duke@435: /* drchase@6680: * Copyright (c) 1997, 2014, Oracle and/or its affiliates. All rights reserved. duke@435: * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. duke@435: * duke@435: * This code is free software; you can redistribute it and/or modify it duke@435: * under the terms of the GNU General Public License version 2 only, as duke@435: * published by the Free Software Foundation. duke@435: * duke@435: * This code is distributed in the hope that it will be useful, but WITHOUT duke@435: * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or duke@435: * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License duke@435: * version 2 for more details (a copy is included in the LICENSE file that duke@435: * accompanied this code). duke@435: * duke@435: * You should have received a copy of the GNU General Public License version duke@435: * 2 along with this work; if not, write to the Free Software Foundation, duke@435: * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. duke@435: * trims@1907: * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA trims@1907: * or visit www.oracle.com if you need additional information or have any trims@1907: * questions. duke@435: * duke@435: */ duke@435: stefank@2314: #include "precompiled.hpp" stefank@2314: #include "classfile/classLoader.hpp" stefank@2314: #include "classfile/javaClasses.hpp" stefank@2314: #include "classfile/systemDictionary.hpp" stefank@2314: #include "classfile/vmSymbols.hpp" stefank@2314: #include "code/icBuffer.hpp" stefank@2314: #include "code/vtableStubs.hpp" stefank@2314: #include "gc_implementation/shared/vmGCOperations.hpp" stefank@2314: #include "interpreter/interpreter.hpp" stefank@2314: #include "memory/allocation.inline.hpp" dsimms@7032: #ifdef ASSERT dsimms@7032: #include "memory/guardedMemory.hpp" dsimms@7032: #endif stefank@2314: #include "oops/oop.inline.hpp" stefank@2314: #include "prims/jvm.h" stefank@2314: #include "prims/jvm_misc.hpp" stefank@2314: #include "prims/privilegedStack.hpp" stefank@2314: #include "runtime/arguments.hpp" stefank@2314: #include "runtime/frame.inline.hpp" stefank@2314: #include "runtime/interfaceSupport.hpp" stefank@2314: #include "runtime/java.hpp" stefank@2314: #include "runtime/javaCalls.hpp" stefank@2314: #include "runtime/mutexLocker.hpp" stefank@2314: #include "runtime/os.hpp" stefank@2314: #include "runtime/stubRoutines.hpp" stefank@4299: #include "runtime/thread.inline.hpp" stefank@2314: #include "services/attachListener.hpp" zgu@7074: #include "services/nmtCommon.hpp" zgu@3900: #include "services/memTracker.hpp" stefank@2314: #include "services/threadService.hpp" stefank@2314: #include "utilities/defaultStream.hpp" stefank@2314: #include "utilities/events.hpp" stefank@2314: #ifdef TARGET_OS_FAMILY_linux stefank@2314: # include "os_linux.inline.hpp" stefank@2314: #endif stefank@2314: #ifdef TARGET_OS_FAMILY_solaris stefank@2314: # include "os_solaris.inline.hpp" stefank@2314: #endif stefank@2314: #ifdef TARGET_OS_FAMILY_windows stefank@2314: # include "os_windows.inline.hpp" stefank@2314: #endif never@3156: #ifdef TARGET_OS_FAMILY_bsd never@3156: # include "os_bsd.inline.hpp" never@3156: #endif duke@435: duke@435: # include duke@435: drchase@6680: PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC drchase@6680: duke@435: OSThread* os::_starting_thread = NULL; duke@435: address os::_polling_page = NULL; duke@435: volatile int32_t* os::_mem_serialize_page = NULL; duke@435: uintptr_t os::_serialize_page_mask = 0; duke@435: long os::_rand_seed = 1; duke@435: int os::_processor_count = 0; duke@435: size_t os::_page_sizes[os::page_sizes_max]; duke@435: duke@435: #ifndef PRODUCT kvn@2557: julong os::num_mallocs = 0; // # of calls to malloc/realloc kvn@2557: julong os::alloc_bytes = 0; // # of bytes allocated kvn@2557: julong os::num_frees = 0; // # of calls to free kvn@2557: julong os::free_bytes = 0; // # of bytes freed duke@435: #endif duke@435: rdurbin@4802: static juint cur_malloc_words = 0; // current size for MallocMaxTestWords rdurbin@4802: phh@3378: void os_init_globals() { phh@3378: // Called from init_globals(). phh@3378: // See Threads::create_vm() in thread.cpp, and init.cpp. phh@3378: os::init_globals(); phh@3378: } phh@3378: duke@435: // Fill in buffer with current local time as an ISO-8601 string. duke@435: // E.g., yyyy-mm-ddThh:mm:ss-zzzz. duke@435: // Returns buffer, or NULL if it failed. duke@435: // This would mostly be a call to duke@435: // strftime(...., "%Y-%m-%d" "T" "%H:%M:%S" "%z", ....) duke@435: // except that on Windows the %z behaves badly, so we do it ourselves. duke@435: // Also, people wanted milliseconds on there, duke@435: // and strftime doesn't do milliseconds. duke@435: char* os::iso8601_time(char* buffer, size_t buffer_length) { duke@435: // Output will be of the form "YYYY-MM-DDThh:mm:ss.mmm+zzzz\0" duke@435: // 1 2 duke@435: // 12345678901234567890123456789 duke@435: static const char* iso8601_format = duke@435: "%04d-%02d-%02dT%02d:%02d:%02d.%03d%c%02d%02d"; duke@435: static const size_t needed_buffer = 29; duke@435: duke@435: // Sanity check the arguments duke@435: if (buffer == NULL) { duke@435: assert(false, "NULL buffer"); duke@435: return NULL; duke@435: } duke@435: if (buffer_length < needed_buffer) { duke@435: assert(false, "buffer_length too small"); duke@435: return NULL; duke@435: } duke@435: // Get the current time sbohne@496: jlong milliseconds_since_19700101 = javaTimeMillis(); duke@435: const int milliseconds_per_microsecond = 1000; duke@435: const time_t seconds_since_19700101 = duke@435: milliseconds_since_19700101 / milliseconds_per_microsecond; duke@435: const int milliseconds_after_second = duke@435: milliseconds_since_19700101 % milliseconds_per_microsecond; duke@435: // Convert the time value to a tm and timezone variable ysr@983: struct tm time_struct; ysr@983: if (localtime_pd(&seconds_since_19700101, &time_struct) == NULL) { ysr@983: assert(false, "Failed localtime_pd"); duke@435: return NULL; duke@435: } never@3156: #if defined(_ALLBSD_SOURCE) never@3156: const time_t zone = (time_t) time_struct.tm_gmtoff; never@3156: #else duke@435: const time_t zone = timezone; never@3156: #endif duke@435: duke@435: // If daylight savings time is in effect, duke@435: // we are 1 hour East of our time zone duke@435: const time_t seconds_per_minute = 60; duke@435: const time_t minutes_per_hour = 60; duke@435: const time_t seconds_per_hour = seconds_per_minute * minutes_per_hour; duke@435: time_t UTC_to_local = zone; duke@435: if (time_struct.tm_isdst > 0) { duke@435: UTC_to_local = UTC_to_local - seconds_per_hour; duke@435: } duke@435: // Compute the time zone offset. ysr@983: // localtime_pd() sets timezone to the difference (in seconds) duke@435: // between UTC and and local time. duke@435: // ISO 8601 says we need the difference between local time and UTC, ysr@983: // we change the sign of the localtime_pd() result. duke@435: const time_t local_to_UTC = -(UTC_to_local); duke@435: // Then we have to figure out if if we are ahead (+) or behind (-) UTC. duke@435: char sign_local_to_UTC = '+'; duke@435: time_t abs_local_to_UTC = local_to_UTC; duke@435: if (local_to_UTC < 0) { duke@435: sign_local_to_UTC = '-'; duke@435: abs_local_to_UTC = -(abs_local_to_UTC); duke@435: } duke@435: // Convert time zone offset seconds to hours and minutes. duke@435: const time_t zone_hours = (abs_local_to_UTC / seconds_per_hour); duke@435: const time_t zone_min = duke@435: ((abs_local_to_UTC % seconds_per_hour) / seconds_per_minute); duke@435: duke@435: // Print an ISO 8601 date and time stamp into the buffer duke@435: const int year = 1900 + time_struct.tm_year; duke@435: const int month = 1 + time_struct.tm_mon; duke@435: const int printed = jio_snprintf(buffer, buffer_length, iso8601_format, duke@435: year, duke@435: month, duke@435: time_struct.tm_mday, duke@435: time_struct.tm_hour, duke@435: time_struct.tm_min, duke@435: time_struct.tm_sec, duke@435: milliseconds_after_second, duke@435: sign_local_to_UTC, duke@435: zone_hours, duke@435: zone_min); duke@435: if (printed == 0) { duke@435: assert(false, "Failed jio_printf"); duke@435: return NULL; duke@435: } duke@435: return buffer; duke@435: } duke@435: duke@435: OSReturn os::set_priority(Thread* thread, ThreadPriority p) { duke@435: #ifdef ASSERT duke@435: if (!