duke@435: /* kvn@3564: * Copyright (c) 2005, 2012, Oracle and/or its affiliates. All rights reserved. duke@435: * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. duke@435: * duke@435: * This code is free software; you can redistribute it and/or modify it duke@435: * under the terms of the GNU General Public License version 2 only, as duke@435: * published by the Free Software Foundation. duke@435: * duke@435: * This code is distributed in the hope that it will be useful, but WITHOUT duke@435: * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or duke@435: * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License duke@435: * version 2 for more details (a copy is included in the LICENSE file that duke@435: * accompanied this code). duke@435: * duke@435: * You should have received a copy of the GNU General Public License version duke@435: * 2 along with this work; if not, write to the Free Software Foundation, duke@435: * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. duke@435: * trims@1907: * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA trims@1907: * or visit www.oracle.com if you need additional information or have any trims@1907: * questions. duke@435: * duke@435: */ duke@435: stefank@2314: #include "precompiled.hpp" stefank@2314: #include "ci/bcEscapeAnalyzer.hpp" kvn@3651: #include "compiler/compileLog.hpp" stefank@2314: #include "libadt/vectset.hpp" stefank@2314: #include "memory/allocation.hpp" stefank@2314: #include "opto/c2compiler.hpp" stefank@2314: #include "opto/callnode.hpp" stefank@2314: #include "opto/cfgnode.hpp" stefank@2314: #include "opto/compile.hpp" stefank@2314: #include "opto/escape.hpp" stefank@2314: #include "opto/phaseX.hpp" stefank@2314: #include "opto/rootnode.hpp" duke@435: kvn@1989: ConnectionGraph::ConnectionGraph(Compile * C, PhaseIterGVN *igvn) : kvn@3651: _nodes(C->comp_arena(), C->unique(), C->unique(), NULL), kvn@679: _collecting(true), kvn@3651: _verify(false), kvn@679: _compile(C), kvn@1989: _igvn(igvn), kvn@679: _node_map(C->comp_arena()) { kvn@3651: // Add unknown java object. kvn@3651: add_java_object(C->top(), PointsToNode::GlobalEscape); kvn@3651: phantom_obj = ptnode_adr(C->top()->_idx)->as_JavaObject(); kvn@688: // Add ConP(#NULL) and ConN(#NULL) nodes. kvn@688: Node* oop_null = igvn->zerocon(T_OBJECT); kvn@3651: assert(oop_null->_idx < nodes_size(), "should be created already"); kvn@3651: add_java_object(oop_null, PointsToNode::NoEscape); kvn@3651: null_obj = ptnode_adr(oop_null->_idx)->as_JavaObject(); kvn@688: if (UseCompressedOops) { kvn@688: Node* noop_null = igvn->zerocon(T_NARROWOOP); kvn@3651: assert(noop_null->_idx < nodes_size(), "should be created already"); kvn@3651: map_ideal_node(noop_null, null_obj); kvn@688: } kvn@3309: _pcmp_neq = NULL; // Should be initialized kvn@3309: _pcmp_eq = NULL; duke@435: } duke@435: kvn@3651: bool ConnectionGraph::has_candidates(Compile *C) { kvn@3651: // EA brings benefits only when the code has allocations and/or locks which kvn@3651: // are represented by ideal Macro nodes. kvn@3651: int cnt = C->macro_count(); kvn@3651: for( int i=0; i < cnt; i++ ) { kvn@3651: Node *n = C->macro_node(i); kvn@3651: if ( n->is_Allocate() ) kvn@3651: return true; kvn@3651: if( n->is_Lock() ) { kvn@3651: Node* obj = n->as_Lock()->obj_node()->uncast(); kvn@3651: if( !(obj->is_Parm() || obj->is_Con()) ) kvn@3651: return true; kvn@3318: } kvn@3318: } kvn@3651: return false; duke@435: } duke@435: kvn@3651: void ConnectionGraph::do_analysis(Compile *C, PhaseIterGVN *igvn) { kvn@3651: Compile::TracePhase t2("escapeAnalysis", &Phase::_t_escapeAnalysis, true); kvn@3651: ResourceMark rm; duke@435: kvn@3651: // Add ConP#NULL and ConN#NULL nodes before ConnectionGraph construction kvn@3651: // to create space for them in ConnectionGraph::_nodes[]. kvn@3651: Node* oop_null = igvn->zerocon(T_OBJECT); kvn@3651: Node* noop_null = igvn->zerocon(T_NARROWOOP); kvn@3651: ConnectionGraph* congraph = new(C->comp_arena()) ConnectionGraph(C, igvn); kvn@3651: // Perform escape analysis kvn@3651: if (congraph->compute_escape()) { kvn@3651: // There are non escaping objects. kvn@3651: C->set_congraph(congraph); kvn@3651: } kvn@3651: // Cleanup. kvn@3651: if (oop_null->outcnt() == 0) kvn@3651: igvn->hash_delete(oop_null); kvn@3651: if (noop_null->outcnt() == 0) kvn@3651: igvn->hash_delete(noop_null); duke@435: } duke@435: kvn@3651: bool ConnectionGraph::compute_escape() { kvn@3651: Compile* C = _compile; kvn@3651: PhaseGVN* igvn = _igvn; kvn@3651: kvn@3651: // Worklists used by EA. kvn@3651: Unique_Node_List delayed_worklist; kvn@3651: GrowableArray alloc_worklist; kvn@3651: GrowableArray ptr_cmp_worklist; kvn@3651: GrowableArray storestore_worklist; kvn@3651: GrowableArray ptnodes_worklist; kvn@3651: GrowableArray java_objects_worklist; kvn@3651: GrowableArray non_escaped_worklist; kvn@3651: GrowableArray oop_fields_worklist; kvn@3651: DEBUG_ONLY( GrowableArray addp_worklist; ) kvn@3651: kvn@3651: { Compile::TracePhase t3("connectionGraph", &Phase::_t_connectionGraph, true); kvn@3651: kvn@3651: // 1. Populate Connection Graph (CG) with PointsTo nodes. kvn@3651: ideal_nodes.map(C->unique(), NULL); // preallocate space kvn@3651: // Initialize worklist kvn@3651: if (C->root() != NULL) { kvn@3651: ideal_nodes.push(C->root()); kvn@3651: } kvn@3651: for( uint next = 0; next < ideal_nodes.size(); ++next ) { kvn@3651: Node* n = ideal_nodes.at(next); kvn@3651: // Create PointsTo nodes and add them to Connection Graph. Called kvn@3651: // only once per ideal node since ideal_nodes is Unique_Node list. kvn@3651: add_node_to_connection_graph(n, &delayed_worklist); kvn@3651: PointsToNode* ptn = ptnode_adr(n->_idx); kvn@3651: if (ptn != NULL) { kvn@3651: ptnodes_worklist.append(ptn); kvn@3651: if (ptn->is_JavaObject()) { kvn@3651: java_objects_worklist.append(ptn->as_JavaObject()); kvn@3651: if ((n->is_Allocate() || n->is_CallStaticJava()) && kvn@3651: (ptn->escape_state() < PointsToNode::GlobalEscape)) { kvn@3651: // Only allocations and java static calls results are interesting. kvn@3651: non_escaped_worklist.append(ptn->as_JavaObject()); kvn@3651: } kvn@3651: } else if (ptn->is_Field() && ptn->as_Field()->is_oop()) { kvn@3651: oop_fields_worklist.append(ptn->as_Field()); kvn@3651: } kvn@3651: } kvn@3651: if (n->is_MergeMem()) { kvn@3651: // Collect all MergeMem nodes to add memory slices for kvn@3651: // scalar replaceable objects in split_unique_types(). kvn@3651: _mergemem_worklist.append(n->as_MergeMem()); kvn@3651: } else if (OptimizePtrCompare && n->is_Cmp() && kvn@3651: (n->Opcode() == Op_CmpP || n->Opcode() == Op_CmpN)) { kvn@3651: // Collect compare pointers nodes. kvn@3651: ptr_cmp_worklist.append(n); kvn@3651: } else if (n->is_MemBarStoreStore()) { kvn@3651: // Collect all MemBarStoreStore nodes so that depending on the kvn@3651: // escape status of the associated Allocate node some of them kvn@3651: // may be eliminated. kvn@3651: storestore_worklist.append(n); kvn@3651: #ifdef ASSERT kvn@3651: } else if(n->is_AddP()) { kvn@3651: // Collect address nodes for graph verification. kvn@3651: addp_worklist.append(n); kvn@3651: #endif kvn@3651: } kvn@3651: for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) { kvn@3651: Node* m = n->fast_out(i); // Get user kvn@3651: ideal_nodes.push(m); kvn@3651: } kvn@3651: } kvn@3651: if (non_escaped_worklist.length() == 0) { kvn@3651: _collecting = false; kvn@3651: return false; // Nothing to do. kvn@3651: } kvn@3651: // Add final simple edges to graph. kvn@3651: while(delayed_worklist.size() > 0) { kvn@3651: Node* n = delayed_worklist.pop(); kvn@3651: add_final_edges(n); kvn@3651: } kvn@3651: int ptnodes_length = ptnodes_worklist.length(); kvn@3651: kvn@3651: #ifdef ASSERT kvn@3651: if (VerifyConnectionGraph) { kvn@3651: // Verify that no new simple edges could be created and all kvn@3651: // local vars has edges. kvn@3651: _verify = true; kvn@3651: for (int next = 0; next < ptnodes_length; ++next) { kvn@3651: PointsToNode* ptn = ptnodes_worklist.at(next); kvn@3651: add_final_edges(ptn->ideal_node()); kvn@3651: if (ptn->is_LocalVar() && ptn->edge_count() == 0) { kvn@3651: ptn->dump(); kvn@3651: assert(ptn->as_LocalVar()->edge_count() > 0, "sanity"); kvn@3651: } kvn@3651: } kvn@3651: _verify = false; kvn@3651: } kvn@3651: #endif kvn@3651: kvn@3651: // 2. Finish Graph construction by propagating references to all kvn@3651: // java objects through graph. kvn@3651: if (!complete_connection_graph(ptnodes_worklist, non_escaped_worklist, kvn@3651: java_objects_worklist, oop_fields_worklist)) { kvn@3651: // All objects escaped or hit time or iterations limits. kvn@3651: _collecting = false; kvn@3651: return false; kvn@3651: } kvn@3651: kvn@3651: // 3. Adjust scalar_replaceable state of nonescaping objects and push kvn@3651: // scalar replaceable allocations on alloc_worklist for processing kvn@3651: // in split_unique_types(). kvn@3651: int non_escaped_length = non_escaped_worklist.length(); kvn@3651: for (int next = 0; next < non_escaped_length; next++) { kvn@3651: JavaObjectNode* ptn = non_escaped_worklist.at(next); kvn@3651: if (ptn->escape_state() == PointsToNode::NoEscape && kvn@3651: ptn->scalar_replaceable()) { kvn@3651: adjust_scalar_replaceable_state(ptn); kvn@3651: if (ptn->scalar_replaceable()) { kvn@3651: alloc_worklist.append(ptn->ideal_node()); kvn@3651: } kvn@3651: } kvn@3651: } kvn@3651: kvn@3651: #ifdef ASSERT kvn@3651: if (VerifyConnectionGraph) { kvn@3651: // Verify that graph is complete - no new edges could be added or needed. kvn@3651: verify_connection_graph(ptnodes_worklist, non_escaped_worklist, kvn@3651: java_objects_worklist, addp_worklist); kvn@3651: } kvn@3651: assert(C->unique() == nodes_size(), "no new ideal nodes should be added during ConnectionGraph build"); kvn@3651: assert(null_obj->escape_state() == PointsToNode::NoEscape && kvn@3651: null_obj->edge_count() == 0 && kvn@3651: !null_obj->arraycopy_src() && kvn@3651: !null_obj->arraycopy_dst(), "sanity"); kvn@3651: #endif kvn@3651: kvn@3651: _collecting = false; kvn@3651: kvn@3651: } // TracePhase t3("connectionGraph") kvn@3651: kvn@3651: // 4. Optimize ideal graph based on EA information. kvn@3651: bool has_non_escaping_obj = (non_escaped_worklist.length() > 0); kvn@3651: if (has_non_escaping_obj) { kvn@3651: optimize_ideal_graph(ptr_cmp_worklist, storestore_worklist); kvn@3651: } kvn@3651: kvn@3651: #ifndef PRODUCT kvn@3651: if (PrintEscapeAnalysis) { kvn@3651: dump(ptnodes_worklist); // Dump ConnectionGraph kvn@3651: } kvn@3651: #endif kvn@3651: kvn@3651: bool has_scalar_replaceable_candidates = (alloc_worklist.length() > 0); kvn@3651: #ifdef ASSERT kvn@3651: if (VerifyConnectionGraph) { kvn@3651: int alloc_length = alloc_worklist.length(); kvn@3651: for (int next = 0; next < alloc_length; ++next) { kvn@3651: Node* n = alloc_worklist.at(next); kvn@3651: PointsToNode* ptn = ptnode_adr(n->_idx); kvn@3651: assert(ptn->escape_state() == PointsToNode::NoEscape && ptn->scalar_replaceable(), "sanity"); kvn@3651: } kvn@3651: } kvn@3651: #endif kvn@3651: kvn@3651: // 5. Separate memory graph for scalar replaceable allcations. kvn@3651: if (has_scalar_replaceable_candidates && kvn@3651: C->AliasLevel() >= 3 && EliminateAllocations) { kvn@3651: // Now use the escape information to create unique types for kvn@3651: // scalar replaceable objects. kvn@3651: split_unique_types(alloc_worklist); kvn@3651: if (C->failing()) return false; kvn@3651: C->print_method("After Escape Analysis", 2); kvn@3651: kvn@3651: #ifdef ASSERT kvn@3651: } else if (Verbose && (PrintEscapeAnalysis || PrintEliminateAllocations)) { kvn@3651: tty->print("=== No allocations eliminated for "); kvn@3651: C->method()->print_short_name(); kvn@3651: if(!EliminateAllocations) { kvn@3651: tty->print(" since EliminateAllocations is off ==="); kvn@3651: } else if(!has_scalar_replaceable_candidates) { kvn@3651: tty->print(" since there are no scalar replaceable candidates ==="); kvn@3651: } else if(C->AliasLevel() < 3) { kvn@3651: tty->print(" since AliasLevel < 3 ==="); kvn@3651: } kvn@3651: tty->cr(); kvn@3651: #endif kvn@3651: } kvn@3651: return has_non_escaping_obj; kvn@3651: } kvn@3651: roland@4106: // Utility function for nodes that load an object roland@4106: void ConnectionGraph::add_objload_to_connection_graph(Node *n, Unique_Node_List *delayed_worklist) { roland@4106: // Using isa_ptr() instead of isa_oopptr() for LoadP and Phi because roland@4106: // ThreadLocal has RawPtr type. roland@4106: const Type* t = _igvn->type(n); roland@4106: if (t->make_ptr() != NULL) { roland@4106: Node* adr = n->in(MemNode::Address); roland@4106: #ifdef ASSERT roland@4106: if (!adr->is_AddP()) { roland@4106: assert(_igvn->type(adr)->isa_rawptr(), "sanity"); roland@4106: } else { roland@4106: assert((ptnode_adr(adr->_idx) == NULL || roland@4106: ptnode_adr(adr->_idx)->as_Field()->is_oop()), "sanity"); roland@4106: } roland@4106: #endif roland@4106: add_local_var_and_edge(n, PointsToNode::NoEscape, roland@4106: adr, delayed_worklist); roland@4106: } roland@4106: } roland@4106: kvn@3651: // Populate Connection Graph with PointsTo nodes and create simple kvn@3651: // connection graph edges. kvn@3651: void ConnectionGraph::add_node_to_connection_graph(Node *n, Unique_Node_List *delayed_worklist) { kvn@3651: assert(!_verify, "this method sould not be called for verification"); kvn@3651: PhaseGVN* igvn = _igvn; kvn@3651: uint n_idx = n->_idx; kvn@3651: PointsToNode* n_ptn = ptnode_adr(n_idx); kvn@3651: if (n_ptn != NULL) kvn@3651: return; // No need to redefine PointsTo node during first iteration. kvn@3651: kvn@3651: if (n->is_Call()) { kvn@3651: // Arguments to allocation and locking don't escape. kvn@3651: if (n->is_AbstractLock()) { kvn@3651: // Put Lock and Unlock nodes on IGVN worklist to process them during kvn@3651: // first IGVN optimization when escape information is still available. kvn@3651: record_for_optimizer(n); kvn@3651: } else if (n->is_Allocate()) { kvn@3651: add_call_node(n->as_Call()); kvn@3651: record_for_optimizer(n); kvn@3651: } else { kvn@3651: if (n->is_CallStaticJava()) { kvn@3651: const char* name = n->as_CallStaticJava()->_name; kvn@3651: if (name != NULL && strcmp(name, "uncommon_trap") == 0) kvn@3651: return; // Skip uncommon traps kvn@3651: } kvn@3651: // Don't mark as processed since call's arguments have to be processed. kvn@3651: delayed_worklist->push(n); kvn@3651: // Check if a call returns an object. kvn@3651: if (n->as_Call()->returns_pointer() && kvn@3651: n->as_Call()->proj_out(TypeFunc::Parms) != NULL) { kvn@3651: add_call_node(n->as_Call()); kvn@3651: } kvn@3651: } kvn@3651: return; kvn@3651: } kvn@3651: // Put this check here to process call arguments since some call nodes kvn@3651: // point to phantom_obj. kvn@3651: if (n_ptn == phantom_obj || n_ptn == null_obj) kvn@3651: return; // Skip predefined nodes. kvn@3651: kvn@3651: int opcode = n->Opcode(); kvn@3651: switch (opcode) { kvn@3651: case Op_AddP: { kvn@3651: Node* base = get_addp_base(n); kvn@3651: PointsToNode* ptn_base = ptnode_adr(base->_idx); kvn@3651: // Field nodes are created for all field types. They are used in kvn@3651: // adjust_scalar_replaceable_state() and split_unique_types(). kvn@3651: // Note, non-oop fields will have only base edges in Connection kvn@3651: // Graph because such fields are not used for oop loads and stores. kvn@3651: int offset = address_offset(n, igvn); kvn@3651: add_field(n, PointsToNode::NoEscape, offset); kvn@3651: if (ptn_base == NULL) { kvn@3651: delayed_worklist->push(n); // Process it later. kvn@3651: } else { kvn@3651: n_ptn = ptnode_adr(n_idx); kvn@3651: add_base(n_ptn->as_Field(), ptn_base); kvn@3651: } kvn@3651: break; kvn@3651: } kvn@3651: case Op_CastX2P: { kvn@3651: map_ideal_node(n, phantom_obj); kvn@3651: break; kvn@3651: } kvn@3651: case Op_CastPP: kvn@3651: case Op_CheckCastPP: kvn@3651: case Op_EncodeP: kvn@3651: case Op_DecodeN: { kvn@3651: add_local_var_and_edge(n, PointsToNode::NoEscape, kvn@3651: n->in(1), delayed_worklist); kvn@3651: break; kvn@3651: } kvn@3651: case Op_CMoveP: { kvn@3651: add_local_var(n, PointsToNode::NoEscape); kvn@3651: // Do not add edges during first iteration because some could be kvn@3651: // not defined yet. kvn@3651: delayed_worklist->push(n); kvn@3651: break; kvn@3651: } kvn@3651: case Op_ConP: kvn@3651: case Op_ConN: { kvn@3651: // assume all oop constants globally escape except for null kvn@3651: PointsToNode::EscapeState es; kvn@3651: if (igvn->type(n) == TypePtr::NULL_PTR || kvn@3651: igvn->type(n) == TypeNarrowOop::NULL_PTR) { kvn@3651: es = PointsToNode::NoEscape; kvn@3651: } else { kvn@3651: es = PointsToNode::GlobalEscape; kvn@3651: } kvn@3651: add_java_object(n, es); kvn@3651: break; kvn@3651: } kvn@3651: case Op_CreateEx: { kvn@3651: // assume that all exception objects globally escape kvn@3651: add_java_object(n, PointsToNode::GlobalEscape); kvn@3651: break; kvn@3651: } kvn@3651: case Op_LoadKlass: kvn@3651: case Op_LoadNKlass: { kvn@3651: // Unknown class is loaded kvn@3651: map_ideal_node(n, phantom_obj); kvn@3651: break; kvn@3651: } kvn@3651: case Op_LoadP: kvn@3651: case Op_LoadN: kvn@3651: case Op_LoadPLocked: { roland@4106: add_objload_to_connection_graph(n, delayed_worklist); kvn@3651: break; kvn@3651: } kvn@3651: case Op_Parm: { kvn@3651: map_ideal_node(n, phantom_obj); kvn@3651: break; kvn@3651: } kvn@3651: case Op_PartialSubtypeCheck: { kvn@3651: // Produces Null or notNull and is used in only in CmpP so kvn@3651: // phantom_obj could be used. kvn@3651: map_ideal_node(n, phantom_obj); // Result is unknown kvn@3651: break; kvn@3651: } kvn@3651: case Op_Phi: { kvn@3651: // Using isa_ptr() instead of isa_oopptr() for LoadP and Phi because roland@4106: // ThreadLocal has RawPtr type. kvn@3651: const Type* t = n->as_Phi()->type(); kvn@3651: if (t->make_ptr() != NULL) { kvn@3651: add_local_var(n, PointsToNode::NoEscape); kvn@3651: // Do not add edges during first iteration because some could be kvn@3651: // not defined yet. kvn@3651: delayed_worklist->push(n); kvn@3651: } kvn@3651: break; kvn@3651: } kvn@3651: case Op_Proj: { kvn@3651: // we are only interested in the oop result projection from a call kvn@3651: if (n->as_Proj()->_con == TypeFunc::Parms && n->in(0)->is_Call() && kvn@3651: n->in(0)->as_Call()->returns_pointer()) { kvn@3651: add_local_var_and_edge(n, PointsToNode::NoEscape, kvn@3651: n->in(0), delayed_worklist); kvn@3651: } kvn@3651: break; kvn@3651: } kvn@3651: case Op_Rethrow: // Exception object escapes kvn@3651: case Op_Return: { kvn@3651: if (n->req() > TypeFunc::Parms && kvn@3651: igvn->type(n->in(TypeFunc::Parms))->isa_oopptr()) { kvn@3651: // Treat Return value as LocalVar with GlobalEscape escape state. kvn@3651: add_local_var_and_edge(n, PointsToNode::GlobalEscape, kvn@3651: n->in(TypeFunc::Parms), delayed_worklist); kvn@3651: } kvn@3651: break; kvn@3651: } roland@4106: case Op_GetAndSetP: roland@4106: case Op_GetAndSetN: { roland@4106: add_objload_to_connection_graph(n, delayed_worklist); roland@4106: // fallthrough roland@4106: } kvn@3651: case Op_StoreP: kvn@3651: case Op_StoreN: kvn@3651: case Op_StorePConditional: kvn@3651: case Op_CompareAndSwapP: kvn@3651: case Op_CompareAndSwapN: { kvn@3651: Node* adr = n->in(MemNode::Address); kvn@3651: const Type *adr_type = igvn->type(adr); kvn@3651: adr_type = adr_type->make_ptr(); kvn@3651: if (adr_type->isa_oopptr() || kvn@3651: (opcode == Op_StoreP || opcode == Op_StoreN) && kvn@3651: (adr_type == TypeRawPtr::NOTNULL && kvn@3651: adr->in(AddPNode::Address)->is_Proj() && kvn@3651: adr->in(AddPNode::Address)->in(0)->is_Allocate())) { kvn@3651: delayed_worklist->push(n); // Process it later. kvn@3651: #ifdef ASSERT kvn@3651: assert(adr->is_AddP(), "expecting an AddP"); kvn@3651: if (adr_type == TypeRawPtr::NOTNULL) { kvn@3651: // Verify a raw address for a store captured by Initialize node. kvn@3651: int offs = (int)igvn->find_intptr_t_con(adr->in(AddPNode::Offset), Type::OffsetBot); kvn@3651: assert(offs != Type::OffsetBot, "offset must be a constant"); kvn@3651: } kvn@3657: #endif kvn@3651: } else { kvn@3651: // Ignore copy the displaced header to the BoxNode (OSR compilation). kvn@3651: if (adr->is_BoxLock()) kvn@3651: break; kvn@3657: // Stored value escapes in unsafe access. kvn@3657: if ((opcode == Op_StoreP) && (adr_type == TypeRawPtr::BOTTOM)) { kvn@3657: // Pointer stores in G1 barriers looks like unsafe access. kvn@3657: // Ignore such stores to be able scalar replace non-escaping kvn@3657: // allocations. kvn@3657: if (UseG1GC && adr->is_AddP()) { kvn@3657: Node* base = get_addp_base(adr); kvn@3657: if (base->Opcode() == Op_LoadP && kvn@3657: base->in(MemNode::Address)->is_AddP()) { kvn@3657: adr = base->in(MemNode::Address); kvn@3657: Node* tls = get_addp_base(adr); kvn@3657: if (tls->Opcode() == Op_ThreadLocal) { kvn@3657: int offs = (int)igvn->find_intptr_t_con(adr->in(AddPNode::Offset), Type::OffsetBot); kvn@3657: if (offs == in_bytes(JavaThread::satb_mark_queue_offset() + kvn@3657: PtrQueue::byte_offset_of_buf())) { kvn@3657: break; // G1 pre barier previous oop value store. kvn@3657: } kvn@3657: if (offs == in_bytes(JavaThread::dirty_card_queue_offset() + kvn@3657: PtrQueue::byte_offset_of_buf())) { kvn@3657: break; // G1 post barier card address store. kvn@3657: } kvn@3657: } kvn@3657: } kvn@3657: } kvn@3657: delayed_worklist->push(n); // Process unsafe access later. kvn@3657: break; kvn@3651: } kvn@3657: #ifdef ASSERT kvn@3657: n->dump(1); kvn@3657: assert(false, "not unsafe or G1 barrier raw StoreP"); kvn@3651: #endif kvn@3651: } kvn@3651: break; kvn@3651: } kvn@3651: case Op_AryEq: kvn@3651: case Op_StrComp: kvn@3651: case Op_StrEquals: kvn@3651: case Op_StrIndexOf: { kvn@3651: add_local_var(n, PointsToNode::ArgEscape); kvn@3651: delayed_worklist->push(n); // Process it later. kvn@3651: break; kvn@3651: } kvn@3651: case Op_ThreadLocal: { kvn@3651: add_java_object(n, PointsToNode::ArgEscape); kvn@3651: break; kvn@3651: } kvn@3651: default: kvn@3651: ; // Do nothing for nodes not related to EA. kvn@3651: } kvn@3651: return; kvn@3651: } kvn@3651: kvn@3651: #ifdef ASSERT kvn@3651: #define ELSE_FAIL(name) \ kvn@3651: /* Should not be called for not pointer type. */ \ kvn@3651: n->dump(1); \ kvn@3651: assert(false, name); \ kvn@3651: break; kvn@3651: #else kvn@3651: #define ELSE_FAIL(name) \ kvn@3651: break; kvn@3651: #endif kvn@3651: kvn@3651: // Add final simple edges to graph. kvn@3651: void ConnectionGraph::add_final_edges(Node *n) { kvn@3651: PointsToNode* n_ptn = ptnode_adr(n->_idx); kvn@3651: #ifdef ASSERT kvn@3651: if (_verify && n_ptn->is_JavaObject()) kvn@3651: return; // This method does not change graph for JavaObject. kvn@3651: #endif kvn@3651: kvn@3651: if (n->is_Call()) { kvn@3651: process_call_arguments(n->as_Call()); kvn@3651: return; kvn@3651: } kvn@3651: assert(n->is_Store() || n->is_LoadStore() || kvn@3651: (n_ptn != NULL) && (n_ptn->ideal_node() != NULL), kvn@3651: "node should be registered already"); kvn@3651: int opcode = n->Opcode(); kvn@3651: switch (opcode) { kvn@3651: case Op_AddP: { kvn@3651: Node* base = get_addp_base(n); kvn@3651: PointsToNode* ptn_base = ptnode_adr(base->_idx); kvn@3651: assert(ptn_base != NULL, "field's base should be registered"); kvn@3651: add_base(n_ptn->as_Field(), ptn_base); kvn@3651: break; kvn@3651: } kvn@3651: case Op_CastPP: kvn@3651: case Op_CheckCastPP: kvn@3651: case Op_EncodeP: kvn@3651: case Op_DecodeN: { kvn@3651: add_local_var_and_edge(n, PointsToNode::NoEscape, kvn@3651: n->in(1), NULL); kvn@3651: break; kvn@3651: } kvn@3651: case Op_CMoveP: { kvn@3651: for (uint i = CMoveNode::IfFalse; i < n->req(); i++) { kvn@3651: Node* in = n->in(i); kvn@3651: if (in == NULL) kvn@3651: continue; // ignore NULL kvn@3651: Node* uncast_in = in->uncast(); kvn@3651: if (uncast_in->is_top() || uncast_in == n) kvn@3651: continue; // ignore top or inputs which go back this node kvn@3651: PointsToNode* ptn = ptnode_adr(in->_idx); kvn@3651: assert(ptn != NULL, "node should be registered"); kvn@3651: add_edge(n_ptn, ptn); kvn@3651: } kvn@3651: break; kvn@3651: } kvn@3651: case Op_LoadP: kvn@3651: case Op_LoadN: kvn@3651: case Op_LoadPLocked: { kvn@3651: // Using isa_ptr() instead of isa_oopptr() for LoadP and Phi because roland@4106: // ThreadLocal has RawPtr type. kvn@3651: const Type* t = _igvn->type(n); kvn@3651: if (t->make_ptr() != NULL) { kvn@3651: Node* adr = n->in(MemNode::Address); kvn@3651: add_local_var_and_edge(n, PointsToNode::NoEscape, adr, NULL); kvn@3651: break; kvn@3651: } kvn@3651: ELSE_FAIL("Op_LoadP"); kvn@3651: } kvn@3651: case Op_Phi: { kvn@3651: // Using isa_ptr() instead of isa_oopptr() for LoadP and Phi because roland@4106: // ThreadLocal has RawPtr type. kvn@3651: const Type* t = n->as_Phi()->type(); kvn@3651: if (t->make_ptr() != NULL) { kvn@3651: for (uint i = 1; i < n->req(); i++) { kvn@3651: Node* in = n->in(i); kvn@3651: if (in == NULL) kvn@3651: continue; // ignore NULL kvn@3651: Node* uncast_in = in->uncast(); kvn@3651: if (uncast_in->is_top() || uncast_in == n) kvn@3651: continue; // ignore top or inputs which go back this node kvn@3651: PointsToNode* ptn = ptnode_adr(in->_idx); kvn@3651: assert(ptn != NULL, "node should be registered"); kvn@3651: add_edge(n_ptn, ptn); kvn@3651: } kvn@3651: break; kvn@3651: } kvn@3651: ELSE_FAIL("Op_Phi"); kvn@3651: } kvn@3651: case Op_Proj: { kvn@3651: // we are only interested in the oop result projection from a call kvn@3651: if (n->as_Proj()->_con == TypeFunc::Parms && n->in(0)->is_Call() && kvn@3651: n->in(0)->as_Call()->returns_pointer()) { kvn@3651: add_local_var_and_edge(n, PointsToNode::NoEscape, n->in(0), NULL); kvn@3651: break; kvn@3651: } kvn@3651: ELSE_FAIL("Op_Proj"); kvn@3651: } kvn@3651: case Op_Rethrow: // Exception object escapes kvn@3651: case Op_Return: { kvn@3651: if (n->req() > TypeFunc::Parms && kvn@3651: _igvn->type(n->in(TypeFunc::Parms))->isa_oopptr()) { kvn@3651: // Treat Return value as LocalVar with GlobalEscape escape state. kvn@3651: add_local_var_and_edge(n, PointsToNode::GlobalEscape, kvn@3651: n->in(TypeFunc::Parms), NULL); kvn@3651: break; kvn@3651: } kvn@3651: ELSE_FAIL("Op_Return"); kvn@3651: } kvn@3651: case Op_StoreP: kvn@3651: case Op_StoreN: kvn@3651: case Op_StorePConditional: kvn@3651: case Op_CompareAndSwapP: roland@4106: case Op_CompareAndSwapN: roland@4106: case Op_GetAndSetP: roland@4106: case Op_GetAndSetN: { kvn@3651: Node* adr = n->in(MemNode::Address); roland@4106: if (opcode == Op_GetAndSetP || opcode == Op_GetAndSetN) { roland@4106: const Type* t = _igvn->type(n); roland@4106: if (t->make_ptr() != NULL) { roland@4106: add_local_var_and_edge(n, PointsToNode::NoEscape, adr, NULL); roland@4106: } roland@4106: } kvn@3651: const Type *adr_type = _igvn->type(adr); kvn@3651: adr_type = adr_type->make_ptr(); kvn@3651: if (adr_type->isa_oopptr() || kvn@3651: (opcode == Op_StoreP || opcode == Op_StoreN) && kvn@3651: (adr_type == TypeRawPtr::NOTNULL && kvn@3651: adr->in(AddPNode::Address)->is_Proj() && kvn@3651: adr->in(AddPNode::Address)->in(0)->is_Allocate())) { kvn@3651: // Point Address to Value kvn@3651: PointsToNode* adr_ptn = ptnode_adr(adr->_idx); kvn@3651: assert(adr_ptn != NULL && kvn@3651: adr_ptn->as_Field()->is_oop(), "node should be registered"); kvn@3651: Node *val = n->in(MemNode::ValueIn); kvn@3651: PointsToNode* ptn = ptnode_adr(val->_idx); kvn@3651: assert(ptn != NULL, "node should be registered"); kvn@3651: add_edge(adr_ptn, ptn); kvn@3651: break; kvn@3657: } else if ((opcode == Op_StoreP) && (adr_type == TypeRawPtr::BOTTOM)) { kvn@3657: // Stored value escapes in unsafe access. kvn@3657: Node *val = n->in(MemNode::ValueIn); kvn@3657: PointsToNode* ptn = ptnode_adr(val->_idx); kvn@3657: assert(ptn != NULL, "node should be registered"); kvn@3657: ptn->set_escape_state(PointsToNode::GlobalEscape); kvn@3657: // Add edge to object for unsafe access with offset. kvn@3657: PointsToNode* adr_ptn = ptnode_adr(adr->_idx); kvn@3657: assert(adr_ptn != NULL, "node should be registered"); kvn@3657: if (adr_ptn->is_Field()) { kvn@3657: assert(adr_ptn->as_Field()->is_oop(), "should be oop field"); kvn@3657: add_edge(adr_ptn, ptn); kvn@3657: } kvn@3657: break; kvn@3651: } kvn@3651: ELSE_FAIL("Op_StoreP"); kvn@3651: } kvn@3651: case Op_AryEq: kvn@3651: case Op_StrComp: kvn@3651: case Op_StrEquals: kvn@3651: case Op_StrIndexOf: { kvn@3651: // char[] arrays passed to string intrinsic do not escape but kvn@3651: // they are not scalar replaceable. Adjust escape state for them. kvn@3651: // Start from in(2) edge since in(1) is memory edge. kvn@3651: for (uint i = 2; i < n->req(); i++) { kvn@3651: Node* adr = n->in(i); kvn@3651: const Type* at = _igvn->type(adr); kvn@3651: if (!adr->is_top() && at->isa_ptr()) { kvn@3651: assert(at == Type::TOP || at == TypePtr::NULL_PTR || kvn@3651: at->isa_ptr() != NULL, "expecting a pointer"); kvn@3651: if (adr->is_AddP()) { kvn@3651: adr = get_addp_base(adr); kvn@3651: } kvn@3651: PointsToNode* ptn = ptnode_adr(adr->_idx); kvn@3651: assert(ptn != NULL, "node should be registered"); kvn@3651: add_edge(n_ptn, ptn); kvn@3651: } kvn@3651: } kvn@3651: break; kvn@3651: } kvn@3651: default: { kvn@3651: // This method should be called only for EA specific nodes which may kvn@3651: // miss some edges when they were created. kvn@3651: #ifdef ASSERT kvn@3651: n->dump(1); kvn@3651: #endif kvn@3651: guarantee(false, "unknown node"); kvn@3651: } kvn@3651: } kvn@3651: return; kvn@3651: } kvn@3651: kvn@3651: void ConnectionGraph::add_call_node(CallNode* call) { kvn@3651: assert(call->returns_pointer(), "only for call which returns pointer"); kvn@3651: uint call_idx = call->_idx; kvn@3651: if (call->is_Allocate()) { kvn@3651: Node* k = call->in(AllocateNode::KlassNode); kvn@3651: const TypeKlassPtr* kt = k->bottom_type()->isa_klassptr(); kvn@3651: assert(kt != NULL, "TypeKlassPtr required."); kvn@3651: ciKlass* cik = kt->klass(); kvn@3651: PointsToNode::EscapeState es = PointsToNode::NoEscape; kvn@3651: bool scalar_replaceable = true; kvn@3651: if (call->is_AllocateArray()) { kvn@3651: if (!cik->is_array_klass()) { // StressReflectiveCode kvn@3651: es = PointsToNode::GlobalEscape; kvn@3651: } else { kvn@3651: int length = call->in(AllocateNode::ALength)->find_int_con(-1); kvn@3651: if (length < 0 || length > EliminateAllocationArraySizeLimit) { kvn@3651: // Not scalar replaceable if the length is not constant or too big. kvn@3651: scalar_replaceable = false; kvn@3651: } kvn@3651: } kvn@3651: } else { // Allocate instance kvn@3651: if (cik->is_subclass_of(_compile->env()->Thread_klass()) || kvn@3651: !cik->is_instance_klass() || // StressReflectiveCode kvn@3651: cik->as_instance_klass()->has_finalizer()) { kvn@3651: es = PointsToNode::GlobalEscape; kvn@3651: } kvn@3651: } kvn@3651: add_java_object(call, es); kvn@3651: PointsToNode* ptn = ptnode_adr(call_idx); kvn@3651: if (!scalar_replaceable && ptn->scalar_replaceable()) { kvn@3651: ptn->set_scalar_replaceable(false); kvn@3651: } kvn@3651: } else if (call->is_CallStaticJava()) { kvn@3651: // Call nodes could be different types: kvn@3651: // kvn@3651: // 1. CallDynamicJavaNode (what happened during call is unknown): kvn@3651: // kvn@3651: // - mapped to GlobalEscape JavaObject node if oop is returned; kvn@3651: // kvn@3651: // - all oop arguments are escaping globally; kvn@3651: // kvn@3651: // 2. CallStaticJavaNode (execute bytecode analysis if