duke@435: /* duke@435: * Copyright 2004-2006 Sun Microsystems, Inc. All Rights Reserved. duke@435: * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. duke@435: * duke@435: * This code is free software; you can redistribute it and/or modify it duke@435: * under the terms of the GNU General Public License version 2 only, as duke@435: * published by the Free Software Foundation. duke@435: * duke@435: * This code is distributed in the hope that it will be useful, but WITHOUT duke@435: * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or duke@435: * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License duke@435: * version 2 for more details (a copy is included in the LICENSE file that duke@435: * accompanied this code). duke@435: * duke@435: * You should have received a copy of the GNU General Public License version duke@435: * 2 along with this work; if not, write to the Free Software Foundation, duke@435: * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. duke@435: * duke@435: * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, duke@435: * CA 95054 USA or visit www.sun.com if you need additional information or duke@435: * have any questions. duke@435: * duke@435: */ duke@435: #include "incls/_precompiled.incl" duke@435: #include "incls/_adaptiveSizePolicy.cpp.incl" duke@435: duke@435: elapsedTimer AdaptiveSizePolicy::_minor_timer; duke@435: elapsedTimer AdaptiveSizePolicy::_major_timer; duke@435: duke@435: // The throughput goal is implemented as duke@435: // _throughput_goal = 1 - ( 1 / (1 + gc_cost_ratio)) duke@435: // gc_cost_ratio is the ratio duke@435: // application cost / gc cost duke@435: // For example a gc_cost_ratio of 4 translates into a duke@435: // throughput goal of .80 duke@435: duke@435: AdaptiveSizePolicy::AdaptiveSizePolicy(size_t init_eden_size, duke@435: size_t init_promo_size, duke@435: size_t init_survivor_size, duke@435: double gc_pause_goal_sec, duke@435: uint gc_cost_ratio) : duke@435: _eden_size(init_eden_size), duke@435: _promo_size(init_promo_size), duke@435: _survivor_size(init_survivor_size), duke@435: _gc_pause_goal_sec(gc_pause_goal_sec), duke@435: _throughput_goal(1.0 - double(1.0 / (1.0 + (double) gc_cost_ratio))), duke@435: _gc_time_limit_exceeded(false), duke@435: _print_gc_time_limit_would_be_exceeded(false), duke@435: _gc_time_limit_count(0), duke@435: _latest_minor_mutator_interval_seconds(0), duke@435: _threshold_tolerance_percent(1.0 + ThresholdTolerance/100.0), duke@435: _young_gen_change_for_minor_throughput(0), duke@435: _old_gen_change_for_major_throughput(0) { duke@435: _avg_minor_pause = duke@435: new AdaptivePaddedAverage(AdaptiveTimeWeight, PausePadding); duke@435: _avg_minor_interval = new AdaptiveWeightedAverage(AdaptiveTimeWeight); duke@435: _avg_minor_gc_cost = new AdaptiveWeightedAverage(AdaptiveTimeWeight); duke@435: _avg_major_gc_cost = new AdaptiveWeightedAverage(AdaptiveTimeWeight); duke@435: duke@435: _avg_young_live = new AdaptiveWeightedAverage(AdaptiveSizePolicyWeight); duke@435: _avg_old_live = new AdaptiveWeightedAverage(AdaptiveSizePolicyWeight); duke@435: _avg_eden_live = new AdaptiveWeightedAverage(AdaptiveSizePolicyWeight); duke@435: duke@435: _avg_survived = new AdaptivePaddedAverage(AdaptiveSizePolicyWeight, duke@435: SurvivorPadding); duke@435: _avg_pretenured = new AdaptivePaddedNoZeroDevAverage( duke@435: AdaptiveSizePolicyWeight, duke@435: SurvivorPadding); duke@435: duke@435: _minor_pause_old_estimator = duke@435: new