duke@435: /* xdono@631: * Copyright 1998-2008 Sun Microsystems, Inc. All Rights Reserved. duke@435: * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. duke@435: * duke@435: * This code is free software; you can redistribute it and/or modify it duke@435: * under the terms of the GNU General Public License version 2 only, as duke@435: * published by the Free Software Foundation. duke@435: * duke@435: * This code is distributed in the hope that it will be useful, but WITHOUT duke@435: * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or duke@435: * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License duke@435: * version 2 for more details (a copy is included in the LICENSE file that duke@435: * accompanied this code). duke@435: * duke@435: * You should have received a copy of the GNU General Public License version duke@435: * 2 along with this work; if not, write to the Free Software Foundation, duke@435: * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. duke@435: * duke@435: * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, duke@435: * CA 95054 USA or visit www.sun.com if you need additional information or duke@435: * have any questions. duke@435: * duke@435: */ duke@435: duke@435: #include "incls/_precompiled.incl" duke@435: #include "incls/_parse3.cpp.incl" duke@435: duke@435: //============================================================================= duke@435: // Helper methods for _get* and _put* bytecodes duke@435: //============================================================================= duke@435: bool Parse::static_field_ok_in_clinit(ciField *field, ciMethod *method) { duke@435: // Could be the field_holder's method, or for a subklass. duke@435: // Better to check now than to Deoptimize as soon as we execute duke@435: assert( field->is_static(), "Only check if field is static"); duke@435: // is_being_initialized() is too generous. It allows access to statics duke@435: // by threads that are not running the before the finishes. duke@435: // return field->holder()->is_being_initialized(); duke@435: duke@435: // The following restriction is correct but conservative. duke@435: // It is also desirable to allow compilation of methods called from duke@435: // but this generated code will need to be made safe for execution by duke@435: // other threads, or the transition from interpreted to compiled code would duke@435: // need to be guarded. duke@435: ciInstanceKlass *field_holder = field->holder(); duke@435: duke@435: bool access_OK = false; duke@435: if (method->holder()->is_subclass_of(field_holder)) { duke@435: if (method->is_static()) { duke@435: if (method->name() == ciSymbol::class_initializer_name()) { duke@435: // OK to access static fields inside initializer duke@435: access_OK = true; duke@435: } duke@435: } else { duke@435: if (method->name() == ciSymbol::object_initializer_name()) { duke@435: // It's also OK to access static fields inside a constructor, duke@435: // because any thread calling the constructor must first have duke@435: // synchronized on the class by executing a '_new' bytecode. duke@435: access_OK = true; duke@435: } duke@435: } duke@435: } duke@435: duke@435: return access_OK; duke@435: duke@435: } duke@435: duke@435: duke@435: void Parse::do_field_access(bool is_get, bool is_field) { duke@435: bool will_link; duke@435: ciField* field = iter().get_field(will_link); duke@435: assert(will_link, "getfield: typeflow responsibility"); duke@435: duke@435: ciInstanceKlass* field_holder = field->holder(); duke@435: duke@435: if (is_field == field->is_static()) { duke@435: // Interpreter will throw java_lang_IncompatibleClassChangeError duke@435: // Check this before allowing methods to access static fields duke@435: uncommon_trap(Deoptimization::Reason_unhandled, duke@435: Deoptimization::Action_none); duke@435: return; duke@435: } duke@435: duke@435: if (!is_field && !field_holder->is_initialized()) { duke@435: if (!static_field_ok_in_clinit(field, method())) { duke@435: uncommon_trap(Deoptimization::Reason_uninitialized, duke@435: Deoptimization::Action_reinterpret, duke@435: NULL, "!static_field_ok_in_clinit"); duke@435: return; duke@435: } duke@435: } duke@435: duke@435: assert(field->will_link(method()->holder(), bc()), "getfield: typeflow responsibility"); duke@435: duke@435: // Note: We do not check for an unloaded field type here any more. duke@435: duke@435: // Generate code for the object pointer. duke@435: Node* obj; duke@435: if (is_field) { duke@435: int obj_depth = is_get ? 