmaps, "invariant"); ysr@777: assert(_during_marking, "invariant"); ysr@777: return _bitmap.mark(addr); ysr@777: } ysr@777: ysr@777: inline void set_buf(HeapWord* buf) { ysr@777: if (use_local_bitmaps && _during_marking) ysr@777: _bitmap.set_buffer(buf); ysr@777: ParGCAllocBuffer::set_buf(buf); ysr@777: _retired = false; ysr@777: } ysr@777: ysr@777: inline void retire(bool end_of_gc, bool retain) { ysr@777: if (_retired) ysr@777: return; ysr@777: if (use_local_bitmaps && _during_marking) { ysr@777: _bitmap.retire(); ysr@777: } ysr@777: ParGCAllocBuffer::retire(end_of_gc, retain); ysr@777: _retired = true; ysr@777: } ysr@777: }; ysr@777: ysr@777: ysr@777: class G1ParScanThreadState : public StackObj { ysr@777: protected: ysr@777: G1CollectedHeap* _g1h; ysr@777: RefToScanQueue* _refs; ysr@777: ysr@777: typedef GrowableArray OverflowQueue; ysr@777: OverflowQueue* _overflowed_refs; ysr@777: ysr@777: G1ParGCAllocBuffer _alloc_buffers[GCAllocPurposeCount]; apetrusenko@980: ageTable _age_table; ysr@777: ysr@777: size_t _alloc_buffer_waste; ysr@777: size_t _undo_waste; ysr@777: ysr@777: OopsInHeapRegionClosure* _evac_failure_cl; ysr@777: G1ParScanHeapEvacClosure* _evac_cl; ysr@777: G1ParScanPartialArrayClosure* _partial_scan_cl; ysr@777: ysr@777: int _hash_seed; ysr@777: int _queue_num; ysr@777: ysr@777: int _term_attempts; ysr@777: #if G1_DETAILED_STATS ysr@777: int _pushes, _pops, _steals, _steal_attempts; ysr@777: int _overflow_pushes; ysr@777: #endif ysr@777: ysr@777: double _start; ysr@777: double _start_strong_roots; ysr@777: double _strong_roots_time; ysr@777: double _start_term; ysr@777: double _term_time; ysr@777: ysr@777: // Map from young-age-index (0 == not young, 1 is youngest) to ysr@777: // surviving words. base is what we get back from the malloc call ysr@777: size_t* _surviving_young_words_base; ysr@777: // this points into the array, as we use the first few entries for padding ysr@777: size_t* _surviving_young_words; ysr@777: ysr@777: #define PADDING_ELEM_NUM (64 / sizeof(size_t)) ysr@777: ysr@777: void add_to_alloc_buffer_waste(size_t waste) { _alloc_buffer_waste += waste; } ysr@777: ysr@777: void add_to_undo_waste(size_t waste) { _undo_waste += waste; } ysr@777: ysr@777: public: ysr@777: G1ParScanThreadState(G1CollectedHeap* g1h, int queue_num) ysr@777: : _g1h(g1h), ysr@777: _refs(g1h->task_queue(queue_num)), ysr@777: _hash_seed(17), _queue_num(queue_num), ysr@777: _term_attempts(0), apetrusenko@980: _age_table(false), ysr@777: #if G1_DETAILED_STATS ysr@777: _pushes(0), _pops(0), _steals(0), ysr@777: _steal_attempts(0), _overflow_pushes(0), ysr@777: #endif ysr@777: _strong_roots_time(0), _term_time(0), ysr@777: _alloc_buffer_waste(0), _undo_waste(0) ysr@777: { ysr@777: // we allocate G1YoungSurvRateNumRegions plus one entries, since ysr@777: // we "sacrifice" entry 0 to keep track of surviving bytes for ysr@777: // non-young regions (where the age is -1) ysr@777: // We also add a few elements at the beginning and at the end in ysr@777: // an attempt to eliminate cache contention ysr@777: size_t real_length = 1 + _g1h->g1_policy()->young_cset_length(); ysr@777: size_t array_length = PADDING_ELEM_NUM + ysr@777: real_length + ysr@777: PADDING_ELEM_NUM; ysr@777: _surviving_young_words_base = NEW_C_HEAP_ARRAY(size_t, array_length); ysr@777: if (_surviving_young_words_base == NULL) ysr@777: vm_exit_out_of_memory(array_length * sizeof(size_t), ysr@777: "Not enough space for young surv histo."); ysr@777: _surviving_young_words = _surviving_young_words_base + PADDING_ELEM_NUM; ysr@777: memset(_surviving_young_words, 0, real_length * sizeof(size_t)); ysr@777: ysr@777: _overflowed_refs = new OverflowQueue(10); ysr@777: ysr@777: _start = os::elapsedTime(); ysr@777: } ysr@777: ysr@777: ~G1ParScanThreadState() { ysr@777: FREE_C_HEAP_ARRAY(size_t, _surviving_young_words_base); ysr@777: } ysr@777: ysr@777: RefToScanQueue* refs() { return _refs; } ysr@777: OverflowQueue* overflowed_refs() { return _overflowed_refs; } apetrusenko@980: ageTable* age_table() { return &_age_table; } apetrusenko@980: apetrusenko@980: G1ParGCAllocBuffer* alloc_buffer(GCAllocPurpose purpose) { ysr@777: return &_alloc_buffers[purpose]; ysr@777: } ysr@777: ysr@777: size_t alloc_buffer_waste() { return _alloc_buffer_waste; } ysr@777: size_t undo_waste() { return _undo_waste; } ysr@777: ysr@777: void push_on_queue(oop* ref) { tonyp@961: assert(ref != NULL, "invariant"); tonyp@961: assert(has_partial_array_mask(ref) || _g1h->obj_in_cs(*ref), "invariant"); tonyp@961: ysr@777: if (!refs()->push(ref)) { ysr@777: overflowed_refs()->push(ref); ysr@777: IF_G1_DETAILED_STATS(note_overflow_push()); ysr@777: } else { ysr@777: IF_G1_DETAILED_STATS(note_push()); ysr@777: } ysr@777: } ysr@777: ysr@777: void pop_from_queue(oop*& ref) { ysr@777: if (!refs()->pop_local(ref)) { ysr@777: ref = NULL; ysr@777: } else { tonyp@961: assert(ref != NULL, "invariant"); tonyp@961: assert(has_partial_array_mask(ref) || _g1h->obj_in_cs(*ref), tonyp@961: "invariant"); tonyp@961: ysr@777: IF_G1_DETAILED_STATS(note_pop()); ysr@777: } ysr@777: } ysr@777: ysr@777: void pop_from_overflow_queue(oop*& ref) { ysr@777: ref = overflowed_refs()->pop(); ysr@777: } ysr@777: ysr@777: int refs_to_scan() { return refs()->size(); } ysr@777: int overflowed_refs_to_scan() { return overflowed_refs()->length(); } ysr@777: ysr@777: HeapWord* allocate_slow(GCAllocPurpose purpose, size_t word_sz) { ysr@777: ysr@777: HeapWord* obj = NULL; ysr@777: if (word_sz * 100 < ysr@777: (size_t)(ParallelGCG1AllocBufferSize / HeapWordSize) * ysr@777: ParallelGCBufferWastePct) { ysr@777: G1ParGCAllocBuffer* alloc_buf = alloc_buffer(purpose); ysr@777: add_to_alloc_buffer_waste(alloc_buf->words_remaining()); ysr@777: alloc_buf->retire(false, false); ysr@777: ysr@777: HeapWord* buf = ysr@777: _g1h->par_allocate_during_gc(purpose, ParallelGCG1AllocBufferSize / HeapWordSize); ysr@777: if (buf == NULL) return NULL; // Let caller handle allocation failure. ysr@777: // Otherwise. ysr@777: alloc_buf->set_buf(buf); ysr@777: ysr@777: obj = alloc_buf->allocate(word_sz); ysr@777: assert(obj != NULL, "buffer was definitely big enough..."); tonyp@961: } else { ysr@777: obj = _g1h->par_allocate_during_gc(purpose, word_sz); ysr@777: } ysr@777: return obj; ysr@777: } ysr@777: ysr@777: HeapWord* allocate(GCAllocPurpose purpose, size_t word_sz) { ysr@777: HeapWord* obj = alloc_buffer(purpose)->allocate(word_sz); ysr@777: if (obj != NULL) return obj; ysr@777: return allocate_slow(purpose, word_sz); ysr@777: } ysr@777: ysr@777: void undo_allocation(GCAllocPurpose purpose, HeapWord* obj, size_t word_sz) { ysr@777: if (alloc_buffer(purpose)->contains(obj)) { ysr@777: guarantee(alloc_buffer(purpose)->contains(obj + word_sz - 1), ysr@777: "should contain whole object"); ysr@777: alloc_buffer(purpose)->undo_allocation(obj, word_sz); jcoomes@916: } else { jcoomes@916: CollectedHeap::fill_with_object(obj, word_sz); ysr@777: add_to_undo_waste(word_sz); ysr@777: } ysr@777: } ysr@777: ysr@777: void set_evac_failure_closure(OopsInHeapRegionClosure* evac_failure_cl) { ysr@777: _evac_failure_cl = evac_failure_cl; ysr@777: } ysr@777: OopsInHeapRegionClosure* evac_failure_closure() { ysr@777: return _evac_failure_cl; ysr@777: } ysr@777: ysr@777: void set_evac_closure(G1ParScanHeapEvacClosure* evac_cl) { ysr@777: _evac_cl = evac_cl; ysr@777: } ysr@777: ysr@777: void set_partial_scan_closure(G1ParScanPartialArrayClosure* partial_scan_cl) { ysr@777: _partial_scan_cl = partial_scan_cl; ysr@777: } ysr@777: ysr@777: int* hash_seed() { return &_hash_seed; } ysr@777: int queue_num() { return _queue_num; } ysr@777: ysr@777: int term_attempts() { return _term_attempts; } ysr@777: void note_term_attempt() { _term_attempts++; } ysr@777: ysr@777: #if G1_DETAILED_STATS ysr@777: int pushes() { return _pushes; } ysr@777: int pops() { return _pops; } ysr@777: int steals() { return _steals; } ysr@777: int steal_attempts() { return _steal_attempts; } ysr@777: int overflow_pushes() { return _overflow_pushes; } ysr@777: ysr@777: void note_push() { _pushes++; } ysr@777: void note_pop() { _pops++; } ysr@777: void note_steal() { _steals++; } ysr@777: void note_steal_attempt() { _steal_attempts++; } ysr@777: void note_overflow_push() { _overflow_pushes++; } ysr@777: #endif ysr@777: ysr@777: void start_strong_roots() { ysr@777: _start_strong_roots = os::elapsedTime(); ysr@777: } ysr@777: void end_strong_roots() { ysr@777: _strong_roots_time += (os::elapsedTime() - _start_strong_roots); ysr@777: } ysr@777: double strong_roots_time() { return _strong_roots_time; } ysr@777: ysr@777: void start_term_time() { ysr@777: note_term_attempt(); ysr@777: _start_term = os::elapsedTime(); ysr@777: } ysr@777: void end_term_time() { ysr@777: _term_time += (os::elapsedTime() - _start_term); ysr@777: } ysr@777: double term_time() { return _term_time; } ysr@777: ysr@777: double elapsed() { ysr@777: return os::elapsedTime() - _start; ysr@777: } ysr@777: ysr@777: size_t* surviving_young_words() { ysr@777: // We add on to hide entry 0 which accumulates surviving words for ysr@777: // age -1 regions (i.e. non-young ones) ysr@777: return _surviving_young_words; ysr@777: } ysr@777: ysr@777: void retire_alloc_buffers() { ysr@777: for (int ap = 0; ap < GCAllocPurposeCount; ++ap) { ysr@777: size_t waste = _alloc_buffers[ap].words_remaining(); ysr@777: add_to_alloc_buffer_waste(waste); ysr@777: _alloc_buffers[ap].retire(true, false); ysr@777: } ysr@777: } ysr@777: tonyp@961: private: tonyp@961: void deal_with_reference(oop* ref_to_scan) { tonyp@961: if (has_partial_array_mask(ref_to_scan)) { tonyp@961: _partial_scan_cl->do_oop_nv(ref_to_scan); tonyp@961: } else { tonyp@961: // Note: we can use "raw" versions of "region_containing" because tonyp@961: // "obj_to_scan" is definitely in the heap, and is not in a tonyp@961: // humongous region. tonyp@961: HeapRegion* r = _g1h->heap_region_containing_raw(ref_to_scan); tonyp@961: _evac_cl->set_region(r); tonyp@961: _evac_cl->do_oop_nv(ref_to_scan); tonyp@961: } tonyp@961: } tonyp@961: tonyp@961: public: ysr@777: void trim_queue() { tonyp@961: // I've replicated the loop twice, first to drain the overflow tonyp@961: // queue, second to drain the task queue. This is better than tonyp@961: // having a single loop, which checks