LinearLeastSquareFit(AdaptiveSizePolicyWeight); duke@435: _minor_pause_young_estimator = duke@435: new LinearLeastSquareFit(AdaptiveSizePolicyWeight); duke@435: _minor_collection_estimator = duke@435: new LinearLeastSquareFit(AdaptiveSizePolicyWeight); duke@435: _major_collection_estimator = duke@435: new LinearLeastSquareFit(AdaptiveSizePolicyWeight); duke@435: duke@435: // Start the timers duke@435: _minor_timer.start(); duke@435: duke@435: _young_gen_policy_is_ready = false; duke@435: } duke@435: duke@435: bool AdaptiveSizePolicy::tenuring_threshold_change() const { duke@435: return decrement_tenuring_threshold_for_gc_cost() || duke@435: increment_tenuring_threshold_for_gc_cost() || duke@435: decrement_tenuring_threshold_for_survivor_limit(); duke@435: } duke@435: duke@435: void AdaptiveSizePolicy::minor_collection_begin() { duke@435: // Update the interval time duke@435: _minor_timer.stop(); duke@435: // Save most recent collection time duke@435: _latest_minor_mutator_interval_seconds = _minor_timer.seconds(); duke@435: _minor_timer.reset(); duke@435: _minor_timer.start(); duke@435: } duke@435: duke@435: void AdaptiveSizePolicy::update_minor_pause_young_estimator( duke@435: double minor_pause_in_ms) { duke@435: double eden_size_in_mbytes = ((double)_eden_size)/((double)M); duke@435: _minor_pause_young_estimator->update(eden_size_in_mbytes, duke@435: minor_pause_in_ms); duke@435: } duke@435: duke@435: void AdaptiveSizePolicy::minor_collection_end(GCCause::Cause gc_cause) { duke@435: // Update the pause time. duke@435: _minor_timer.stop(); duke@435: duke@435: if (gc_cause != GCCause::_java_lang_system_gc || duke@435: UseAdaptiveSizePolicyWithSystemGC) { duke@435: double minor_pause_in_seconds = _minor_timer.seconds(); duke@435: double minor_pause_in_ms = minor_pause_in_seconds * MILLIUNITS; duke@435: duke@435: // Sample for performance counter duke@435: _avg_minor_pause->sample(minor_pause_in_seconds); duke@435: duke@435: // Cost of collection (unit-less) duke@435: double collection_cost = 0.0; duke@435: if ((_latest_minor_mutator_interval_seconds > 0.0) && duke@435: (minor_pause_in_seconds > 0.0)) { duke@435: double interval_in_seconds = duke@435: _latest_minor_mutator_interval_seconds + minor_pause_in_seconds; duke@435: collection_cost = duke@435: minor_pause_in_seconds / interval_in_seconds; duke@435: _avg_minor_gc_cost->sample(collection_cost); duke@435: // Sample for performance counter duke@435: _avg_minor_interval->sample(interval_in_seconds); duke@435: } duke@435: duke@435: // The policy does not have enough data until at least some duke@435: // minor collections have been done. duke@435: _young_gen_policy_is_ready = duke@435: (_avg_minor_gc_cost->count() >= AdaptiveSizePolicyReadyThreshold); duke@435: duke@435: // Calculate variables used to estimate pause time vs. gen sizes duke@435: double eden_size_in_mbytes = ((double)_eden_size)/((double)M); duke@435: update_minor_pause_young_estimator(minor_pause_in_ms); duke@435: update_minor_pause_old_estimator(minor_pause_in_ms); duke@435: duke@435: if (PrintAdaptiveSizePolicy && Verbose) { duke@435: gclog_or_tty->print("AdaptiveSizePolicy::minor_collection_end: " duke@435: "minor gc cost: %f average: %f", collection_cost, duke@435: _avg_minor_gc_cost->average()); duke@435: gclog_or_tty->print_cr(" minor pause: %f minor period %f", duke@435: minor_pause_in_ms, duke@435: _latest_minor_mutator_interval_seconds * MILLIUNITS); duke@435: } duke@435: duke@435: // Calculate