(!thread->is_Java_thread() || duke@435: Thread::current() == thread || duke@435: Threads_lock->owned_by_self() duke@435: || thread->is_Compiler_thread() duke@435: )) { duke@435: assert(false, "possibility of dangling Thread pointer"); duke@435: } duke@435: #endif duke@435: duke@435: if (p >= MinPriority && p <= MaxPriority) { duke@435: int priority = java_to_os_priority[p]; duke@435: return set_native_priority(thread, priority); duke@435: } else { duke@435: assert(false, "Should not happen"); duke@435: return OS_ERR; duke@435: } duke@435: } duke@435: dholmes@4077: // The mapping from OS priority back to Java priority may be inexact because dholmes@4077: // Java priorities can map M:1 with native priorities. If you want the definite dholmes@4077: // Java priority then use JavaThread::java_priority() duke@435: OSReturn os::get_priority(const Thread* const thread, ThreadPriority& priority) { duke@435: int p; duke@435: int os_prio; duke@435: OSReturn ret = get_native_priority(thread, &os_prio); duke@435: if (ret != OS_OK) return ret; duke@435: dholmes@4077: if (java_to_os_priority[MaxPriority] > java_to_os_priority[MinPriority]) { dholmes@4077: for (p = MaxPriority; p > MinPriority && java_to_os_priority[p] > os_prio; p--) ; dholmes@4077: } else { dholmes@4077: // niceness values are in reverse order dholmes@4077: for (p = MaxPriority; p > MinPriority && java_to_os_priority[p] < os_prio; p--) ; dholmes@4077: } duke@435: priority = (ThreadPriority)p; duke@435: return OS_OK; duke@435: } duke@435: duke@435: duke@435: // --------------------- sun.misc.Signal (optional) --------------------- duke@435: duke@435: duke@435: // SIGBREAK is sent by the keyboard to query the VM state duke@435: #ifndef SIGBREAK duke@435: #define SIGBREAK SIGQUIT duke@435: #endif duke@435: duke@435: // sigexitnum_pd is a platform-specific special signal used for terminating the Signal thread. duke@435: duke@435: duke@435: static void signal_thread_entry(JavaThread* thread, TRAPS) { duke@435: os::set_priority(thread, NearMaxPriority); duke@435: while (true) { duke@435: int sig; duke@435: { duke@435: // FIXME : Currently we have not decieded what should be the status duke@435: // for this java thread blocked here. Once we decide about duke@435: // that we should fix this. duke@435: sig = os::signal_wait(); duke@435: } duke@435: if (sig == os::sigexitnum_pd()) { duke@435: // Terminate the signal thread duke@435: return; duke@435: } duke@435: duke@435: switch (sig) { duke@435: case SIGBREAK: { duke@435: // Check if the signal is a trigger to start the Attach Listener - in that duke@435: // case don't print stack traces. duke@435: if (!DisableAttachMechanism && AttachListener::is_init_trigger()) { duke@435: continue; duke@435: } duke@435: // Print stack traces duke@435: // Any SIGBREAK operations added here should make sure to flush duke@435: // the output stream (e.g. tty->flush()) after output. See 4803766. duke@435: // Each module also prints an extra carriage return after its output. duke@435: VM_PrintThreads op; duke@435: VMThread::execute(&op); duke@435: VM_PrintJNI jni_op; duke@435: VMThread::execute(&jni_op); duke@435: VM_FindDeadlocks op1(tty); duke@435: VMThread::execute(&op1); duke@435: Universe::print_heap_at_SIGBREAK(); duke@435: if (PrintClassHistogram) { sla@5237: VM_GC_HeapInspection op1(gclog_or_tty, true /* force full GC before heap inspection */); duke@435: VMThread::execute(&op1); duke@435: } duke@435: if (JvmtiExport::should_post_data_dump()) { duke@435: JvmtiExport::post_data_dump(); duke@435: } duke@435: break; duke@435: } duke@435: default: { duke@435: // Dispatch the signal to java duke@435: HandleMark hm(THREAD); coleenp@4037: Klass* k = SystemDictionary::resolve_or_null(vmSymbols::sun_misc_Signal(), THREAD); duke@435: KlassHandle klass (THREAD, k); duke@435: if (klass.not_null()) { duke@435: JavaValue result(T_VOID); duke@435: JavaCallArguments args; duke@435: args.push_int(sig); duke@435: JavaCalls::call_static( duke@435: &result, duke@435: klass, coleenp@2497: vmSymbols::dispatch_name(), coleenp@2497: vmSymbols::int_void_signature(), duke@435: &args, duke@435: THREAD duke@435: ); duke@435: } duke@435: if (HAS_PENDING_EXCEPTION) { duke@435: // tty is initialized early so we don't expect it to be null, but duke@435: // if it is we can't risk doing an initialization that might duke@435: // trigger additional out-of-memory conditions duke@435: if (tty != NULL) { duke@435: char klass_name[256]; duke@435: char tmp_sig_name[16]; duke@435: const char* sig_name = "UNKNOWN"; coleenp@4037: InstanceKlass::cast(PENDING_EXCEPTION->klass())-> duke@435: name()->as_klass_external_name(klass_name, 256); duke@435: if (os::exception_name(sig, tmp_sig_name, 16) != NULL) duke@435: sig_name = tmp_sig_name; duke@435: warning("Exception %s occurred dispatching signal %s to handler" duke@435: "- the VM may need to be forcibly terminated", duke@435: klass_name, sig_name ); duke@435: } duke@435: CLEAR_PENDING_EXCEPTION; duke@435: } duke@435: } duke@435: } duke@435: } duke@435: } duke@435: tschatzl@5701: void os::init_before_ergo() { tschatzl@5701: // We need to initialize large page support here because ergonomics takes some tschatzl@5701: // decisions depending on large page support and the calculated large page size. tschatzl@5701: large_page_init(); tschatzl@5701: } duke@435: duke@435: void os::signal_init() { duke@435: if (!ReduceSignalUsage) { duke@435: // Setup JavaThread for processing signals duke@435: EXCEPTION_MARK; coleenp@4037: Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_Thread(), true, CHECK); duke@435: instanceKlassHandle klass (THREAD, k); duke@435: instanceHandle thread_oop = klass->allocate_instance_handle(CHECK); duke@435: duke@435: const char thread_name[] = "Signal Dispatcher"; duke@435: Handle string = java_lang_String::create_from_str(thread_name, CHECK); duke@435: duke@435: // Initialize thread_oop to put it into the system threadGroup duke@435: Handle thread_group (THREAD, Universe::system_thread_group()); duke@435: JavaValue result(T_VOID); duke@435: JavaCalls::call_special(&result, thread_oop, duke@435: klass, coleenp@2497: vmSymbols::object_initializer_name(), coleenp@2497: vmSymbols::threadgroup_string_void_signature(), duke@435: thread_group, duke@435: string, duke@435: CHECK); duke@435: never@1577: KlassHandle group(THREAD, SystemDictionary::ThreadGroup_klass()); duke@435: JavaCalls::call_special(&result, duke@435: thread_group, duke@435: group, coleenp@2497: vmSymbols::add_method_name(), coleenp@2497: vmSymbols::thread_void_signature(), duke@435: thread_oop, // ARG 1 duke@435: CHECK); duke@435: duke@435: os::signal_init_pd(); duke@435: duke@435: { MutexLocker mu(Threads_lock); duke@435: JavaThread* signal_thread = new JavaThread(&signal_thread_entry); duke@435: duke@435: // At this point it may be possible that no osthread was created for the duke@435: // JavaThread due to lack of memory. We would have to throw an exception duke@435: // in that case. However, since this must work and we do not allow duke@435: // exceptions anyway, check and abort if this fails. duke@435: if (signal_thread == NULL || signal_thread->osthread() == NULL) { duke@435: vm_exit_during_initialization("java.lang.OutOfMemoryError", duke@435: "unable to create new native thread"); duke@435: } duke@435: duke@435: java_lang_Thread::set_thread(thread_oop(), signal_thread); duke@435: java_lang_Thread::set_priority(thread_oop(), NearMaxPriority); duke@435: java_lang_Thread::set_daemon(thread_oop()); duke@435: duke@435: signal_thread->set_threadObj(thread_oop()); duke@435: Threads::add(signal_thread); duke@435: Thread::start(signal_thread); duke@435: } duke@435: // Handle ^BREAK duke@435: os::signal(SIGBREAK, os::user_handler()); duke@435: } duke@435: } duke@435: duke@435: duke@435: void os::terminate_signal_thread() { duke@435: if (!ReduceSignalUsage) duke@435: signal_notify(sigexitnum_pd()); duke@435: } duke@435: duke@435: duke@435: // --------------------- loading libraries --------------------- duke@435: duke@435: typedef jint (JNICALL *JNI_OnLoad_t)(JavaVM *, void *); duke@435: extern struct JavaVM_ main_vm; duke@435: duke@435: static void* _native_java_library = NULL; duke@435: duke@435: void* os::native_java_library() { duke@435: if (_native_java_library == NULL) { duke@435: char buffer[JVM_MAXPATHLEN]; duke@435: char ebuf[1024]; duke@435: kamg@677: // Try to load verify dll first. In 1.3 java dll depends on it and is not kamg@677: // always able to find it when the loading executable is outside the JDK. duke@435: // In order to keep working with 1.2 we ignore any loading errors. bpittore@4261: if (dll_build_name(buffer, sizeof(buffer), Arguments::get_dll_dir(), bpittore@4261: "verify")) { bpittore@4261: dll_load(buffer, ebuf, sizeof(ebuf)); bpittore@4261: } duke@435: duke@435: // Load java dll bpittore@4261: if (dll_build_name(buffer, sizeof(buffer), Arguments::get_dll_dir(), bpittore@4261: "java")) { bpittore@4261: _native_java_library = dll_load(buffer, ebuf, sizeof(ebuf)); bpittore@4261: } duke@435: if (_native_java_library == NULL) { duke@435: vm_exit_during_initialization("Unable to load native library", ebuf); duke@435: } never@3156: never@3156: #if defined(__OpenBSD__) never@3156: // Work-around OpenBSD's lack of $ORIGIN support by pre-loading libnet.so never@3156: // ignore errors bpittore@4261: if (dll_build_name(buffer, sizeof(buffer), Arguments::get_dll_dir(), bpittore@4261: "net")) { bpittore@4261: dll_load(buffer, ebuf, sizeof(ebuf)); bpittore@4261: } never@3156: #endif kamg@677: } kamg@677: static jboolean onLoaded = JNI_FALSE; kamg@677: if (onLoaded) { kamg@677: // We may have to wait to fire OnLoad until TLS is initialized. kamg@677: if (ThreadLocalStorage::is_initialized()) { kamg@677: // The JNI_OnLoad handling is normally done by method load in kamg@677: // java.lang.ClassLoader$NativeLibrary, but the VM loads the base library kamg@677: // explicitly so we have to check for JNI_OnLoad as well kamg@677: const char *onLoadSymbols[] = JNI_ONLOAD_SYMBOLS; kamg@677: JNI_OnLoad_t JNI_OnLoad = CAST_TO_FN_PTR( kamg@677: JNI_OnLoad_t, dll_lookup(_native_java_library, onLoadSymbols[0])); kamg@677: if (JNI_OnLoad != NULL) { kamg@677: JavaThread* thread = JavaThread::current(); kamg@677: ThreadToNativeFromVM ttn(thread); kamg@677: HandleMark hm(thread); kamg@677: jint ver = (*JNI_OnLoad)(&main_vm, NULL); kamg@677: onLoaded = JNI_TRUE; kamg@677: if (!Threads::is_supported_jni_version_including_1_1(ver)) { kamg@677: vm_exit_during_initialization("Unsupported JNI version"); kamg@677: } duke@435: } duke@435: } duke@435: } duke@435: return _native_java_library; duke@435: } duke@435: bpittore@5585: /* bpittore@5585: * Support for finding Agent_On(Un)Load/Attach<_lib_name> if it exists. bpittore@5585: * If check_lib == true then we are looking for an bpittore@5585: * Agent_OnLoad_lib_name or Agent_OnAttach_lib_name function to determine if bpittore@5585: * this library is statically linked into the image. bpittore@5585: * If check_lib == false then we will look for the appropriate symbol in the bpittore@5585: * executable if agent_lib->is_static_lib() == true or in the shared library bpittore@5585: * referenced by 'handle'. bpittore@5585: */ bpittore@5585: void* os::find_agent_function(AgentLibrary *agent_lib, bool check_lib, bpittore@5585: const char *syms[], size_t syms_len) { bpittore@5688: assert(agent_lib != NULL, "sanity check"); bpittore@5585: const char *lib_name; bpittore@5585: void *handle = agent_lib->os_lib(); bpittore@5585: void *entryName = NULL; bpittore@5585: char *agent_function_name; bpittore@5585: size_t i; bpittore@5585: bpittore@5585: // If checking then use the agent name otherwise test is_static_lib() to bpittore@5585: // see how to process this lookup bpittore@5585: lib_name = ((check_lib || agent_lib->is_static_lib()) ? agent_lib->name() : NULL); bpittore@5585: for (i = 0; i < syms_len; i++) { bpittore@5585: agent_function_name = build_agent_function_name(syms[i], lib_name, agent_lib->is_absolute_path()); bpittore@5585: if (agent_function_name == NULL) { bpittore@5585: break; bpittore@5585: } bpittore@5585: entryName = dll_lookup(handle, agent_function_name); bpittore@5585: FREE_C_HEAP_ARRAY(char, agent_function_name, mtThread); bpittore@5585: if (entryName != NULL) { bpittore@5585: break; bpittore@5585: } bpittore@5585: } bpittore@5585: return entryName; bpittore@5585: } bpittore@5585: bpittore@5585: // See if the passed in agent is statically linked into the VM image. bpittore@5585: bool os::find_builtin_agent(AgentLibrary *agent_lib, const char *syms[], bpittore@5585: size_t syms_len) { bpittore@5585: void *ret; bpittore@5585: void *proc_handle; bpittore@5585: void *save_handle; bpittore@5585: bpittore@5688: assert(agent_lib != NULL, "sanity check"); bpittore@5585: if (agent_lib->name() == NULL) { bpittore@5585: return false; bpittore@5585: } bpittore@5585: proc_handle = get_default_process_handle(); bpittore@5585: // Check for Agent_OnLoad/Attach_lib_name function bpittore@5585: save_handle = agent_lib->os_lib(); bpittore@5585: // We want to look in this process' symbol table. bpittore@5585: agent_lib->set_os_lib(proc_handle); bpittore@5585: ret = find_agent_function(agent_lib, true, syms, syms_len); bpittore@5585: if (ret != NULL) { bpittore@5585: // Found an entry point like Agent_OnLoad_lib_name so we have a static agent bpittore@5585: agent_lib->set_valid(); bpittore@5585: agent_lib->set_static_lib(true); bpittore@5585: return true; bpittore@5585: } bpittore@5688: agent_lib->set_os_lib(save_handle); bpittore@5585: return false; bpittore@5585: } bpittore@5585: duke@435: // --------------------- heap allocation utilities --------------------- duke@435: zgu@3900: char *os::strdup(const char *str, MEMFLAGS flags) { duke@435: size_t size = strlen(str); zgu@3900: char *dup_str = (char *)malloc(size + 1, flags); duke@435: if (dup_str == NULL) return NULL; duke@435: strcpy(dup_str, str); duke@435: return dup_str; duke@435: } duke@435: duke@435: duke@435: duke@435: #define paranoid 0 /* only set to 1 if you suspect checking code has bug */ duke@435: duke@435: #ifdef ASSERT dsimms@7032: static void verify_memory(void* ptr) { dsimms@7032: GuardedMemory guarded(ptr); dsimms@7032: if (!guarded.verify_guards()) { dsimms@7032: tty->print_cr("## nof_mallocs = " UINT64_FORMAT ", nof_frees = " UINT64_FORMAT, os::num_mallocs, os::num_frees); dsimms@7032: tty->print_cr("## memory stomp:"); dsimms@7032: guarded.print_on(tty); dsimms@7032: fatal("memory stomping error"); duke@435: } duke@435: } duke@435: #endif duke@435: rdurbin@4802: // rdurbin@4802: // This function supports testing of the malloc out of memory rdurbin@4802: // condition without really running the system out of memory. rdurbin@4802: // rdurbin@4802: static u_char* testMalloc(size_t alloc_size) { rdurbin@4808: assert(MallocMaxTestWords > 0, "sanity check"); rdurbin@4802: rdurbin@4808: if ((cur_malloc_words + (alloc_size / BytesPerWord)) > MallocMaxTestWords) { rdurbin@4802: return NULL; rdurbin@4802: } rdurbin@4802: rdurbin@4802: u_char* ptr = (u_char*)::malloc(alloc_size); rdurbin@4802: rdurbin@4808: if (ptr != NULL) { rdurbin@4802: Atomic::add(((jint) (alloc_size / BytesPerWord)), rdurbin@4802: (volatile jint *) &cur_malloc_words); rdurbin@4802: } rdurbin@4802: return ptr; rdurbin@4802: } rdurbin@4802: zgu@7074: void* os::malloc(size_t size, MEMFLAGS flags) { zgu@7074: return os::malloc(size, flags, CALLER_PC); zgu@7074: } zgu@7074: zgu@7074: void* os::malloc(size_t size, MEMFLAGS memflags, const NativeCallStack& stack) { kvn@2557: NOT_PRODUCT(inc_stat_counter(&num_mallocs, 1)); kvn@2557: NOT_PRODUCT(inc_stat_counter(&alloc_bytes, size)); duke@435: rbackman@5424: #ifdef ASSERT rbackman@5424: // checking for the WatcherThread and crash_protection first rbackman@5424: // since os::malloc can be called when the libjvm.