both conditions and, inside tonyp@961: // it, either pops the overflow queue or the task queue, as each tonyp@961: // loop is tighter. Also, the decision to drain the overflow queue tonyp@961: // first is not arbitrary, as the overflow queue is not visible tonyp@961: // to the other workers, whereas the task queue is. So, we want to tonyp@961: // drain the "invisible" entries first, while allowing the other tonyp@961: // workers to potentially steal the "visible" entries. tonyp@961: ysr@777: while (refs_to_scan() > 0 || overflowed_refs_to_scan() > 0) { tonyp@961: while (overflowed_refs_to_scan() > 0) { tonyp@961: oop *ref_to_scan = NULL; tonyp@961: pop_from_overflow_queue(ref_to_scan); tonyp@961: assert(ref_to_scan != NULL, "invariant"); tonyp@961: // We shouldn't have pushed it on the queue if it was not tonyp@961: // pointing into the CSet. tonyp@961: assert(ref_to_scan != NULL, "sanity"); tonyp@961: assert(has_partial_array_mask(ref_to_scan) || tonyp@961: _g1h->obj_in_cs(*ref_to_scan), "sanity"); tonyp@961: tonyp@961: deal_with_reference(ref_to_scan); tonyp@961: } tonyp@961: tonyp@961: while (refs_to_scan() > 0) { tonyp@961: oop *ref_to_scan = NULL; ysr@777: pop_from_queue(ref_to_scan); tonyp@961: tonyp@961: if (ref_to_scan != NULL) { tonyp@961: // We shouldn't have pushed it on the queue if it was not tonyp@961: // pointing into the CSet. tonyp@961: assert(has_partial_array_mask(ref_to_scan) || tonyp@961: _g1h->obj_in_cs(*ref_to_scan), "sanity"); tonyp@961: tonyp@961: deal_with_reference(ref_to_scan); ysr@777: } ysr@777: } ysr@777: } ysr@777: } ysr@777: }; ysr@777: ysr@777: ysr@777: G1ParClosureSuper::G1ParClosureSuper(G1CollectedHeap* g1, G1ParScanThreadState* par_scan_state) : ysr@777: _g1(g1), _g1_rem(_g1->g1_rem_set()), _cm(_g1->concurrent_mark()), ysr@777: _par_scan_state(par_scan_state) { } ysr@777: ysr@777: // This closure is applied to the fields of the objects that have just been copied. ysr@777: // Should probably be made inline and moved in g1OopClosures.inline.hpp. ysr@777: void G1ParScanClosure::do_oop_nv(oop* p) { ysr@777: oop obj = *p; tonyp@961: ysr@777: if (obj != NULL) { tonyp@961: if (_g1->in_cset_fast_test(obj)) { tonyp@961: // We're not going to even bother checking whether the object is tonyp@961: // already forwarded or not, as this usually causes an immediate tonyp@961: // stall. We'll try to prefetch the object (for write, given that tonyp@961: // we might need to install the forwarding reference) and we'll tonyp@961: // get back to it when pop it from the queue tonyp@961: Prefetch::write(obj->mark_addr(), 0); tonyp@961: Prefetch::read(obj->mark_addr(), (HeapWordSize*2)); tonyp@961: tonyp@961: // slightly paranoid test; I'm trying to catch potential tonyp@961: // problems before we go into push_on_queue to know where the tonyp@961: // problem is coming from tonyp@961: assert(obj == *p, "the value of *p should not have changed"); tonyp@961: _par_scan_state->push_on_queue(p); tonyp@961: } else { tonyp@961: _g1_rem->par_write_ref(_from, p, _par_scan_state->queue_num()); ysr@777: } ysr@777: } ysr@777: } ysr@777: ysr@777: void G1ParCopyHelper::mark_forwardee(oop* p) { ysr@777: // This is called _after_ do_oop_work has been called, hence after ysr@777: // the object has been relocated to its new location and *p points ysr@777: // to its new location. ysr@777: ysr@777: oop thisOop = *p; ysr@777: if (thisOop != NULL) { ysr@777: assert((_g1->evacuation_failed()) || (!_g1->obj_in_cs(thisOop)), ysr@777: "shouldn't still be in the CSet if evacuation didn't fail."); ysr@777: HeapWord* addr = (HeapWord*)thisOop; ysr@777: if (_g1->is_in_g1_reserved(addr)) ysr@777: _cm->grayRoot(oop(addr)); ysr@777: } ysr@777: } ysr@777: ysr@777: oop G1ParCopyHelper::copy_to_survivor_space(oop old) { ysr@777: size_t word_sz = old->size(); ysr@777: HeapRegion* from_region = _g1->heap_region_containing_raw(old); ysr@777: // +1 to make the -1 indexes valid... ysr@777: int young_index = from_region->young_index_in_cset()+1; ysr@777: assert( (from_region->is_young() && young_index > 0) || ysr@777: (!from_region->is_young() && young_index == 0), "invariant" ); ysr@777: G1CollectorPolicy* g1p = _g1->g1_policy(); ysr@777: markOop m = old->mark(); apetrusenko@980: int age = m->has_displaced_mark_helper() ? m->displaced_mark_helper()->age() apetrusenko@980: : m->age(); apetrusenko@980: GCAllocPurpose alloc_purpose = g1p->evacuation_destination(from_region, age, ysr@777: word_sz); ysr@777: HeapWord* obj_ptr = _par_scan_state->allocate(alloc_purpose, word_sz); ysr@777: oop obj = oop(obj_ptr); ysr@777: ysr@777: if (obj_ptr == NULL) { ysr@777: // This will either forward-to-self, or detect that someone else has ysr@777: // installed a forwarding pointer. ysr@777: OopsInHeapRegionClosure* cl = _par_scan_state->evac_failure_closure(); ysr@777: return _g1->handle_evacuation_failure_par(cl, old); ysr@777: } ysr@777: tonyp@961: // We're going to allocate linearly, so might as well prefetch ahead. tonyp@961: Prefetch::write(obj_ptr, PrefetchCopyIntervalInBytes); tonyp@961: ysr@777: oop forward_ptr = old->forward_to_atomic(obj); ysr@777: if (forward_ptr == NULL) { ysr@777: Copy::aligned_disjoint_words((HeapWord*) old, obj_ptr, word_sz); tonyp@961: if (g1p->track_object_age(alloc_purpose)) { tonyp@961: // We could simply do obj->incr_age(). However, this causes a tonyp@961: // performance issue. obj->incr_age() will first check whether tonyp@961: // the object has a displaced mark by checking its mark word; tonyp@961: // getting the mark word from the new location of the object tonyp@961: // stalls. So, given that we already have the mark word and we tonyp@961: // are about to install it anyway, it's better to increase the tonyp@961: // age on the mark word, when the object does not have a tonyp@961: // displaced mark word. We're not expecting many objects to have tonyp@961: // a displaced marked word, so that case is not optimized tonyp@961: // further (it could be...) and we simply call obj->incr_age(). tonyp@961: tonyp@961: if (m->has_displaced_mark_helper()) { tonyp@961: // in this case, we have to install the mark word first, tonyp@961: // otherwise obj looks to be forwarded (the old mark word, tonyp@961: // which contains the forward pointer, was copied) tonyp@961: obj->set_mark(m); tonyp@961: obj->incr_age(); tonyp@961: } else { tonyp@961: m = m->incr_age(); apetrusenko@980: obj->set_mark(m); tonyp@961: } apetrusenko@980: _par_scan_state->age_table()->add(obj, word_sz); apetrusenko@980: } else { apetrusenko@980: obj->set_mark(m); tonyp@961: } tonyp@961: ysr@777: // preserve "next" mark bit ysr@777: if (_g1->mark_in_progress() && !_g1->is_obj_ill(old)) { ysr@777: if (!use_local_bitmaps || ysr@777: !_par_scan_state->alloc_buffer(alloc_purpose)->mark(obj_ptr)) { ysr@777: // if we couldn't mark it on the local bitmap (this happens when ysr@777: // the object was not allocated in the GCLab), we have to bite ysr@777: // the bullet and do the standard parallel mark ysr@777: _cm->markAndGrayObjectIfNecessary(obj); ysr@777: } ysr@777: #if 1 ysr@777: if (_g1->isMarkedNext(old)) { ysr@777: _cm->nextMarkBitMap()->parClear((HeapWord*)old); ysr@777: } ysr@777: #endif ysr@777: } ysr@777: ysr@777: size_t* surv_young_words = _par_scan_state->surviving_young_words(); ysr@777: surv_young_words[young_index] += word_sz; ysr@777: ysr@777: if (obj->is_objArray() && arrayOop(obj)->length() >= ParGCArrayScanChunk) { ysr@777: arrayOop(old)->set_length(0); tonyp@961: _par_scan_state->push_on_queue(set_partial_array_mask(old)); ysr@777: } else { tonyp@961: // No point in using the slower heap_region_containing() method, tonyp@961: // given that we know obj is in the heap. tonyp@961: _scanner->set_region(_g1->heap_region_containing_raw(obj)); ysr@777: obj->oop_iterate_backwards(_scanner); ysr@777: } ysr@777: } else { ysr@777: _par_scan_state->undo_allocation(alloc_purpose, obj_ptr, word_sz); ysr@777: obj = forward_ptr; ysr@777: } ysr@777: return obj; ysr@777: } ysr@777: tonyp@961: template tonyp@961: void G1ParCopyClosure::do_oop_work(oop* p) { ysr@777: oop obj = *p; ysr@777: assert(barrier != G1BarrierRS || obj != NULL, ysr@777: "Precondition: G1BarrierRS implies obj is nonNull"); ysr@777: tonyp@961: // The only time we skip the cset test is when we're scanning tonyp@961: // references popped from the queue. And we only push on the queue tonyp@961: // references that we know point into the cset, so no point in tonyp@961: // checking again. But we'll leave an assert here for peace of mind. tonyp@961: assert(!skip_cset_test || _g1->obj_in_cs(obj), "invariant"); tonyp@961: tonyp@961: // here the null check is implicit in the cset_fast_test() test tonyp@961: if (skip_cset_test || _g1->in_cset_fast_test(obj)) { ysr@777: #if G1_REM_SET_LOGGING tonyp@961: gclog_or_tty->print_cr("Loc "PTR_FORMAT" contains pointer "PTR_FORMAT" " tonyp@961: "into CS.", p, (void*) obj); ysr@777: #endif tonyp@961: if (obj->is_forwarded()) { tonyp@961: *p = obj->forwardee(); tonyp@961: } else { tonyp@961: *p = copy_to_survivor_space(obj); ysr@777: } tonyp@961: // When scanning the RS, we only care about objs in CS. tonyp@961: if (barrier == G1BarrierRS) { ysr@777: _g1_rem->par_write_ref(_from, p, _par_scan_state->queue_num()); ysr@777: } tonyp@961: } tonyp@961: tonyp@961: // When scanning moved objs, must look at all oops. tonyp@961: if (barrier == G1BarrierEvac && obj != NULL) { tonyp@961: _g1_rem->par_write_ref(_from, p, _par_scan_state->queue_num()); tonyp@961: } tonyp@961: tonyp@961: if (do_gen_barrier && obj != NULL) { tonyp@961: par_do_barrier(p); tonyp@961: } tonyp@961: } tonyp@961: tonyp@961: template void G1ParCopyClosure::do_oop_work(oop* p); tonyp@961: tonyp@961: template void G1ParScanPartialArrayClosure::process_array_chunk( ysr@777: oop obj, int start, int end) { ysr@777: // process our set of indices (include header in first chunk) ysr@777: assert(start < end, "invariant"); ysr@777: T* const base = (T*)objArrayOop(obj)->base(); tonyp@961: T* const start_addr = (start == 0) ? (T*) obj : base + start; ysr@777: T* const end_addr = base + end; ysr@777: MemRegion mr((HeapWord*)start_addr, (HeapWord*)end_addr); ysr@777: _scanner.set_region(_g1->heap_region_containing(obj)); ysr@777: obj->oop_iterate(&_scanner, mr); ysr@777: } ysr@777: ysr@777: void