variable used to estimate collection cost vs. gen sizes duke@435: assert(collection_cost >= 0.0, "Expected to be non-negative"); duke@435: _minor_collection_estimator->update(eden_size_in_mbytes, collection_cost); duke@435: } duke@435: duke@435: // Interval times use this timer to measure the mutator time. duke@435: // Reset the timer after the GC pause. duke@435: _minor_timer.reset(); duke@435: _minor_timer.start(); duke@435: } duke@435: duke@435: size_t AdaptiveSizePolicy::eden_increment(size_t cur_eden, duke@435: uint percent_change) { duke@435: size_t eden_heap_delta; duke@435: eden_heap_delta = cur_eden / 100 * percent_change; duke@435: return eden_heap_delta; duke@435: } duke@435: duke@435: size_t AdaptiveSizePolicy::eden_increment(size_t cur_eden) { duke@435: return eden_increment(cur_eden, YoungGenerationSizeIncrement); duke@435: } duke@435: duke@435: size_t AdaptiveSizePolicy::eden_decrement(size_t cur_eden) { duke@435: size_t eden_heap_delta = eden_increment(cur_eden) / duke@435: AdaptiveSizeDecrementScaleFactor; duke@435: return eden_heap_delta; duke@435: } duke@435: duke@435: size_t AdaptiveSizePolicy::promo_increment(size_t cur_promo, duke@435: uint percent_change) { duke@435: size_t promo_heap_delta; duke@435: promo_heap_delta = cur_promo / 100 * percent_change; duke@435: return promo_heap_delta; duke@435: } duke@435: duke@435: size_t AdaptiveSizePolicy::promo_increment(size_t cur_promo) { duke@435: return promo_increment(cur_promo, TenuredGenerationSizeIncrement); duke@435: } duke@435: duke@435: size_t AdaptiveSizePolicy::promo_decrement(size_t cur_promo) { duke@435: size_t promo_heap_delta = promo_increment(cur_promo); duke@435: promo_heap_delta = promo_heap_delta / AdaptiveSizeDecrementScaleFactor; duke@435: return promo_heap_delta; duke@435: } duke@435: duke@435: double AdaptiveSizePolicy::time_since_major_gc() const { duke@435: _major_timer.stop(); duke@435: double result = _major_timer.seconds(); duke@435: _major_timer.start(); duke@435: return result; duke@435: } duke@435: duke@435: // Linear decay of major gc cost duke@435: double AdaptiveSizePolicy::decaying_major_gc_cost() const { duke@435: double major_interval = major_gc_interval_average_for_decay(); duke@435: double major_gc_cost_average = major_gc_cost(); duke@435: double decayed_major_gc_cost = major_gc_cost_average; duke@435: if(time_since_major_gc() > 0.0) { duke@435: decayed_major_gc_cost = major_gc_cost() * duke@435: (((double) AdaptiveSizeMajorGCDecayTimeScale) * major_interval) duke@435: / time_since_major_gc(); duke@435: } duke@435: duke@435: // The decayed cost should always be smaller than the duke@435: // average cost but the vagaries of finite arithmetic could duke@435: // produce a larger value in decayed_major_gc_cost so protect duke@435: // against that. duke@435: return MIN2(major_gc_cost_average, decayed_major_gc_cost); duke@435: } duke@435: duke@435: // Use a value of the major gc cost that has been decayed duke@435: // by the factor duke@435: // duke@435: // average-interval-between-major-gc * AdaptiveSizeMajorGCDecayTimeScale / duke@435: // time-since-last-major-gc duke@435: // duke@435: // if the average-interval-between-major-gc * AdaptiveSizeMajorGCDecayTimeScale duke@435: // is less than time-since-last-major-gc. duke@435: // duke@435: // In cases where there are initial major gc's that duke@435: // are of a relatively high cost but no later major duke@435: // gc's, the total gc cost can remain high because