{dll,so} is rbackman@5424: // first loaded and we don't have a thread yet. rbackman@5424: // try to find the thread after we see that the watcher thread rbackman@5424: // exists and has crash protection. rbackman@5424: WatcherThread *wt = WatcherThread::watcher_thread(); rbackman@5424: if (wt != NULL && wt->has_crash_protection()) { rbackman@5424: Thread* thread = ThreadLocalStorage::get_thread_slow(); rbackman@5424: if (thread == wt) { rbackman@5424: assert(!wt->has_crash_protection(), rbackman@5424: "Can't malloc with crash protection from WatcherThread"); rbackman@5424: } rbackman@5424: } rbackman@5424: #endif rbackman@5424: duke@435: if (size == 0) { duke@435: // return a valid pointer if size is zero duke@435: // if NULL is returned the calling functions assume out of memory. duke@435: size = 1; duke@435: } rdurbin@4802: zgu@7074: // NMT support zgu@7074: NMT_TrackingLevel level = MemTracker::tracking_level(); zgu@7074: size_t nmt_header_size = MemTracker::malloc_header_size(level); zgu@7074: dsimms@7032: #ifndef ASSERT zgu@7074: const size_t alloc_size = size + nmt_header_size; dsimms@7032: #else zgu@7074: const size_t alloc_size = GuardedMemory::get_total_size(size + nmt_header_size); zgu@7074: if (size + nmt_header_size > alloc_size) { // Check for rollover. hseigel@4277: return NULL; hseigel@4277: } dsimms@7032: #endif rdurbin@4802: duke@435: NOT_PRODUCT(if (MallocVerifyInterval > 0) check_heap()); rdurbin@4802: rdurbin@4802: u_char* ptr; rdurbin@4802: if (MallocMaxTestWords > 0) { rdurbin@4802: ptr = testMalloc(alloc_size); rdurbin@4802: } else { rdurbin@4802: ptr = (u_char*)::malloc(alloc_size); rdurbin@4802: } zgu@3900: duke@435: #ifdef ASSERT dsimms@7032: if (ptr == NULL) { dsimms@7032: return NULL; duke@435: } dsimms@7032: // Wrap memory with guard zgu@7074: GuardedMemory guarded(ptr, size + nmt_header_size); dsimms@7032: ptr = guarded.get_user_ptr(); duke@435: #endif dsimms@7032: if ((intptr_t)ptr == (intptr_t)MallocCatchPtr) { dsimms@7032: tty->print_cr("os::malloc caught, " SIZE_FORMAT " bytes --> " PTR_FORMAT, size, ptr); duke@435: breakpoint(); duke@435: } dsimms@7032: debug_only(if (paranoid) verify_memory(ptr)); dsimms@7032: if (PrintMalloc && tty != NULL) { dsimms@7032: tty->print_cr("os::malloc " SIZE_FORMAT " bytes --> " PTR_FORMAT, size, ptr); dsimms@7032: } zgu@3900: dsimms@7032: // we do not track guard memory zgu@7074: return MemTracker::record_malloc((address)ptr, size, memflags, stack, level); duke@435: } duke@435: zgu@7074: void* os::realloc(void *memblock, size_t size, MEMFLAGS flags) { zgu@7074: return os::realloc(memblock, size, flags, CALLER_PC); zgu@7074: } duke@435: zgu@7074: void* os::realloc(void *memblock, size_t size, MEMFLAGS memflags, const NativeCallStack& stack) { duke@435: #ifndef ASSERT kvn@2557: NOT_PRODUCT(inc_stat_counter(&num_mallocs, 1)); kvn@2557: NOT_PRODUCT(inc_stat_counter(&alloc_bytes, size)); zgu@7074: // NMT support zgu@7074: void* membase = MemTracker::record_free(memblock); zgu@7074: NMT_TrackingLevel level = MemTracker::tracking_level(); zgu@7074: size_t nmt_header_size = MemTracker::malloc_header_size(level); zgu@7074: void* ptr = ::realloc(membase, size + nmt_header_size); zgu@7074: return MemTracker::record_malloc(ptr, size, memflags, stack, level); duke@435: #else duke@435: if (memblock == NULL) { zgu@7074: return os::malloc(size, memflags, stack); duke@435: } duke@435: if ((intptr_t)memblock == (intptr_t)MallocCatchPtr) { kvn@2557: tty->print_cr("os::realloc caught " PTR_FORMAT, memblock); duke@435: breakpoint(); duke@435: } zgu@7074: // NMT support zgu@7074: void* membase = MemTracker::malloc_base(memblock); zgu@7074: verify_memory(membase); duke@435: NOT_PRODUCT(if (MallocVerifyInterval > 0) check_heap()); dsimms@7032: if (size == 0) { dsimms@7032: return NULL; dsimms@7032: } duke@435: // always move the block zgu@7074: void* ptr = os::malloc(size, memflags, stack); dsimms@7032: if (PrintMalloc) { dsimms@7032: tty->print_cr("os::remalloc " SIZE_FORMAT " bytes, " PTR_FORMAT " --> " PTR_FORMAT, size, memblock, ptr); dsimms@7032: } duke@435: // Copy to new memory if malloc didn't fail duke@435: if ( ptr != NULL ) { zgu@7074: GuardedMemory guarded(MemTracker::malloc_base(memblock)); zgu@7074: // Guard's user data contains NMT header zgu@7074: size_t memblock_size = guarded.get_user_size() - MemTracker::malloc_header_size(memblock); zgu@7074: memcpy(ptr, memblock, MIN2(size, memblock_size)); zgu@7074: if (paranoid) verify_memory(MemTracker::malloc_base(ptr)); duke@435: if ((intptr_t)ptr == (intptr_t)MallocCatchPtr) { kvn@2557: tty->print_cr("os::realloc caught, " SIZE_FORMAT " bytes --> " PTR_FORMAT, size, ptr); duke@435: breakpoint(); duke@435: } dsimms@7032: os::free(memblock); duke@435: } duke@435: return ptr; duke@435: #endif duke@435: } duke@435: duke@435: zgu@3900: void os::free(void *memblock, MEMFLAGS memflags) { kvn@2557: NOT_PRODUCT(inc_stat_counter(&num_frees, 1)); duke@435: #ifdef ASSERT duke@435: if (memblock == NULL) return; duke@435: if ((intptr_t)memblock == (intptr_t)MallocCatchPtr) { kvn@2557: if (tty != NULL) tty->print_cr("os::free caught " PTR_FORMAT, memblock); duke@435: breakpoint(); duke@435: } zgu@7074: void* membase = MemTracker::record_free(memblock); zgu@7074: verify_memory(membase); duke@435: NOT_PRODUCT(if (MallocVerifyInterval > 0) check_heap()); dsimms@7032: zgu@7074: GuardedMemory guarded(membase); dsimms@7032: size_t size = guarded.get_user_size(); dsimms@7032: inc_stat_counter(&free_bytes, size); zgu@7074: membase = guarded.release_for_freeing(); dsimms@7032: if (PrintMalloc && tty != NULL) { zgu@7074: fprintf(stderr, "os::free " SIZE_FORMAT " bytes --> " PTR_FORMAT "\n", size, (uintptr_t)membase); duke@435: } zgu@7074: ::free(membase); zgu@7074: #else zgu@7074: void* membase = MemTracker::record_free(memblock); zgu@7074: ::free(membase); duke@435: #endif duke@435: } duke@435: duke@435: void os::init_random(long initval) { duke@435: _rand_seed = initval; duke@435: } duke@435: duke@435: duke@435: long os::random() { duke@435: /* standard, well-known linear congruential random generator with duke@435: * next_rand = (16807*seed) mod (2**31-1) duke@435: * see duke@435: * (1) "Random Number Generators: Good Ones Are Hard to Find", duke@435: * S.K. Park and K.W. Miller, Communications of the ACM 31:10 (Oct 1988), duke@435: * (2) "Two Fast Implementations of the 'Minimal Standard' Random duke@435: * Number Generator", David G. Carta, Comm. ACM 33, 1 (Jan 1990), pp. 87-88. duke@435: */ duke@435: const long a = 16807; duke@435: const unsigned long m = 2147483647; duke@435: const long q = m / a; assert(q == 127773, "weird math"); duke@435: const long r = m % a; assert(r == 2836, "weird math"); duke@435: duke@435: // compute az=2^31p+q duke@435: unsigned long lo = a * (long)(_rand_seed & 0xFFFF); duke@435: unsigned long hi = a * (long)((unsigned long)_rand_seed >> 16); duke@435: lo += (hi & 0x7FFF) << 16; duke@435: duke@435: // if q overflowed, ignore the overflow and increment q duke@435: if (lo > m) { duke@435: lo &= m; duke@435: ++lo; duke@435: } duke@435: lo += hi >> 15; duke@435: duke@435: // if (p+q) overflowed, ignore the overflow and increment (p+q) duke@435: if (lo > m) { duke@435: lo &= m; duke@435: ++lo; duke@435: } duke@435: return (_rand_seed = lo); duke@435: } duke@435: duke@435: // The INITIALIZED state is distinguished from the SUSPENDED state because the duke@435: // conditions in which a thread is first started are different from those in which duke@435: // a suspension is resumed. These differences make it hard for us to apply the duke@435: // tougher checks when starting threads that we want to do when resuming them. duke@435: // However, when start_thread is called as a result of Thread.start, on a Java duke@435: // thread, the operation is synchronized on the Java Thread object. So there duke@435: // cannot be a race to start the thread and hence for the thread to exit while duke@435: // we are working on it. Non-Java threads that start Java threads either have duke@435: // to do so in a context in which races are impossible, or should do appropriate duke@435: // locking. duke@435: duke@435: void os::start_thread(Thread* thread) { duke@435: // guard suspend/resume duke@435: MutexLockerEx ml(thread->SR_lock(), Mutex::_no_safepoint_check_flag); duke@435: OSThread* osthread = thread->osthread(); duke@435: osthread->set_state(RUNNABLE); duke@435: pd_start_thread(thread); duke@435: } duke@435: duke@435: //--------------------------------------------------------------------------- duke@435: // Helper functions for fatal error handler