possible): kvn@3651: // kvn@3651: // - the same as CallDynamicJavaNode if can't do bytecode analysis; kvn@3651: // kvn@3651: // - mapped to GlobalEscape JavaObject node if unknown oop is returned; kvn@3651: // - mapped to NoEscape JavaObject node if non-escaping object allocated kvn@3651: // during call is returned; kvn@3651: // - mapped to ArgEscape LocalVar node pointed to object arguments kvn@3651: // which are returned and does not escape during call; kvn@3651: // kvn@3651: // - oop arguments escaping status is defined by bytecode analysis; kvn@3651: // kvn@3651: // For a static call, we know exactly what method is being called. kvn@3651: // Use bytecode estimator to record whether the call's return value escapes. kvn@3651: ciMethod* meth = call->as_CallJava()->method(); kvn@3651: if (meth == NULL) { kvn@3651: const char* name = call->as_CallStaticJava()->_name; kvn@3651: assert(strncmp(name, "_multianewarray", 15) == 0, "TODO: add failed case check"); kvn@3651: // Returns a newly allocated unescaped object. kvn@3651: add_java_object(call, PointsToNode::NoEscape); kvn@3651: ptnode_adr(call_idx)->set_scalar_replaceable(false); kvn@3651: } else { kvn@3651: BCEscapeAnalyzer* call_analyzer = meth->get_bcea(); kvn@3651: call_analyzer->copy_dependencies(_compile->dependencies()); kvn@3651: if (call_analyzer->is_return_allocated()) { kvn@3651: // Returns a newly allocated unescaped object, simply kvn@3651: // update dependency information. kvn@3651: // Mark it as NoEscape so that objects referenced by kvn@3651: // it's fields will be marked as NoEscape at least. kvn@3651: add_java_object(call, PointsToNode::NoEscape); kvn@3651: ptnode_adr(call_idx)->set_scalar_replaceable(false); kvn@3651: } else { kvn@3651: // Determine whether any arguments are returned. kvn@3651: const TypeTuple* d = call->tf()->domain(); kvn@3651: bool ret_arg = false; kvn@3651: for (uint i = TypeFunc::Parms; i < d->cnt(); i++) { kvn@3651: if (d->field_at(i)->isa_ptr() != NULL && kvn@3651: call_analyzer->is_arg_returned(i - TypeFunc::Parms)) { kvn@3651: ret_arg = true; kvn@3651: break; kvn@3651: } kvn@3651: } kvn@3651: if (ret_arg) { kvn@3651: add_local_var(call, PointsToNode::ArgEscape); kvn@3651: } else { kvn@3651: // Returns unknown object. kvn@3651: map_ideal_node(call, phantom_obj); kvn@3651: } kvn@3651: } kvn@3651: } kvn@3651: } else { kvn@3651: // An other type of call, assume the worst case: kvn@3651: // returned value is unknown and globally escapes. kvn@3651: assert(call->Opcode() == Op_CallDynamicJava, "add failed case check"); kvn@3651: map_ideal_node(call, phantom_obj); kvn@3651: } kvn@3651: } kvn@3651: kvn@3651: void ConnectionGraph::process_call_arguments(CallNode *call) { kvn@3651: bool is_arraycopy = false; kvn@3651: switch (call->Opcode()) { kvn@3651: #ifdef ASSERT kvn@3651: case Op_Allocate: kvn@3651: case Op_AllocateArray: kvn@3651: case Op_Lock: kvn@3651: case Op_Unlock: kvn@3651: assert(false, "should be done already"); kvn@3651: break; kvn@3651: #endif kvn@3651: case Op_CallLeafNoFP: kvn@3651: is_arraycopy = (call->as_CallLeaf()->_name != NULL && kvn@3651: strstr(call->as_CallLeaf()->_name, "arraycopy") != 0); kvn@3651: // fall through kvn@3651: case Op_CallLeaf: { kvn@3651: // Stub calls, objects do not escape but they are not scale replaceable. kvn@3651: // Adjust escape state for outgoing arguments. kvn@3651: const TypeTuple * d = call->tf()->domain(); kvn@3651: bool src_has_oops = false; kvn@3651: for (uint i = TypeFunc::Parms; i < d->cnt(); i++) { kvn@3651: const Type* at = d->field_at(i); kvn@3651: Node *arg = call->in(i); kvn@3651: const Type *aat = _igvn->type(arg); kvn@3651: if (arg->is_top() || !at->isa_ptr() || !aat->isa_ptr()) kvn@3651: continue; kvn@3651: if (arg->is_AddP()) { kvn@3651: // kvn@3651: // The inline_native_clone() case when the arraycopy stub is called kvn@3651: // after the allocation before Initialize and CheckCastPP nodes. kvn@3651: // Or normal arraycopy for object arrays case. kvn@3651: // kvn@3651: // Set AddP's base (Allocate) as not scalar replaceable since kvn@3651: // pointer to the base (with offset) is passed as argument. kvn@3651: // kvn@3651: arg = get_addp_base(arg); kvn@3651: } kvn@3651: PointsToNode* arg_ptn = ptnode_adr(arg->_idx); kvn@3651: assert(arg_ptn != NULL, "should be registered"); kvn@3651: PointsToNode::EscapeState arg_esc = arg_ptn->escape_state(); kvn@3651: if (is_arraycopy || arg_esc < PointsToNode::ArgEscape) { kvn@3651: assert(aat == Type::TOP || aat == TypePtr::NULL_PTR || kvn@3651: aat->isa_ptr() != NULL, "expecting an Ptr"); kvn@3651: bool arg_has_oops = aat->isa_oopptr() && kvn@3651: (aat->isa_oopptr()->klass() == NULL || aat->isa_instptr() || kvn@3651: (aat->isa_aryptr() && aat->isa_aryptr()->klass()->is_obj_array_klass())); kvn@3651: if (i == TypeFunc::Parms) { kvn@3651: src_has_oops = arg_has_oops; kvn@3651: } kvn@3651: // kvn@3651: // src or dst could be j.l.Object when other is basic type array: kvn@3651: // kvn@3651: // arraycopy(char[],0,Object*,0,size); kvn@3651: // arraycopy(Object*,0,char[],0,size); kvn@3651: // kvn@3651: // Don't add edges in such cases. kvn@3651: // kvn@3651: bool arg_is_arraycopy_dest = src_has_oops && is_arraycopy && kvn@3651: arg_has_oops && (i > TypeFunc::Parms); kvn@3651: #ifdef ASSERT kvn@3651: if (!(is_arraycopy || kvn@3651: call->as_CallLeaf()->_name != NULL && kvn@3651: (strcmp(call->as_CallLeaf()->_name, "g1_wb_pre") == 0 || kvn@3651: strcmp(call->as_CallLeaf()->_name, "g1_wb_post") == 0 )) kvn@3651: ) { kvn@3651: call->dump(); kvn@3651: assert(false, "EA: unexpected CallLeaf"); kvn@3651: } kvn@3651: #endif kvn@3651: // Always process arraycopy's destination object since kvn@3651: // we need to add all possible edges to references in kvn@3651: // source object. kvn@3651: if (arg_esc >= PointsToNode::ArgEscape && kvn@3651: !arg_is_arraycopy_dest) { kvn@3651: continue; kvn@3651: } kvn@3651: set_escape_state(arg_ptn, PointsToNode::ArgEscape); kvn@3651: if (arg_is_arraycopy_dest) { kvn@3651: Node* src = call->in(TypeFunc::Parms); kvn@3651: if (src->is_AddP()) { kvn@3651: src = get_addp_base(src); kvn@3651: } kvn@3651: PointsToNode* src_ptn = ptnode_adr(src->_idx); kvn@3651: assert(src_ptn != NULL, "should be registered"); kvn@3651: if (arg_ptn != src_ptn) { kvn@3651: // Special arraycopy edge: kvn@3651: // A destination object's field can't have the source object kvn@3651: // as base since objects escape states are not related. kvn@3651: // Only escape state of destination object's fields affects kvn@3651: // escape state of fields in source object. kvn@3651: add_arraycopy(call, PointsToNode::ArgEscape, src_ptn, arg_ptn); kvn@3651: } kvn@3651: } kvn@3651: } kvn@3651: } kvn@3651: break; kvn@3651: } kvn@3651: case Op_CallStaticJava: { kvn@3651: // For a static call, we know exactly what method is being called. kvn@3651: // Use bytecode estimator to record the call's escape affects kvn@3651: #ifdef ASSERT kvn@3651: const char* name = call->as_CallStaticJava()->_name; kvn@3651: assert((name == NULL || strcmp(name, "uncommon_trap") != 0), "normal calls only"); kvn@3651: #endif kvn@3651: ciMethod* meth = call->as_CallJava()->method(); kvn@3651: BCEscapeAnalyzer* call_analyzer = (meth !=NULL) ? meth->get_bcea() : NULL; kvn@3651: // fall-through if not a Java method or no analyzer information kvn@3651: if (call_analyzer != NULL) { kvn@3651: PointsToNode* call_ptn = ptnode_adr(call->_idx); kvn@3651: const TypeTuple* d = call->tf()->domain(); kvn@3651: for (uint i = TypeFunc::Parms; i < d->cnt(); i++) { kvn@3651: const Type* at = d->field_at(i); kvn@3651: int k = i - TypeFunc::Parms; kvn@3651: Node* arg = call->in(i); kvn@3651: PointsToNode* arg_ptn = ptnode_adr(arg->_idx); kvn@3651: if (at->isa_ptr() != NULL && kvn@3651: call_analyzer->is_arg_returned(k)) { kvn@3651: // The call returns arguments. kvn@3651: if (call_ptn != NULL) { // Is call's result used? kvn@3651: assert(call_ptn->is_LocalVar(), "node should be registered"); kvn@3651: assert(arg_ptn != NULL, "node should be registered"); kvn@3651: add_edge(call_ptn, arg_ptn); kvn@3651: } kvn@3651: } kvn@3651: if (at->isa_oopptr() != NULL && kvn@3651: arg_ptn->escape_state() < PointsToNode::GlobalEscape) { kvn@3651: if (!call_analyzer->is_arg_stack(k)) { kvn@3651: // The argument global escapes kvn@3651: set_escape_state(arg_ptn, PointsToNode::GlobalEscape); kvn@3651: } else { kvn@3651: set_escape_state(arg_ptn, PointsToNode::ArgEscape); kvn@3651: if (!call_analyzer->is_arg_local(k)) { kvn@3651: // The argument itself doesn't escape, but any fields might kvn@3651: set_fields_escape_state(arg_ptn, PointsToNode::GlobalEscape); kvn@3651: } kvn@3651: } kvn@3651: } kvn@3651: } kvn@3651: if (call_ptn != NULL && call_ptn->is_LocalVar()) { kvn@3651: // The call returns arguments. kvn@3651: assert(call_ptn->edge_count() > 0, "sanity"); kvn@3651: if (!call_analyzer->is_return_local()) { kvn@3651: // Returns also unknown object. kvn@3651: add_edge(call_ptn, phantom_obj); kvn@3651: } kvn@3651: } kvn@3651: break; kvn@3651: } kvn@3651: } kvn@3651: default: { kvn@3651: // Fall-through here if not a Java method or no analyzer information kvn@3651: // or some other type of call, assume the worst case: all arguments kvn@3651: // globally escape. kvn@3651: const TypeTuple* d = call->tf()->domain(); kvn@3651: for (uint i = TypeFunc::Parms; i < d->cnt(); i++) { kvn@3651: const Type* at = d->field_at(i); kvn@3651: if (at->isa_oopptr() != NULL) { kvn@3651: Node* arg = call->in(i); kvn@3651: if (arg->is_AddP()) { kvn@3651: arg = get_addp_base(arg); kvn@3651: } kvn@3651: assert(ptnode_adr(arg->_idx) != NULL, "should be defined already"); kvn@3651: set_escape_state(ptnode_adr(arg->_idx), PointsToNode::GlobalEscape); kvn@3651: } kvn@3651: } kvn@3651: } kvn@3651: } kvn@3651: } kvn@3651: kvn@3651: kvn@3651: // Finish Graph construction. kvn@3651: bool ConnectionGraph::complete_connection_graph( kvn@3651: GrowableArray& ptnodes_worklist, kvn@3651: GrowableArray& non_escaped_worklist, kvn@3651: GrowableArray& java_objects_worklist, kvn@3651: GrowableArray& oop_fields_worklist) { kvn@3651: // Normally only 1-3 passes needed to build Connection Graph depending kvn@3651: // on graph complexity. Observed 8 passes in jvm2008 compiler.compiler. kvn@3651: // Set limit to 20 to catch situation when something did go wrong and kvn@3651: // bailout Escape Analysis. kvn@3651: // Also limit build time to 30 sec (60 in debug VM). kvn@3651: #define CG_BUILD_ITER_LIMIT 20 kvn@3651: #ifdef ASSERT kvn@3651: #define CG_BUILD_TIME_LIMIT 60.0 kvn@3651: #else kvn@3651: #define CG_BUILD_TIME_LIMIT 30.0 kvn@3651: #endif kvn@3651: kvn@3651: // Propagate GlobalEscape and ArgEscape escape states and check that kvn@3651: // we still have non-escaping objects. The method pushs on _worklist kvn@3651: // Field nodes which reference phantom_object. kvn@3651: if (!find_non_escaped_objects(ptnodes_worklist, non_escaped_worklist)) { kvn@3651: return false; // Nothing to do. kvn@3651: } kvn@3651: // Now propagate references to all JavaObject nodes. kvn@3651: int java_objects_length = java_objects_worklist.length(); kvn@3651: elapsedTimer time; kvn@3651: int new_edges = 1; kvn@3651: int iterations = 0; kvn@3651: do { kvn@3651: while ((new_edges > 0) && kvn@3651: (iterations++ < CG_BUILD_ITER_LIMIT) && kvn@3651: (time.seconds() < CG_BUILD_TIME_LIMIT)) { kvn@3651: time.start(); kvn@3651: new_edges = 0; kvn@3651: // Propagate references to phantom_object for nodes pushed on _worklist kvn@3651: // by find_non_escaped_objects() and find_field_value(). kvn@3651: new_edges += add_java_object_edges(phantom_obj, false); kvn@3651: for (int next = 0; next < java_objects_length; ++next) { kvn@3651: JavaObjectNode* ptn = java_objects_worklist.at(next); kvn@3651: new_edges += add_java_object_edges(ptn, true); kvn@3651: } kvn@3651: if (new_edges > 0) { kvn@3651: // Update escape states on each iteration if graph was updated. kvn@3651: if (!find_non_escaped_objects(ptnodes_worklist, non_escaped_worklist)) { kvn@3651: return false; // Nothing to do. kvn@3651: } kvn@3651: } kvn@3651: time.stop(); kvn@3651: } kvn@3651: if ((iterations < CG_BUILD_ITER_LIMIT) && kvn@3651: (time.seconds() < CG_BUILD_TIME_LIMIT)) { kvn@3651: time.start(); kvn@3651: // Find fields which have unknown value. kvn@3651: int fields_length = oop_fields_worklist.length(); kvn@3651: for (int next = 0; next < fields_length; next++) { kvn@3651: FieldNode* field = oop_fields_worklist.at(next); kvn@3651: if (field->edge_count() == 0) { kvn@3651: new_edges += find_field_value(field); kvn@3651: // This code may added new edges to phantom_object. kvn@3651: // Need an other cycle to propagate references to phantom_object. kvn@3651: } kvn@3651: } kvn@3651: time.stop(); kvn@3651: } else { kvn@3651: new_edges = 0; // Bailout kvn@3651: } kvn@3651: } while (new_edges > 0); kvn@3651: kvn@3651: // Bailout if passed limits. kvn@3651: if ((iterations >= CG_BUILD_ITER_LIMIT) || kvn@3651: (time.seconds() >= CG_BUILD_TIME_LIMIT)) { kvn@3651: Compile* C = _compile; kvn@3651: if (C->log() != NULL) { kvn@3651: C->log()->begin_elem("connectionGraph_bailout reason='reached "); kvn@3651: C->log()->text("%s", (iterations >= CG_BUILD_ITER_LIMIT) ? "iterations" : "time"); kvn@3651: C->log()->end_elem(" limit'"); kvn@3651: } kvn@3971: assert(false, err_msg_res("infinite EA connection graph build (%f sec, %d iterations) with %d nodes and worklist size %d", kvn@3651: time.seconds(), iterations, nodes_size(), ptnodes_worklist.length())); kvn@3651: // Possible infinite build_connection_graph loop, kvn@3651: // bailout (no changes to ideal graph were made). kvn@3651: return false; kvn@3651: } kvn@3651: #ifdef ASSERT kvn@3651: if (Verbose && PrintEscapeAnalysis) { kvn@3651: tty->print_cr("EA: %d iterations to build connection graph with %d nodes and worklist size %d", kvn@3651: iterations, nodes_size(), ptnodes_worklist.length()); kvn@3651: } kvn@3651: #endif kvn@3651: kvn@3651: #undef CG_BUILD_ITER_LIMIT kvn@3651: #undef CG_BUILD_TIME_LIMIT kvn@3651: kvn@3651: // Find fields initialized by NULL for non-escaping Allocations. kvn@3651: int non_escaped_length = non_escaped_worklist.length(); kvn@3651: for (int next = 0; next < non_escaped_length; next++) { kvn@3651: JavaObjectNode* ptn = non_escaped_worklist.at(next); kvn@3651: PointsToNode::EscapeState es = ptn->escape_state(); kvn@3651: assert(es <= PointsToNode::ArgEscape, "sanity"); kvn@3651: if (es == PointsToNode::NoEscape) { kvn@3651: if (find_init_values(ptn, null_obj, _igvn) > 0) { kvn@3651: // Adding references to NULL object does not change escape states kvn@3651: // since it does not escape. Also no fields are added to NULL object. kvn@3651: add_java_object_edges(null_obj, false); kvn@3651: } kvn@3651: } kvn@3651: Node* n = ptn->ideal_node(); kvn@3651: if (n->is_Allocate()) { kvn@3651: // The object allocated by this Allocate node will never be kvn@3651: // seen by an other thread. Mark it so that when it is kvn@3651: // expanded no MemBarStoreStore is added. kvn@3651: InitializeNode* ini = n->as_Allocate()->initialization(); kvn@3651: if (ini != NULL) kvn@3651: ini->set_does_not_escape(); kvn@3651: } kvn@3651: } kvn@3651: return true; // Finished graph construction. kvn@3651: } kvn@3651: kvn@3651: // Propagate GlobalEscape and ArgEscape escape states to all nodes kvn@3651: // and check that we still have non-escaping java objects. kvn@3651: bool ConnectionGraph::find_non_escaped_objects(GrowableArray& ptnodes_worklist, kvn@3651: GrowableArray& non_escaped_worklist) { kvn@3651: GrowableArray escape_worklist; kvn@3651: // First, put all nodes with GlobalEscape and ArgEscape states on worklist. kvn@3651: int ptnodes_length = ptnodes_worklist.length(); kvn@3651: for (int next = 0; next < ptnodes_length; ++next) { kvn@3651: PointsToNode* ptn = ptnodes_worklist.at(next); kvn@3651: if (ptn->escape_state() >= PointsToNode::ArgEscape || kvn@3651: ptn->fields_escape_state() >= PointsToNode::ArgEscape) { kvn@3651: escape_worklist.push(ptn); kvn@3651: } kvn@3651: } kvn@3651: // Set escape states to referenced nodes (edges list). kvn@3651: while (escape_worklist.length() > 0) { kvn@3651: PointsToNode* ptn = escape_worklist.pop(); kvn@3651: PointsToNode::EscapeState es = ptn->escape_state(); kvn@3651: PointsToNode::EscapeState field_es = ptn->fields_escape_state(); kvn@3651: if (ptn->is_Field() && ptn->as_Field()->is_oop() && kvn@3651: es >= PointsToNode::ArgEscape) { kvn@3651: // GlobalEscape or ArgEscape state of field means it has unknown value. kvn@3651: if (add_edge(ptn, phantom_obj)) { kvn@3651: // New edge was added kvn@3651: add_field_uses_to_worklist(ptn->as_Field()); kvn@3651: } kvn@3651: } kvn@3651: for (EdgeIterator i(ptn); i.has_next(); i.next()) { kvn@3651: PointsToNode* e = i.get(); kvn@3651: if (e->is_Arraycopy()) { kvn@3651: assert(ptn->arraycopy_dst(), "sanity"); kvn@3651: // Propagate only fields escape state through arraycopy edge. kvn@3651: if (e->fields_escape_state() < field_es) { kvn@3651: set_fields_escape_state(e, field_es); kvn@3651: escape_worklist.push(e); kvn@3651: } kvn@3651: } else if (es >= field_es) { kvn@3651: // fields_escape_state is also set to 'es' if it is less than 'es'. kvn@3651: if (e->escape_state() < es) { kvn@3651: set_escape_state(e, es); kvn@3651: escape_worklist.push(e); kvn@3651: } kvn@3651: } else { kvn@3651: // Propagate field escape state. kvn@3651: bool es_changed = false; kvn@3651: if (e->fields_escape_state() < field_es) { kvn@3651: set_fields_escape_state(e, field_es); kvn@3651: es_changed = true; kvn@3651: } kvn@3651: if ((e->escape_state() < field_es) && kvn@3651: e->is_Field() && ptn->is_JavaObject() && kvn@3651: e->as_Field()->is_oop()) { kvn@3651: // Change escape state of referenced fileds. kvn@3651: set_escape_state(e, field_es); kvn@3651: es_changed = true;; kvn@3651: } else if (e->escape_state() < es) { kvn@3651: set_escape_state(e, es); kvn@3651: es_changed = true;; kvn@3651: } kvn@3651: if (es_changed) { kvn@3651: escape_worklist.push(e); kvn@3651: } kvn@3651: } kvn@3651: } kvn@3651: } kvn@3651: // Remove escaped objects from non_escaped list. kvn@3651: for (int next = non_escaped_worklist.length()-1; next >= 0 ; --next) { kvn@3651: JavaObjectNode* ptn = non_escaped_worklist.at(next); kvn@3651: if (ptn->escape_state() >= PointsToNode::GlobalEscape) { kvn@3651: non_escaped_worklist.delete_at(next); kvn@3651: } kvn@3651: if (ptn->escape_state() == PointsToNode::NoEscape) { kvn@3651: // Find fields in non-escaped allocations which have unknown value. kvn@3651: find_init_values(ptn, phantom_obj, NULL); kvn@3651: } kvn@3651: } kvn@3651: return (non_escaped_worklist.length() > 0); kvn@3651: } kvn@3651: kvn@3651: // Add all references to JavaObject node by walking over all uses. kvn@3651: int ConnectionGraph::add_java_object_edges(JavaObjectNode* jobj, bool populate_worklist) { kvn@3651: int new_edges = 0; kvn@3651: if (populate_worklist) { kvn@3651: // Populate _worklist by uses of jobj's uses. kvn@3651: for (UseIterator i(jobj); i.has_next(); i.next()) { kvn@3651: PointsToNode* use = i.get(); kvn@3651: if (use->is_Arraycopy()) kvn@3651: continue; kvn@3651: add_uses_to_worklist(use); kvn@3651: if (use->is_Field() && use->as_Field()->is_oop()) { kvn@3651: // Put on worklist all field's uses (loads) and kvn@3651: // related field nodes (same base and offset). kvn@3651: add_field_uses_to_worklist(use->as_Field()); kvn@3651: } kvn@3651: } kvn@3651: } kvn@3651: while(_worklist.length() > 0) { kvn@3651: PointsToNode* use = _worklist.pop(); kvn@3651: if (PointsToNode::is_base_use(use)) { kvn@3651: // Add reference from jobj to field and from field to jobj (field's base). kvn@3651: use = PointsToNode::get_use_node(use)->as_Field(); kvn@3651: if (add_base(use->as_Field(), jobj)) { kvn@3651: new_edges++; kvn@3651: } kvn@3651: continue; kvn@3651: } kvn@3651: assert(!use->is_JavaObject(), "sanity"); kvn@3651: if (use->is_Arraycopy()) { kvn@3651: if (jobj == null_obj) // NULL object does not have field edges kvn@3651: continue; kvn@3651: // Added edge from Arraycopy node to arraycopy's source java object kvn@3651: if (add_edge(use, jobj)) { kvn@3651: jobj->set_arraycopy_src(); kvn@3651: new_edges++; kvn@3651: } kvn@3651: // and stop here. kvn@3651: continue; kvn@3651: } kvn@3651: if (!add_edge(use, jobj)) kvn@3651: continue; // No new edge added, there was such edge already. kvn@3651: new_edges++; kvn@3651: if (use->is_LocalVar()) { kvn@3651: add_uses_to_worklist(use); kvn@3651: if (use->arraycopy_dst()) { kvn@3651: for (EdgeIterator i(use); i.has_next(); i.next()) { kvn@3651: PointsToNode* e = i.get(); kvn@3651: if (e->is_Arraycopy()) { kvn@3651: if (jobj == null_obj) // NULL object does not have field edges kvn@3651: continue; kvn@3651: // Add edge from arraycopy's destination java object to Arraycopy node. kvn@3651: if (add_edge(jobj, e)) { kvn@3651: new_edges++; kvn@3651: jobj->set_arraycopy_dst(); kvn@3651: } kvn@3651: } kvn@3651: } kvn@3651: } kvn@3651: } else { kvn@3651: // Added new edge to stored in field values. kvn@3651: // Put on worklist all field's uses (loads) and kvn@3651: // related field nodes (same base and offset). kvn@3651: add_field_uses_to_worklist(use->as_Field()); kvn@3651: } kvn@3651: } kvn@3651: return new_edges; kvn@3651: } kvn@3651: kvn@3651: // Put on worklist all related field nodes. kvn@3651: void ConnectionGraph::add_field_uses_to_worklist(FieldNode* field) { kvn@3651: assert(field->is_oop(), "sanity"); kvn@3651: int offset = field->offset(); kvn@3651: add_uses_to_worklist(field); kvn@3651: // Loop over all bases of this field and push on worklist Field nodes kvn@3651: // with the same offset and base (since they may reference the same field). kvn@3651: for (BaseIterator i(field); i.has_next(); i.next()) { kvn@3651: PointsToNode* base = i.get(); kvn@3651: add_fields_to_worklist(field, base); kvn@3651: // Check if the base was source object of arraycopy and go over arraycopy's kvn@3651: // destination objects since values stored to a field of source object are kvn@3651: // accessable by uses (loads) of fields of destination objects. kvn@3651: if (base->arraycopy_src()) { kvn@3651: for (UseIterator j(base); j.has_next(); j.next()) { kvn@3651: PointsToNode* arycp = j.get(); kvn@3651: if (arycp->is_Arraycopy()) { kvn@3651: for (UseIterator k(arycp); k.has_next(); k.next()) { kvn@3651: PointsToNode* abase = k.get(); kvn@3651: if (abase->arraycopy_dst() && abase != base) { kvn@3651: // Look for the same arracopy reference. kvn@3651: add_fields_to_worklist(field, abase); kvn@3651: } kvn@3651: } kvn@3651: } kvn@3651: } kvn@3651: } kvn@3651: } kvn@3651: } kvn@3651: kvn@3651: // Put on worklist all related field nodes. kvn@3651: void ConnectionGraph::add_fields_to_worklist(FieldNode* field, PointsToNode* base) { kvn@3651: int offset = field->offset(); kvn@3651: if (base->is_LocalVar()) { kvn@3651: for (UseIterator j(base); j.has_next(); j.next()) { kvn@3651: PointsToNode* f = j.get(); kvn@3651: if (PointsToNode::is_base_use(f)) { // Field kvn@3651: f = PointsToNode::get_use_node(f); kvn@3651: if (f == field || !f->as_Field()->is_oop()) kvn@3651: continue; kvn@3651: int offs = f->as_Field()->offset(); kvn@3651: if (offs == offset || offset == Type::OffsetBot || offs == Type::OffsetBot) { kvn@3651: add_to_worklist(f); kvn@3651: } kvn@3651: } kvn@3651: } kvn@3651: } else { kvn@3651: assert(base->is_JavaObject(), "sanity"); kvn@3651: if (// Skip phantom_object since it is only used to indicate that kvn@3651: // this field's content globally escapes. kvn@3651: (base != phantom_obj) && kvn@3651: // NULL object node does not have fields. kvn@3651: (base != null_obj)) { kvn@3651: for (EdgeIterator i(base); i.has_next(); i.next()) { kvn@3651: PointsToNode* f = i.get(); kvn@3651: // Skip arraycopy edge since store to destination object field kvn@3651: // does not update value in source object field. kvn@3651: if (f->is_Arraycopy()) { kvn@3651: assert(base->arraycopy_dst(), "sanity"); kvn@3651: continue; kvn@3651: } kvn@3651: if (f == field || !f->as_Field()->is_oop()) kvn@3651: continue; kvn@3651: int offs = f->as_Field()->offset(); kvn@3651: if (offs == offset || offset == Type::OffsetBot || offs == Type::OffsetBot) { kvn@3651: add_to_worklist(f); kvn@3651: } kvn@3651: } kvn@3651: } kvn@3651: } kvn@3651: } kvn@3651: kvn@3651: // Find fields which have unknown value. kvn@3651: int ConnectionGraph::find_field_value(FieldNode* field) { kvn@3651: // Escaped fields should have init value already. kvn@3651: assert(field->escape_state() == PointsToNode::NoEscape, "sanity"); kvn@3651: int new_edges = 0; kvn@3651: for (BaseIterator i(field); i.has_next(); i.next()) { kvn@3651: PointsToNode* base = i.get(); kvn@3651: if (base->is_JavaObject()) { kvn@3651: // Skip Allocate's fields which will be processed later. kvn@3651: if (base->ideal_node()->is_Allocate()) kvn@3651: return 0; kvn@3651: assert(base == null_obj, "only NULL ptr base expected here"); kvn@3651: } kvn@3651: } kvn@3651: if (add_edge(field, phantom_obj)) { kvn@3651: // New edge was added kvn@3651: new_edges++; kvn@3651: add_field_uses_to_worklist(field); kvn@3651: } kvn@3651: return new_edges; kvn@3651: } kvn@3651: kvn@3651: // Find fields initializing values for allocations. kvn@3651: int ConnectionGraph::find_init_values(JavaObjectNode* pta, PointsToNode* init_val, PhaseTransform* phase) { kvn@3651: assert(pta->escape_state() == PointsToNode::NoEscape, "Not escaped Allocate nodes only"); kvn@3651: int new_edges = 0; kvn@3651: Node* alloc = pta->ideal_node(); kvn@3651: if (init_val == phantom_obj) { kvn@3651: // Do nothing for Allocate nodes since its fields values are "known". kvn@3651: if (alloc->is_Allocate()) kvn@3651: return 0; kvn@3651: assert(alloc->as_CallStaticJava(), "sanity"); kvn@3651: #ifdef ASSERT kvn@3651: if (alloc->as_CallStaticJava()->method() == NULL) { kvn@3651: const char* name = alloc->as_CallStaticJava()->_name; kvn@3651: assert(strncmp(name, "_multianewarray", 15) == 0, "sanity"); kvn@3651: } kvn@3651: #endif kvn@3651: // Non-escaped allocation returned from Java or runtime call have kvn@3651: // unknown values in fields. kvn@3651: for (EdgeIterator i(pta); i.has_next(); i.next()) { kvn@3651: PointsToNode* ptn = i.get(); kvn@3651: if (ptn->is_Field() && ptn->as_Field()->is_oop()) { kvn@3651: if (add_edge(ptn, phantom_obj)) { kvn@3651: // New edge was added kvn@3651: new_edges++; kvn@3651: add_field_uses_to_worklist(ptn->as_Field()); kvn@3651: } kvn@3651: } kvn@3651: } kvn@3651: return new_edges; kvn@3651: } kvn@3651: assert(init_val == null_obj, "sanity"); kvn@3651: // Do nothing for Call nodes since its fields values are unknown. kvn@3651: if (!alloc->is_Allocate()) kvn@3651: return 0; kvn@3651: kvn@3651: InitializeNode* ini = alloc->as_Allocate()->initialization(); kvn@3651: Compile* C = _compile; kvn@3651: bool visited_bottom_offset = false; kvn@3651: GrowableArray offsets_worklist; kvn@3651: kvn@3651: // Check if an oop field's initializing value is recorded and add kvn@3651: // a corresponding NULL if field's value if it is not recorded. kvn@3651: // Connection Graph does not record a default initialization by NULL kvn@3651: // captured by Initialize node. kvn@3651: // kvn@3651: for (EdgeIterator i(pta); i.has_next(); i.next()) { kvn@3651: PointsToNode* ptn = i.get(); // Field (AddP) kvn@3651: if (!ptn->is_Field() || !ptn->as_Field()->is_oop()) kvn@3651: continue; // Not oop field kvn@3651: int offset = ptn->as_Field()->offset(); kvn@3651: if (offset == Type::OffsetBot) { kvn@3651: if (!visited_bottom_offset) { kvn@3651: // OffsetBot is used to reference array's element, kvn@3651: // always add reference to NULL to all Field nodes since we don't kvn@3651: // known which element is referenced. kvn@3651: if (add_edge(ptn, null_obj)) { kvn@3651: // New edge was added kvn@3651: new_edges++; kvn@3651: add_field_uses_to_worklist(ptn->as_Field()); kvn@3651: visited_bottom_offset = true; kvn@3651: } kvn@3651: } kvn@3651: } else { kvn@3651: // Check only oop fields. kvn@3651: const Type* adr_type = ptn->ideal_node()->as_AddP()->bottom_type(); kvn@3651: if (adr_type->isa_rawptr()) { kvn@3651: #ifdef ASSERT kvn@3651: // Raw pointers are used for initializing stores so skip it kvn@3651: // since it should be recorded already kvn@3651: Node* base = get_addp_base(ptn->ideal_node()); kvn@3651: assert(adr_type->isa_rawptr() && base->is_Proj() && kvn@3651: (base->in(0) == alloc),"unexpected pointer type"); kvn@3651: #endif kvn@3651: continue; kvn@3651: } kvn@3651: if (!offsets_worklist.contains(offset)) { kvn@3651: offsets_worklist.append(offset); kvn@3651: Node* value = NULL; kvn@3651: if (ini != NULL) { kvn@3651: BasicType ft = UseCompressedOops ? T_NARROWOOP : T_OBJECT; kvn@3651: Node* store = ini->find_captured_store(offset, type2aelembytes(ft), phase); kvn@3651: if (store != NULL && store->is_Store()) { kvn@3651: value = store->in(MemNode::ValueIn); kvn@3651: } else { kvn@3651: // There could be initializing stores which follow allocation. kvn@3651: // For example, a volatile field store is not collected kvn@3651: // by Initialize node. kvn@3651: // kvn@3651: // Need to check for dependent loads to separate such stores from kvn@3651: // stores which follow loads. For now, add initial value NULL so kvn@3651: // that compare pointers optimization works correctly. kvn@3651: } kvn@3651: } kvn@3651: if (value == NULL) { kvn@3651: // A field's initializing value was not recorded. Add NULL. kvn@3651: if (add_edge(ptn, null_obj)) { kvn@3651: // New edge was added kvn@3651: new_edges++; kvn@3651: add_field_uses_to_worklist(ptn->as_Field()); kvn@3651: } kvn@3651: } kvn@3651: } kvn@3651: } kvn@3651: } kvn@3651: return new_edges; kvn@3651: } kvn@3651: kvn@3651: // Adjust scalar_replaceable state after Connection Graph is built. kvn@3651: void ConnectionGraph::adjust_scalar_replaceable_state(JavaObjectNode* jobj) { kvn@3651: // Search for non-escaping objects which are not scalar replaceable kvn@3651: // and mark them to propagate the state to referenced objects. kvn@3651: kvn@3651: // 1. An object is not scalar replaceable if the field into which it is kvn@3651: // stored has unknown offset (stored into unknown element of an array). kvn@3651: // kvn@3651: for (UseIterator i(jobj); i.has_next(); i.next()) { kvn@3651: PointsToNode* use = i.get(); kvn@3651: assert(!use->is_Arraycopy(), "sanity"); kvn@3651: if (use->is_Field()) { kvn@3651: FieldNode* field = use->as_Field(); kvn@3651: assert(field->is_oop() && field->scalar_replaceable() && kvn@3651: field->fields_escape_state() == PointsToNode::NoEscape, "sanity"); kvn@3651: if (field->offset() == Type::OffsetBot) { kvn@3651: jobj->set_scalar_replaceable(false); kvn@3651: return; kvn@3651: } kvn@3651: } kvn@3651: assert(use->is_Field() || use->is_LocalVar(), "sanity"); kvn@3651: // 2. An object is not scalar replaceable if it is merged with other objects. kvn@3651: for (EdgeIterator j(use); j.has_next(); j.next()) { kvn@3651: PointsToNode* ptn = j.get(); kvn@3651: if (ptn->is_JavaObject() && ptn != jobj) { kvn@3651: // Mark all objects. kvn@3651: jobj->set_scalar_replaceable(false); kvn@3651: ptn->set_scalar_replaceable(false); kvn@3651: } kvn@3651: } kvn@3651: if (!jobj->scalar_replaceable()) { kvn@3651: return; kvn@3651: } kvn@3651: } kvn@3651: kvn@3651: for (EdgeIterator j(jobj); j.has_next(); j.next()) { kvn@3651: // Non-escaping object node should point only to field