duke@435: // the major gc cost remains unchanged (since there are no major duke@435: // gc's). In such a situation the value of the unchanging duke@435: // major gc cost can keep the mutator throughput below duke@435: // the goal when in fact the major gc cost is becoming diminishingly duke@435: // small. Use the decaying gc cost only to decide whether to duke@435: // adjust for throughput. Using it also to determine the adjustment duke@435: // to be made for throughput also seems reasonable but there is duke@435: // no test case to use to decide if it is the right thing to do duke@435: // don't do it yet. duke@435: duke@435: double AdaptiveSizePolicy::decaying_gc_cost() const { duke@435: double decayed_major_gc_cost = major_gc_cost(); duke@435: double avg_major_interval = major_gc_interval_average_for_decay(); duke@435: if (UseAdaptiveSizeDecayMajorGCCost && duke@435: (AdaptiveSizeMajorGCDecayTimeScale > 0) && duke@435: (avg_major_interval > 0.00)) { duke@435: double time_since_last_major_gc = time_since_major_gc(); duke@435: duke@435: // Decay the major gc cost? duke@435: if (time_since_last_major_gc > duke@435: ((double) AdaptiveSizeMajorGCDecayTimeScale) * avg_major_interval) { duke@435: duke@435: // Decay using the time-since-last-major-gc duke@435: decayed_major_gc_cost = decaying_major_gc_cost(); duke@435: if (PrintGCDetails && Verbose) { duke@435: gclog_or_tty->print_cr("\ndecaying_gc_cost: major interval average:" duke@435: " %f time since last major gc: %f", duke@435: avg_major_interval, time_since_last_major_gc); duke@435: gclog_or_tty->print_cr(" major gc cost: %f decayed major gc cost: %f", duke@435: major_gc_cost(), decayed_major_gc_cost); duke@435: } duke@435: } duke@435: } duke@435: double result = MIN2(1.0, decayed_major_gc_cost + minor_gc_cost()); duke@435: return result; duke@435: } duke@435: duke@435: duke@435: void AdaptiveSizePolicy::clear_generation_free_space_flags() { duke@435: set_change_young_gen_for_min_pauses(0); duke@435: set_change_old_gen_for_maj_pauses(0); duke@435: duke@435: set_change_old_gen_for_throughput(0); duke@435: set_change_young_gen_for_throughput(0); duke@435: set_decrease_for_footprint(0); duke@435: set_decide_at_full_gc(0); duke@435: } duke@435: duke@435: // Printing duke@435: duke@435: bool AdaptiveSizePolicy::print_adaptive_size_policy_on(outputStream* st) const { duke@435: duke@435: // Should only be used with adaptive size policy turned on. duke@435: // Otherwise, there may be variables that are undefined. duke@435: if (!UseAdaptiveSizePolicy) return false; duke@435: duke@435: // Print goal for which action is needed. duke@435: char* action = NULL; duke@435: bool change_for_pause = false; duke@435: if ((change_old_gen_for_maj_pauses() == duke@435: decrease_old_gen_for_maj_pauses_true) || duke@435: (change_young_gen_for_min_pauses() == duke@435: decrease_young_gen_for_min_pauses_true)) { duke@435: action = (char*) " *** pause time goal ***"; duke@435: change_for_pause = true; duke@435: } else if ((change_old_gen_for_throughput() == duke@435: increase_old_gen_for_throughput_true) || duke@435: (change_young_gen_for_throughput() == duke@435: increase_young_gen_for_througput_true)) { duke@435: action = (char*) " *** throughput goal ***"; duke@435: } else if (decrease_for_footprint()) { duke@435: action = (char*) " *** reduced footprint ***"; duke@435: } else { duke@435: // No actions were taken. This can legitimately be the duke@435: // situation if not enough data has been