0 : field->type()->size(); duke@435: obj = do_null_check(peek(obj_depth), T_OBJECT); duke@435: // Compile-time detect of null-exception? duke@435: if (stopped()) return; duke@435: duke@435: const TypeInstPtr *tjp = TypeInstPtr::make(TypePtr::NotNull, iter().get_declared_field_holder()); duke@435: assert(_gvn.type(obj)->higher_equal(tjp), "cast_up is no longer needed"); duke@435: duke@435: if (is_get) { duke@435: --_sp; // pop receiver before getting duke@435: do_get_xxx(tjp, obj, field, is_field); duke@435: } else { duke@435: do_put_xxx(tjp, obj, field, is_field); duke@435: --_sp; // pop receiver after putting duke@435: } duke@435: } else { duke@435: const TypeKlassPtr* tkp = TypeKlassPtr::make(field_holder); duke@435: obj = _gvn.makecon(tkp); duke@435: if (is_get) { duke@435: do_get_xxx(tkp, obj, field, is_field); duke@435: } else { duke@435: do_put_xxx(tkp, obj, field, is_field); duke@435: } duke@435: } duke@435: } duke@435: duke@435: duke@435: void Parse::do_get_xxx(const TypePtr* obj_type, Node* obj, ciField* field, bool is_field) { duke@435: // Does this field have a constant value? If so, just push the value. duke@435: if (field->is_constant() && push_constant(field->constant_value())) return; duke@435: duke@435: ciType* field_klass = field->type(); duke@435: bool is_vol = field->is_volatile(); duke@435: duke@435: // Compute address and memory type. duke@435: int offset = field->offset_in_bytes(); duke@435: const TypePtr* adr_type = C->alias_type(field)->adr_type(); duke@435: Node *adr = basic_plus_adr(obj, obj, offset); duke@435: BasicType bt = field->layout_type(); duke@435: duke@435: // Build the resultant type of the load duke@435: const Type *type; duke@435: duke@435: bool must_assert_null = false; duke@435: duke@435: if( bt == T_OBJECT ) { duke@435: if (!field->type()->is_loaded()) { duke@435: type = TypeInstPtr::BOTTOM; duke@435: must_assert_null = true; duke@435: } else if (field->is_constant()) { duke@435: // This can happen if the constant oop is non-perm. duke@435: ciObject* con = field->constant_value().as_object(); duke@435: // Do not "join" in the previous type; it doesn't add value, duke@435: // and may yield a vacuous result if the field is of interface type. duke@435: type = TypeOopPtr::make_from_constant(con)->isa_oopptr(); duke@435: assert(type != NULL, "field singleton type must be consistent"); duke@435: } else { duke@435: type = TypeOopPtr::make_from_klass(field_klass->as_klass()); duke@435: } duke@435: } else { duke@435: type = Type::get_const_basic_type(bt); duke@435: } duke@435: // Build the load. duke@435: Node* ld = make_load(NULL, adr, type, bt, adr_type, is_vol); duke@435: duke@435: // Adjust Java stack duke@435: if (type2size[bt] == 1) duke@435: push(ld); duke@435: else duke@435: push_pair(ld); duke@435: duke@435: if (must_assert_null) { duke@435: // Do not take a trap here. It's possible that the program duke@435: // will never load the field's class, and will happily see duke@435: // null values in this field forever. Don't stumble into a duke@435: // trap for such a program, or we might get a long series duke@435: // of useless recompilations. (Or, we might load a class duke@435: // which should not be loaded.) If we ever see a non-null duke@435: // value, we will then trap and recompile. (The trap will duke@435: // not need to mention the class index, since the class will duke@435: // already have been loaded if we ever see a non-null value.) duke@435: // uncommon_trap(iter().get_field_signature_index()); duke@435: #ifndef PRODUCT duke@435: if (PrintOpto && (Verbose || WizardMode)) { duke@435: method()->print_name(); tty->print_cr(" asserting nullness of field at bci: %d", bci()); duke@435: } duke@435: #endif duke@435: if (C->log() != NULL) { duke@435: C->log()->elem("assert_null