duke@435: duke@435: void os::print_hex_dump(outputStream* st, address start, address end, int unitsize) { duke@435: assert(unitsize == 1 || unitsize == 2 || unitsize == 4 || unitsize == 8, "just checking"); duke@435: duke@435: int cols = 0; duke@435: int cols_per_line = 0; duke@435: switch (unitsize) { duke@435: case 1: cols_per_line = 16; break; duke@435: case 2: cols_per_line = 8; break; duke@435: case 4: cols_per_line = 4; break; duke@435: case 8: cols_per_line = 2; break; duke@435: default: return; duke@435: } duke@435: duke@435: address p = start; duke@435: st->print(PTR_FORMAT ": ", start); duke@435: while (p < end) { duke@435: switch (unitsize) { duke@435: case 1: st->print("%02x", *(u1*)p); break; duke@435: case 2: st->print("%04x", *(u2*)p); break; duke@435: case 4: st->print("%08x", *(u4*)p); break; duke@435: case 8: st->print("%016" FORMAT64_MODIFIER "x", *(u8*)p); break; duke@435: } duke@435: p += unitsize; duke@435: cols++; duke@435: if (cols >= cols_per_line && p < end) { duke@435: cols = 0; duke@435: st->cr(); duke@435: st->print(PTR_FORMAT ": ", p); duke@435: } else { duke@435: st->print(" "); duke@435: } duke@435: } duke@435: st->cr(); duke@435: } duke@435: duke@435: void os::print_environment_variables(outputStream* st, const char** env_list, duke@435: char* buffer, int len) { duke@435: if (env_list) { duke@435: st->print_cr("Environment Variables:"); duke@435: duke@435: for (int i = 0; env_list[i] != NULL; i++) { duke@435: if (getenv(env_list[i], buffer, len)) { drchase@6680: st->print("%s", env_list[i]); duke@435: st->print("="); drchase@6680: st->print_cr("%s", buffer); duke@435: } duke@435: } duke@435: } duke@435: } duke@435: duke@435: void os::print_cpu_info(outputStream* st) { duke@435: // cpu duke@435: st->print("CPU:"); duke@435: st->print("total %d", os::processor_count()); duke@435: // It's not safe to query number of active processors after crash duke@435: // st->print("(active %d)", os::active_processor_count()); duke@435: st->print(" %s", VM_Version::cpu_features()); duke@435: st->cr(); jcoomes@2997: pd_print_cpu_info(st); duke@435: } duke@435: duke@435: void os::print_date_and_time(outputStream *st) { dbuck@6547: const int secs_per_day = 86400; dbuck@6547: const int secs_per_hour = 3600; dbuck@6547: const int secs_per_min = 60; dbuck@6547: duke@435: time_t tloc; duke@435: (void)time(&tloc); duke@435: st->print("time: %s", ctime(&tloc)); // ctime adds newline. duke@435: duke@435: double t = os::elapsedTime(); duke@435: // NOTE: It tends to crash after a SEGV if we want to printf("%f",...) in duke@435: // Linux. Must be a bug in glibc ? Workaround is to round "t" to int duke@435: // before printf. We lost some precision, but who cares? dbuck@6547: int eltime = (int)t; // elapsed time in seconds dbuck@6547: dbuck@6547: // print elapsed time in a human-readable format: dbuck@6547: int eldays = eltime / secs_per_day; dbuck@6547: int day_secs = eldays * secs_per_day; dbuck@6547: int elhours = (eltime - day_secs) / secs_per_hour; dbuck@6547: int hour_secs = elhours * secs_per_hour; dbuck@6547: int elmins = (eltime - day_secs - hour_secs) / secs_per_min; dbuck@6547: int minute_secs = elmins * secs_per_min; dbuck@6547: int elsecs = (eltime - day_secs - hour_secs - minute_secs); dbuck@6547: st->print_cr("elapsed time: %d seconds (%dd %dh %dm %ds)", eltime, eldays, elhours, elmins, elsecs); duke@435: } duke@435: bobv@2036: // moved from debug.cpp (used to be find()) but still called from there never@2262: // The verbose parameter is only set by the debug code in one case never@2262: void os::print_location(outputStream* st, intptr_t x, bool verbose) { bobv@2036: address addr = (address)x; bobv@2036: CodeBlob* b = CodeCache::find_blob_unsafe(addr); bobv@2036: if (b != NULL) { bobv@2036: if (b->is_buffer_blob()) { bobv@2036: // the interpreter is generated into a buffer blob bobv@2036: InterpreterCodelet* i = Interpreter::codelet_containing(addr); bobv@2036: if (i != NULL) { twisti@3969: st->print_cr(INTPTR_FORMAT " is at code_begin+%d in an Interpreter codelet", addr, (int)(addr - i->code_begin())); bobv@2036: i->print_on(st); bobv@2036: return; bobv@2036: } bobv@2036: if (Interpreter::contains(addr)) { bobv@2036: st->print_cr(INTPTR_FORMAT " is pointing into interpreter code" bobv@2036: " (not bytecode specific)", addr); bobv@2036: return; bobv@2036: } bobv@2036: // bobv@2036: if (AdapterHandlerLibrary::contains(b)) { twisti@3969: st->print_cr(INTPTR_FORMAT " is at code_begin+%d in an AdapterHandler", addr, (int)(addr - b->code_begin())); bobv@2036: AdapterHandlerLibrary::print_handler_on(st, b); bobv@2036: } bobv@2036: // the stubroutines are generated into a buffer blob bobv@2036: StubCodeDesc* d = StubCodeDesc::desc_for(addr); bobv@2036: if (d != NULL) { twisti@3969: st->print_cr(INTPTR_FORMAT " is at begin+%d in a stub", addr, (int)(addr - d->begin())); bobv@2036: d->print_on(st); twisti@3969: st->cr(); bobv@2036: return; bobv@2036: } bobv@2036: if (StubRoutines::contains(addr)) { bobv@2036: st->print_cr(INTPTR_FORMAT " is pointing to an (unnamed) " bobv@2036: "stub routine", addr); bobv@2036: return; bobv@2036: } bobv@2036: // the InlineCacheBuffer is using stubs generated into a buffer blob bobv@2036: if (InlineCacheBuffer::contains(addr)) { bobv@2036: st->print_cr(INTPTR_FORMAT " is pointing into InlineCacheBuffer", addr); bobv@2036: return; bobv@2036: } bobv@2036: VtableStub* v = VtableStubs::stub_containing(addr); bobv@2036: if (v != NULL) { twisti@3969: st->print_cr(INTPTR_FORMAT " is at entry_point+%d in a vtable stub", addr, (int)(addr - v->entry_point())); bobv@2036: v->print_on(st); twisti@3969: st->cr(); bobv@2036: return; bobv@2036: } bobv@2036: } twisti@3969: nmethod* nm = b->as_nmethod_or_null(); twisti@3969: if (nm != NULL) { bobv@2036: ResourceMark rm; twisti@3969: st->print(INTPTR_FORMAT " is at entry_point+%d in (nmethod*)" INTPTR_FORMAT, twisti@3969: addr, (int)(addr - nm->entry_point()), nm); twisti@3969: if (verbose) { twisti@3969: st->print(" for "); twisti@3969: nm->method()->print_value_on(st); twisti@3969: } stefank@4127: st->cr(); twisti@3969: nm->print_nmethod(verbose); bobv@2036: return; bobv@2036: } twisti@3969: st->print_cr(INTPTR_FORMAT " is at code_begin+%d in ", addr, (int)(addr - b->code_begin())); bobv@2036: b->print_on(st); bobv@2036: return; bobv@2036: } bobv@2036: bobv@2036: if (Universe::heap()->is_in(addr)) { bobv@2036: HeapWord* p = Universe::heap()->block_start(addr); bobv@2036: bool print = false; bobv@2036: // If we couldn't find it it just may mean that heap wasn't parseable bobv@2036: // See if we were just given an oop directly bobv@2036: if (p != NULL && Universe::heap()->block_is_obj(p)) { bobv@2036: print = true; bobv@2036: } else if (p == NULL && ((oopDesc*)addr)->is_oop()) { bobv@2036: p = (HeapWord*) addr; bobv@2036: print = true; bobv@2036: } bobv@2036: if (print) { stefank@4125: if (p == (HeapWord*) addr) { stefank@4125: st->print_cr(INTPTR_FORMAT " is an oop", addr); stefank@4125: } else { stefank@4125: st->print_cr(INTPTR_FORMAT " is pointing into object: " INTPTR_FORMAT, addr, p); stefank@4125: } bobv@2036: oop(p)->print_on(st); bobv@2036: return; bobv@2036: } bobv@2036: } else { bobv@2036: if (Universe::heap()->is_in_reserved(addr)) { bobv@2036: st->print_cr(INTPTR_FORMAT " is an unallocated location " bobv@2036: "in the heap", addr); bobv@2036: return; bobv@2036: } bobv@2036: } bobv@2036: if (JNIHandles::is_global_handle((jobject) addr)) { bobv@2036: st->print_cr(INTPTR_FORMAT " is a global jni handle", addr); bobv@2036: return; bobv@2036: } bobv@2036: if (JNIHandles::is_weak_global_handle((jobject) addr)) { bobv@2036: st->print_cr(INTPTR_FORMAT " is a weak global jni handle", addr); bobv@2036: return; bobv@2036: } bobv@2036: #ifndef PRODUCT bobv@2036: // we don't keep the block list in product mode bobv@2036: if (JNIHandleBlock::any_contains((jobject) addr)) { bobv@2036: st->print_cr(INTPTR_FORMAT " is a local jni handle", addr); bobv@2036: return; bobv@2036: } bobv@2036: #endif bobv@2036: bobv@2036: for(JavaThread *thread = Threads::first(); thread; thread = thread->next()) { bobv@2036: // Check for privilege stack bobv@2036: if (thread->privileged_stack_top() != NULL && bobv@2036: thread->privileged_stack_top()->contains(addr)) { bobv@2036: st->print_cr(INTPTR_FORMAT " is pointing into the privilege stack " bobv@2036: "for thread: " INTPTR_FORMAT, addr, thread); never@2262: if (verbose) thread->print_on(st); bobv@2036: return; bobv@2036: } bobv@2036: // If the addr is a java thread print information about that. bobv@2036: if (addr == (address)thread) { never@2262: if (verbose) { never@2262: thread->print_on(st); never@2262: } else { never@2262: st->print_cr(INTPTR_FORMAT " is a thread", addr); never@2262: } bobv@2036: return; bobv@2036: } bobv@2036: // If the addr is in the stack region for this thread then report that bobv@2036: // and print thread info bobv@2036: if (thread->stack_base() >= addr && bobv@2036: addr > (thread->stack_base() - thread->stack_size())) { bobv@2036: st->print_cr(INTPTR_FORMAT " is pointing into the stack for thread: " bobv@2036: INTPTR_FORMAT, addr, thread); never@2262: if (verbose) thread->print_on(st); bobv@2036: return; bobv@2036: } bobv@2036: bobv@2036: } coleenp@4037: coleenp@6678: // Check if in metaspace and print types that have vptrs (only method now) coleenp@6678: if (Metaspace::contains(addr)) { coleenp@6678: if (Method::has_method_vptr((const void*)addr)) { coleenp@6678: ((Method*)addr)->print_value_on(st); coleenp@6678: st->cr(); coleenp@6678: } else { coleenp@6678: // Use addr->print() from the debugger instead (not here) coleenp@6678: st->print_cr(INTPTR_FORMAT " is pointing into metadata", addr); coleenp@6678: } coleenp@4037: return; coleenp@4037: } coleenp@4037: bobv@2036: // Try an OS specific find bobv@2036: if (os::find(addr, st)) { bobv@2036: return; bobv@2036: } bobv@2036: never@2262: st->print_cr(INTPTR_FORMAT " is an unknown value", addr); bobv@2036: } duke@435: duke@435: // Looks like all platforms except IA64 can use the same function to check duke@435: // if C stack is walkable beyond current frame. The check for fp() is not duke@435: // necessary on Sparc, but it's harmless. duke@435: bool os::is_first_C_frame(frame* fr) { goetz@6453: #if (defined(IA64) && !defined(AIX)) && !defined(_WIN32) morris@4535: // On IA64 we have to check if the callers bsp is still valid morris@4535: // (i.e. within the register stack bounds). morris@4535: // Notice: this only works for threads created by the VM and only if morris@4535: // we walk the current stack!!! If we want to be able to walk morris@4535: // arbitrary other threads, we'll have to somehow store the thread morris@4535: // object in the frame. morris@4535: Thread *thread = Thread::current(); morris@4535: if ((address)fr->fp() <= morris@4535: thread->register_stack_base() HPUX_ONLY(+ 0x0) LINUX_ONLY(+ 0x50)) { morris@4535: // This check is a little hacky, because on Linux the first C morris@4535: // frame's ('start_thread') register stack frame starts at morris@4535: // "register_stack_base + 0x48" while on HPUX, the first C frame's morris@4535: // ('__pthread_bound_body') register stack frame seems to really morris@4535: // start at "register_stack_base". morris@4535: return true; morris@4535: } else { morris@4535: return false; morris@4535: } morris@4535: #elif defined(IA64) && defined(_WIN32) duke@435: return true; morris@4535: #else duke@435: // Load up sp, fp, sender sp and sender fp, check for reasonable values. duke@435: // Check usp first, because if that's bad the other accessors may fault duke@435: // on some architectures. Ditto ufp second, etc. duke@435: uintptr_t fp_align_mask = (uintptr_t)(sizeof(address)-1); duke@435: // sp on amd can be 32 bit aligned. duke@435: uintptr_t sp_align_mask = (uintptr_t)(sizeof(int)-1); duke@435: duke@435: uintptr_t usp = (uintptr_t)fr->sp(); duke@435: if ((usp & sp_align_mask) != 0) return true; duke@435: duke@435: uintptr_t ufp = (uintptr_t)fr->fp(); duke@435: if ((ufp & fp_align_mask) != 0) return true; duke@435: duke@435: uintptr_t old_sp = (uintptr_t)fr->sender_sp(); duke@435: if ((old_sp & sp_align_mask) != 0) return true; duke@435: if (old_sp == 0 || old_sp == (uintptr_t)-1) return true; duke@435: duke@435: uintptr_t old_fp = (uintptr_t)fr->link(); duke@435: if ((old_fp & fp_align_mask) != 0) return true; duke@435: if (old_fp == 0 || old_fp == (uintptr_t)-1 || old_fp == ufp) return true; duke@435: duke@435: // stack grows downwards; if old_fp is below current fp or if the stack duke@435: // frame is too large, either the stack is corrupted or fp is not saved duke@435: // on stack (i.e. on x86, ebp may be used as general register). The stack duke@435: // is not walkable beyond current frame. duke@435: if (old_fp < ufp) return true; duke@435: if (old_fp - ufp > 64 * K) return true; duke@435: duke@435: return false; morris@4535: #endif duke@435: } duke@435: duke@435: #ifdef ASSERT duke@435: extern "C" void test_random() { duke@435: const double m = 2147483647; duke@435: double mean = 0.0, variance = 0.0, t; duke@435: long reps = 10000; duke@435: unsigned long seed = 1; duke@435: duke@435: tty->print_cr("seed %ld for %ld repeats...", seed, reps); duke@435: os::init_random(seed); duke@435: long num; duke@435: for (int k = 0; k < reps; k++) { duke@435: num = os::random(); duke@435: double u = (double)num / m; duke@435: assert(u >= 0.0 && u <= 1.0, "bad random number!"); duke@435: duke@435: // calculate mean and variance of the random sequence duke@435: mean += u; duke@435: variance += (u*u); duke@435: } duke@435: mean /= reps; duke@435: variance /= (reps - 1); duke@435: duke@435: assert(num == 1043618065, "bad seed"); duke@435: tty->print_cr("mean of the 1st 10000 numbers: %f", mean); duke@435: tty->print_cr("variance of the 1st 10000 numbers: %f", variance); duke@435: const double eps = 0.0001; duke@435: t = fabsd(mean - 0.5018); duke@435: assert(t < eps, "bad mean"); duke@435: t = (variance - 0.3355) < 0.0 ? -(variance - 0.3355) : variance - 0.3355; duke@435: assert(t < eps, "bad variance"); duke@435: } duke@435: #endif duke@435: duke@435: duke@435: // Set up the boot classpath. duke@435: duke@435: char* os::format_boot_path(const char* format_string, duke@435: const char* home, duke@435: int home_len, duke@435: char fileSep, duke@435: char pathSep) { duke@435: assert((fileSep == '/' && pathSep == ':') || duke@435: (fileSep == '\\' && pathSep == ';'), "unexpected seperator chars"); duke@435: duke@435: // Scan the format string to determine the length of the actual duke@435: // boot classpath, and handle platform dependencies as well. duke@435: int formatted_path_len = 0; duke@435: const char* p; duke@435: for (p = format_string; *p != 0; ++p) { duke@435: if (*p == '%') formatted_path_len += home_len - 1; duke@435: ++formatted_path_len; duke@435: } duke@435: zgu@3900: char* formatted_path = NEW_C_HEAP_ARRAY(char, formatted_path_len + 1, mtInternal); duke@435: if (formatted_path == NULL) { duke@435: return NULL; duke@435: } duke@435: duke@435: // Create boot classpath from format, substituting separator chars and duke@435: // java home directory. duke@435: char* q = formatted_path; duke@435: for (p = format_string; *p != 0; ++p) { duke@435: switch (*p) { duke@435: case '%': duke@435: strcpy(q, home); duke@435: q += home_len; duke@435: break; duke@435: case '/': duke@435: *q++ = fileSep; duke@435: break; duke@435: case ':': duke@435: *q++ = pathSep; duke@435: break; duke@435: default: duke@435: *q++ = *p; duke@435: } duke@435: } duke@435: *q = '\0'; duke@435: duke@435: assert((q - formatted_path) == formatted_path_len, "formatted_path size botched"); duke@435: return formatted_path; duke@435: } duke@435: duke@435: duke@435: bool os::set_boot_path(char fileSep, char pathSep) { duke@435: const char* home = Arguments::get_java_home(); duke@435: int home_len = (int)strlen(home); duke@435: duke@435: static const char* meta_index_dir_format = "%/lib/"; duke@435: static const char* meta_index_format = "%/lib/meta-index"; duke@435: char* meta_index = format_boot_path(meta_index_format, home, home_len, fileSep, pathSep); duke@435: if (meta_index == NULL) return false; duke@435: char* meta_index_dir = format_boot_path(meta_index_dir_format, home, home_len, fileSep, pathSep); duke@435: if (meta_index_dir == NULL) return false; duke@435: Arguments::set_meta_index_path(meta_index, meta_index_dir); duke@435: duke@435: // Any modification to the JAR-file list, for the boot classpath must be duke@435: // aligned with install/install/make/common/Pack.gmk. Note: boot class duke@435: // path class JARs, are stripped for StackMapTable to reduce download size. duke@435: static const char classpath_format[] = duke@435: "%/lib/resources.jar:" duke@435: "%/lib/rt.jar:" duke@435: "%/lib/sunrsasign.jar:" duke@435: "%/lib/jsse.jar:" duke@435: "%/lib/jce.jar:" duke@435: "%/lib/charsets.jar:" phh@3427: "%/lib/jfr.jar:" duke@435: "%/classes"; duke@435: char* sysclasspath = format_boot_path(classpath_format, home, home_len, fileSep, pathSep); duke@435: if (sysclasspath == NULL) return false; duke@435: Arguments::set_sysclasspath(sysclasspath); duke@435: duke@435: return true; duke@435: } duke@435: phh@1126: /* phh@1126: * Splits a path, based on its separator, the number of phh@1126: * elements is returned back in n. phh@1126: * It is the callers responsibility to: phh@1126: * a> check the value of n, and n may be 0. phh@1126: * b> ignore any empty path elements phh@1126: * c> free up the data. phh@1126: */ phh@1126: char** os::split_path(const char* path, int* n) { phh@1126: *n = 0; phh@1126: if (path == NULL || strlen(path) == 0) { phh@1126: return NULL; phh@1126: } phh@1126: const char psepchar = *os::path_separator(); zgu@3900: char* inpath = (char*)NEW_C_HEAP_ARRAY(char, strlen(path) + 1, mtInternal); phh@1126: if (inpath == NULL) { phh@1126: return NULL; phh@1126: } bpittore@4261: strcpy(inpath, path); phh@1126: int count = 1; phh@1126: char* p = strchr(inpath, psepchar); phh@1126: // Get a count of elements to allocate memory phh@1126: while (p != NULL) { phh@1126: count++; phh@1126: p++; phh@1126: p = strchr(p, psepchar); phh@1126: } zgu@3900: char** opath = (char**) NEW_C_HEAP_ARRAY(char*, count, mtInternal); phh@1126: if (opath == NULL) { phh@1126: return NULL; phh@1126: } phh@1126: phh@1126: // do the actual splitting phh@1126: p = inpath; phh@1126: for (int i = 0 ; i < count ; i++) { phh@1126: size_t len = strcspn(p, os::path_separator()); phh@1126: if (len > JVM_MAXPATHLEN) { phh@1126: return NULL; phh@1126: } phh@1126: // allocate the string and add terminator storage zgu@3900: char* s = (char*)NEW_C_HEAP_ARRAY(char, len + 1, mtInternal); phh@1126: if (s == NULL) { phh@1126: return NULL; phh@1126: } phh@1126: strncpy(s, p, len); phh@1126: s[len] = '\0'; phh@1126: opath[i] = s; phh@1126: p += len + 1; phh@1126: } zgu@3900: FREE_C_HEAP_ARRAY(char, inpath, mtInternal); phh@1126: *n = count; phh@1126: return opath; phh@1126: } phh@1126: duke@435: void os::set_memory_serialize_page(address page) { duke@435: int count = log2_intptr(sizeof(class JavaThread)) - log2_intptr(64); duke@435: _mem_serialize_page = (volatile int32_t *)page; duke@435: // We initialize the serialization page shift count here duke@435: // We assume a cache line size of 64 bytes duke@435: assert(SerializePageShiftCount == count, duke@435: "thread size changed, fix SerializePageShiftCount constant"); duke@435: set_serialize_page_mask((uintptr_t)(vm_page_size() - sizeof(int32_t))); duke@435: } duke@435: xlu@490: static volatile intptr_t SerializePageLock = 0; xlu@490: duke@435: // This method is called from signal handler when SIGSEGV occurs while the current duke@435: // thread tries to store to the "read-only" memory serialize page during state duke@435: // transition. duke@435: void os::block_on_serialize_page_trap() { duke@435: if (TraceSafepoint) { duke@435: tty->print_cr("Block until the serialize page permission restored"); duke@435: } xlu@490: // When VMThread is holding the SerializePageLock during modifying the duke@435: // access permission of the memory serialize page, the following call duke@435: // will block until the permission of that page is restored to rw. duke@435: // Generally, it is unsafe to manipulate locks in signal handlers, but in duke@435: // this case, it's OK as the signal is synchronous and we know precisely when xlu@490: // it can occur. xlu@490: Thread::muxAcquire(&SerializePageLock, "set_memory_serialize_page"); xlu@490: Thread::muxRelease(&SerializePageLock); duke@435: } duke@435: duke@435: // Serialize all thread state variables duke@435: void os::serialize_thread_states() { duke@435: // On some platforms such as Solaris & Linux, the time duration of the page duke@435: // permission restoration is observed to be much longer than expected due to duke@435: // scheduler starvation problem etc. To avoid the long synchronization xlu@490: // time and expensive page trap spinning, 'SerializePageLock' is used to block xlu@490: // the mutator thread if such case is encountered. See bug 6546278 for details. xlu@490: Thread::muxAcquire(&SerializePageLock, "serialize_thread_states"); coleenp@672: os::protect_memory((char *)os::get_memory_serialize_page(), coleenp@912: os::vm_page_size(), MEM_PROT_READ); coleenp@912: os::protect_memory((char *)os::get_memory_serialize_page(), coleenp@912: os::vm_page_size(), MEM_PROT_RW); xlu@490: Thread::muxRelease(&SerializePageLock); duke@435: } duke@435: duke@435: // Returns true if the current stack pointer is above the stack shadow duke@435: // pages, false otherwise. duke@435: duke@435: bool os::stack_shadow_pages_available(Thread *thread, methodHandle method) { duke@435: assert(StackRedPages > 0 && StackYellowPages > 0,"Sanity check"); duke@435: address sp = current_stack_pointer(); duke@435: // Check if we have StackShadowPages above the yellow zone. This parameter twisti@1040: // is dependent on the depth of the maximum VM call stack possible from duke@435: // the handler for stack overflow. 'instanceof' in the stack overflow duke@435: // handler or a println uses at least 8k stack of VM and native code duke@435: // respectively. duke@435: const int framesize_in_bytes = duke@435: Interpreter::size_top_interpreter_activation(method()) * wordSize; duke@435: int reserved_area = ((StackShadowPages + StackRedPages + StackYellowPages) duke@435: * vm_page_size()) + framesize_in_bytes; duke@435: // The very lower end of the stack duke@435: address stack_limit = thread->stack_base() - thread->stack_size(); duke@435: return (sp > (stack_limit + reserved_area)); duke@435: } duke@435: duke@435: size_t os::page_size_for_region(size_t region_min_size, size_t region_max_size, duke@435: uint min_pages) duke@435: { duke@435: assert(min_pages > 0, "sanity"); duke@435: if (UseLargePages) { duke@435: const size_t max_page_size = region_max_size / min_pages; duke@435: duke@435: for (unsigned int i = 0; _page_sizes[i] != 0; ++i) { duke@435: const size_t sz = _page_sizes[i]; duke@435: const size_t mask = sz - 1; duke@435: if ((region_min_size & mask) == 0 && (region_max_size & mask) == 0) { duke@435: // The largest page size with no fragmentation. duke@435: return sz; duke@435: } duke@435: duke@435: if (sz <= max_page_size) { duke@435: // The largest page size that satisfies the min_pages requirement. duke@435: return sz; duke@435: } duke@435: } duke@435: } duke@435: duke@435: return vm_page_size(); duke@435: } duke@435: duke@435: #ifndef PRODUCT jcoomes@3057: void os::trace_page_sizes(const char* str, const size_t* page_sizes, int count) jcoomes@3057: { jcoomes@3057: if (TracePageSizes) { jcoomes@3057: tty->print("%s: ", str); jcoomes@3057: for (int i = 0; i < count; ++i) { jcoomes@3057: tty->print(" " SIZE_FORMAT, page_sizes[i]); jcoomes@3057: } jcoomes@3057: tty->cr(); jcoomes@3057: } jcoomes@3057: } jcoomes@3057: duke@435: void os::trace_page_sizes(const char* str, const size_t region_min_size, duke@435: const size_t region_max_size, const size_t page_size, duke@435: const char* base, const size_t size) duke@435: { duke@435: if (TracePageSizes) { duke@435: tty->print_cr("%s: min=" SIZE_FORMAT " max=" SIZE_FORMAT duke@435: " pg_sz=" SIZE_FORMAT " base=" PTR_FORMAT duke@435: " size=" SIZE_FORMAT, duke@435: str, region_min_size, region_max_size, duke@435: page_size, base, size); duke@435: } duke@435: } duke@435: #endif // #ifndef PRODUCT duke@435: duke@435: // This is the working definition of a server class machine: duke@435: // >= 2 physical CPU's and >=2GB of memory, with some fuzz duke@435: // because the