G1ParScanPartialArrayClosure::do_oop_nv(oop* p) { ysr@777: assert(!UseCompressedOops, "Needs to be fixed to work with compressed oops"); tonyp@961: assert(has_partial_array_mask(p), "invariant"); tonyp@961: oop old = clear_partial_array_mask(p); ysr@777: assert(old->is_objArray(), "must be obj array"); ysr@777: assert(old->is_forwarded(), "must be forwarded"); ysr@777: assert(Universe::heap()->is_in_reserved(old), "must be in heap."); ysr@777: ysr@777: objArrayOop obj = objArrayOop(old->forwardee()); ysr@777: assert((void*)old != (void*)old->forwardee(), "self forwarding here?"); ysr@777: // Process ParGCArrayScanChunk elements now ysr@777: // and push the remainder back onto queue ysr@777: int start = arrayOop(old)->length(); ysr@777: int end = obj->length(); ysr@777: int remainder = end - start; ysr@777: assert(start <= end, "just checking"); ysr@777: if (remainder > 2 * ParGCArrayScanChunk) { ysr@777: // Test above combines last partial chunk with a full chunk ysr@777: end = start + ParGCArrayScanChunk; ysr@777: arrayOop(old)->set_length(end); ysr@777: // Push remainder. tonyp@961: _par_scan_state->push_on_queue(set_partial_array_mask(old)); ysr@777: } else { ysr@777: // Restore length so that the heap remains parsable in ysr@777: // case of evacuation failure. ysr@777: arrayOop(old)->set_length(end); ysr@777: } ysr@777: ysr@777: // process our set of indices (include header in first chunk) ysr@777: process_array_chunk(obj, start, end); ysr@777: } ysr@777: ysr@777: int G1ScanAndBalanceClosure::_nq = 0; ysr@777: ysr@777: class G1ParEvacuateFollowersClosure : public VoidClosure { ysr@777: protected: ysr@777: G1CollectedHeap* _g1h; ysr@777: G1ParScanThreadState* _par_scan_state; ysr@777: RefToScanQueueSet* _queues; ysr@777: ParallelTaskTerminator* _terminator; ysr@777: ysr@777: G1ParScanThreadState* par_scan_state() { return _par_scan_state; } ysr@777: RefToScanQueueSet* queues() { return _queues; } ysr@777: ParallelTaskTerminator* terminator() { return _terminator; } ysr@777: ysr@777: public: ysr@777: G1ParEvacuateFollowersClosure(G1CollectedHeap* g1h, ysr@777: G1ParScanThreadState* par_scan_state, ysr@777: RefToScanQueueSet* queues, ysr@777: ParallelTaskTerminator* terminator) ysr@777: : _g1h(g1h), _par_scan_state(par_scan_state), ysr@777: _queues(queues), _terminator(terminator) {} ysr@777: ysr@777: void do_void() { ysr@777: G1ParScanThreadState* pss = par_scan_state(); ysr@777: while (true) { ysr@777: oop* ref_to_scan; ysr@777: pss->trim_queue(); ysr@777: IF_G1_DETAILED_STATS(pss->note_steal_attempt()); ysr@777: if (queues()->steal(pss->queue_num(), ysr@777: pss->hash_seed(), ysr@777: ref_to_scan)) { ysr@777: IF_G1_DETAILED_STATS(pss->note_steal()); tonyp@961: tonyp@961: // slightly paranoid tests; I'm trying to catch potential tonyp@961: // problems before we go into push_on_queue to know where the tonyp@961: // problem is coming from tonyp@961: assert(ref_to_scan != NULL, "invariant"); tonyp@961: assert(has_partial_array_mask(ref_to_scan) || tonyp@961: _g1h->obj_in_cs(*ref_to_scan), "invariant"); ysr@777: pss->push_on_queue(ref_to_scan); ysr@777: continue; ysr@777: } ysr@777: pss->start_term_time(); ysr@777: if (terminator()->offer_termination()) break; ysr@777: pss->end_term_time(); ysr@777: } ysr@777: pss->end_term_time(); ysr@777: pss->retire_alloc_buffers(); ysr@777: } ysr@777: }; ysr@777: ysr@777: class G1ParTask : public AbstractGangTask { ysr@777: protected: ysr@777: G1CollectedHeap* _g1h; ysr@777: RefToScanQueueSet *_queues; ysr@777: ParallelTaskTerminator _terminator; ysr@777: ysr@777: Mutex _stats_lock; ysr@777: Mutex* stats_lock() { return &_stats_lock; } ysr@777: ysr@777: size_t getNCards() { ysr@777: return (_g1h->capacity() + G1BlockOffsetSharedArray::N_bytes - 1) ysr@777: / G1BlockOffsetSharedArray::N_bytes; ysr@777: } ysr@777: ysr@777: public: ysr@777: G1ParTask(G1CollectedHeap* g1h, int workers, RefToScanQueueSet *task_queues) ysr@777: : AbstractGangTask("G1 collection"), ysr@777: _g1h(g1h), ysr@777: _queues(task_queues), ysr@777: _terminator(workers, _queues), ysr@777: _stats_lock(Mutex::leaf, "parallel G1 stats lock", true) ysr@777: {} ysr@777: ysr@777: RefToScanQueueSet* queues() { return _queues; } ysr@777: ysr@777: RefToScanQueue *work_queue(int i) { ysr@777: return queues()->queue(i); ysr@777: } ysr@777: ysr@777: void work(int i) { ysr@777: ResourceMark rm; ysr@777: HandleMark hm; ysr@777: tonyp@961: G1ParScanThreadState pss(_g1h, i); tonyp@961: G1ParScanHeapEvacClosure scan_evac_cl(_g1h, &pss); tonyp@961: G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss); tonyp@961: G1ParScanPartialArrayClosure partial_scan_cl(_g1h, &pss); ysr@777: ysr@777: pss.set_evac_closure(&scan_evac_cl); ysr@777: pss.set_evac_failure_closure(&evac_failure_cl); ysr@777: pss.set_partial_scan_closure(&partial_scan_cl); ysr@777: ysr@777: G1ParScanExtRootClosure only_scan_root_cl(_g1h, &pss); ysr@777: G1ParScanPermClosure only_scan_perm_cl(_g1h, &pss); ysr@777: G1ParScanHeapRSClosure only_scan_heap_rs_cl(_g1h, &pss); ysr@777: G1ParScanAndMarkExtRootClosure scan_mark_root_cl(_g1h, &pss); ysr@777: G1ParScanAndMarkPermClosure scan_mark_perm_cl(_g1h, &pss); ysr@777: G1ParScanAndMarkHeapRSClosure scan_mark_heap_rs_cl(_g1h, &pss); ysr@777: ysr@777: OopsInHeapRegionClosure *scan_root_cl; ysr@777: OopsInHeapRegionClosure *scan_perm_cl; ysr@777: OopsInHeapRegionClosure *scan_so_cl; ysr@777: ysr@777: if (_g1h->g1_policy()->should_initiate_conc_mark()) { ysr@777: scan_root_cl = &scan_mark_root_cl; ysr@777: scan_perm_cl = &scan_mark_perm_cl; ysr@777: scan_so_cl = &scan_mark_heap_rs_cl; ysr@777: } else { ysr@777: scan_root_cl = &only_scan_root_cl; ysr@777: scan_perm_cl = &only_scan_perm_cl; ysr@777: scan_so_cl = &only_scan_heap_rs_cl; ysr@777: } ysr@777: ysr@777: pss.start_strong_roots(); ysr@777: _g1h->g1_process_strong_roots(/* not collecting perm */ false, ysr@777: SharedHeap::SO_AllClasses, ysr@777: scan_root_cl, ysr@777: &only_scan_heap_rs_cl, ysr@777: scan_so_cl, ysr@777: scan_perm_cl, ysr@777: i); ysr@777: pss.end_strong_roots(); ysr@777: { ysr@777: double start = os::elapsedTime(); ysr@777: G1ParEvacuateFollowersClosure evac(_g1h, &pss, _queues, &_terminator); ysr@777: evac.do_void(); ysr@777: double elapsed_ms = (os::elapsedTime()-start)*1000.0; ysr@777: double term_ms = pss.term_time()*1000.0; ysr@777: _g1h->g1_policy()->record_obj_copy_time(i, elapsed_ms-term_ms); ysr@777: _g1h->g1_policy()->record_termination_time(i, term_ms); ysr@777: } apetrusenko@980: if (G1UseSurvivorSpace) { apetrusenko@980: _g1h->g1_policy()->record_thread_age_table(pss.age_table()); apetrusenko@980: } ysr@777: _g1h->update_surviving_young_words(pss.surviving_young_words()+1); ysr@777: ysr@777: // Clean up any par-expanded rem sets. ysr@777: HeapRegionRemSet::par_cleanup(); ysr@777: ysr@777: MutexLocker x(stats_lock()); ysr@777: if (ParallelGCVerbose) { ysr@777: gclog_or_tty->print("Thread %d complete:\n", i); ysr@777: #if G1_DETAILED_STATS ysr@777: gclog_or_tty->print(" Pushes: %7d Pops: %7d Overflows: %7d Steals %7d (in %d attempts)\n", ysr@777: pss.pushes(), ysr@777: pss.pops(), ysr@777: pss.overflow_pushes(), ysr@777: pss.steals(), ysr@777: pss.steal_attempts()); ysr@777: #endif ysr@777: double elapsed = pss.elapsed(); ysr@777: double strong_roots = pss.strong_roots_time(); ysr@777: double term = pss.term_time(); ysr@777: gclog_or_tty->print(" Elapsed: %7.2f ms.\n" ysr@777: " Strong roots: %7.2f ms (%6.2f%%)\n" ysr@777: " Termination: %7.2f ms (%6.2f%%) (in %d entries)\n", ysr@777: elapsed * 1000.0, ysr@777: strong_roots * 1000.0, (strong_roots*100.0/elapsed), ysr@777: term * 1000.0, (term*100.0/elapsed), ysr@777: pss.term_attempts()); ysr@777: size_t total_waste = pss.alloc_buffer_waste() + pss.undo_waste(); ysr@777: gclog_or_tty->print(" Waste: %8dK\n" ysr@777: " Alloc Buffer: %8dK\n" ysr@777: " Undo: %8dK\n", ysr@777: (total_waste * HeapWordSize) / K, ysr@777: (pss.alloc_buffer_waste() * HeapWordSize) / K, ysr@777: (pss.undo_waste() * HeapWordSize) / K); ysr@777: } ysr@777: ysr@777: assert(pss.refs_to_scan() == 0, "Task queue should be empty"); ysr@777: assert(pss.overflowed_refs_to_scan() == 0, "Overflow queue should be empty"); ysr@777: } ysr@777: }; ysr@777: ysr@777: // *** Common G1 Evacuation Stuff ysr@777: ysr@777: class G1CountClosure: public OopsInHeapRegionClosure { ysr@777: public: ysr@777: int n; ysr@777: G1CountClosure() : n(0) {} ysr@777: void do_oop(narrowOop* p) { ysr@777: guarantee(false, "NYI"); ysr@777: } ysr@777: void do_oop(oop* p) { ysr@777: oop obj = *p; ysr@777: assert(obj != NULL && G1CollectedHeap::heap()->obj_in_cs(obj), ysr@777: "Rem set closure called on non-rem-set pointer."); ysr@777: n++; ysr@777: } ysr@777: }; ysr@777: ysr@777: static G1CountClosure count_closure; ysr@777: ysr@777: void ysr@777: G1CollectedHeap:: ysr@777: g1_process_strong_roots(bool collecting_perm_gen, ysr@777: SharedHeap::ScanningOption so, ysr@777: OopClosure* scan_non_heap_roots, ysr@777: OopsInHeapRegionClosure* scan_rs, ysr@777: OopsInHeapRegionClosure* scan_so, ysr@777: OopsInGenClosure* scan_perm, ysr@777: int worker_i) { ysr@777: // First scan the strong roots, including the perm gen. ysr@777: double ext_roots_start = os::elapsedTime(); ysr@777: double closure_app_time_sec = 0.0; ysr@777: ysr@777: BufferingOopClosure buf_scan_non_heap_roots(scan_non_heap_roots); ysr@777: BufferingOopsInGenClosure buf_scan_perm(scan_perm); ysr@777: buf_scan_perm.set_generation(perm_gen()); ysr@777: ysr@777: process_strong_roots(collecting_perm_gen, so, ysr@777: &buf_scan_non_heap_roots, ysr@777: &buf_scan_perm); ysr@777: // Finish up any enqueued closure apps. ysr@777: buf_scan_non_heap_roots.done(); ysr@777: buf_scan_perm.done(); ysr@777: double ext_roots_end = os::elapsedTime(); ysr@777: g1_policy()->reset_obj_copy_time(worker_i); ysr@777: double obj_copy_time_sec = ysr@777: buf_scan_non_heap_roots.closure_app_seconds() + ysr@777: buf_scan_perm.closure_app_seconds(); ysr@777: g1_policy()->record_obj_copy_time(worker_i, obj_copy_time_sec * 1000.0); ysr@777: double ext_root_time_ms = ysr@777: ((ext_roots_end - ext_roots_start) - obj_copy_time_sec) * 1000.0; ysr@777: g1_policy()->record_ext_root_scan_time(worker_i, ext_root_time_ms); ysr@777: ysr@777: // Scan strong roots in mark stack. ysr@777: if (!