nodes. kvn@3651: FieldNode* field = j.get()->as_Field(); kvn@3651: int offset = field->as_Field()->offset(); kvn@3651: kvn@3651: // 3. An object is not scalar replaceable if it has a field with unknown kvn@3651: // offset (array's element is accessed in loop). kvn@3651: if (offset == Type::OffsetBot) { kvn@3651: jobj->set_scalar_replaceable(false); kvn@3651: return; kvn@3651: } kvn@3651: // 4. Currently an object is not scalar replaceable if a LoadStore node kvn@3651: // access its field since the field value is unknown after it. kvn@3651: // kvn@3651: Node* n = field->ideal_node(); kvn@3651: for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) { kvn@3651: if (n->fast_out(i)->is_LoadStore()) { kvn@3651: jobj->set_scalar_replaceable(false); kvn@3651: return; kvn@3651: } kvn@3651: } kvn@3651: kvn@3651: // 5. Or the address may point to more then one object. This may produce kvn@3651: // the false positive result (set not scalar replaceable) kvn@3651: // since the flow-insensitive escape analysis can't separate kvn@3651: // the case when stores overwrite the field's value from the case kvn@3651: // when stores happened on different control branches. kvn@3651: // kvn@3651: // Note: it will disable scalar replacement in some cases: kvn@3651: // kvn@3651: // Point p[] = new Point[1]; kvn@3651: // p[0] = new Point(); // Will be not scalar replaced kvn@3651: // kvn@3651: // but it will save us from incorrect optimizations in next cases: kvn@3651: // kvn@3651: // Point p[] = new Point[1]; kvn@3651: // if ( x ) p[0] = new Point(); // Will be not scalar replaced kvn@3651: // kvn@3651: if (field->base_count() > 1) { kvn@3651: for (BaseIterator i(field); i.has_next(); i.next()) { kvn@3651: PointsToNode* base = i.get(); kvn@3651: // Don't take into account LocalVar nodes which kvn@3651: // may point to only one object which should be also kvn@3651: // this field's base by now. kvn@3651: if (base->is_JavaObject() && base != jobj) { kvn@3651: // Mark all bases. kvn@3651: jobj->set_scalar_replaceable(false); kvn@3651: base->set_scalar_replaceable(false); kvn@3651: } kvn@3651: } kvn@3651: } kvn@3651: } kvn@3651: } kvn@3651: kvn@3651: #ifdef ASSERT kvn@3651: void ConnectionGraph::verify_connection_graph( kvn@3651: GrowableArray& ptnodes_worklist, kvn@3651: GrowableArray& non_escaped_worklist, kvn@3651: GrowableArray& java_objects_worklist, kvn@3651: GrowableArray& addp_worklist) { kvn@3651: // Verify that graph is complete - no new edges could be added. kvn@3651: int java_objects_length = java_objects_worklist.length(); kvn@3651: int non_escaped_length = non_escaped_worklist.length(); kvn@3651: int new_edges = 0; kvn@3651: for (int next = 0; next < java_objects_length; ++next) { kvn@3651: JavaObjectNode* ptn = java_objects_worklist.at(next); kvn@3651: new_edges += add_java_object_edges(ptn, true); kvn@3651: } kvn@3651: assert(new_edges == 0, "graph was not complete"); kvn@3651: // Verify that escape state is final. kvn@3651: int length = non_escaped_worklist.length(); kvn@3651: find_non_escaped_objects(ptnodes_worklist, non_escaped_worklist); kvn@3651: assert((non_escaped_length == non_escaped_worklist.length()) && kvn@3651: (non_escaped_length == length) && kvn@3651: (_worklist.length() == 0), "escape state was not final"); kvn@3651: kvn@3651: // Verify fields information. kvn@3651: int addp_length = addp_worklist.length(); kvn@3651: for (int next = 0; next < addp_length; ++next ) { kvn@3651: Node* n = addp_worklist.at(next); kvn@3651: FieldNode* field = ptnode_adr(n->_idx)->as_Field(); kvn@3651: if (field->is_oop()) { kvn@3651: // Verify that field has all bases kvn@3651: Node* base = get_addp_base(n); kvn@3651: PointsToNode* ptn = ptnode_adr(base->_idx); kvn@3651: if (ptn->is_JavaObject()) { kvn@3651: assert(field->has_base(ptn->as_JavaObject()), "sanity"); kvn@3651: } else { kvn@3651: assert(ptn->is_LocalVar(), "sanity"); kvn@3651: for (EdgeIterator i(ptn); i.has_next(); i.next()) { kvn@3651: PointsToNode* e = i.get(); kvn@3651: if (e->is_JavaObject()) { kvn@3651: assert(field->has_base(e->as_JavaObject()), "sanity"); kvn@3651: } kvn@3651: } kvn@3651: } kvn@3651: // Verify that all fields have initializing values. kvn@3651: if (field->edge_count() == 0) { kvn@3651: field->dump(); kvn@3651: assert(field->edge_count() > 0, "sanity"); kvn@3651: } kvn@3651: } kvn@3651: } kvn@3651: } kvn@3651: #endif kvn@3651: kvn@3651: // Optimize ideal graph. kvn@3651: void ConnectionGraph::optimize_ideal_graph(GrowableArray& ptr_cmp_worklist, kvn@3651: GrowableArray& storestore_worklist) { kvn@3651: Compile* C = _compile; kvn@3651: PhaseIterGVN* igvn = _igvn; kvn@3651: if (EliminateLocks) { kvn@3651: // Mark locks before changing ideal graph. kvn@3651: int cnt = C->macro_count(); kvn@3651: for( int i=0; i < cnt; i++ ) { kvn@3651: Node *n = C->macro_node(i); kvn@3651: if (n->is_AbstractLock()) { // Lock and Unlock nodes kvn@3651: AbstractLockNode* alock = n->as_AbstractLock(); kvn@3651: if (!alock->is_non_esc_obj()) { kvn@3651: if (not_global_escape(alock->obj_node())) { kvn@3651: assert(!alock->is_eliminated() || alock->is_coarsened(), "sanity"); kvn@3651: // The lock could be marked eliminated by lock coarsening kvn@3651: // code during first IGVN before EA. Replace coarsened flag kvn@3651: // to eliminate all associated locks/unlocks. kvn@3651: alock->set_non_esc_obj(); kvn@3651: } kvn@3651: } kvn@3651: } kvn@3651: } kvn@3651: } kvn@3651: kvn@3651: if (OptimizePtrCompare) { kvn@3651: // Add ConI(#CC_GT) and ConI(#CC_EQ). kvn@3651: _pcmp_neq = igvn->makecon(TypeInt::CC_GT); kvn@3651: _pcmp_eq = igvn->makecon(TypeInt::CC_EQ); kvn@3651: // Optimize objects compare. kvn@3651: while (ptr_cmp_worklist.length() != 0) { kvn@3651: Node *n = ptr_cmp_worklist.pop(); kvn@3651: Node *res = optimize_ptr_compare(n); kvn@3651: if (res != NULL) { kvn@3651: #ifndef PRODUCT kvn@3651: if (PrintOptimizePtrCompare) { kvn@3651: tty->print_cr("++++ Replaced: %d %s(%d,%d) --> %s", n->_idx, (n->Opcode() == Op_CmpP ? "CmpP" : "CmpN"), n->in(1)->_idx, n->in(2)->_idx, (res == _pcmp_eq ? "EQ" : "NotEQ")); kvn@3651: if (Verbose) { kvn@3651: n->dump(1); kvn@3651: } kvn@3651: } kvn@3651: #endif kvn@3651: igvn->replace_node(n, res); kvn@3651: } kvn@3651: } kvn@3651: // cleanup kvn@3651: if (_pcmp_neq->outcnt() == 0) kvn@3651: igvn->hash_delete(_pcmp_neq); kvn@3651: if (_pcmp_eq->outcnt() == 0) kvn@3651: igvn->hash_delete(_pcmp_eq); kvn@3651: } kvn@3651: kvn@3651: // For MemBarStoreStore nodes added in library_call.cpp, check kvn@3651: // escape status of associated AllocateNode and optimize out kvn@3651: // MemBarStoreStore node if the allocated object never escapes. kvn@3651: while (storestore_worklist.length() != 0) { kvn@3651: Node *n = storestore_worklist.pop(); kvn@3651: MemBarStoreStoreNode *storestore = n ->as_MemBarStoreStore(); kvn@3651: Node *alloc = storestore->in(MemBarNode::Precedent)->in(0); kvn@3651: assert (alloc->is_Allocate(), "storestore should point to AllocateNode"); kvn@3651: if (not_global_escape(alloc)) { kvn@3651: MemBarNode* mb = MemBarNode::make(C, Op_MemBarCPUOrder, Compile::AliasIdxBot); kvn@3651: mb->init_req(TypeFunc::Memory, storestore->in(TypeFunc::Memory)); kvn@3651: mb->init_req(TypeFunc::Control, storestore->in(TypeFunc::Control)); kvn@3651: igvn->register_new_node_with_optimizer(mb); kvn@3651: igvn->replace_node(storestore, mb); kvn@3651: } kvn@3651: } kvn@3651: } kvn@3651: kvn@3651: // Optimize objects compare. kvn@3651: Node* ConnectionGraph::optimize_ptr_compare(Node* n) { kvn@3651: assert(OptimizePtrCompare, "sanity"); kvn@3651: PointsToNode* ptn1 = ptnode_adr(n->in(1)->_idx); kvn@3651: PointsToNode* ptn2 = ptnode_adr(n->in(2)->_idx); kvn@3651: JavaObjectNode* jobj1 = unique_java_object(n->in(1)); kvn@3651: JavaObjectNode* jobj2 = unique_java_object(n->in(2)); kvn@3651: assert(ptn1->is_JavaObject() || ptn1->is_LocalVar(), "sanity"); kvn@3651: assert(ptn2->is_JavaObject() || ptn2->is_LocalVar(), "sanity"); kvn@3651: kvn@3651: // Check simple cases first. kvn@3651: if (jobj1 != NULL) { kvn@3651: if (jobj1->escape_state() == PointsToNode::NoEscape) { kvn@3651: if (jobj1 == jobj2) { kvn@3651: // Comparing the same not escaping object. kvn@3651: return _pcmp_eq; kvn@3651: } kvn@3651: Node* obj = jobj1->ideal_node(); kvn@3651: // Comparing not escaping allocation. kvn@3651: if ((obj->is_Allocate() || obj->is_CallStaticJava()) && kvn@3651: !ptn2->points_to(jobj1)) { kvn@3651: return _pcmp_neq; // This includes nullness check. kvn@3651: } kvn@3651: } kvn@3651: } kvn@3651: if (jobj2 != NULL) { kvn@3651: if (jobj2->escape_state() == PointsToNode::NoEscape) { kvn@3651: Node* obj = jobj2->ideal_node(); kvn@3651: // Comparing not escaping allocation. kvn@3651: if ((obj->is_Allocate() || obj->is_CallStaticJava()) && kvn@3651: !ptn1->points_to(jobj2)) { kvn@3651: return _pcmp_neq; // This includes nullness check. kvn@3651: } kvn@3651: } kvn@3651: } kvn@3651: if (jobj1 != NULL && jobj1 != phantom_obj && kvn@3651: jobj2 != NULL && jobj2 != phantom_obj && kvn@3651: jobj1->ideal_node()->is_Con() && kvn@3651: jobj2->ideal_node()->is_Con()) { kvn@3651: // Klass or String constants compare. Need to be careful with kvn@3651: // compressed pointers - compare types of ConN and ConP instead of nodes. kvn@3651: const Type* t1 = jobj1->ideal_node()->bottom_type()->make_ptr(); kvn@3651: const Type* t2 = jobj2->ideal_node()->bottom_type()->make_ptr(); kvn@3651: assert(t1 != NULL && t2 != NULL, "sanity"); kvn@3651: if (t1->make_ptr() == t2->make_ptr()) { kvn@3651: return _pcmp_eq; kvn@3651: } else { kvn@3651: return _pcmp_neq; kvn@3651: } kvn@3651: } kvn@3651: if (ptn1->meet(ptn2)) { kvn@3651: return NULL; // Sets are not disjoint kvn@3651: } kvn@3651: kvn@3651: // Sets are disjoint. kvn@3651: bool set1_has_unknown_ptr = ptn1->points_to(phantom_obj); kvn@3651: bool set2_has_unknown_ptr = ptn2->points_to(phantom_obj); kvn@3651: bool set1_has_null_ptr = ptn1->points_to(null_obj); kvn@3651: bool set2_has_null_ptr = ptn2->points_to(null_obj); kvn@3651: if (set1_has_unknown_ptr && set2_has_null_ptr || kvn@3651: set2_has_unknown_ptr && set1_has_null_ptr) { kvn@3651: // Check nullness of unknown object. kvn@3651: return NULL; kvn@3651: } kvn@3651: kvn@3651: // Disjointness by itself is not sufficient since kvn@3651: // alias analysis is not complete for escaped objects. kvn@3651: // Disjoint sets are definitely unrelated only when kvn@3651: // at least one set has only not escaping allocations. kvn@3651: if (!set1_has_unknown_ptr && !set1_has_null_ptr) { kvn@3651: if (ptn1->non_escaping_allocation()) { kvn@3651: return _pcmp_neq; kvn@3651: } kvn@3651: } kvn@3651: if (!set2_has_unknown_ptr && !set2_has_null_ptr) { kvn@3651: if (ptn2->non_escaping_allocation()) { kvn@3651: return _pcmp_neq; kvn@3651: } kvn@3651: } kvn@3651: return NULL; kvn@3651: } kvn@3651: kvn@3651: // Connection Graph constuction functions. kvn@3651: kvn@3651: void ConnectionGraph::add_local_var(Node *n, PointsToNode::EscapeState es) { kvn@3651: PointsToNode* ptadr = _nodes.at(n->_idx); kvn@3651: if (ptadr != NULL) { kvn@3651: assert(ptadr->is_LocalVar() && ptadr->ideal_node() == n, "sanity"); kvn@3651: return; kvn@3651: } kvn@3651: Compile* C = _compile; kvn@3651: ptadr = new (C->comp_arena()) LocalVarNode(C, n, es); kvn@3651: _nodes.at_put(n->_idx, ptadr); kvn@3651: } kvn@3651: kvn@3651: void ConnectionGraph::add_java_object(Node *n, PointsToNode::EscapeState es) { kvn@3651: PointsToNode* ptadr = _nodes.at(n->_idx); kvn@3651: if (ptadr != NULL) { kvn@3651: assert(ptadr->is_JavaObject() && ptadr->ideal_node() == n, "sanity"); kvn@3651: return; kvn@3651: } kvn@3651: Compile* C = _compile; kvn@3651: ptadr = new (C->comp_arena()) JavaObjectNode(C, n, es); kvn@3651: _nodes.at_put(n->_idx, ptadr); kvn@3651: } kvn@3651: kvn@3651: void ConnectionGraph::add_field(Node *n, PointsToNode::EscapeState es, int offset) { kvn@3651: PointsToNode* ptadr = _nodes.at(n->_idx); kvn@3651: if (ptadr != NULL) { kvn@3651: assert(ptadr->is_Field() && ptadr->ideal_node() == n, "sanity"); kvn@3651: return; kvn@3651: } twisti@3969: bool unsafe = false; twisti@3969: bool is_oop = is_oop_field(n, offset, &unsafe); twisti@3969: if (unsafe) { twisti@3969: es = PointsToNode::GlobalEscape; twisti@3969: } kvn@3651: Compile* C = _compile; kvn@3651: FieldNode* field = new (C->comp_arena()) FieldNode(C, n, es, offset, is_oop); kvn@3651: _nodes.at_put(n->_idx, field); kvn@3651: } kvn@3651: kvn@3651: void ConnectionGraph::add_arraycopy(Node *n, PointsToNode::EscapeState es, kvn@3651: PointsToNode* src, PointsToNode* dst) { kvn@3651: assert(!src->is_Field() && !dst->is_Field(), "only for JavaObject and LocalVar"); kvn@3651: assert((src != null_obj) && (dst != null_obj), "not for ConP NULL"); kvn@3651: PointsToNode* ptadr = _nodes.at(n->_idx); kvn@3651: if (ptadr != NULL) { kvn@3651: assert(ptadr->is_Arraycopy() && ptadr->ideal_node() == n, "sanity"); kvn@3651: return; kvn@3651: } kvn@3651: Compile* C = _compile; kvn@3651: ptadr = new (C->comp_arena()) ArraycopyNode(C, n, es); kvn@3651: _nodes.at_put(n->_idx, ptadr); kvn@3651: // Add edge from arraycopy node to source object. kvn@3651: (void)add_edge(ptadr, src); kvn@3651: src->set_arraycopy_src(); kvn@3651: // Add edge from destination object to arraycopy node. kvn@3651: (void)add_edge(dst, ptadr); kvn@3651: dst->set_arraycopy_dst(); kvn@3651: } kvn@3651: twisti@3969: bool ConnectionGraph::is_oop_field(Node* n, int offset, bool* unsafe) { kvn@3651: const Type* adr_type = n->as_AddP()->bottom_type(); kvn@3651: BasicType bt = T_INT; kvn@3651: if (offset == Type::OffsetBot) { kvn@3651: // Check only oop fields. kvn@3651: if (!adr_type->isa_aryptr() || kvn@3651: (adr_type->isa_aryptr()->klass() == NULL) || kvn@3651: adr_type->isa_aryptr()->klass()->is_obj_array_klass()) { kvn@3651: // OffsetBot is used to reference array's element. Ignore first AddP. kvn@3651: if (find_second_addp(n, n->in(AddPNode::Base)) == NULL) { kvn@3651: bt = T_OBJECT; kvn@3651: } kvn@3651: } kvn@3651: } else if (offset != oopDesc::klass_offset_in_bytes()) { kvn@3651: if (adr_type->isa_instptr()) { kvn@3651: ciField* field = _compile->alias_type(adr_type->isa_instptr())->field(); kvn@3651: if (field != NULL) { kvn@3651: bt = field->layout_type(); kvn@3651: } else { twisti@3969: // Check for unsafe oop field access twisti@3969: for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) { twisti@3969: int opcode = n->fast_out(i)->Opcode(); twisti@3969: if (opcode == Op_StoreP || opcode == Op_LoadP || twisti@3969: opcode == Op_StoreN || opcode == Op_LoadN) { twisti@3969: bt = T_OBJECT; twisti@3969: (*unsafe) = true; twisti@3969: break; twisti@3969: } twisti@3969: } kvn@3651: } kvn@3651: } else if (adr_type->isa_aryptr()) { kvn@3651: if (offset == arrayOopDesc::length_offset_in_bytes()) { kvn@3651: // Ignore array length load. kvn@3651: } else if (find_second_addp(n, n->in(AddPNode::Base)) != NULL) { kvn@3651: // Ignore first AddP. kvn@3651: } else { kvn@3651: const Type* elemtype = adr_type->isa_aryptr()->elem(); kvn@3651: bt = elemtype->array_element_basic_type(); kvn@3651: } kvn@3651: } else if (adr_type->isa_rawptr() || adr_type->isa_klassptr()) { kvn@3651: // Allocation initialization, ThreadLocal field access, unsafe access kvn@3651: for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) { kvn@3651: int opcode = n->fast_out(i)->Opcode(); kvn@3651: if (opcode == Op_StoreP || opcode == Op_LoadP || kvn@3651: opcode == Op_StoreN || opcode == Op_LoadN) { kvn@3651: bt = T_OBJECT; twisti@3969: break; kvn@3651: } kvn@3651: } kvn@3651: } kvn@3651: } kvn@3651: return (bt == T_OBJECT || bt == T_NARROWOOP || bt == T_ARRAY); kvn@3651: } kvn@3651: kvn@3651: // Returns unique pointed java object or NULL. kvn@3651: JavaObjectNode* ConnectionGraph::unique_java_object(Node *n) { kvn@3651: assert(!