gathered to make duke@435: // decisions. duke@435: return false; duke@435: } duke@435: duke@435: // Pauses duke@435: // Currently the size of the old gen is only adjusted to duke@435: // change the major pause times. duke@435: char* young_gen_action = NULL; duke@435: char* tenured_gen_action = NULL; duke@435: duke@435: char* shrink_msg = (char*) "(attempted to shrink)"; duke@435: char* grow_msg = (char*) "(attempted to grow)"; duke@435: char* no_change_msg = (char*) "(no change)"; duke@435: if (change_young_gen_for_min_pauses() == duke@435: decrease_young_gen_for_min_pauses_true) { duke@435: young_gen_action = shrink_msg; duke@435: } else if (change_for_pause) { duke@435: young_gen_action = no_change_msg; duke@435: } duke@435: duke@435: if (change_old_gen_for_maj_pauses() == decrease_old_gen_for_maj_pauses_true) { duke@435: tenured_gen_action = shrink_msg; duke@435: } else if (change_for_pause) { duke@435: tenured_gen_action = no_change_msg; duke@435: } duke@435: duke@435: // Throughput duke@435: if (change_old_gen_for_throughput() == increase_old_gen_for_throughput_true) { duke@435: assert(change_young_gen_for_throughput() == duke@435: increase_young_gen_for_througput_true, duke@435: "Both generations should be growing"); duke@435: young_gen_action = grow_msg; duke@435: tenured_gen_action = grow_msg; duke@435: } else if (change_young_gen_for_throughput() == duke@435: increase_young_gen_for_througput_true) { duke@435: // Only the young generation may grow at start up (before duke@435: // enough full collections have been done to grow the old generation). duke@435: young_gen_action = grow_msg; duke@435: tenured_gen_action = no_change_msg; duke@435: } duke@435: duke@435: // Minimum footprint duke@435: if (decrease_for_footprint() != 0) { duke@435: young_gen_action = shrink_msg; duke@435: tenured_gen_action = shrink_msg; duke@435: } duke@435: duke@435: st->print_cr(" UseAdaptiveSizePolicy actions to meet %s", action); duke@435: st->print_cr(" GC overhead (%%)"); duke@435: st->print_cr(" Young generation: %7.2f\t %s", duke@435: 100.0 * avg_minor_gc_cost()->average(), duke@435: young_gen_action); duke@435: st->print_cr(" Tenured generation: %7.2f\t %s", duke@435: 100.0 * avg_major_gc_cost()->average(), duke@435: tenured_gen_action); duke@435: return true; duke@435: } duke@435: duke@435: bool AdaptiveSizePolicy::print_adaptive_size_policy_on( duke@435: outputStream* st, duke@435: int tenuring_threshold_arg) const { duke@435: if (!AdaptiveSizePolicy::print_adaptive_size_policy_on(st)) { duke@435: return false; duke@435: } duke@435: duke@435: // Tenuring threshold duke@435: bool tenuring_threshold_changed = true; duke@435: if (decrement_tenuring_threshold_for_survivor_limit()) { duke@435: st->print(" Tenuring threshold: (attempted to decrease to avoid" duke@435: " survivor space overflow) = "); duke@435: } else if (decrement_tenuring_threshold_for_gc_cost()) { duke@435: st->print(" Tenuring threshold: (attempted to decrease to balance" duke@435: " GC costs) = "); duke@435: } else if (increment_tenuring_threshold_for_gc_cost()) { duke@435: st->print(" Tenuring threshold: (attempted to increase to balance" duke@435: " GC costs) = "); duke@435: } else { duke@435: tenuring_threshold_changed = false; duke@435: assert(!tenuring_threshold_change(), "(no change was attempted)"); duke@435: } duke@435: if (tenuring_threshold_changed) { duke@435: st->print_cr("%d", tenuring_threshold_arg); duke@435: } duke@435: return true; duke@435: }