_process_strong_tasks->is_task_claimed(G1H_PS_mark_stack_oops_do)) { ysr@777: concurrent_mark()->oops_do(scan_non_heap_roots); ysr@777: } ysr@777: double mark_stack_scan_ms = (os::elapsedTime() - ext_roots_end) * 1000.0; ysr@777: g1_policy()->record_mark_stack_scan_time(worker_i, mark_stack_scan_ms); ysr@777: ysr@777: // XXX What should this be doing in the parallel case? ysr@777: g1_policy()->record_collection_pause_end_CH_strong_roots(); ysr@777: if (G1VerifyRemSet) { ysr@777: // :::: FIXME :::: ysr@777: // The stupid remembered set doesn't know how to filter out dead ysr@777: // objects, which the smart one does, and so when it is created ysr@777: // and then compared the number of entries in each differs and ysr@777: // the verification code fails. ysr@777: guarantee(false, "verification code is broken, see note"); ysr@777: ysr@777: // Let's make sure that the current rem set agrees with the stupidest ysr@777: // one possible! ysr@777: bool refs_enabled = ref_processor()->discovery_enabled(); ysr@777: if (refs_enabled) ref_processor()->disable_discovery(); ysr@777: StupidG1RemSet stupid(this); ysr@777: count_closure.n = 0; ysr@777: stupid.oops_into_collection_set_do(&count_closure, worker_i); ysr@777: int stupid_n = count_closure.n; ysr@777: count_closure.n = 0; ysr@777: g1_rem_set()->oops_into_collection_set_do(&count_closure, worker_i); ysr@777: guarantee(count_closure.n == stupid_n, "Old and new rem sets differ."); ysr@777: gclog_or_tty->print_cr("\nFound %d pointers in heap RS.", count_closure.n); ysr@777: if (refs_enabled) ref_processor()->enable_discovery(); ysr@777: } ysr@777: if (scan_so != NULL) { ysr@777: scan_scan_only_set(scan_so, worker_i); ysr@777: } ysr@777: // Now scan the complement of the collection set. ysr@777: if (scan_rs != NULL) { ysr@777: g1_rem_set()->oops_into_collection_set_do(scan_rs, worker_i); ysr@777: } ysr@777: // Finish with the ref_processor roots. ysr@777: if (!_process_strong_tasks->is_task_claimed(G1H_PS_refProcessor_oops_do)) { ysr@777: ref_processor()->oops_do(scan_non_heap_roots); ysr@777: } ysr@777: g1_policy()->record_collection_pause_end_G1_strong_roots(); ysr@777: _process_strong_tasks->all_tasks_completed(); ysr@777: } ysr@777: ysr@777: void ysr@777: G1CollectedHeap::scan_scan_only_region(HeapRegion* r, ysr@777: OopsInHeapRegionClosure* oc, ysr@777: int worker_i) { ysr@777: HeapWord* startAddr = r->bottom(); ysr@777: HeapWord* endAddr = r->used_region().end(); ysr@777: ysr@777: oc->set_region(r); ysr@777: ysr@777: HeapWord* p = r->bottom(); ysr@777: HeapWord* t = r->top(); ysr@777: guarantee( p == r->next_top_at_mark_start(), "invariant" ); ysr@777: while (p < t) { ysr@777: oop obj = oop(p); ysr@777: p += obj->oop_iterate(oc); ysr@777: } ysr@777: } ysr@777: ysr@777: void ysr@777: G1CollectedHeap::scan_scan_only_set(OopsInHeapRegionClosure* oc, ysr@777: int worker_i) { ysr@777: double start = os::elapsedTime(); ysr@777: ysr@777: BufferingOopsInHeapRegionClosure boc(oc); ysr@777: ysr@777: FilterInHeapRegionAndIntoCSClosure scan_only(this, &boc); ysr@777: FilterAndMarkInHeapRegionAndIntoCSClosure scan_and_mark(this, &boc, concurrent_mark()); ysr@777: ysr@777: OopsInHeapRegionClosure *foc; ysr@777: if (g1_policy()->should_initiate_conc_mark()) ysr@777: foc = &scan_and_mark; ysr@777: else ysr@777: foc = &scan_only; ysr@777: ysr@777: HeapRegion* hr; ysr@777: int n = 0; ysr@777: while ((hr = _young_list->par_get_next_scan_only_region()) != NULL) { ysr@777: scan_scan_only_region(hr, foc, worker_i); ysr@777: ++n; ysr@777: } ysr@777: boc.done(); ysr@777: ysr@777: double closure_app_s = boc.closure_app_seconds(); ysr@777: g1_policy()->record_obj_copy_time(worker_i, closure_app_s * 1000.0); ysr@777: double ms = (os::elapsedTime() - start - closure_app_s)*1000.0; ysr@777: g1_policy()->record_scan_only_time(worker_i, ms, n); ysr@777: } ysr@777: ysr@777: void ysr@777: G1CollectedHeap::g1_process_weak_roots(OopClosure* root_closure, ysr@777: OopClosure* non_root_closure) { ysr@777: SharedHeap::process_weak_roots(root_closure, non_root_closure); ysr@777: } ysr@777: ysr@777: ysr@777: class SaveMarksClosure: public HeapRegionClosure { ysr@777: public: ysr@777: bool doHeapRegion(HeapRegion* r) { ysr@777: r->save_marks(); ysr@777: return false; ysr@777: } ysr@777: }; ysr@777: ysr@777: void G1CollectedHeap::save_marks() { ysr@777: if (ParallelGCThreads == 0) { ysr@777: SaveMarksClosure sm; ysr@777: heap_region_iterate(&sm); ysr@777: } ysr@777: // We do this even in the parallel case ysr@777: perm_gen()->save_marks(); ysr@777: } ysr@777: ysr@777: void G1CollectedHeap::evacuate_collection_set() { ysr@777: set_evacuation_failed(false); ysr@777: ysr@777: g1_rem_set()->prepare_for_oops_into_collection_set_do(); ysr@777: concurrent_g1_refine()->set_use_cache(false); ysr@777: int n_workers = (ParallelGCThreads > 0 ? workers()->total_workers() : 1); ysr@777: ysr@777: set_par_threads(n_workers); ysr@777: G1ParTask g1_par_task(this, n_workers, _task_queues); ysr@777: ysr@777: init_for_evac_failure(NULL); ysr@777: ysr@777: change_strong_roots_parity(); // In preparation for parallel strong roots. ysr@777: rem_set()->prepare_for_younger_refs_iterate(true); ysr@777: double start_par = os::elapsedTime(); ysr@777: ysr@777: if (ParallelGCThreads > 0) { ysr@777: // The individual threads will set their evac-failure closures. ysr@777: workers()->run_task(&g1_par_task); ysr@777: } else { ysr@777: g1_par_task.work(0); ysr@777: } ysr@777: ysr@777: double par_time = (os::elapsedTime() - start_par) * 1000.0; ysr@777: g1_policy()->record_par_time(par_time); ysr@777: set_par_threads(0); ysr@777: // Is this the right thing to do here? We don't save marks ysr@777: // on individual heap regions when we allocate from ysr@777: // them in parallel, so this seems like the correct place for this. apetrusenko@980: retire_all_alloc_regions(); ysr@777: { ysr@777: G1IsAliveClosure is_alive(this); ysr@777: G1KeepAliveClosure keep_alive(this); ysr@777: JNIHandles::weak_oops_do(&is_alive, &keep_alive); ysr@777: } ysr@777: ysr@777: g1_rem_set()->cleanup_after_oops_into_collection_set_do(); ysr@777: concurrent_g1_refine()->set_use_cache(true); ysr@777: ysr@777: finalize_for_evac_failure(); ysr@777: ysr@777: // Must do this before removing self-forwarding pointers, which clears ysr@777: // the per-region evac-failure flags. ysr@777: concurrent_mark()->complete_marking_in_collection_set(); ysr@777: ysr@777: if (evacuation_failed()) { ysr@777: remove_self_forwarding_pointers(); ysr@777: ysr@777: if (PrintGCDetails) { ysr@777: gclog_or_tty->print(" (evacuation failed)"); ysr@777: } else if (PrintGC) { ysr@777: gclog_or_tty->print("--"); ysr@777: } ysr@777: } ysr@777: ysr@777: COMPILER2_PRESENT(DerivedPointerTable::update_pointers()); ysr@777: } ysr@777: ysr@777: void G1CollectedHeap::free_region(HeapRegion* hr) { ysr@777: size_t pre_used = 0; ysr@777: size_t cleared_h_regions = 0; ysr@777: size_t freed_regions = 0; ysr@777: UncleanRegionList local_list; ysr@777: ysr@777: HeapWord* start = hr->bottom(); ysr@777: HeapWord* end = hr->prev_top_at_mark_start(); ysr@777: size_t used_bytes = hr->used(); ysr@777: size_t live_bytes = hr->max_live_bytes(); ysr@777: if (used_bytes > 0) { ysr@777: guarantee( live_bytes <= used_bytes, "invariant" ); ysr@777: } else { ysr@777: guarantee( live_bytes == 0, "invariant" ); ysr@777: } ysr@777: ysr@777: size_t garbage_bytes = used_bytes - live_bytes; ysr@777: if (garbage_bytes > 0) ysr@777: g1_policy()->decrease_known_garbage_bytes(garbage_bytes); ysr@777: ysr@777: free_region_work(hr, pre_used, cleared_h_regions, freed_regions, ysr@777: &local_list); ysr@777: finish_free_region_work(pre_used, cleared_h_regions, freed_regions, ysr@777: &local_list); ysr@777: } ysr@777: ysr@777: void ysr@777: G1CollectedHeap::free_region_work(HeapRegion* hr, ysr@777: size_t& pre_used, ysr@777: size_t& cleared_h_regions, ysr@777: size_t& freed_regions, ysr@777: UncleanRegionList* list, ysr@777: bool par) { ysr@777: assert(!hr->popular(), "should not free popular regions"); ysr@777: pre_used += hr->used(); ysr@777: if (hr->isHumongous()) { ysr@777: assert(hr->startsHumongous(), ysr@777: "Only the start of a humongous region should be freed."); ysr@777: int ind = _hrs->find(hr); ysr@777: assert(ind != -1, "Should have an index."); ysr@777: // Clear the start region. ysr@777: hr->hr_clear(par, true /*clear_space*/); ysr@777: list->insert_before_head(hr); ysr@777: cleared_h_regions++; ysr@777: freed_regions++; ysr@777: // Clear any continued regions. ysr@777: ind++; ysr@777: while ((size_t)ind < n_regions()) { ysr@777: HeapRegion* hrc = _hrs->at(ind); ysr@777: if (!hrc->continuesHumongous()) break; ysr@777: // Otherwise, does continue the H region. ysr@777: assert(hrc->humongous_start_region() == hr, "Huh?"); ysr@777: hrc->hr_clear(par, true /*clear_space*/); ysr@777: cleared_h_regions++; ysr@777: freed_regions++; ysr@777: list->insert_before_head(hrc); ysr@777: ind++; ysr@777: } ysr@777: } else { ysr@777: hr->hr_clear(par, true /*clear_space*/); ysr@777: list->insert_before_head(hr); ysr@777: freed_regions++; ysr@777: // If we're using clear2, this should not be enabled. ysr@777: // assert(!hr->in_cohort(), "Can't be both free and in a cohort."); ysr@777: } ysr@777: } ysr@777: ysr@777: void G1CollectedHeap::finish_free_region_work(size_t pre_used, ysr@777: size_t cleared_h_regions, ysr@777: size_t freed_regions, ysr@777: UncleanRegionList* list) { ysr@777: if (list != NULL && list->sz() > 0) { ysr@777: prepend_region_list_on_unclean_list(list); ysr@777: } ysr@777: // Acquire a lock, if we're parallel, to update possibly-shared ysr@777: // variables. ysr@777: Mutex* lock = (n_par_threads() > 0) ? ParGCRareEvent_lock : NULL; ysr@777: { ysr@777: MutexLockerEx x(lock, Mutex::_no_safepoint_check_flag); ysr@777: _summary_bytes_used -= pre_used; ysr@777: _num_humongous_regions -= (int) cleared_h_regions; ysr@777: _free_regions += freed_regions; ysr@777: } ysr@777: } ysr@777: ysr@777: ysr@777: void G1CollectedHeap::dirtyCardsForYoungRegions(CardTableModRefBS* ct_bs, HeapRegion* list) { ysr@777: while (list != NULL) { ysr@777: guarantee( list->is_young(), "invariant" ); ysr@777: ysr@777: HeapWord* bottom = list->bottom(); ysr@777: HeapWord* end = list->end(); ysr@777: MemRegion mr(bottom, end); ysr@777: ct_bs->dirty(mr); ysr@777: ysr@777: list = list->get_next_young_region(); ysr@777: } ysr@777: } ysr@777: ysr@777: void G1CollectedHeap::cleanUpCardTable() { ysr@777: CardTableModRefBS* ct_bs = (CardTableModRefBS*) (barrier_set()); ysr@777: double start = os::elapsedTime(); ysr@777: ysr@777: ct_bs->clear(_g1_committed); ysr@777: ysr@777: // now, redirty the cards of the scan-only and survivor regions ysr@777: // (it seemed faster to do it this way, instead of iterating over ysr@777: // all regions and then clearing / dirtying as approprite) ysr@777: dirtyCardsForYoungRegions(ct_bs, _young_list->first_scan_only_region()); ysr@777: dirtyCardsForYoungRegions(ct_bs, _young_list->first_survivor_region()); ysr@777: ysr@777: double elapsed = os::elapsedTime() - start; ysr@777: g1_policy()->record_clear_ct_time( elapsed * 1000.0); ysr@777: } ysr@777: ysr@777: ysr@777: void G1CollectedHeap::do_collection_pause_if_appropriate(size_t word_size) { ysr@777: // First do any popular regions. ysr@777: HeapRegion* hr; ysr@777: while ((hr = popular_region_to_evac()) != NULL) { ysr@777: evac_popular_region(hr); ysr@777: } ysr@777: // Now do heuristic pauses. ysr@777: if (g1_policy()->should_do_collection_pause(word_size)) { ysr@777: do_collection_pause(); ysr@777: } ysr@777: } ysr@777: ysr@777: void G1CollectedHeap::free_collection_set(HeapRegion* cs_head) { ysr@777: double young_time_ms = 0.0; ysr@777: double non_young_time_ms = 0.0; ysr@777: ysr@777: G1CollectorPolicy* policy = g1_policy(); ysr@777: ysr@777: double start_sec = os::elapsedTime(); ysr@777: bool non_young = true; ysr@777: ysr@777: HeapRegion* cur = cs_head; ysr@777: int age_bound = -1; ysr@777: size_t rs_lengths = 0; ysr@777: ysr@777: while (cur != NULL) { ysr@777: if (non_young) { ysr@777: if (cur->is_young()) { ysr@777: double end_sec = os::elapsedTime(); ysr@777: double elapsed_ms = (end_sec - start_sec) * 1000.0; ysr@777: non_young_time_ms += elapsed_ms; ysr@777: ysr@777: start_sec = os::elapsedTime(); ysr@777: non_young = false; ysr@777: } ysr@777: } else { ysr@777: if (!cur->is_on_free_list()) { ysr@777: double end_sec = os::elapsedTime(); ysr@777: double elapsed_ms = (end_sec - start_sec) * 1000.0; ysr@777: young_time_ms += elapsed_ms; ysr@777: ysr@777: start_sec = os::elapsedTime(); ysr@777: non_young = true; ysr@777: } ysr@777: } ysr@777: ysr@777: rs_lengths += cur->rem_set()->occupied(); ysr@777: ysr@777: HeapRegion* next = cur->next_in_collection_set(); ysr@777: assert(cur->in_collection_set(), "bad CS"); ysr@777: cur->set_next_in_collection_set(NULL); ysr@777: cur->set_in_collection_set(false); ysr@777: ysr@777: if (cur->is_young()) { ysr@777: int index = cur->young_index_in_cset(); ysr@777: guarantee( index != -1, "invariant" ); ysr@777: guarantee( (size_t)index < policy->young_cset_length(), "invariant" ); ysr@777: size_t words_survived = _surviving_young_words[index]; ysr@777: cur->record_surv_words_in_group(words_survived); ysr@777: } else { ysr@777: int index = cur->young_index_in_cset(); ysr@777: guarantee( index == -1, "invariant" ); ysr@777: } ysr@777: ysr@777: assert( (cur->is_young() && cur->young_index_in_cset() > -1) || ysr@777: (!cur->is_young() && cur->young_index_in_cset() == -1), ysr@777: "invariant" ); ysr@777: ysr@777: if (!cur->evacuation_failed()) { ysr@777: // And the region is empty. ysr@777: assert(!cur->is_empty(), ysr@777: "Should not have empty regions in a CS."); ysr@777: free_region(cur); ysr@777: } else { ysr@777: guarantee( !cur->is_scan_only(), "should not be scan only" ); ysr@777: cur->uninstall_surv_rate_group(); ysr@777: if (cur->is_young()) ysr@777: cur->set_young_index_in_cset(-1); ysr@777: cur->set_not_young(); ysr@777: cur->set_evacuation_failed(false); ysr@777: } ysr@777: cur = next; ysr@777: } ysr@777: ysr@777: policy->record_max_rs_lengths(rs_lengths); ysr@777: policy->cset_regions_freed(); ysr@777: ysr@777: double end_sec = os::elapsedTime(); ysr@777: double elapsed_ms = (end_sec - start_sec) * 1000.0; ysr@777: if (non_young) ysr@777: non_young_time_ms += elapsed_ms; ysr@777: else ysr@777: young_time_ms += elapsed_ms; ysr@777: ysr@777: policy->record_young_free_cset_time_ms(young_time_ms); ysr@777: policy->record_non_young_free_cset_time_ms(non_young_time_ms); ysr@777: } ysr@777: ysr@777: HeapRegion* ysr@777: G1CollectedHeap::alloc_region_from_unclean_list_locked(bool zero_filled) { ysr@777: assert(ZF_mon->owned_by_self(), "Precondition"); ysr@777: HeapRegion* res = pop_unclean_region_list_locked(); ysr@777: if (res != NULL) { ysr@777: assert(!res->continuesHumongous() && ysr@777: res->zero_fill_state() != HeapRegion::Allocated, ysr@777: "Only free regions on unclean list."); ysr@777: if (zero_filled) { ysr@777: res->ensure_zero_filled_locked(); ysr@777: res->set_zero_fill_allocated(); ysr@777: } ysr@777: } ysr@777: return res; ysr@777: } ysr@777: ysr@777: HeapRegion* G1CollectedHeap::alloc_region_from_unclean_list(bool zero_filled) { ysr@777: MutexLockerEx zx(ZF_mon, Mutex::_no_safepoint_check_flag); ysr@777: return alloc_region_from_unclean_list_locked(zero_filled); ysr@777: } ysr@777: ysr@777: void G1CollectedHeap::put_region_on_unclean_list(HeapRegion* r) { ysr@777: MutexLockerEx x(ZF_mon, Mutex::_no_safepoint_check_flag); ysr@777: put_region_on_unclean_list_locked(r); ysr@777: if (should_zf()) ZF_mon->notify_all(); // Wake up ZF thread. ysr@777: } ysr@777: ysr@777: void G1CollectedHeap::set_unclean_regions_coming(bool b) { ysr@777: MutexLockerEx x(Cleanup_mon); ysr@777: set_unclean_regions_coming_locked(b); ysr@777: } ysr@777: ysr@777: void G1CollectedHeap::set_unclean_regions_coming_locked(bool b) { ysr@777: assert(Cleanup_mon->owned_by_self(), "Precondition"); ysr@777: _unclean_regions_coming = b; ysr@777: // Wake up mutator threads that might be waiting for completeCleanup to ysr@777: // finish. ysr@777: if (!b) Cleanup_mon->notify_all(); ysr@777: } ysr@777: ysr@777: void G1CollectedHeap::wait_for_cleanup_complete() { ysr@777: MutexLockerEx x(Cleanup_mon); ysr@777: wait_for_cleanup_complete_locked(); ysr@777: } ysr@777: ysr@777: void G1CollectedHeap::wait_for_cleanup_complete_locked() { ysr@777: assert(Cleanup_mon->owned_by_self(), "precondition"); ysr@777: while (_unclean_regions_coming) { ysr@777: Cleanup_mon->wait(); ysr@777: } ysr@777: } ysr@777: ysr@777: void ysr@777: G1CollectedHeap::put_region_on_unclean_list_locked(HeapRegion* r) { ysr@777: assert(ZF_mon->owned_by_self(), "precondition."); ysr@777: _unclean_region_list.insert_before_head(r); ysr@777: } ysr@777: ysr@777: void ysr@777: G1CollectedHeap::prepend_region_list_on_unclean_list(UncleanRegionList* list) { ysr@777: MutexLockerEx x(ZF_mon, Mutex::_no_safepoint_check_flag); ysr@777: prepend_region_list_on_unclean_list_locked(list); ysr@777: if (should_zf()) ZF_mon->notify_all(); // Wake up ZF thread. ysr@777: } ysr@777: ysr@777: void ysr@777: G1CollectedHeap:: ysr@777: prepend_region_list_on_unclean_list_locked(UncleanRegionList* list) { ysr@777: assert(ZF_mon->owned_by_self(), "precondition."); ysr@777: _unclean_region_list.prepend_list(list); ysr@777: } ysr@777: ysr@777: HeapRegion* G1CollectedHeap::pop_unclean_region_list_locked() { ysr@777: assert(ZF_mon->owned_by_self(), "precondition."); ysr@777: HeapRegion* res = _unclean_region_list.pop(); ysr@777: if (res != NULL) { ysr@777: // Inform ZF thread that there's a new unclean head. ysr@777: if (_unclean_region_list.hd() != NULL && should_zf()) ysr@777: ZF_mon->notify_all(); ysr@777: } ysr@777: return res; ysr@777: } ysr@777: ysr@777: HeapRegion* G1CollectedHeap::peek_unclean_region_list_locked() { ysr@777: assert(ZF_mon->owned_by_self(), "precondition."); ysr@777: return _unclean_region_list.hd(); ysr@777: } ysr@777: ysr@777: ysr@777: bool G1CollectedHeap::move_cleaned_region_to_free_list_locked() { ysr@777: assert(ZF_mon->owned_by_self(), "Precondition"); ysr@777: HeapRegion* r = peek_unclean_region_list_locked(); ysr@777: if (r != NULL && r->zero_fill_state() == HeapRegion::ZeroFilled) { ysr@777: // Result of below must be equal to "r", since we hold the lock. ysr@777: (void)pop_unclean_region_list_locked(); ysr@777: put_free_region_on_list_locked(r); ysr@777: return true; ysr@777: } else { ysr@777: return false; ysr@777: } ysr@777: } ysr@777: ysr@777: bool G1CollectedHeap::move_cleaned_region_to_free_list() { ysr@777: MutexLockerEx x(ZF_mon, Mutex::_no_safepoint_check_flag); ysr@777: return move_cleaned_region_to_free_list_locked(); ysr@777: } ysr@777: ysr@777: ysr@777: void G1CollectedHeap::put_free_region_on_list_locked(HeapRegion* r) { ysr@777: assert(ZF_mon->owned_by_self(), "precondition."); ysr@777: assert(_free_region_list_size == free_region_list_length(), "Inv"); ysr@777: assert(r->zero_fill_state() == HeapRegion::ZeroFilled, ysr@777: "Regions on free list must be zero filled"); ysr@777: assert(!r->isHumongous(), "Must not be humongous."); ysr@777: assert(r->is_empty(), "Better be empty"); ysr@777: assert(!r->is_on_free_list(), ysr@777: "Better not already be on free list"); ysr@777: assert(!r->is_on_unclean_list(), ysr@777: "Better not already be on unclean list"); ysr@777: r->set_on_free_list(true); ysr@777: r->set_next_on_free_list(_free_region_list); ysr@777: _free_region_list = r; ysr@777: _free_region_list_size++; ysr@777: assert(_free_region_list_size == free_region_list_length(), "Inv"); ysr@777: } ysr@777: ysr@777: void G1CollectedHeap::put_free_region_on_list(HeapRegion* r) { ysr@777: MutexLockerEx x(ZF_mon, Mutex::_no_safepoint_check_flag); ysr@777: put_free_region_on_list_locked(r); ysr@777: } ysr@777: ysr@777: HeapRegion* G1CollectedHeap::pop_free_region_list_locked() { ysr@777: assert(ZF_mon->owned_by_self(), "precondition."); ysr@777: assert(_free_region_list_size == free_region_list_length(), "Inv"); ysr@777: HeapRegion* res = _free_region_list; ysr@777: if (res != NULL) { ysr@777: _free_region_list = res->next_from_free_list(); ysr@777: _free_region_list_size--; ysr@777: res->set_on_free_list(false); ysr@777: res->set_next_on_free_list(NULL); ysr@777: assert(_free_region_list_size == free_region_list_length(), "Inv"); ysr@777: } ysr@777: return res; ysr@777: } ysr@777: ysr@777: ysr@777: HeapRegion* G1CollectedHeap::alloc_free_region_from_lists(bool zero_filled) { ysr@777: // By self, or on behalf of self. ysr@777: assert(Heap_lock->is_locked(), "Precondition"); ysr@777: HeapRegion* res = NULL; ysr@777: bool first = true; ysr@777: while (res == NULL) { ysr@777: if (zero_filled || !first) { ysr@777: MutexLockerEx x(ZF_mon, Mutex::_no_safepoint_check_flag); ysr@777: res = pop_free_region_list_locked(); ysr@777: if (res != NULL) { ysr@777: assert(!res->zero_fill_is_allocated(), ysr@777: "No allocated regions on free list."); ysr@777: res->set_zero_fill_allocated(); ysr@777: } else if (!first) { ysr@777: break; // We tried both, time to return NULL. ysr@777: } ysr@777: } ysr@777: ysr@777: if (res == NULL) { ysr@777: res = alloc_region_from_unclean_list(zero_filled); ysr@777: } ysr@777: assert(res == NULL || ysr@777: !zero_filled || ysr@777: res->zero_fill_is_allocated(), ysr@777: "We must have allocated the region we're returning"); ysr@777: first = false; ysr@777: } ysr@777: return res; ysr@777: } ysr@777: ysr@777: void G1CollectedHeap::remove_allocated_regions_from_lists() { ysr@777: MutexLockerEx x(ZF_mon, Mutex::_no_safepoint_check_flag); ysr@777: { ysr@777: HeapRegion* prev = NULL; ysr@777: HeapRegion* cur = _unclean_region_list.hd(); ysr@777: while (cur != NULL) { ysr@777: HeapRegion* next = cur->next_from_unclean_list(); ysr@777: if (cur->zero_fill_is_allocated()) { ysr@777: // Remove from the list. ysr@777: if (prev == NULL) { ysr@777: (void)_unclean_region_list.pop(); ysr@777: } else { ysr@777: _unclean_region_list.delete_after(prev); ysr@777: } ysr@777: cur->set_on_unclean_list(false); ysr@777: cur->set_next_on_unclean_list(NULL); ysr@777: } else { ysr@777: prev = cur; ysr@777: } ysr@777: cur = next; ysr@777: } ysr@777: assert(_unclean_region_list.sz() == unclean_region_list_length(), ysr@777: "Inv"); ysr@777: } ysr@777: ysr@777: { ysr@777: HeapRegion* prev = NULL; ysr@777: HeapRegion* cur = _free_region_list; ysr@777: while (cur != NULL) { ysr@777: HeapRegion* next = cur->next_from_free_list(); ysr@777: if (cur->zero_fill_is_allocated()) { ysr@777: // Remove from the list. ysr@777: if (prev == NULL) { ysr@777: _free_region_list = cur->next_from_free_list(); ysr@777: } else { ysr@777: prev->set_next_on_free_list(cur->next_from_free_list()); ysr@777: } ysr@777: cur->set_on_free_list(false); ysr@777: cur->set_next_on_free_list(NULL); ysr@777: _free_region_list_size--; ysr@777: } else { ysr@777: prev = cur; ysr@777: } ysr@777: cur = next; ysr@777: } ysr@777: assert(_free_region_list_size == free_region_list_length(), "Inv"); ysr@777: } ysr@777: } ysr@777: ysr@777: bool G1CollectedHeap::verify_region_lists() { ysr@777: MutexLockerEx x(ZF_mon, Mutex::_no_safepoint_check_flag); ysr@777: return verify_region_lists_locked(); ysr@777: } ysr@777: ysr@777: bool G1CollectedHeap::verify_region_lists_locked() { ysr@777: HeapRegion* unclean = _unclean_region_list.hd(); ysr@777: while (unclean != NULL) { ysr@777: guarantee(unclean->is_on_unclean_list(), "Well, it is!"); ysr@777: guarantee(!unclean->is_on_free_list(), "Well, it shouldn't be!"); ysr@777: guarantee(unclean->zero_fill_state() != HeapRegion::Allocated, ysr@777: "Everything else is possible."); ysr@777: unclean = unclean->next_from_unclean_list(); ysr@777: } ysr@777: guarantee(_unclean_region_list.sz() == unclean_region_list_length(), "Inv"); ysr@777: ysr@777: HeapRegion* free_r = _free_region_list; ysr@777: while (free_r != NULL) { ysr@777: assert(free_r->is_on_free_list(), "Well, it is!"); ysr@777: assert(!free_r->is_on_unclean_list(), "Well, it shouldn't be!"); ysr@777: switch (free_r->zero_fill_state()) { ysr@777: case HeapRegion::NotZeroFilled: ysr@777: case HeapRegion::ZeroFilling: ysr@777: guarantee(false, "Should not be on free list."); ysr@777: break; ysr@777: default: ysr@777: // Everything else is possible. ysr@777: break; ysr@777: } ysr@777: free_r = free_r->next_from_free_list(); ysr@777: } ysr@777: guarantee(_free_region_list_size == free_region_list_length(), "Inv"); ysr@777: // If we didn't do an assertion... ysr@777: return true; ysr@777: } ysr@777: ysr@777: size_t G1CollectedHeap::free_region_list_length() { ysr@777: assert(ZF_mon->owned_by_self(), "precondition."); ysr@777: size_t len = 0; ysr@777: HeapRegion* cur = _free_region_list; ysr@777: while (cur != NULL) { ysr@777: len++; ysr@777: cur = cur->next_from_free_list(); ysr@777: } ysr@777: return len; ysr@777: } ysr@777: ysr@777: size_t G1CollectedHeap::unclean_region_list_length() { ysr@777: assert(ZF_mon->owned_by_self(), "precondition."); ysr@777: return _unclean_region_list.length(); ysr@777: } ysr@777: ysr@777: size_t G1CollectedHeap::n_regions() { ysr@777: return _hrs->length(); ysr@777: } ysr@777: ysr@777: size_t G1CollectedHeap::max_regions() { ysr@777: return ysr@777: (size_t)align_size_up(g1_reserved_obj_bytes(), HeapRegion::GrainBytes) / ysr@777: HeapRegion::GrainBytes; ysr@777: } ysr@777: ysr@777: size_t G1CollectedHeap::free_regions() { ysr@777: /* Possibly-expensive assert. ysr@777: assert(_free_regions == count_free_regions(), ysr@777: "_free_regions is off."); ysr@777: */ ysr@777: return _free_regions; ysr@777: } ysr@777: ysr@777: bool G1CollectedHeap::should_zf() { ysr@777: return _free_region_list_size < (size_t) G1ConcZFMaxRegions; ysr@777: } ysr@777: ysr@777: class RegionCounter: public HeapRegionClosure { ysr@777: size_t _n; ysr@777: public: ysr@777: RegionCounter() : _n(0) {} ysr@777: bool doHeapRegion(HeapRegion* r) { ysr@777: if (r->is_empty() && !r->popular()) { ysr@777: assert(!r->isHumongous(), "H regions should not be empty."); ysr@777: _n++; ysr@777: } ysr@777: return false; ysr@777: } ysr@777: int res() { return (int) _n; } ysr@777: }; ysr@777: ysr@777: size_t G1CollectedHeap::count_free_regions() { ysr@777: RegionCounter rc; ysr@777: heap_region_iterate(&rc); ysr@777: size_t n = rc.res(); ysr@777: if (_cur_alloc_region != NULL && _cur_alloc_region->is_empty()) ysr@777: n--; ysr@777: return n; ysr@777: } ysr@777: ysr@777: size_t G1CollectedHeap::count_free_regions_list() { ysr@777: size_t n = 0; ysr@777: size_t o = 0; ysr@777: ZF_mon->lock_without_safepoint_check(); ysr@777: HeapRegion* cur = _free_region_list; ysr@777: while (cur != NULL) { ysr@777: cur = cur->next_from_free_list(); ysr@777: n++; ysr@777: } ysr@777: size_t m = unclean_region_list_length(); ysr@777: ZF_mon->unlock(); ysr@777: return n + m; ysr@777: } ysr@777: ysr@777: bool G1CollectedHeap::should_set_young_locked() { ysr@777: assert(heap_lock_held_for_gc(), ysr@777: "the heap lock should already be held by or for this thread"); ysr@777: return (g1_policy()->in_young_gc_mode() && ysr@777: g1_policy()->should_add_next_region_to_young_list()); ysr@777: } ysr@777: ysr@777: void G1CollectedHeap::set_region_short_lived_locked(HeapRegion* hr) { ysr@777: assert(heap_lock_held_for_gc(), ysr@777: "the heap lock should already be held by or for this thread"); ysr@777: _young_list->push_region(hr); ysr@777: g1_policy()->set_region_short_lived(hr); ysr@777: } ysr@777: ysr@777: class NoYoungRegionsClosure: public HeapRegionClosure { ysr@777: private: ysr@777: bool _success; ysr@777: public: ysr@777: NoYoungRegionsClosure() : _success(true) { } ysr@777: bool doHeapRegion(HeapRegion* r) { ysr@777: if (r->is_young()) { ysr@777: gclog_or_tty->print_cr("Region ["PTR_FORMAT", "PTR_FORMAT") tagged as young", ysr@777: r->bottom(), r->end()); ysr@777: _success = false; ysr@777: } ysr@777: return false; ysr@777: } ysr@777: bool success() { return _success; } ysr@777: }; ysr@777: ysr@777: bool G1CollectedHeap::check_young_list_empty(bool ignore_scan_only_list, ysr@777: bool check_sample) { ysr@777: bool ret = true; ysr@777: ysr@777: ret = _young_list->check_list_empty(ignore_scan_only_list, check_sample); ysr@777: if (!ignore_scan_only_list) { ysr@777: NoYoungRegionsClosure closure; ysr@777: heap_region_iterate(&closure); ysr@777: ret = ret && closure.success(); ysr@777: } ysr@777: ysr@777: return ret; ysr@777: } ysr@777: ysr@777: void G1CollectedHeap::empty_young_list() { ysr@777: assert(heap_lock_held_for_gc(), ysr@777: "the heap lock should already be held by or for this thread"); ysr@777: assert(g1_policy()->in_young_gc_mode(), "should be in young GC mode"); ysr@777: ysr@777: _young_list->empty_list(); ysr@777: } ysr@777: ysr@777: bool G1CollectedHeap::all_alloc_regions_no_allocs_since_save_marks() { ysr@777: bool no_allocs = true; ysr@777: for (int ap = 0; ap < GCAllocPurposeCount && no_allocs; ++ap) { ysr@777: HeapRegion* r = _gc_alloc_regions[ap]; ysr@777: no_allocs = r == NULL || r->saved_mark_at_top(); ysr@777: } ysr@777: return no_allocs; ysr@777: } ysr@777: apetrusenko@980: void G1CollectedHeap::retire_all_alloc_regions() { ysr@777: for (int ap = 0; ap < GCAllocPurposeCount; ++ap) { ysr@777: HeapRegion* r = _gc_alloc_regions[ap]; ysr@777: if (r != NULL) { ysr@777: // Check for aliases. ysr@777: bool has_processed_alias = false; ysr@777: for (int i = 0; i < ap; ++i) { ysr@777: if (_gc_alloc_regions[i] == r) { ysr@777: has_processed_alias = true; ysr@777: break; ysr@777: } ysr@777: } ysr@777: if (!has_processed_alias) { apetrusenko@980: retire_alloc_region(r, false /* par */); ysr@777: } ysr@777: } ysr@777: } ysr@777: } ysr@777: ysr@777: ysr@777: // Done at the start of full GC. ysr@777: void G1CollectedHeap::tear_down_region_lists() { ysr@777: MutexLockerEx x(ZF_mon, Mutex::_no_safepoint_check_flag); ysr@777: while (pop_unclean_region_list_locked() != NULL) ; ysr@777: assert(_unclean_region_list.hd() == NULL && _unclean_region_list.sz() == 0, ysr@777: "Postconditions of loop.") ysr@777: while (pop_free_region_list_locked() != NULL) ; ysr@777: assert(_free_region_list == NULL, "Postcondition of loop."); ysr@777: if (_free_region_list_size != 0) { ysr@777: gclog_or_tty->print_cr("Size is %d.", _free_region_list_size); ysr@777: print(); ysr@777: } ysr@777: assert(_free_region_list_size == 0, "Postconditions of loop."); ysr@777: } ysr@777: ysr@777: ysr@777: class RegionResetter: public HeapRegionClosure { ysr@777: G1CollectedHeap* _g1; ysr@777: int _n; ysr@777: public: ysr@777: RegionResetter() : _g1(G1CollectedHeap::heap()), _n(0) {} ysr@777: bool doHeapRegion(HeapRegion* r) { ysr@777: if (r->continuesHumongous()) return false; ysr@777: if (r->top() > r->bottom()) { ysr@777: if (r->top() < r->end()) { ysr@777: Copy::fill_to_words(r->top(), ysr@777: pointer_delta(r->end(), r->top())); ysr@777: } ysr@777: r->set_zero_fill_allocated(); ysr@777: } else { ysr@777: assert(r->is_empty(), "tautology"); ysr@777: if (r->popular()) { ysr@777: if (r->zero_fill_state() != HeapRegion::Allocated) { ysr@777: r->ensure_zero_filled_locked(); ysr@777: r->set_zero_fill_allocated(); ysr@777: } ysr@777: } else { ysr@777: _n++; ysr@777: switch (r->zero_fill_state()) { ysr@777: case HeapRegion::NotZeroFilled: ysr@777: case HeapRegion::ZeroFilling: ysr@777: _g1->put_region_on_unclean_list_locked(r); ysr@777: break; ysr@777: case HeapRegion::Allocated: ysr@777: r->set_zero_fill_complete(); ysr@777: // no break; go on to put on free list. ysr@777: case HeapRegion::ZeroFilled: ysr@777: _g1->put_free_region_on_list_locked(r); ysr@777: break; ysr@777: } ysr@777: } ysr@777: } ysr@777: return false; ysr@777: } ysr@777: ysr@777: int getFreeRegionCount() {return _n;} ysr@777: }; ysr@777: ysr@777: // Done at the end of full GC. ysr@777: void G1CollectedHeap::rebuild_region_lists() { ysr@777: MutexLockerEx x(ZF_mon, Mutex::_no_safepoint_check_flag); ysr@777: // This needs to go at the end of the full GC. ysr@777: RegionResetter rs; ysr@777: heap_region_iterate(&rs); ysr@777: _free_regions = rs.getFreeRegionCount(); ysr@777: // Tell the ZF thread it may have work to do. ysr@777: if (should_zf()) ZF_mon->notify_all(); ysr@777: } ysr@777: ysr@777: class UsedRegionsNeedZeroFillSetter: public HeapRegionClosure { ysr@777: G1CollectedHeap* _g1; ysr@777: int _n; ysr@777: public: ysr@777: UsedRegionsNeedZeroFillSetter() : _g1(G1CollectedHeap::heap()), _n(0) {} ysr@777: bool doHeapRegion(HeapRegion* r) { ysr@777: if (r->continuesHumongous()) return false; ysr@777: if (r->top() > r->bottom()) { ysr@777: // There are assertions in "set_zero_fill_needed()" below that ysr@777: // require top() == bottom(), so this is technically illegal. ysr@777: // We'll skirt the law here, by making that true temporarily. ysr@777: DEBUG_ONLY(HeapWord* save_top = r->top(); ysr@777: r->set_top(r->bottom())); ysr@777: r->set_zero_fill_needed(); ysr@777: DEBUG_ONLY(r->set_top(save_top)); ysr@777: } ysr@777: return false; ysr@777: } ysr@777: }; ysr@777: ysr@777: // Done at the start of full GC. ysr@777: void G1CollectedHeap::set_used_regions_to_need_zero_fill() { ysr@777: MutexLockerEx x(ZF_mon, Mutex::_no_safepoint_check_flag); ysr@777: // This needs to go at the end of the full GC. ysr@777: UsedRegionsNeedZeroFillSetter rs; ysr@777: heap_region_iterate(&rs); ysr@777: } ysr@777: ysr@777: class CountObjClosure: public ObjectClosure { ysr@777: size_t _n; ysr@777: public: ysr@777: CountObjClosure() : _n(0) {} ysr@777: void do_object(oop obj) { _n++; } ysr@777: size_t n() { return _n; } ysr@777: }; ysr@777: ysr@777: size_t G1CollectedHeap::pop_object_used_objs() { ysr@777: size_t sum_objs = 0; ysr@777: for (int i = 0; i < G1NumPopularRegions; i++) { ysr@777: CountObjClosure cl; ysr@777: _hrs->at(i)->object_iterate(&cl); ysr@777: sum_objs += cl.n(); ysr@777: } ysr@777: return sum_objs; ysr@777: } ysr@777: ysr@777: size_t G1CollectedHeap::pop_object_used_bytes() { ysr@777: size_t sum_bytes = 0; ysr@777: for (int i = 0; i < G1NumPopularRegions; i++) { ysr@777: sum_bytes += _hrs->at(i)->used(); ysr@777: } ysr@777: return sum_bytes; ysr@777: } ysr@777: ysr@777: ysr@777: static int nq = 0; ysr@777: ysr@777: HeapWord* G1CollectedHeap::allocate_popular_object(size_t word_size) { ysr@777: while (_cur_pop_hr_index < G1NumPopularRegions) { ysr@777: HeapRegion* cur_pop_region = _hrs->at(_cur_pop_hr_index); ysr@777: HeapWord* res = cur_pop_region->allocate(word_size); ysr@777: if (res != NULL) { ysr@777: // We account for popular objs directly in the used summary: ysr@777: _summary_bytes_used += (word_size * HeapWordSize); ysr@777: return res; ysr@777: } ysr@777: // Otherwise, try the next region (first making sure that we remember ysr@777: // the last "top" value as the "next_top_at_mark_start", so that ysr@777: // objects made popular during markings aren't automatically considered ysr@777: // live). ysr@777: cur_pop_region->note_end_of_copying(); ysr@777: // Otherwise, try the next region. ysr@777: _cur_pop_hr_index++; ysr@777: } ysr@777: // XXX: For now !!! ysr@777: vm_exit_out_of_memory(word_size, ysr@777: "Not enough pop obj space (To Be Fixed)"); ysr@777: return NULL; ysr@777: } ysr@777: ysr@777: class HeapRegionList: public CHeapObj { ysr@777: public: ysr@777: HeapRegion* hr; ysr@777: HeapRegionList* next; ysr@777: }; ysr@777: ysr@777: void G1CollectedHeap::schedule_popular_region_evac(HeapRegion* r) { ysr@777: // This might happen during parallel GC, so protect by this lock. ysr@777: MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag); ysr@777: // We don't schedule regions whose evacuations are already pending, or ysr@777: // are already being evacuated. ysr@777: if (!r->popular_pending() && !r->in_collection_set()) { ysr@777: r->set_popular_pending(true); ysr@777: if (G1TracePopularity) { ysr@777: gclog_or_tty->print_cr("Scheduling region "PTR_FORMAT" " ysr@777: "["PTR_FORMAT", "PTR_FORMAT") for pop-object evacuation.", ysr@777: r, r->bottom(), r->end()); ysr@777: } ysr@777: HeapRegionList* hrl = new HeapRegionList; ysr@777: hrl->hr = r; ysr@777: hrl->next = _popular_regions_to_be_evacuated; ysr@777: _popular_regions_to_be_evacuated = hrl; ysr@777: } ysr@777: } ysr@777: ysr@777: HeapRegion* G1CollectedHeap::popular_region_to_evac() { ysr@777: MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag); ysr@777: HeapRegion* res = NULL; ysr@777: while (_popular_regions_to_be_evacuated != NULL && res == NULL) { ysr@777: HeapRegionList* hrl = _popular_regions_to_be_evacuated; ysr@777: _popular_regions_to_be_evacuated = hrl->next; ysr@777: res = hrl->hr; ysr@777: // The G1RSPopLimit may have increased, so recheck here... ysr@777: if (res->rem_set()->occupied() < (size_t) G1RSPopLimit) { ysr@777: // Hah: don't need to schedule. ysr@777: if (G1TracePopularity) { ysr@777: gclog_or_tty->print_cr("Unscheduling region "PTR_FORMAT" " ysr@777: "["PTR_FORMAT", "PTR_FORMAT") " ysr@777: "for pop-object evacuation (size %d < limit %d)", ysr@777: res, res->bottom(), res->end(), ysr@777: res->rem_set()->occupied(), G1RSPopLimit); ysr@777: } ysr@777: res->set_popular_pending(false); ysr@777: res = NULL; ysr@777: } ysr@777: // We do not reset res->popular() here; if we did so, it would allow ysr@777: // the region to be "rescheduled" for popularity evacuation. Instead, ysr@777: // this is done in the collection pause, with the world stopped. ysr@777: // So the invariant is that the regions in the list have the popularity ysr@777: // boolean set, but having the boolean set does not imply membership ysr@777: // on the list (though there can at most one such pop-pending region ysr@777: // not on the list at any time). ysr@777: delete hrl; ysr@777: } ysr@777: return res; ysr@777: } ysr@777: ysr@777: void G1CollectedHeap::evac_popular_region(HeapRegion* hr) { ysr@777: while (true) { ysr@777: // Don't want to do a GC pause while cleanup is being completed! ysr@777: wait_for_cleanup_complete(); ysr@777: ysr@777: // Read the GC count while holding the Heap_lock ysr@777: int gc_count_before = SharedHeap::heap()->total_collections(); ysr@777: g1_policy()->record_stop_world_start(); ysr@777: ysr@777: { ysr@777: MutexUnlocker mu(Heap_lock); // give up heap lock, execute gets it back ysr@777: VM_G1PopRegionCollectionPause op(gc_count_before, hr); ysr@777: VMThread::execute(&op); ysr@777: ysr@777: // If the prolog succeeded, we didn't do a GC for this. ysr@777: if (op.prologue_succeeded()) break; ysr@777: } ysr@777: // Otherwise we didn't. We should recheck the size, though, since ysr@777: // the limit may have increased... ysr@777: if (hr->rem_set()->occupied() < (size_t) G1RSPopLimit) { ysr@777: hr->set_popular_pending(false); ysr@777: break; ysr@777: } ysr@777: } ysr@777: } ysr@777: ysr@777: void G1CollectedHeap::atomic_inc_obj_rc(oop obj) { ysr@777: Atomic::inc(obj_rc_addr(obj)); ysr@777: } ysr@777: ysr@777: class CountRCClosure: public OopsInHeapRegionClosure { ysr@777: G1CollectedHeap* _g1h; ysr@777: bool _parallel; ysr@777: public: ysr@777: CountRCClosure(G1CollectedHeap* g1h) : ysr@777: _g1h(g1h), _parallel(ParallelGCThreads > 0) ysr@777: {} ysr@777: void do_oop(narrowOop* p) { ysr@777: guarantee(false, "NYI"); ysr@777: } ysr@777: void do_oop(oop* p) { ysr@777: oop obj = *p; ysr@777: assert(obj != NULL, "Precondition."); ysr@777: if (_parallel) { ysr@777: // We go sticky at the limit to avoid excess contention. ysr@777: // If we want to track the actual RC's further, we'll need to keep a ysr@777: // per-thread hash table or something for the popular objects. ysr@777: if (_g1h->obj_rc(obj) < G1ObjPopLimit) { ysr@777: _g1h->atomic_inc_obj_rc(obj); ysr@777: } ysr@777: } else { ysr@777: _g1h->inc_obj_rc(obj); ysr@777: } ysr@777: } ysr@777: }; ysr@777: ysr@777: class EvacPopObjClosure: public ObjectClosure { ysr@777: G1CollectedHeap* _g1h; ysr@777: size_t _pop_objs; ysr@777: size_t _max_rc; ysr@777: public: ysr@777: EvacPopObjClosure(G1CollectedHeap* g1h) : ysr@777: _g1h(g1h), _pop_objs(0), _max_rc(0) {} ysr@777: ysr@777: void do_object(oop obj) { ysr@777: size_t rc = _g1h->obj_rc(obj); ysr@777: _max_rc = MAX2(rc, _max_rc); ysr@777: if (rc >= (size_t) G1ObjPopLimit) { ysr@777: _g1h->_pop_obj_rc_at_copy.add((double)rc); ysr@777: size_t word_sz = obj->size(); ysr@777: HeapWord* new_pop_loc = _g1h->allocate_popular_object(word_sz); ysr@777: oop new_pop_obj = (oop)new_pop_loc; ysr@777: Copy::aligned_disjoint_words((HeapWord*)obj, new_pop_loc, word_sz); ysr@777: obj->forward_to(new_pop_obj); ysr@777: G1ScanAndBalanceClosure scan_and_balance(_g1h); ysr@777: new_pop_obj->oop_iterate_backwards(&scan_and_balance); ysr@777: // preserve "next" mark bit if marking is in progress. ysr@777: if (_g1h->mark_in_progress() && !