_collecting, "should not call when contructed graph"); kvn@3651: // If the node was created after the escape computation we can't answer. kvn@3651: uint idx = n->_idx; kvn@3651: if (idx >= nodes_size()) { kvn@3651: return NULL; kvn@3651: } kvn@3651: PointsToNode* ptn = ptnode_adr(idx); kvn@3651: if (ptn->is_JavaObject()) { kvn@3651: return ptn->as_JavaObject(); kvn@3651: } kvn@3651: assert(ptn->is_LocalVar(), "sanity"); kvn@3651: // Check all java objects it points to. kvn@3651: JavaObjectNode* jobj = NULL; kvn@3651: for (EdgeIterator i(ptn); i.has_next(); i.next()) { kvn@3651: PointsToNode* e = i.get(); kvn@3651: if (e->is_JavaObject()) { kvn@3651: if (jobj == NULL) { kvn@3651: jobj = e->as_JavaObject(); kvn@3651: } else if (jobj != e) { kvn@3651: return NULL; kvn@3651: } kvn@3651: } kvn@3651: } kvn@3651: return jobj; kvn@3651: } kvn@3651: kvn@3651: // Return true if this node points only to non-escaping allocations. kvn@3651: bool PointsToNode::non_escaping_allocation() { kvn@3651: if (is_JavaObject()) { kvn@3651: Node* n = ideal_node(); kvn@3651: if (n->is_Allocate() || n->is_CallStaticJava()) { kvn@3651: return (escape_state() == PointsToNode::NoEscape); kvn@3651: } else { kvn@3651: return false; kvn@3651: } kvn@3651: } kvn@3651: assert(is_LocalVar(), "sanity"); kvn@3651: // Check all java objects it points to. kvn@3651: for (EdgeIterator i(this); i.has_next(); i.next()) { kvn@3651: PointsToNode* e = i.get(); kvn@3651: if (e->is_JavaObject()) { kvn@3651: Node* n = e->ideal_node(); kvn@3651: if ((e->escape_state() != PointsToNode::NoEscape) || kvn@3651: !(n->is_Allocate() || n->is_CallStaticJava())) { kvn@3651: return false; kvn@3651: } kvn@3651: } kvn@3651: } kvn@3651: return true; kvn@3651: } kvn@3651: kvn@3651: // Return true if we know the node does not escape globally. kvn@3651: bool ConnectionGraph::not_global_escape(Node *n) { kvn@3651: assert(!_collecting, "should not call during graph construction"); kvn@3651: // If the node was created after the escape computation we can't answer. kvn@3651: uint idx = n->_idx; kvn@3651: if (idx >= nodes_size()) { kvn@3651: return false; kvn@3651: } kvn@3651: PointsToNode* ptn = ptnode_adr(idx); kvn@3651: PointsToNode::EscapeState es = ptn->escape_state(); kvn@3651: // If we have already computed a value, return it. kvn@3651: if (es >= PointsToNode::GlobalEscape) kvn@3651: return false; kvn@3651: if (ptn->is_JavaObject()) { kvn@3651: return true; // (es < PointsToNode::GlobalEscape); kvn@3651: } kvn@3651: assert(ptn->is_LocalVar(), "sanity"); kvn@3651: // Check all java objects it points to. kvn@3651: for (EdgeIterator i(ptn); i.has_next(); i.next()) { kvn@3651: if (i.get()->escape_state() >= PointsToNode::GlobalEscape) kvn@3651: return false; kvn@3651: } kvn@3651: return true; kvn@3651: } kvn@3651: kvn@3651: kvn@3651: // Helper functions kvn@3651: kvn@3651: // Return true if this node points to specified node or nodes it points to. kvn@3651: bool PointsToNode::points_to(JavaObjectNode* ptn) const { kvn@3651: if (is_JavaObject()) { kvn@3651: return (this == ptn); kvn@3651: } kvn@3651: assert(is_LocalVar(), "sanity"); kvn@3651: for (EdgeIterator i(this); i.has_next(); i.next()) { kvn@3651: if (i.get() == ptn) kvn@3651: return true; kvn@3651: } kvn@3651: return false; kvn@3651: } kvn@3651: kvn@3651: // Return true if one node points to an other. kvn@3651: bool PointsToNode::meet(PointsToNode* ptn) { kvn@3651: if (this == ptn) { kvn@3651: return true; kvn@3651: } else if (ptn->is_JavaObject()) { kvn@3651: return this->points_to(ptn->as_JavaObject()); kvn@3651: } else if (this->is_JavaObject()) { kvn@3651: return ptn->points_to(this->as_JavaObject()); kvn@3651: } kvn@3651: assert(this->is_LocalVar() && ptn->is_LocalVar(), "sanity"); kvn@3651: int ptn_count = ptn->edge_count(); kvn@3651: for (EdgeIterator i(this); i.has_next(); i.next()) { kvn@3651: PointsToNode* this_e = i.get(); kvn@3651: for (int j = 0; j < ptn_count; j++) { kvn@3651: if (this_e == ptn->edge(j)) kvn@3651: return true; kvn@3651: } kvn@3651: } kvn@3651: return false; kvn@3651: } kvn@3651: kvn@3651: #ifdef ASSERT kvn@3651: // Return true if bases point to this java object. kvn@3651: bool FieldNode::has_base(JavaObjectNode* jobj) const { kvn@3651: for (BaseIterator i(this); i.has_next(); i.next()) { kvn@3651: if (i.get() == jobj) kvn@3651: return true; kvn@3651: } kvn@3651: return false; kvn@3651: } kvn@3651: #endif kvn@3651: kvn@500: int ConnectionGraph::address_offset(Node* adr, PhaseTransform *phase) { kvn@500: const Type *adr_type = phase->type(adr); kvn@500: if (adr->is_AddP() && adr_type->isa_oopptr() == NULL && kvn@500: adr->in(AddPNode::Address)->is_Proj() && kvn@500: adr->in(AddPNode::Address)->in(0)->is_Allocate()) { kvn@500: // We are computing a raw address for a store captured by an Initialize kvn@500: // compute an appropriate address type. AddP cases #3 and #5 (see below). kvn@500: int offs = (int)phase->find_intptr_t_con(adr->in(AddPNode::Offset), Type::OffsetBot); kvn@500: assert(offs != Type::OffsetBot || kvn@500: adr->in(AddPNode::Address)->in(0)->is_AllocateArray(), kvn@500: "offset must be a constant or it is initialization of array"); kvn@500: return offs; kvn@500: } kvn@500: const TypePtr *t_ptr = adr_type->isa_ptr(); duke@435: assert(t_ptr != NULL, "must be a pointer type"); duke@435: return t_ptr->offset(); duke@435: } duke@435: kvn@3651: Node* ConnectionGraph::get_addp_base(Node *addp) { kvn@500: assert(addp->is_AddP(), "must be AddP"); kvn@500: // kvn@500: // AddP cases for Base and Address inputs: kvn@500: // case #1. Direct object's field reference: kvn@500: // Allocate kvn@500: // | kvn@500: // Proj #5 ( oop result ) kvn@500: // | kvn@500: // CheckCastPP (cast to instance type) kvn@500: // | | kvn@500: // AddP ( base == address ) kvn@500: // kvn@500: // case #2. Indirect object's field reference: kvn@500: // Phi kvn@500: // | kvn@500: // CastPP (cast to instance type) kvn@500: // | | kvn@500: // AddP ( base == address ) kvn@500: // kvn@500: // case #3. Raw object's field reference for Initialize node: kvn@500: // Allocate kvn@500: // | kvn@500: // Proj #5 ( oop result ) kvn@500: // top | kvn@500: // \ | kvn@500: // AddP ( base == top ) kvn@500: // kvn@500: // case #4. Array's element reference: kvn@500: // {CheckCastPP | CastPP} kvn@500: // | | | kvn@500: // | AddP ( array's element offset ) kvn@500: // | | kvn@500: // AddP ( array's offset ) kvn@500: // kvn@500: // case #5. Raw object's field reference for arraycopy stub call: kvn@500: // The inline_native_clone() case when the arraycopy stub is called kvn@500: // after the allocation before Initialize and CheckCastPP nodes. kvn@500: // Allocate kvn@500: // | kvn@500: // Proj #5 ( oop result ) kvn@500: // | | kvn@500: // AddP ( base == address ) kvn@500: // kvn@512: // case #6. Constant Pool, ThreadLocal, CastX2P or kvn@512: // Raw object's field reference: kvn@512: // {ConP, ThreadLocal, CastX2P, raw Load} kvn@500: // top | kvn@500: // \ | kvn@500: // AddP ( base == top ) kvn@500: // kvn@512: // case #7. Klass's field reference. kvn@512: // LoadKlass kvn@512: // | | kvn@512: // AddP ( base == address ) kvn@512: // kvn@599: // case #8. narrow Klass's field reference. kvn@599: // LoadNKlass kvn@599: // | kvn@599: // DecodeN kvn@599: // | | kvn@599: // AddP ( base == address ) kvn@599: // kvn@3651: Node *base = addp->in(AddPNode::Base); kvn@3651: if (base->uncast()->is_top()) { // The AddP case #3 and #6. kvn@3651: base = addp->in(AddPNode::Address); kvn@1392: while (base->is_AddP()) { kvn@1392: // Case #6 (unsafe access) may have several chained AddP nodes. kvn@3651: assert(base->in(AddPNode::Base)->uncast()->is_top(), "expected unsafe access address only"); kvn@3651: base = base->in(AddPNode::Address); kvn@1392: } kvn@3651: Node* uncast_base = base->uncast(); kvn@3651: int opcode = uncast_base->Opcode(); kvn@3651: assert(opcode == Op_ConP || opcode == Op_ThreadLocal || kvn@3651: opcode == Op_CastX2P || uncast_base->is_DecodeN() || kvn@3651: (uncast_base->is_Mem() && uncast_base->bottom_type() == TypeRawPtr::NOTNULL) || kvn@3651: (uncast_base->is_Proj() && uncast_base->in(0)->is_Allocate()), "sanity"); duke@435: } kvn@500: return base; kvn@500: } kvn@500: kvn@3651: Node* ConnectionGraph::find_second_addp(Node* addp, Node* n) { kvn@500: assert(addp->is_AddP() && addp->outcnt() > 0, "Don't process dead nodes"); kvn@500: Node* addp2 = addp->raw_out(0); kvn@500: if (addp->outcnt() == 1 && addp2->is_AddP() && kvn@500: addp2->in(AddPNode::Base) == n && kvn@500: addp2->in(AddPNode::Address) == addp) { kvn@500: assert(addp->in(AddPNode::Base) == n, "expecting the same base"); kvn@500: // kvn@500: // Find array's offset to push it on worklist first and kvn@500: // as result process an array's element offset first (pushed second) kvn@500: // to avoid CastPP for the array's offset. kvn@500: // Otherwise the inserted CastPP (LocalVar) will point to what kvn@500: // the AddP (Field) points to. Which would be wrong since kvn@500: // the algorithm expects the CastPP has the same point as kvn@500: // as AddP's base CheckCastPP (LocalVar). kvn@500: // kvn@500: // ArrayAllocation kvn@500: // | kvn@500: // CheckCastPP kvn@500: // | kvn@500: // memProj (from ArrayAllocation CheckCastPP) kvn@500: // | || kvn@500: // | || Int (element index) kvn@500: // | || | ConI (log(element size)) kvn@500: // | || | / kvn@500: // | || LShift kvn@500: // | || / kvn@500: // | AddP (array's element offset) kvn@500: // | | kvn@500: // | | ConI (array's offset: #12(32-bits) or #24(64-bits)) kvn@500: // | / / kvn@500: // AddP (array's offset) kvn@500: // | kvn@500: // Load/Store (memory operation on array's element) kvn@500: // kvn@500: return addp2; kvn@500: } kvn@500: return NULL; duke@435: } duke@435: duke@435: // duke@435: // Adjust the type and inputs of an AddP which computes the duke@435: // address of a field of an instance duke@435: // kvn@3651: bool ConnectionGraph::split_AddP(Node *addp, Node *base) { kvn@3651: PhaseGVN* igvn = _igvn; kvn@500: const TypeOopPtr *base_t = igvn->type(base)->isa_oopptr(); kvn@658: assert(base_t != NULL && base_t->is_known_instance(), "expecting instance oopptr"); duke@435: const TypeOopPtr *t = igvn->type(addp)->isa_oopptr(); kvn@500: if (t == NULL) { kvn@500: // We are computing a raw address for a store captured by an Initialize kvn@728: // compute an appropriate address type (cases #3 and #5). kvn@500: assert(igvn->type(addp) == TypeRawPtr::NOTNULL, "must be raw pointer"); kvn@500: assert(addp->in(AddPNode::Address)->is_Proj(), "base of raw address must be result projection from allocation"); kvn@741: intptr_t offs = (int)igvn->find_intptr_t_con(addp->in(AddPNode::Offset), Type::OffsetBot); kvn@500: assert(offs != Type::OffsetBot, "offset must be a constant"); kvn@500: t = base_t->add_offset(offs)->is_oopptr(); kvn@500: } kvn@658: int inst_id = base_t->instance_id(); kvn@658: assert(!t->is_known_instance() || t->instance_id() == inst_id, duke@435: "old type must be non-instance or match new type"); kvn@728: kvn@728: // The type 't' could be subclass of 'base_t'. kvn@728: // As result t->offset() could be large then base_t's size and it will kvn@728: // cause the failure in add_offset() with narrow oops since TypeOopPtr() kvn@728: // constructor verifies correctness of the offset. kvn@728: // twisti@1040: // It could happened on subclass's branch (from the type profiling kvn@728: // inlining) which was not eliminated during parsing since the exactness kvn@728: // of the allocation type was not propagated to the subclass type check. kvn@728: // kvn@1423: // Or the type 't' could be not related to 'base_t' at all. kvn@1423: // It could happened when CHA type is different from MDO type on a dead path kvn@1423: // (for example, from instanceof check) which is not collapsed during parsing. kvn@1423: // kvn@728: // Do nothing for such AddP node and don't process its users since kvn@728: // this code branch will go away. kvn@728: // kvn@728: if (!t->is_known_instance() && kvn@1423: !base_t->klass()->is_subtype_of(t->klass())) { kvn@728: return false; // bail out kvn@728: } duke@435: const TypeOopPtr *tinst = base_t->add_offset(t->offset())->is_oopptr(); kvn@1497: // Do NOT remove the next line: ensure a new alias index is allocated kvn@1497: // for the instance type. Note: C++ will not remove it since the call kvn@1497: // has side effect. duke@435: int alias_idx = _compile->get_alias_index(tinst); duke@435: igvn->set_type(addp, tinst); duke@435: // record the allocation in the node map kvn@3651: set_map(addp, get_map(base->_idx)); kvn@688: // Set addp's Base and Address to 'base'. kvn@688: Node *abase = addp->in(AddPNode::Base); kvn@688: Node *adr = addp->in(AddPNode::Address); kvn@688: if (adr->is_Proj() && adr->in(0)->is_Allocate() && kvn@688: adr->in(0)->_idx == (uint)inst_id) { kvn@688: // Skip AddP cases #3 and #5. kvn@688: } else { kvn@688: assert(!abase->is_top(), "sanity"); // AddP case #3 kvn@688: if (abase != base) { kvn@688: igvn->hash_delete(addp); kvn@688: addp->set_req(AddPNode::Base, base); kvn@688: if (abase == adr) { kvn@688: addp->set_req(AddPNode::Address, base); kvn@688: } else { kvn@688: // AddP case #4 (adr is array's element offset AddP node) kvn@688: #ifdef ASSERT kvn@688: const TypeOopPtr *atype = igvn->type(adr)->isa_oopptr(); kvn@688: assert(adr->is_AddP() && atype != NULL && kvn@688: atype->instance_id() == inst_id, "array's element offset should be processed first"); kvn@688: #endif kvn@688: } kvn@688: igvn->hash_insert(addp); duke@435: } duke@435: } kvn@500: // Put on IGVN worklist since at least addp's type was changed above. kvn@500: record_for_optimizer(addp); kvn@728: return true; duke@435: } duke@435: duke@435: // duke@435: // Create a new version of orig_phi if necessary. Returns either the newly kvn@2741: // created phi or an existing phi. Sets create_new to indicate whether a new duke@435: // phi was created. Cache the last newly created phi in the node map. duke@435: // kvn@3651: PhiNode *ConnectionGraph::create_split_phi(PhiNode *orig_phi, int alias_idx, GrowableArray &orig_phi_worklist, bool &new_created) { duke@435: Compile *C = _compile; kvn@3651: PhaseGVN* igvn = _igvn; duke@435: new_created = false; duke@435: int phi_alias_idx = C->get_alias_index(orig_phi->adr_type()); duke@435: // nothing to do if orig_phi is bottom memory or matches alias_idx kvn@500: if (phi_alias_idx == alias_idx) { duke@435: return orig_phi; duke@435: } kvn@1286: // Have we recently created a Phi for this alias index? duke@435: PhiNode *result = get_map_phi(orig_phi->_idx); duke@435: if (result != NULL && C->get_alias_index(result->adr_type()) == alias_idx) { duke@435: return result; duke@435: } kvn@1286: // Previous check may fail when the same wide memory Phi was split into Phis kvn@1286: // for different memory slices. Search all Phis for this region. kvn@1286: if (result != NULL) { kvn@1286: Node* region = orig_phi->in(0); kvn@1286: for (DUIterator_Fast imax, i = region->fast_outs(imax); i < imax; i++) { kvn@1286: Node* phi = region->fast_out(i); kvn@1286: if (phi->is_Phi() && kvn@1286: C->get_alias_index(phi->as_Phi()->adr_type()) == alias_idx) { kvn@1286: assert(phi->_idx >= nodes_size(), "only new Phi per instance memory slice"); kvn@1286: return phi->as_Phi(); kvn@1286: } kvn@1286: } kvn@1286: } kvn@473: if ((int)C->unique() + 2*NodeLimitFudgeFactor > MaxNodeLimit) { kvn@473: if (C->do_escape_analysis() == true && !C->failing()) { kvn@473: // Retry compilation without escape analysis. kvn@473: // If this is the first failure, the sentinel string will "stick" kvn@473: // to the Compile