graphics memory (?) sometimes masks physical memory. duke@435: // If you want to change the definition of a server class machine duke@435: // on some OS or platform, e.g., >=4GB on Windohs platforms, duke@435: // then you'll have to parameterize this method based on that state, duke@435: // as was done for logical processors here, or replicate and duke@435: // specialize this method for each platform. (Or fix os to have duke@435: // some inheritance structure and use subclassing. Sigh.) duke@435: // If you want some platform to always or never behave as a server duke@435: // class machine, change the setting of AlwaysActAsServerClassMachine duke@435: // and NeverActAsServerClassMachine in globals*.hpp. duke@435: bool os::is_server_class_machine() { duke@435: // First check for the early returns duke@435: if (NeverActAsServerClassMachine) { duke@435: return false; duke@435: } duke@435: if (AlwaysActAsServerClassMachine) { duke@435: return true; duke@435: } duke@435: // Then actually look at the machine duke@435: bool result = false; duke@435: const unsigned int server_processors = 2; duke@435: const julong server_memory = 2UL * G; duke@435: // We seem not to get our full complement of memory. duke@435: // We allow some part (1/8?) of the memory to be "missing", duke@435: // based on the sizes of DIMMs, and maybe graphics cards. duke@435: const julong missing_memory = 256UL * M; duke@435: duke@435: /* Is this a server class machine? */ duke@435: if ((os::active_processor_count() >= (int)server_processors) && duke@435: (os::physical_memory() >= (server_memory - missing_memory))) { duke@435: const unsigned int logical_processors = duke@435: VM_Version::logical_processors_per_package(); duke@435: if (logical_processors > 1) { duke@435: const unsigned int physical_packages = duke@435: os::active_processor_count() / logical_processors; duke@435: if (physical_packages > server_processors) { duke@435: result = true; duke@435: } duke@435: } else { duke@435: result = true; duke@435: } duke@435: } duke@435: return result; duke@435: } dsamersoff@2751: sla@5237: void os::SuspendedThreadTask::run() { sla@5237: assert(Threads_lock->owned_by_self() || (_thread == VMThread::vm_thread()), "must have threads lock to call this"); sla@5237: internal_do_task(); sla@5237: _done = true; sla@5237: } sla@5237: zgu@3900: bool os::create_stack_guard_pages(char* addr, size_t bytes) { zgu@3900: return os::pd_create_stack_guard_pages(addr, bytes); zgu@3900: } zgu@3900: zgu@3900: char* os::reserve_memory(size_t bytes, char* addr, size_t alignment_hint) { zgu@3900: char* result = pd_reserve_memory(bytes, addr, alignment_hint); zgu@4193: if (result != NULL) { zgu@7074: MemTracker::record_virtual_memory_reserve((address)result, bytes, CALLER_PC); zgu@3900: } zgu@3900: zgu@3900: return result; zgu@3900: } zgu@5053: zgu@5053: char* os::reserve_memory(size_t bytes, char* addr, size_t alignment_hint, zgu@5053: MEMFLAGS flags) { zgu@5053: char* result = pd_reserve_memory(bytes, addr, alignment_hint); zgu@5053: if (result != NULL) { zgu@7074: MemTracker::record_virtual_memory_reserve((address)result, bytes, CALLER_PC); zgu@5053: MemTracker::record_virtual_memory_type((address)result, flags); zgu@5053: } zgu@5053: zgu@5053: return result; zgu@5053: } zgu@5053: zgu@3900: char* os::attempt_reserve_memory_at(size_t bytes, char* addr) { zgu@3900: char* result = pd_attempt_reserve_memory_at(bytes, addr); zgu@4193: if (result != NULL) { zgu@7074: MemTracker::record_virtual_memory_reserve((address)result, bytes, CALLER_PC); zgu@3900: } zgu@3900: return result; zgu@3900: } zgu@3900: zgu@3900: void os::split_reserved_memory(char *base, size_t size, zgu@3900: size_t split, bool realloc) { zgu@3900: pd_split_reserved_memory(base, size, split, realloc); zgu@3900: } zgu@3900: zgu@3900: bool os::commit_memory(char* addr, size_t bytes, bool executable) { zgu@3900: bool res = pd_commit_memory(addr, bytes, executable); zgu@4193: if (res) { zgu@3900: MemTracker::record_virtual_memory_commit((address)addr, bytes, CALLER_PC); zgu@3900: } zgu@3900: return res; zgu@3900: } zgu@3900: zgu@3900: bool os::commit_memory(char* addr, size_t size, size_t alignment_hint, zgu@3900: bool executable) { zgu@3900: bool res = os::pd_commit_memory(addr, size, alignment_hint, executable); zgu@4193: if (res) { zgu@3900: MemTracker::record_virtual_memory_commit((address)addr, size, CALLER_PC); zgu@3900: } zgu@3900: return res; zgu@3900: } zgu@3900: dcubed@5255: void os::commit_memory_or_exit(char* addr, size_t bytes, bool executable, dcubed@5255: const char* mesg) { dcubed@5255: pd_commit_memory_or_exit(addr, bytes, executable, mesg); dcubed@5255: MemTracker::record_virtual_memory_commit((address)addr, bytes, CALLER_PC); dcubed@5255: } dcubed@5255: dcubed@5255: void os::commit_memory_or_exit(char* addr, size_t size, size_t alignment_hint, dcubed@5255: bool executable, const char* mesg) { dcubed@5255: os::pd_commit_memory_or_exit(addr, size, alignment_hint, executable, mesg); dcubed@5255: MemTracker::record_virtual_memory_commit((address)addr, size, CALLER_PC); dcubed@5255: } dcubed@5255: zgu@3900: bool os::uncommit_memory(char* addr, size_t bytes) { zgu@7074: bool res; zgu@7074: if (MemTracker::tracking_level() > NMT_minimal) { zgu@7074: Tracker tkr = MemTracker::get_virtual_memory_uncommit_tracker(); zgu@7074: res = pd_uncommit_memory(addr, bytes); zgu@7074: if (res) { zgu@7074: tkr.record((address)addr, bytes); zgu@7074: } zgu@5272: } else { zgu@7074: res = pd_uncommit_memory(addr, bytes); zgu@3900: } zgu@3900: return res; zgu@3900: } zgu@3900: zgu@3900: bool os::release_memory(char* addr, size_t bytes) { zgu@7074: bool res; zgu@7074: if (MemTracker::tracking_level() > NMT_minimal) { zgu@7074: Tracker tkr = MemTracker::get_virtual_memory_release_tracker(); zgu@7074: res = pd_release_memory(addr, bytes); zgu@7074: if (res) { zgu@7074: tkr.record((address)addr, bytes); zgu@7074: } zgu@5272: } else { zgu@7074: res = pd_release_memory(addr, bytes); zgu@3900: } zgu@3900: return res; zgu@3900: } zgu@3900: zgu@3900: zgu@3900: char* os::map_memory(int fd, const char* file_name, size_t file_offset, zgu@3900: char *addr, size_t bytes, bool read_only, zgu@3900: bool allow_exec) { zgu@3900: char* result = pd_map_memory(fd, file_name, file_offset, addr, bytes, read_only, allow_exec); zgu@4193: if (result != NULL) { zgu@7074: MemTracker::record_virtual_memory_reserve_and_commit((address)result, bytes, CALLER_PC); zgu@3900: } zgu@3900: return result; zgu@3900: } zgu@3900: zgu@3900: char* os::remap_memory(int fd, const char* file_name, size_t file_offset, zgu@3900: char *addr, size_t bytes, bool read_only, zgu@3900: bool allow_exec) { zgu@3900: return pd_remap_memory(fd, file_name, file_offset, addr, bytes, zgu@3900: read_only, allow_exec); zgu@3900: } zgu@3900: zgu@3900: bool os::unmap_memory(char *addr, size_t bytes) { zgu@7074: bool result; zgu@7074: if (MemTracker::tracking_level() > NMT_minimal) { zgu@7074: Tracker tkr = MemTracker::get_virtual_memory_release_tracker(); zgu@7074: result = pd_unmap_memory(addr, bytes); zgu@7074: if (result) { zgu@7074: tkr.record((address)addr, bytes); zgu@7074: } zgu@5272: } else { zgu@7074: result = pd_unmap_memory(addr, bytes); zgu@3900: } zgu@3900: return result; zgu@3900: } zgu@3900: zgu@3900: void os::free_memory(char *addr, size_t bytes, size_t alignment_hint) { zgu@3900: pd_free_memory(addr, bytes, alignment_hint); zgu@3900: } zgu@3900: zgu@3900: void os::realign_memory(char *addr, size_t bytes, size_t alignment_hint) { zgu@3900: pd_realign_memory(addr, bytes, alignment_hint); zgu@3900: } zgu@3900: sla@5237: #ifndef TARGET_OS_FAMILY_windows sla@5237: /* try to switch state from state "from" to state "to" sla@5237: * returns the state set after the method is complete sla@5237: */ sla@5237: os::SuspendResume::State os::SuspendResume::switch_state(os::SuspendResume::State from, sla@5237: os::SuspendResume::State to) sla@5237: { sla@5237: os::SuspendResume::State result = sla@5237: (os::SuspendResume::State) Atomic::cmpxchg((jint) to, (jint *) &_state, (jint) from); sla@5237: if (result == from) { sla@5237: // success sla@5237: return to; sla@5237: } sla@5237: return result; sla@5237: } sla@5237: #endif