_g1h->is_obj_ill(obj)) { ysr@777: _g1h->concurrent_mark()->markAndGrayObjectIfNecessary(new_pop_obj); ysr@777: } ysr@777: ysr@777: if (G1TracePopularity) { ysr@777: gclog_or_tty->print_cr("Found obj " PTR_FORMAT " of word size " SIZE_FORMAT ysr@777: " pop (%d), move to " PTR_FORMAT, ysr@777: (void*) obj, word_sz, ysr@777: _g1h->obj_rc(obj), (void*) new_pop_obj); ysr@777: } ysr@777: _pop_objs++; ysr@777: } ysr@777: } ysr@777: size_t pop_objs() { return _pop_objs; } ysr@777: size_t max_rc() { return _max_rc; } ysr@777: }; ysr@777: ysr@777: class G1ParCountRCTask : public AbstractGangTask { ysr@777: G1CollectedHeap* _g1h; ysr@777: BitMap _bm; ysr@777: ysr@777: size_t getNCards() { ysr@777: return (_g1h->capacity() + G1BlockOffsetSharedArray::N_bytes - 1) ysr@777: / G1BlockOffsetSharedArray::N_bytes; ysr@777: } ysr@777: CountRCClosure _count_rc_closure; ysr@777: public: ysr@777: G1ParCountRCTask(G1CollectedHeap* g1h) : ysr@777: AbstractGangTask("G1 Par RC Count task"), ysr@777: _g1h(g1h), _bm(getNCards()), _count_rc_closure(g1h) ysr@777: {} ysr@777: ysr@777: void work(int i) { ysr@777: ResourceMark rm; ysr@777: HandleMark hm; ysr@777: _g1h->g1_rem_set()->oops_into_collection_set_do(&_count_rc_closure, i); ysr@777: } ysr@777: }; ysr@777: ysr@777: void G1CollectedHeap::popularity_pause_preamble(HeapRegion* popular_region) { ysr@777: // We're evacuating a single region (for popularity). ysr@777: if (G1TracePopularity) { ysr@777: gclog_or_tty->print_cr("Doing pop region pause for ["PTR_FORMAT", "PTR_FORMAT")", ysr@777: popular_region->bottom(), popular_region->end()); ysr@777: } ysr@777: g1_policy()->set_single_region_collection_set(popular_region); ysr@777: size_t max_rc; ysr@777: if (!compute_reference_counts_and_evac_popular(popular_region, ysr@777: &max_rc)) { ysr@777: // We didn't evacuate any popular objects. ysr@777: // We increase the RS popularity limit, to prevent this from ysr@777: // happening in the future. ysr@777: if (G1RSPopLimit < (1 << 30)) { ysr@777: G1RSPopLimit *= 2; ysr@777: } ysr@777: // For now, interesting enough for a message: ysr@777: #if 1 ysr@777: gclog_or_tty->print_cr("In pop region pause for ["PTR_FORMAT", "PTR_FORMAT"), " ysr@777: "failed to find a pop object (max = %d).", ysr@777: popular_region->bottom(), popular_region->end(), ysr@777: max_rc); ysr@777: gclog_or_tty->print_cr("Increased G1RSPopLimit to %d.", G1RSPopLimit); ysr@777: #endif // 0 ysr@777: // Also, we reset the collection set to NULL, to make the rest of ysr@777: // the collection do nothing. ysr@777: assert(popular_region->next_in_collection_set() == NULL, ysr@777: "should be single-region."); ysr@777: popular_region->set_in_collection_set(false); ysr@777: popular_region->set_popular_pending(false); ysr@777: g1_policy()->clear_collection_set(); ysr@777: } ysr@777: } ysr@777: ysr@777: bool G1CollectedHeap:: ysr@777: compute_reference_counts_and_evac_popular(HeapRegion* popular_region, ysr@777: size_t* max_rc) { ysr@777: HeapWord* rc_region_bot; ysr@777: HeapWord* rc_region_end; ysr@777: ysr@777: // Set up the reference count region. ysr@777: HeapRegion* rc_region = newAllocRegion(HeapRegion::GrainWords); ysr@777: if (rc_region != NULL) { ysr@777: rc_region_bot = rc_region->bottom(); ysr@777: rc_region_end = rc_region->end(); ysr@777: } else { ysr@777: rc_region_bot = NEW_C_HEAP_ARRAY(HeapWord, HeapRegion::GrainWords); ysr@777: if (rc_region_bot == NULL) { ysr@777: vm_exit_out_of_memory(HeapRegion::GrainWords, ysr@777: "No space for RC region."); ysr@777: } ysr@777: rc_region_end = rc_region_bot + HeapRegion::GrainWords; ysr@777: } ysr@777: ysr@777: if (G1TracePopularity) ysr@777: gclog_or_tty->print_cr("RC region is ["PTR_FORMAT", "PTR_FORMAT")", ysr@777: rc_region_bot, rc_region_end); ysr@777: if (rc_region_bot > popular_region->bottom()) { ysr@777: _rc_region_above = true; ysr@777: _rc_region_diff = ysr@777: pointer_delta(rc_region_bot, popular_region->bottom(), 1); ysr@777: } else { ysr@777: assert(rc_region_bot < popular_region->bottom(), "Can't be equal."); ysr@777: _rc_region_above = false; ysr@777: _rc_region_diff = ysr@777: pointer_delta(popular_region->bottom(), rc_region_bot, 1); ysr@777: } ysr@777: g1_policy()->record_pop_compute_rc_start(); ysr@777: // Count external references. ysr@777: g1_rem_set()->prepare_for_oops_into_collection_set_do(); ysr@777: if (ParallelGCThreads > 0) { ysr@777: ysr@777: set_par_threads(workers()->total_workers()); ysr@777: G1ParCountRCTask par_count_rc_task(this); ysr@777: workers()->run_task(&par_count_rc_task); ysr@777: set_par_threads(0); ysr@777: ysr@777: } else { ysr@777: CountRCClosure count_rc_closure(this); ysr@777: g1_rem_set()->oops_into_collection_set_do(&count_rc_closure, 0); ysr@777: } ysr@777: g1_rem_set()->cleanup_after_oops_into_collection_set_do(); ysr@777: g1_policy()->record_pop_compute_rc_end(); ysr@777: ysr@777: // Now evacuate popular objects. ysr@777: g1_policy()->record_pop_evac_start(); ysr@777: EvacPopObjClosure evac_pop_obj_cl(this); ysr@777: popular_region->object_iterate(&evac_pop_obj_cl); ysr@777: *max_rc = evac_pop_obj_cl.max_rc(); ysr@777: ysr@777: // Make sure the last "top" value of the current popular region is copied ysr@777: // as the "next_top_at_mark_start", so that objects made popular during ysr@777: // markings aren't automatically considered live. ysr@777: HeapRegion* cur_pop_region = _hrs->at(_cur_pop_hr_index); ysr@777: cur_pop_region->note_end_of_copying(); ysr@777: ysr@777: if (rc_region != NULL) { ysr@777: free_region(rc_region); ysr@777: } else { ysr@777: FREE_C_HEAP_ARRAY(HeapWord, rc_region_bot); ysr@777: } ysr@777: g1_policy()->record_pop_evac_end(); ysr@777: ysr@777: return evac_pop_obj_cl.pop_objs() > 0; ysr@777: } ysr@777: ysr@777: class CountPopObjInfoClosure: public HeapRegionClosure { ysr@777: size_t _objs; ysr@777: size_t _bytes; ysr@777: ysr@777: class CountObjClosure: public ObjectClosure { ysr@777: int _n; ysr@777: public: ysr@777: CountObjClosure() : _n(0) {} ysr@777: void do_object(oop obj) { _n++; } ysr@777: size_t n() { return _n; } ysr@777: }; ysr@777: ysr@777: public: ysr@777: CountPopObjInfoClosure() : _objs(0), _bytes(0) {} ysr@777: bool doHeapRegion(HeapRegion* r) { ysr@777: _bytes += r->used(); ysr@777: CountObjClosure blk; ysr@777: r->object_iterate(&blk); ysr@777: _objs += blk.n(); ysr@777: return false; ysr@777: } ysr@777: size_t objs() { return _objs; } ysr@777: size_t bytes() { return _bytes; } ysr@777: }; ysr@777: ysr@777: ysr@777: void G1CollectedHeap::print_popularity_summary_info() const { ysr@777: CountPopObjInfoClosure blk; ysr@777: for (int i = 0; i <= _cur_pop_hr_index; i++) { ysr@777: blk.doHeapRegion(_hrs->at(i)); ysr@777: } ysr@777: gclog_or_tty->print_cr("\nPopular objects: %d objs, %d bytes.", ysr@777: blk.objs(), blk.bytes()); ysr@777: gclog_or_tty->print_cr(" RC at copy = [avg = %5.2f, max = %5.2f, sd = %5.2f].", ysr@777: _pop_obj_rc_at_copy.avg(), ysr@777: _pop_obj_rc_at_copy.maximum(), ysr@777: _pop_obj_rc_at_copy.sd()); ysr@777: } ysr@777: ysr@777: void G1CollectedHeap::set_refine_cte_cl_concurrency(bool concurrent) { ysr@777: _refine_cte_cl->set_concurrent(concurrent); ysr@777: } ysr@777: ysr@777: #ifndef PRODUCT ysr@777: ysr@777: class PrintHeapRegionClosure: public HeapRegionClosure { ysr@777: public: ysr@777: bool doHeapRegion(HeapRegion *r) { ysr@777: gclog_or_tty->print("Region: "PTR_FORMAT":", r); ysr@777: if (r != NULL) { ysr@777: if (r->is_on_free_list()) ysr@777: gclog_or_tty->print("Free "); ysr@777: if (r->is_young()) ysr@777: gclog_or_tty->print("Young "); ysr@777: if (r->isHumongous()) ysr@777: gclog_or_tty->print("Is Humongous "); ysr@777: r->print(); ysr@777: } ysr@777: return false; ysr@777: } ysr@777: }; ysr@777: ysr@777: class SortHeapRegionClosure : public HeapRegionClosure { ysr@777: size_t young_regions,free_regions, unclean_regions; ysr@777: size_t hum_regions, count; ysr@777: size_t unaccounted, cur_unclean, cur_alloc; ysr@777: size_t total_free; ysr@777: HeapRegion* cur; ysr@777: public: ysr@777: SortHeapRegionClosure(HeapRegion *_cur) : cur(_cur), young_regions(0), ysr@777: free_regions(0), unclean_regions(0), ysr@777: hum_regions(0), ysr@777: count(0), unaccounted(0), ysr@777: cur_alloc(0), total_free(0) ysr@777: {} ysr@777: bool doHeapRegion(HeapRegion *r) { ysr@777: count++; ysr@777: if (r->is_on_free_list()) free_regions++; ysr@777: else if (r->is_on_unclean_list()) unclean_regions++; ysr@777: else if (r->isHumongous()) hum_regions++; ysr@777: else if (r->is_young()) young_regions++; ysr@777: else if (r == cur) cur_alloc++; ysr@777: else unaccounted++; ysr@777: return false; ysr@777: } ysr@777: void print() { ysr@777: total_free = free_regions + unclean_regions; ysr@777: gclog_or_tty->print("%d regions\n", count); ysr@777: gclog_or_tty->print("%d free: free_list = %d unclean = %d\n", ysr@777: total_free, free_regions, unclean_regions); ysr@777: gclog_or_tty->print("%d humongous %d young\n", ysr@777: hum_regions, young_regions); ysr@777: gclog_or_tty->print("%d cur_alloc\n", cur_alloc); ysr@777: gclog_or_tty->print("UHOH unaccounted = %d\n", unaccounted); ysr@777: } ysr@777: }; ysr@777: ysr@777: void G1CollectedHeap::print_region_counts() { ysr@777: SortHeapRegionClosure sc(_cur_alloc_region); ysr@777: PrintHeapRegionClosure cl; ysr@777: heap_region_iterate(&cl); ysr@777: heap_region_iterate(&sc); ysr@777: sc.print(); ysr@777: print_region_accounting_info(); ysr@777: }; ysr@777: ysr@777: bool G1CollectedHeap::regions_accounted_for() { ysr@777: // TODO: regions accounting for young/survivor/tenured ysr@777: return true; ysr@777: } ysr@777: ysr@777: bool G1CollectedHeap::print_region_accounting_info() { ysr@777: gclog_or_tty->print_cr("P regions: %d.", G1NumPopularRegions); ysr@777: gclog_or_tty->print_cr("Free regions: %d (count: %d count list %d) (clean: %d unclean: %d).", ysr@777: free_regions(), ysr@777: count_free_regions(), count_free_regions_list(), ysr@777: _free_region_list_size, _unclean_region_list.sz()); ysr@777: gclog_or_tty->print_cr("cur_alloc: %d.", ysr@777: (_cur_alloc_region == NULL ? 0 : 1)); ysr@777: gclog_or_tty->print_cr("H regions: %d.", _num_humongous_regions); ysr@777: ysr@777: // TODO: check regions accounting for young/survivor/tenured ysr@777: return true; ysr@777: } ysr@777: ysr@777: bool G1CollectedHeap::is_in_closed_subset(const void* p) const { ysr@777: HeapRegion* hr = heap_region_containing(p); ysr@777: if (hr == NULL) { ysr@777: return is_in_permanent(p); ysr@777: } else { ysr@777: return hr->is_in(p); ysr@777: } ysr@777: } ysr@777: #endif // PRODUCT ysr@777: ysr@777: void G1CollectedHeap::g1_unimplemented() { ysr@777: // Unimplemented(); ysr@777: } ysr@777: ysr@777: ysr@777: // Local Variables: *** ysr@777: // c-indentation-style: gnu *** ysr@777: // End: ***