object, and the C2Compiler will see it and retry. kvn@473: C->record_failure(C2Compiler::retry_no_escape_analysis()); kvn@473: } kvn@473: return NULL; kvn@473: } duke@435: orig_phi_worklist.append_if_missing(orig_phi); kvn@500: const TypePtr *atype = C->get_adr_type(alias_idx); duke@435: result = PhiNode::make(orig_phi->in(0), NULL, Type::MEMORY, atype); kvn@1286: C->copy_node_notes_to(result, orig_phi); duke@435: igvn->set_type(result, result->bottom_type()); duke@435: record_for_optimizer(result); kvn@3651: set_map(orig_phi, result); duke@435: new_created = true; duke@435: return result; duke@435: } duke@435: duke@435: // kvn@2741: // Return a new version of Memory Phi "orig_phi" with the inputs having the duke@435: // specified alias index. duke@435: // kvn@3651: PhiNode *ConnectionGraph::split_memory_phi(PhiNode *orig_phi, int alias_idx, GrowableArray &orig_phi_worklist) { duke@435: assert(alias_idx != Compile::AliasIdxBot, "can't split out bottom memory"); duke@435: Compile *C = _compile; kvn@3651: PhaseGVN* igvn = _igvn; duke@435: bool new_phi_created; kvn@3651: PhiNode *result = create_split_phi(orig_phi, alias_idx, orig_phi_worklist, new_phi_created); duke@435: if (!new_phi_created) { duke@435: return result; duke@435: } duke@435: GrowableArray phi_list; duke@435: GrowableArray cur_input; duke@435: PhiNode *phi = orig_phi; duke@435: uint idx = 1; duke@435: bool finished = false; duke@435: while(!finished) { duke@435: while (idx < phi->req()) { kvn@3651: Node *mem = find_inst_mem(phi->in(idx), alias_idx, orig_phi_worklist); duke@435: if (mem != NULL && mem->is_Phi()) { kvn@3651: PhiNode *newphi = create_split_phi(mem->as_Phi(), alias_idx, orig_phi_worklist, new_phi_created); duke@435: if (new_phi_created) { duke@435: // found an phi for which we created a new split, push current one on worklist and begin duke@435: // processing new one duke@435: phi_list.push(phi); duke@435: cur_input.push(idx); duke@435: phi = mem->as_Phi(); kvn@500: result = newphi; duke@435: idx = 1; duke@435: continue; duke@435: } else { kvn@500: mem = newphi; duke@435: } duke@435: } kvn@473: if (C->failing()) { kvn@473: return NULL; kvn@473: } duke@435: result->set_req(idx++, mem); duke@435: } duke@435: #ifdef ASSERT duke@435: // verify that the new Phi has an input for each input of the original duke@435: assert( phi->req() == result->req(), "must have same number of inputs."); duke@435: assert( result->in(0) != NULL && result->in(0) == phi->in(0), "regions must match"); kvn@500: #endif kvn@500: // Check if all new phi's inputs have specified alias index. kvn@500: // Otherwise use old phi. duke@435: for (uint i = 1; i < phi->req(); i++) { kvn@500: Node* in = result->in(i); kvn@500: assert((phi->in(i) == NULL) == (in == NULL), "inputs must correspond."); duke@435: } duke@435: // we have finished processing a Phi, see if there are any more to do duke@435: finished = (phi_list.length() == 0 ); duke@435: if (!finished) { duke@435: phi = phi_list.pop(); duke@435: idx = cur_input.pop(); kvn@500: PhiNode *prev_result = get_map_phi(phi->_idx); kvn@500: prev_result->set_req(idx++, result); kvn@500: result = prev_result; duke@435: } duke@435: } duke@435: return result; duke@435: } duke@435: kvn@500: // kvn@500: // The next methods are derived from methods in MemNode. kvn@500: // kvn@3651: Node* ConnectionGraph::step_through_mergemem(MergeMemNode *mmem, int alias_idx, const TypeOopPtr *toop) { kvn@500: Node *mem = mmem; never@2170: // TypeOopPtr::NOTNULL+any is an OOP with unknown offset - generally kvn@500: // means an array I have not precisely typed yet. Do not do any kvn@500: // alias stuff with it any time soon. kvn@3651: if (toop->base() != Type::AnyPtr && never@2170: !(toop->klass() != NULL && never@2170: toop->klass()->is_java_lang_Object() && kvn@3651: toop->offset() == Type::OffsetBot)) { kvn@500: mem = mmem->memory_at(alias_idx); kvn@500: // Update input if it is progress over what we have now kvn@500: } kvn@500: return mem; kvn@500: } kvn@500: kvn@500: // kvn@1536: // Move memory users to their memory slices. kvn@1536: // kvn@3651: void ConnectionGraph::move_inst_mem(Node* n, GrowableArray &orig_phis) { kvn@1536: Compile* C = _compile; kvn@3651: PhaseGVN* igvn = _igvn; kvn@1536: const TypePtr* tp = igvn->type(n->in(MemNode::Address))->isa_ptr(); kvn@1536: assert(tp != NULL, "ptr type"); kvn@1536: int alias_idx = C->get_alias_index(tp); kvn@1536: int general_idx = C->get_general_index(alias_idx); kvn@1536: kvn@1536: // Move users first kvn@1536: for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) { kvn@1536: Node* use = n->fast_out(i); kvn@1536: if (use->is_MergeMem()) { kvn@1536: MergeMemNode* mmem = use->as_MergeMem(); kvn@1536: assert(n == mmem->memory_at(alias_idx), "should be on instance memory slice"); kvn@1536: if (n != mmem->memory_at(general_idx) || alias_idx == general_idx) { kvn@1536: continue; // Nothing to do kvn@1536: } kvn@1536: // Replace previous general reference to mem node. kvn@1536: uint orig_uniq = C->unique(); kvn@3651: Node* m = find_inst_mem(n, general_idx, orig_phis); kvn@1536: assert(orig_uniq == C->unique(), "no new nodes"); kvn@1536: mmem->set_memory_at(general_idx, m); kvn@1536: --imax; kvn@1536: --i; kvn@1536: } else if (use->is_MemBar()) { kvn@1536: assert(!use->is_Initialize(), "initializing stores should not be moved"); kvn@1536: if (use->req() > MemBarNode::Precedent && kvn@1536: use->in(MemBarNode::Precedent) == n) { kvn@1536: // Don't move related membars. kvn@1536: record_for_optimizer(use); kvn@1536: continue; kvn@1536: } kvn@1536: tp = use->as_MemBar()->adr_type()->isa_ptr(); kvn@1536: if (tp != NULL && C->get_alias_index(tp) == alias_idx || kvn@1536: alias_idx == general_idx) { kvn@1536: continue; // Nothing to do kvn@1536: } kvn@1536: // Move to general memory slice. kvn@1536: uint orig_uniq = C->unique(); kvn@3651: Node* m = find_inst_mem(n, general_idx, orig_phis); kvn@1536: assert(orig_uniq == C->unique(), "no new nodes"); kvn@1536: igvn->hash_delete(use); kvn@1536: imax -= use->replace_edge(n, m); kvn@1536: igvn->hash_insert(use); kvn@1536: record_for_optimizer(use); kvn@1536: --i; kvn@1536: #ifdef ASSERT kvn@1536: } else if (use->is_Mem()) { kvn@1536: if (use->Opcode() == Op_StoreCM && use->in(MemNode::OopStore) == n) { kvn@1536: // Don't move related cardmark. kvn@1536: continue; kvn@1536: } kvn@1536: // Memory nodes should have new memory input. kvn@1536: tp = igvn->type(use->in(MemNode::Address))->isa_ptr(); kvn@1536: assert(tp != NULL, "ptr type"); kvn@1536: int idx = C->get_alias_index(tp); kvn@1536: assert(get_map(use->_idx) != NULL || idx == alias_idx, kvn@1536: "Following memory nodes should have new memory input or be on the same memory slice"); kvn@1536: } else if (use->is_Phi()) { kvn@1536: // Phi nodes should be split and moved already. kvn@1536: tp = use->as_Phi()->adr_type()->isa_ptr(); kvn@1536: assert(tp != NULL, "ptr type"); kvn@1536: int idx = C->get_alias_index(tp); kvn@1536: assert(idx == alias_idx, "Following Phi nodes should be on the same memory slice"); kvn@1536: } else { kvn@1536: use->dump(); kvn@1536: assert(false, "should not be here"); kvn@1536: #endif kvn@1536: } kvn@1536: } kvn@1536: } kvn@1536: kvn@1536: // kvn@500: // Search memory chain of "mem" to find a MemNode whose address kvn@500: // is the specified alias index. kvn@500: // kvn@3651: Node* ConnectionGraph::find_inst_mem(Node *orig_mem, int alias_idx, GrowableArray &orig_phis) { kvn@500: if (orig_mem == NULL) kvn@500: return orig_mem; kvn@3651: Compile* C = _compile; kvn@3651: PhaseGVN* igvn = _igvn; never@2170: const TypeOopPtr *toop = C->get_adr_type(alias_idx)->isa_oopptr(); never@2170: bool is_instance = (toop != NULL) && toop->is_known_instance(); kvn@688: Node *start_mem = C->start()->proj_out(TypeFunc::Memory); kvn@500: Node *prev = NULL; kvn@500: Node *result = orig_mem; kvn@500: while (prev != result) { kvn@500: prev = result; kvn@688: if (result == start_mem) twisti@1040: break; // hit one of our sentinels kvn@500: if (result->is_Mem()) { kvn@3651: const Type *at = igvn->type(result->in(MemNode::Address)); kvn@2741: if (at == Type::TOP) kvn@2741: break; // Dead kvn@2741: assert (at->isa_ptr() != NULL, "pointer type required."); kvn@2741: int idx = C->get_alias_index(at->is_ptr()); kvn@2741: if (idx == alias_idx) kvn@2741: break; // Found kvn@2741: if (!is_instance && (at->isa_oopptr() == NULL || kvn@2741: !at->is_oopptr()->is_known_instance())) { kvn@2741: break; // Do not skip store to general memory slice. kvn@500: } kvn@688: result = result->in(MemNode::Memory); kvn@500: } kvn@500: if (!is_instance) kvn@500: continue; // don't search further for non-instance types kvn@500: // skip over a call which does not affect this memory slice kvn@500: if (result->is_Proj() && result->as_Proj()->_con == TypeFunc::Memory) { kvn@500: Node *proj_in = result->in(0); never@2170: if (proj_in->is_Allocate() && proj_in->_idx == (uint)toop->instance_id()) { twisti@1040: break; // hit one of our sentinels kvn@688: } else if (proj_in->is_Call()) { kvn@500: CallNode *call = proj_in->as_Call(); kvn@3651: if (!call->may_modify(toop, igvn)) { kvn@500: result = call->in(TypeFunc::Memory); kvn@500: } kvn@500: } else if (proj_in->is_Initialize()) { kvn@500: AllocateNode* alloc = proj_in->as_Initialize()->allocation(); kvn@500: // Stop if this is the initialization for the object instance which kvn@500: // which contains this memory slice, otherwise skip over it. never@2170: if (alloc == NULL || alloc->_idx != (uint)toop->instance_id()) { kvn@500: result = proj_in->in(TypeFunc::Memory); kvn@500: } kvn@500: } else if (proj_in->is_MemBar()) { kvn@500: result = proj_in->in(TypeFunc::Memory); kvn@500: } kvn@500: } else if (result->is_MergeMem()) { kvn@500: MergeMemNode *mmem = result->as_MergeMem(); never@2170: result = step_through_mergemem(mmem, alias_idx, toop); kvn@500: if (result == mmem->base_memory()) { kvn@500: // Didn't find instance memory, search through general slice recursively. kvn@500: result = mmem->memory_at(C->get_general_index(alias_idx)); kvn@3651: result = find_inst_mem(result, alias_idx, orig_phis); kvn@500: if (C->failing()) { kvn@500: return NULL; kvn@500: } kvn@500: mmem->set_memory_at(alias_idx, result); kvn@500: } kvn@500: } else if (result->is_Phi() && kvn@500: C->get_alias_index(result->as_Phi()->adr_type()) != alias_idx) { kvn@3651: Node *un = result->as_Phi()->unique_input(igvn); kvn@500: if (un != NULL) { kvn@1536: orig_phis.append_if_missing(result->as_Phi()); kvn@500: result = un; kvn@500: } else { kvn@500: break; kvn@500: } kvn@1535: } else if (result->is_ClearArray()) { kvn@3651: if (!ClearArrayNode::step_through(&result, (uint)toop->instance_id(), igvn)) { kvn@1535: // Can not bypass initialization of the instance kvn@1535: // we are looking for. kvn@1535: break; kvn@1535: } kvn@1535: // Otherwise skip it (the call updated 'result' value). kvn@1019: } else if (result->Opcode() == Op_SCMemProj) { kvn@1019: assert(result->in(0)->is_LoadStore(), "sanity"); kvn@3651: const Type *at = igvn->type(result->in(0)->in(MemNode::Address)); kvn@1019: if (at != Type::TOP) { kvn@1019: assert (at->isa_ptr() != NULL, "pointer type required."); kvn@1019: int idx = C->get_alias_index(at->is_ptr()); kvn@1019: assert(idx != alias_idx, "Object is not scalar replaceable if a LoadStore node access its field"); kvn@1019: break; kvn@1019: } kvn@1019: result = result->in(0)->in(MemNode::Memory); kvn@500: } kvn@500: } kvn@682: if (result->is_Phi()) { kvn@500: PhiNode *mphi = result->as_Phi(); kvn@500: assert(mphi->bottom_type() == Type::MEMORY, "memory phi required"); kvn@500: const TypePtr *t = mphi->adr_type(); kvn@2741: if (!is_instance) { kvn@682: // Push all non-instance Phis on the orig_phis worklist to update inputs kvn@682: // during Phase 4 if needed. kvn@682: orig_phis.append_if_missing(mphi); kvn@2741: } else if (C->get_alias_index(t) != alias_idx) { kvn@2741: // Create a new Phi with the specified alias index type. kvn@3651: result = split_memory_phi(mphi, alias_idx, orig_phis); kvn@500: } kvn@500: } kvn@500: // the result is either MemNode, PhiNode, InitializeNode. kvn@500: return result; kvn@500: } kvn@500: duke@435: // duke@435: // Convert the types of unescaped object to instance types where possible, duke@435: // propagate the new type information through the graph, and update memory duke@435: // edges and MergeMem inputs to reflect the new type. duke@435: // duke@435: // We start with allocations (and calls which may be allocations) on alloc_worklist. duke@435: // The processing is done in 4 phases: duke@435: // duke@435: // Phase 1: Process possible allocations from alloc_worklist. Create instance duke@435: // types for the CheckCastPP for allocations where possible. duke@435: // Propagate the the new types through users as follows: duke@435: // casts and Phi: push users on alloc_worklist duke@435: // AddP: cast Base and Address inputs to the instance type duke@435: // push any AddP users on alloc_worklist and push any memnode duke@435: // users onto memnode_worklist. duke@435: // Phase 2: Process MemNode's from memnode_worklist. compute new address type and duke@435: // search the Memory chain for a store with the appropriate type duke@435: // address type. If a Phi is found, create a new version with twisti@1040: // the appropriate memory slices from each of the Phi inputs. duke@435: // For stores, process the users as follows: duke@435: // MemNode: push on memnode_worklist duke@435: // MergeMem: push on mergemem_worklist duke@435: // Phase 3: Process MergeMem nodes from mergemem_worklist. Walk each memory slice duke@435: // moving the first node encountered of each instance type to the duke@435: // the input corresponding to its alias index. duke@435: // appropriate memory slice. duke@435: // Phase 4: Update the inputs of non-instance memory Phis and the Memory input of memnodes. duke@435: // duke@435: // In the following example, the CheckCastPP nodes are the cast of allocation duke@435: // results and the allocation of node 29 is unescaped and eligible to be an duke@435: // instance type. duke@435: // duke@435: // We start with: duke@435: // duke@435: // 7 Parm #memory duke@435: // 10 ConI "12" duke@435: // 19 CheckCastPP "Foo" duke@435: // 20 AddP _ 19 19 10 Foo+12 alias_index=4 duke@435: // 29 CheckCastPP "Foo" duke@435: // 30 AddP _ 29 29 10 Foo+12 alias_index=4 duke@435: // duke@435: // 40 StoreP 25 7 20 ... alias_index=4 duke@435: // 50 StoreP 35 40 30 ... alias_index=4 duke@435: // 60 StoreP 45 50 20 ... alias_index=4 duke@435: // 70 LoadP _ 60 30 ... alias_index=4 duke@435: // 80 Phi 75 50 60 Memory alias_index=4 duke@435: // 90 LoadP _ 80 30 ... alias_index=4 duke@435: // 100 LoadP _ 80 20 ... alias_index=4 duke@435: // duke@435: // duke@435: // Phase 1 creates an instance type for node 29 assigning it an instance id of 24 duke@435: // and creating a new alias index for node 30. This gives: duke@435: // duke@435: // 7 Parm #memory duke@435: // 10 ConI "12" duke@435: // 19 CheckCastPP "Foo" duke@435: // 20 AddP _ 19 19 10 Foo+12 alias_index=4 duke@435: // 29 CheckCastPP "Foo" iid=24 duke@435: // 30 AddP _ 29 29 10 Foo+12 alias_index=6 iid=24 duke@435: // duke@435: // 40 StoreP 25 7 20 ... alias_index=4 duke@435: // 50 StoreP 35 40 30 ... alias_index=6 duke@435: // 60 StoreP 45 50 20 ... alias_index=4 duke@435: // 70 LoadP _ 60 30 ... alias_index=6 duke@435: // 80 Phi 75 50 60 Memory alias_index=4 duke@435: // 90 LoadP _ 80 30 ... alias_index=6 duke@435: // 100 LoadP _ 80 20 ... alias_index=4 duke@435: // duke@435: // In phase 2, new memory inputs are computed for the loads and stores, duke@435: // And a new version of the phi is created. In phase 4, the