reason='field' klass='%d'", duke@435: C->log()->identify(field->type())); duke@435: } duke@435: // If there is going to be a trap, put it at the next bytecode: duke@435: set_bci(iter().next_bci()); duke@435: do_null_assert(peek(), T_OBJECT); duke@435: set_bci(iter().cur_bci()); // put it back duke@435: } duke@435: duke@435: // If reference is volatile, prevent following memory ops from duke@435: // floating up past the volatile read. Also prevents commoning duke@435: // another volatile read. duke@435: if (field->is_volatile()) { duke@435: // Memory barrier includes bogus read of value to force load BEFORE membar duke@435: insert_mem_bar(Op_MemBarAcquire, ld); duke@435: } duke@435: } duke@435: duke@435: void Parse::do_put_xxx(const TypePtr* obj_type, Node* obj, ciField* field, bool is_field) { duke@435: bool is_vol = field->is_volatile(); duke@435: // If reference is volatile, prevent following memory ops from duke@435: // floating down past the volatile write. Also prevents commoning duke@435: // another volatile read. duke@435: if (is_vol) insert_mem_bar(Op_MemBarRelease); duke@435: duke@435: // Compute address and memory type. duke@435: int offset = field->offset_in_bytes(); duke@435: const TypePtr* adr_type = C->alias_type(field)->adr_type(); duke@435: Node* adr = basic_plus_adr(obj, obj, offset); duke@435: BasicType bt = field->layout_type(); duke@435: // Value to be stored duke@435: Node* val = type2size[bt] == 1 ? pop() : pop_pair(); duke@435: // Round doubles before storing duke@435: if (bt == T_DOUBLE) val = dstore_rounding(val); duke@435: duke@435: // Store the value. duke@435: Node* store; duke@435: if (bt == T_OBJECT) { never@1260: const TypeOopPtr* field_type; duke@435: if (!field->type()->is_loaded()) { duke@435: field_type = TypeInstPtr::BOTTOM; duke@435: } else { duke@435: field_type = TypeOopPtr::make_from_klass(field->type()->as_klass()); duke@435: } duke@435: store = store_oop_to_object( control(), obj, adr, adr_type, val, field_type, bt); duke@435: } else { duke@435: store = store_to_memory( control(), adr, val, bt, adr_type, is_vol ); duke@435: } duke@435: duke@435: // If reference is volatile, prevent following volatiles ops from duke@435: // floating up before the volatile write. duke@435: if (is_vol) { duke@435: // First place the specific membar for THIS volatile index. This first duke@435: // membar is dependent on the store, keeping any other membars generated duke@435: // below from floating up past the store. duke@435: int adr_idx = C->get_alias_index(adr_type); duke@435: insert_mem_bar_volatile(Op_MemBarVolatile, adr_idx); duke@435: duke@435: // Now place a membar for AliasIdxBot for the unknown yet-to-be-parsed duke@435: // volatile alias indices. Skip this if the membar is redundant. duke@435: if (adr_idx != Compile::AliasIdxBot) { duke@435: insert_mem_bar_volatile(Op_MemBarVolatile, Compile::AliasIdxBot); duke@435: } duke@435: duke@435: // Finally, place alias-index-specific membars for each volatile index duke@435: // that isn't the adr_idx membar. Typically there's only 1 or 2. duke@435: for( int i = Compile::AliasIdxRaw; i < C->num_alias_types(); i++ ) { duke@435: if (i != adr_idx && C->alias_type(i)->is_volatile()) { duke@435: insert_mem_bar_volatile(Op_MemBarVolatile, i); duke@435: } duke@435: } duke@435: } duke@435: duke@435: // If the field is final, the rules of Java say we are in or . duke@435: // Note the presence of writes to final non-static fields, so that we duke@435: // can insert a memory barrier later on to keep the writes from floating duke@435: // out of the constructor. duke@435: if (is_field && field->is_final()) { duke@435: set_wrote_final(true); duke@435: } duke@435: } duke@435: duke@435: duke@435: bool Parse::push_constant(ciConstant constant) { duke@435: switch (constant.basic_type()) { duke@435: case T_BOOLEAN: push( intcon(constant.as_boolean()) ); break; duke@435: case T_INT: push( intcon(constant.as_int()) ); break; duke@435: case T_CHAR: push( intcon(constant.as_char()) ); break; duke@435: case T_BYTE: push( intcon(constant.as_byte()) ); break; duke@435: case T_SHORT: push( intcon(constant.as_short()) ); break; duke@435: case T_FLOAT: push( makecon(TypeF::make(constant.as_float())) ); break; duke@435: case T_DOUBLE: push_pair( makecon(TypeD::make(constant.as_double())) ); break; duke@435: case T_LONG: push_pair( longcon(constant.as_long()) ); break; duke@435: case T_ARRAY: duke@435: case T_OBJECT: { duke@435: // the oop is in perm space if the ciObject "has_encoding" duke@435: ciObject* oop_constant = constant.as_object(); duke@435: if (oop_constant->is_null_object()) { duke@435: push( zerocon(T_OBJECT) ); duke@435: break; duke@435: } else if (oop_constant->has_encoding()) { duke@435: push( makecon(TypeOopPtr::make_from_constant(oop_constant)) ); duke@435: break; duke@435: } else { duke@435: // we cannot inline the oop, but we can use it later to narrow a type duke@435: return false; duke@435: } duke@435: } duke@435: case T_ILLEGAL: { duke@435: // Invalid ciConstant returned due to OutOfMemoryError in the CI duke@435: assert(C->env()->failing(), "otherwise should not see this"); duke@435: // These always occur because of object types; we are going to duke@435: // bail out anyway, so make the stack depths match up duke@435: push( zerocon(T_OBJECT) ); duke@435: return false; duke@435: } duke@435: default: duke@435: ShouldNotReachHere(); duke@435: return false; duke@435: } duke@435: duke@435: // success duke@435: return true; duke@435: } duke@435: duke@435: duke@435: duke@435: //============================================================================= duke@435: void Parse::do_anewarray() { duke@435: bool will_link; duke@435: ciKlass* klass = iter().get_klass(will_link); duke@435: duke@435: // Uncommon Trap when class that array contains is not loaded duke@435: // we need the loaded class for the rest of graph; do not duke@435: // initialize the container class (see Java spec)!!! duke@435: assert(will_link, "anewarray: typeflow responsibility"); duke@435: duke@435: ciObjArrayKlass* array_klass = ciObjArrayKlass::make(klass); duke@435: // Check that array_klass object is loaded duke@435: if (!array_klass->is_loaded()) { duke@435: // Generate uncommon_trap for unloaded array_class duke@435: uncommon_trap(Deoptimization::Reason_unloaded, duke@435: Deoptimization::Action_reinterpret, duke@435: array_klass); duke@435: return; duke@435: } duke@435: duke@435: kill_dead_locals(); duke@435: duke@435: const TypeKlassPtr* array_klass_type = TypeKlassPtr::make(array_klass); duke@435: Node* count_val = pop(); cfang@1165: Node* obj = new_array(makecon(array_klass_type), count_val, 1); duke@435: push(obj); duke@435: } duke@435: duke@435: duke@435: void Parse::do_newarray(BasicType elem_type) { duke@435: kill_dead_locals(); duke@435: duke@435: Node* count_val = pop(); duke@435: const TypeKlassPtr* array_klass = TypeKlassPtr::make(ciTypeArrayKlass::make(elem_type)); cfang@1165: Node* obj = new_array(makecon(array_klass), count_val, 1); duke@435: // Push resultant oop onto stack duke@435: push(obj); duke@435: } duke@435: duke@435: // Expand simple expressions like new int[3][5] and new Object[2][nonConLen]. duke@435: // Also handle the degenerate 1-dimensional case of anewarray. cfang@1165: Node* Parse::expand_multianewarray(ciArrayKlass* array_klass, Node* *lengths, int ndimensions, int nargs) { duke@435: Node* length = lengths[0]; duke@435: assert(length != NULL, ""); cfang@1165: Node* array = new_array(makecon(TypeKlassPtr::make(array_klass)), length, nargs); duke@435: if (ndimensions > 1) { duke@435: jint length_con = find_int_con(length, -1); duke@435: guarantee(length_con >= 0, "non-constant multianewarray"); duke@435: ciArrayKlass* array_klass_1 = array_klass->as_obj_array_klass()->element_klass()->as_array_klass(); duke@435: const TypePtr* adr_type = TypeAryPtr::OOPS; never@1260: const TypeOopPtr* elemtype = _gvn.type(array)->is_aryptr()->elem()->is_oopptr(); duke@435: const intptr_t header = arrayOopDesc::base_offset_in_bytes(T_OBJECT); duke@435: for (jint i = 0; i < length_con; i++) { cfang@1165: Node* elem = expand_multianewarray(array_klass_1, &lengths[1], ndimensions-1, nargs); coleenp@548: intptr_t offset = header + ((intptr_t)i << LogBytesPerHeapOop); duke@435: Node* eaddr = basic_plus_adr(array, offset); duke@435: store_oop_to_array(control(), array, eaddr, adr_type, elem, elemtype, T_OBJECT); duke@435: } duke@435: } duke@435: return array; duke@435: } duke@435: duke@435: void Parse::do_multianewarray() { duke@435: int ndimensions = iter().get_dimensions(); duke@435: duke@435: // the m-dimensional array duke@435: bool will_link; duke@435: ciArrayKlass* array_klass = iter().get_klass(will_link)->as_array_klass(); duke@435: assert(will_link, "multianewarray: typeflow responsibility"); duke@435: duke@435: // Note: Array classes are always initialized; no is_initialized check. duke@435: duke@435: enum { MAX_DIMENSION = 5 }; duke@435: if (ndimensions > MAX_DIMENSION || ndimensions <= 0) { duke@435: uncommon_trap(Deoptimization::Reason_unhandled, duke@435: Deoptimization::Action_none); duke@435: return; duke@435: } duke@435: duke@435: kill_dead_locals(); duke@435: duke@435: // get the lengths from the stack (first dimension is on top) duke@435: Node* length[MAX_DIMENSION+1]; duke@435: length[ndimensions] = NULL; // terminating null for make_runtime_call duke@435: int j; duke@435: for (j = ndimensions-1; j >= 0 ; j--) length[j] = pop(); duke@435: duke@435: // The original expression was of this form: new T[length0][length1]... duke@435: // It is often the case that the lengths are small (except the last). duke@435: // If that happens, use the fast 1-d creator a constant number of times. duke@435: const jint expand_limit = MIN2((juint)MultiArrayExpandLimit, (juint)100); duke@435: jint expand_count = 1; // count of allocations in the expansion duke@435: jint expand_fanout = 1; // running total fanout duke@435: for (j = 0; j < ndimensions-1; j++) { duke@435: jint dim_con = find_int_con(length[j], -1); duke@435: expand_fanout *= dim_con; duke@435: expand_count += expand_fanout; // count the level-J sub-arrays rasbold@541: if (dim_con <= 0 duke@435: || dim_con > expand_limit duke@435: || expand_count > expand_limit) { duke@435: expand_count = 0; duke@435: break; duke@435: } duke@435: } duke@435: duke@435: // Can use multianewarray instead of [a]newarray if only one dimension, duke@435: // or if all non-final dimensions are small constants. duke@435: if (expand_count == 1 || (1 <= expand_count && expand_count <= expand_limit)) { cfang@1165: Node* obj = expand_multianewarray(array_klass, &length[0], ndimensions, ndimensions); duke@435: push(obj); duke@435: return; duke@435: } duke@435: duke@435: address fun = NULL; duke@435: switch (ndimensions) { duke@435: //case 1: Actually, there is no case 1. It's handled by new_array. duke@435: case 2: fun = OptoRuntime::multianewarray2_Java(); break; duke@435: case 3: fun = OptoRuntime::multianewarray3_Java(); break; duke@435: case 4: fun = OptoRuntime::multianewarray4_Java(); break; duke@435: case 5: fun = OptoRuntime::multianewarray5_Java(); break; duke@435: default: ShouldNotReachHere(); duke@435: }; duke@435: duke@435: Node* c = make_runtime_call(RC_NO_LEAF | RC_NO_IO, duke@435: OptoRuntime::multianewarray_Type(ndimensions), duke@435: fun, NULL, TypeRawPtr::BOTTOM, duke@435: makecon(TypeKlassPtr::make(array_klass)), duke@435: length[0], length[1], length[2], duke@435: length[3], length[4]); duke@435: Node* res = _gvn.transform(new (C, 1) ProjNode(c, TypeFunc::Parms)); duke@435: duke@435: const Type* type = TypeOopPtr::make_from_klass_raw(array_klass); duke@435: duke@435: // Improve the type: We know it's not null, exact, and of a given length. duke@435: type = type->is_ptr()->cast_to_ptr_type(TypePtr::NotNull); duke@435: type = type->is_aryptr()->cast_to_exactness(true); duke@435: duke@435: const TypeInt* ltype = _gvn.find_int_type(length[0]); duke@435: if (ltype != NULL) duke@435: type = type->is_aryptr()->cast_to_size(ltype); duke@435: duke@435: // We cannot sharpen the nested sub-arrays, since the top level is mutable. duke@435: duke@435: Node* cast = _gvn.transform( new (C, 2) CheckCastPPNode(control(), res, type) ); duke@435: push(cast); duke@435: duke@435: // Possible improvements: duke@435: // - Make a fast path for small multi-arrays. (W/ implicit init. loops.) duke@435: // - Issue CastII against length[*] values, to TypeInt::POS. duke@435: }