inputs to duke@435: // node 80 are updated and then the memory nodes are updated with the duke@435: // values computed in phase 2. This results in: duke@435: // duke@435: // 7 Parm #memory duke@435: // 10 ConI "12" duke@435: // 19 CheckCastPP "Foo" duke@435: // 20 AddP _ 19 19 10 Foo+12 alias_index=4 duke@435: // 29 CheckCastPP "Foo" iid=24 duke@435: // 30 AddP _ 29 29 10 Foo+12 alias_index=6 iid=24 duke@435: // duke@435: // 40 StoreP 25 7 20 ... alias_index=4 duke@435: // 50 StoreP 35 7 30 ... alias_index=6 duke@435: // 60 StoreP 45 40 20 ... alias_index=4 duke@435: // 70 LoadP _ 50 30 ... alias_index=6 duke@435: // 80 Phi 75 40 60 Memory alias_index=4 duke@435: // 120 Phi 75 50 50 Memory alias_index=6 duke@435: // 90 LoadP _ 120 30 ... alias_index=6 duke@435: // 100 LoadP _ 80 20 ... alias_index=4 duke@435: // duke@435: void ConnectionGraph::split_unique_types(GrowableArray &alloc_worklist) { duke@435: GrowableArray memnode_worklist; duke@435: GrowableArray orig_phis; kvn@2276: PhaseIterGVN *igvn = _igvn; duke@435: uint new_index_start = (uint) _compile->num_alias_types(); kvn@1536: Arena* arena = Thread::current()->resource_area(); kvn@1536: VectorSet visited(arena); kvn@3651: ideal_nodes.clear(); // Reset for use with set_map/get_map. kvn@3651: uint unique_old = _compile->unique(); kvn@500: kvn@500: // Phase 1: Process possible allocations from alloc_worklist. kvn@500: // Create instance types for the CheckCastPP for allocations where possible. kvn@679: // kvn@679: // (Note: don't forget to change the order of the second AddP node on kvn@679: // the alloc_worklist if the order of the worklist processing is changed, kvn@679: // see the comment in find_second_addp().) kvn@679: // duke@435: while (alloc_worklist.length() != 0) { duke@435: Node *n = alloc_worklist.pop(); duke@435: uint ni = n->_idx; duke@435: if (n->is_Call()) { duke@435: CallNode *alloc = n->as_Call(); duke@435: // copy escape information to call node kvn@679: PointsToNode* ptn = ptnode_adr(alloc->_idx); kvn@3651: PointsToNode::EscapeState es = ptn->escape_state(); kvn@500: // We have an allocation or call which returns a Java object, kvn@500: // see if it is unescaped. kvn@3254: if (es != PointsToNode::NoEscape || !ptn->scalar_replaceable()) duke@435: continue; kvn@1219: // Find CheckCastPP for the allocate or for the return value of a call kvn@1219: n = alloc->result_cast(); kvn@1219: if (n == NULL) { // No uses except Initialize node kvn@1219: if (alloc->is_Allocate()) { kvn@1219: // Set the scalar_replaceable flag for allocation kvn@1219: // so it could be eliminated if it has no uses. kvn@1219: alloc->as_Allocate()->_is_scalar_replaceable = true; kvn@1219: } kvn@1219: continue; kvn@474: } kvn@1219: if (!n->is_CheckCastPP()) { // not unique CheckCastPP. kvn@1219: assert(!alloc->is_Allocate(), "allocation should have unique type"); kvn@500: continue; kvn@1219: } kvn@1219: kvn@500: // The inline code for Object.clone() casts the allocation result to kvn@682: // java.lang.Object and then to the actual type of the allocated kvn@500: // object. Detect this case and use the second cast. kvn@682: // Also detect j.l.reflect.Array.newInstance(jobject, jint) case when kvn@682: // the allocation result is cast to java.lang.Object and then kvn@682: // to the actual Array type. kvn@500: if (alloc->is_Allocate() && n->as_Type()->type() == TypeInstPtr::NOTNULL kvn@682: && (alloc->is_AllocateArray() || kvn@682: igvn->type(alloc->in(AllocateNode::KlassNode)) != TypeKlassPtr::OBJECT)) { kvn@500: Node *cast2 = NULL; kvn@500: for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) { kvn@500: Node *use = n->fast_out(i); kvn@500: if (use->is_CheckCastPP()) { kvn@500: cast2 = use; kvn@500: break; kvn@500: } kvn@500: } kvn@500: if (cast2 != NULL) { kvn@500: n = cast2; kvn@500: } else { kvn@1219: // Non-scalar replaceable if the allocation type is unknown statically kvn@1219: // (reflection allocation), the object can't be restored during kvn@1219: // deoptimization without precise type. kvn@500: continue; kvn@500: } kvn@500: } kvn@1219: if (alloc->is_Allocate()) { kvn@1219: // Set the scalar_replaceable flag for allocation kvn@1219: // so it could be eliminated. kvn@1219: alloc->as_Allocate()->_is_scalar_replaceable = true; kvn@1219: } kvn@3651: set_escape_state(ptnode_adr(n->_idx), es); // CheckCastPP escape state kvn@682: // in order for an object to be scalar-replaceable, it must be: kvn@500: // - a direct allocation (not a call returning an object) kvn@500: // - non-escaping kvn@500: // - eligible to be a unique type kvn@500: // - not determined to be ineligible by escape analysis kvn@3651: set_map(alloc, n); kvn@3651: set_map(n, alloc); kvn@500: const TypeOopPtr *t = igvn->type(n)->isa_oopptr(); kvn@500: if (t == NULL) kvn@3254: continue; // not a TypeOopPtr kvn@3651: const TypeOopPtr* tinst = t->cast_to_exactness(true)->is_oopptr()->cast_to_instance_id(ni); duke@435: igvn->hash_delete(n); duke@435: igvn->set_type(n, tinst); duke@435: n->raise_bottom_type(tinst); duke@435: igvn->hash_insert(n); kvn@500: record_for_optimizer(n); kvn@3254: if (alloc->is_Allocate() && (t->isa_instptr() || t->isa_aryptr())) { kvn@598: kvn@598: // First, put on the worklist all Field edges from Connection Graph kvn@598: // which is more accurate then putting immediate users from Ideal Graph. kvn@3651: for (EdgeIterator e(ptn); e.has_next(); e.next()) { kvn@3651: PointsToNode* tgt = e.get(); kvn@3651: Node* use = tgt->ideal_node(); kvn@3651: assert(tgt->is_Field() && use->is_AddP(), kvn@598: "only AddP nodes are Field edges in CG"); kvn@598: if (use->outcnt() > 0) { // Don't process dead nodes kvn@598: Node* addp2 = find_second_addp(use, use->in(AddPNode::Base)); kvn@598: if (addp2 != NULL) { kvn@598: assert(alloc->is_AllocateArray(),"array allocation was expected"); kvn@598: alloc_worklist.append_if_missing(addp2); kvn@598: } kvn@598: alloc_worklist.append_if_missing(use); kvn@598: } kvn@598: } kvn@598: kvn@500: // An allocation may have an Initialize which has raw stores. Scan kvn@500: // the users of the raw allocation result and push AddP users kvn@500: // on alloc_worklist. kvn@500: Node *raw_result = alloc->proj_out(TypeFunc::Parms); kvn@500: assert (raw_result != NULL, "must have an allocation result"); kvn@500: for (DUIterator_Fast imax, i = raw_result->fast_outs(imax); i < imax; i++) { kvn@500: Node *use = raw_result->fast_out(i); kvn@500: if (use->is_AddP() && use->outcnt() > 0) { // Don't process dead nodes kvn@500: Node* addp2 = find_second_addp(use, raw_result); kvn@500: if (addp2 != NULL) { kvn@500: assert(alloc->is_AllocateArray(),"array allocation was expected"); kvn@500: alloc_worklist.append_if_missing(addp2); kvn@500: } kvn@500: alloc_worklist.append_if_missing(use); kvn@1535: } else if (use->is_MemBar()) { kvn@500: memnode_worklist.append_if_missing(use); kvn@500: } kvn@500: } kvn@500: } duke@435: } else if (n->is_AddP()) { kvn@3651: JavaObjectNode* jobj = unique_java_object(get_addp_base(n)); kvn@3651: if (jobj == NULL || jobj == phantom_obj) { kvn@3651: #ifdef ASSERT kvn@3651: ptnode_adr(get_addp_base(n)->_idx)->dump(); kvn@3651: ptnode_adr(n->_idx)->dump(); kvn@3651: assert(jobj != NULL && jobj != phantom_obj, "escaped allocation"); kvn@3651: #endif kvn@3651: _compile->record_failure(C2Compiler::retry_no_escape_analysis()); kvn@3651: return; kvn@1535: } kvn@3651: Node *base = get_map(jobj->idx()); // CheckCastPP node kvn@3651: if (!split_AddP(n, base)) continue; // wrong type from dead path kvn@500: } else if (n->is_Phi() || kvn@500: n->is_CheckCastPP() || kvn@603: n->is_EncodeP() || kvn@603: n->is_DecodeN() || kvn@500: (n->is_ConstraintCast() && n->Opcode() == Op_CastPP)) { duke@435: if (visited.test_set(n->_idx)) { duke@435: assert(n->is_Phi(), "loops only through Phi's"); duke@435: continue; // already processed duke@435: } kvn@3651: JavaObjectNode* jobj = unique_java_object(n); kvn@3651: if (jobj == NULL || jobj == phantom_obj) { kvn@3651: #ifdef ASSERT kvn@3651: ptnode_adr(n->_idx)->dump(); kvn@3651: assert(jobj != NULL && jobj != phantom_obj, "escaped allocation"); kvn@3651: #endif kvn@3651: _compile->record_failure(C2Compiler::retry_no_escape_analysis()); kvn@3651: return; kvn@3651: } else { kvn@3651: Node *val = get_map(jobj->idx()); // CheckCastPP node duke@435: TypeNode *tn = n->as_Type(); kvn@3651: const TypeOopPtr* tinst = igvn->type(val)->isa_oopptr(); kvn@658: assert(tinst != NULL && tinst->is_known_instance() && kvn@3651: tinst->instance_id() == jobj->idx() , "instance type expected."); kvn@598: kvn@598: const Type *tn_type = igvn->type(tn); kvn@658: const TypeOopPtr *tn_t; kvn@658: if (tn_type->isa_narrowoop()) { kvn@658: tn_t = tn_type->make_ptr()->isa_oopptr(); kvn@658: } else { kvn@658: tn_t = tn_type->isa_oopptr(); kvn@658: } kvn@1535: if (tn_t != NULL && tinst->klass()->is_subtype_of(tn_t->klass())) { kvn@598: if (tn_type->isa_narrowoop()) { kvn@598: tn_type = tinst->make_narrowoop(); kvn@598: } else { kvn@598: tn_type = tinst; kvn@598: } duke@435: igvn->hash_delete(tn); kvn@598: igvn->set_type(tn, tn_type); kvn@598: tn->set_type(tn_type); duke@435: igvn->hash_insert(tn); kvn@500: record_for_optimizer(n); kvn@728: } else { kvn@1535: assert(tn_type == TypePtr::NULL_PTR || kvn@1535: tn_t != NULL && !tinst->klass()->is_subtype_of(tn_t->klass()), kvn@1535: "unexpected type"); kvn@1535: continue; // Skip dead path with different type duke@435: } duke@435: } duke@435: } else { kvn@1535: debug_only(n->dump();) kvn@1535: assert(false, "EA: unexpected node"); duke@435: continue; duke@435: } kvn@1535: // push allocation's users on appropriate worklist duke@435: for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) { duke@435: Node *use = n->fast_out(i); duke@435: if(use->is_Mem() && use->in(MemNode::Address) == n) { kvn@1535: // Load/store to instance's field kvn@500: memnode_worklist.append_if_missing(use); kvn@1535: } else if (use->is_MemBar()) { kvn@500: memnode_worklist.append_if_missing(use); kvn@500: } else if (use->is_AddP() && use->outcnt() > 0) { // No dead nodes kvn@500: Node* addp2 = find_second_addp(use, n); kvn@500: if (addp2 != NULL) { kvn@500: alloc_worklist.append_if_missing(addp2); kvn@500: } kvn@500: alloc_worklist.append_if_missing(use); kvn@500: } else if (use->is_Phi() || kvn@500: use->is_CheckCastPP() || kvn@603: use->is_EncodeP() || kvn@603: use->is_DecodeN() || kvn@500: (use->is_ConstraintCast() && use->Opcode() == Op_CastPP)) { kvn@500: alloc_worklist.append_if_missing(use); kvn@1535: #ifdef ASSERT kvn@1535: } else if (use->is_Mem()) { kvn@1535: assert(use->in(MemNode::Address) != n, "EA: missing allocation reference path"); kvn@1535: } else if (use->is_MergeMem()) { kvn@1535: assert(_mergemem_worklist.contains(use->as_MergeMem()), "EA: missing MergeMem node in the worklist"); kvn@1535: } else if (use->is_SafePoint()) { kvn@1535: // Look for MergeMem nodes for calls which reference unique allocation kvn@1535: // (through CheckCastPP nodes) even for debug info. kvn@1535: Node* m = use->in(TypeFunc::Memory); kvn@1535: if (m->is_MergeMem()) { kvn@1535: assert(_mergemem_worklist.contains(m->as_MergeMem()), "EA: missing MergeMem node in the worklist"); kvn@1535: } kvn@1535: } else { kvn@1535: uint op = use->Opcode(); kvn@1535: if (!(op == Op_CmpP || op == Op_Conv2B || kvn@1535: op == Op_CastP2X || op == Op_StoreCM || kvn@1535: op == Op_FastLock || op == Op_AryEq || op == Op_StrComp || kvn@1535: op == Op_StrEquals || op == Op_StrIndexOf)) { kvn@1535: n->dump(); kvn@1535: use->dump(); kvn@1535: assert(false, "EA: missing allocation reference path"); kvn@1535: } kvn@1535: #endif duke@435: } duke@435: } duke@435: duke@435: } kvn@500: // New alias types were created in split_AddP(). duke@435: uint new_index_end = (uint) _compile->num_alias_types(); kvn@3651: assert(unique_old == _compile->unique(), "there should be no new ideal nodes after Phase 1"); duke@435: duke@435: // Phase 2: Process MemNode's from memnode_worklist. compute new address type and duke@435: // compute new values for Memory inputs (the Memory inputs are not duke@435: // actually updated until phase 4.) duke@435: if (memnode_worklist.length() == 0) duke@435: return; // nothing to do duke@435: while (memnode_worklist.length() != 0) { duke@435: Node *n = memnode_worklist.pop(); kvn@500: if (visited.test_set(n->_idx)) kvn@500: continue; kvn@1535: if (n->is_Phi() || n->is_ClearArray()) { kvn@1535: // we don't need to do anything, but the users must be pushed kvn@1535: } else if (n->is_MemBar()) { // Initialize, MemBar nodes kvn@1535: // we don't need to do anything, but the users must be pushed kvn@1535: n = n->as_MemBar()->proj_out(TypeFunc::Memory); kvn@500: if (n == NULL) duke@435: continue; duke@435: } else { duke@435: assert(n->is_Mem(), "memory node required."); duke@435: Node *addr = n->in(MemNode::Address); duke@435: const Type *addr_t = igvn->type(addr); duke@435: if (addr_t == Type::TOP) duke@435: continue; duke@435: assert (addr_t->isa_ptr() != NULL, "pointer type required."); duke@435: int alias_idx = _compile->get_alias_index(addr_t->is_ptr()); kvn@500: assert ((uint)alias_idx < new_index_end, "wrong alias index"); kvn@3651: Node *mem = find_inst_mem(n->in(MemNode::Memory), alias_idx, orig_phis); kvn@473: if (_compile->failing()) { kvn@473: return; kvn@473: } kvn@500: if (mem != n->in(MemNode::Memory)) { kvn@1536: // We delay the memory edge update since we need old one in kvn@1536: // MergeMem code below when instances memory slices are separated. kvn@3651: set_map(n, mem); kvn@500: } duke@435: if (n->is_Load()) { duke@435: continue; // don't push users duke@435: } else if (n->is_LoadStore()) { duke@435: // get the memory projection duke@435: for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) { duke@435: Node *use = n->fast_out(i); duke@435: if (use->Opcode() == Op_SCMemProj) { duke@435: n = use; duke@435: break; duke@435: } duke@435: } duke@435: assert(n->Opcode() == Op_SCMemProj, "memory projection required"); duke@435: } duke@435: } duke@435: // push user on appropriate worklist duke@435: for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) { duke@435: Node *use = n->fast_out(i); kvn@1535: if (use->is_Phi() || use->is_ClearArray()) { kvn@500: memnode_worklist.append_if_missing(use); duke@435: } else if(use->is_Mem() && use->in(MemNode::Memory) == n) { kvn@1535: if (use->Opcode() == Op_StoreCM) // Ignore cardmark stores kvn@1535: continue; kvn@500: memnode_worklist.append_if_missing(use); kvn@1535: } else if (use->is_MemBar()) { kvn@500: memnode_worklist.append_if_missing(use); kvn@1535: #ifdef ASSERT kvn@1535: } else if(use->is_Mem()) { kvn@1535: assert(use->in(MemNode::Memory) != n, "EA: missing memory path"); duke@435: } else if (use->is_MergeMem()) { kvn@1535: assert(_mergemem_worklist.contains(use->as_MergeMem()), "EA: missing MergeMem node in the worklist"); kvn@1535: } else { kvn@1535: uint op = use->Opcode(); kvn@1535: if (!(op == Op_StoreCM || kvn@1535: (op == Op_CallLeaf && use->as_CallLeaf()->_name != NULL && kvn@1535: strcmp(use->as_CallLeaf()->_name, "g1_wb_pre") == 0) || kvn@1535: op == Op_AryEq || op == Op_StrComp || kvn@1535: op == Op_StrEquals || op == Op_StrIndexOf)) { kvn@1535: n->dump(); kvn@1535: use->dump(); kvn@1535: assert(false, "EA: missing memory path"); kvn@1535: } kvn@1535: #endif duke@435: } duke@435: } duke@435: } duke@435: kvn@500: // Phase 3: Process MergeMem nodes from mergemem_worklist. kvn@1535: // Walk each memory slice moving the first node encountered of each kvn@500: // instance type to the the input corresponding to its alias index. kvn@1535: uint length = _mergemem_worklist.length(); kvn@1535: for( uint next = 0; next < length; ++next ) { kvn@1535: MergeMemNode* nmm = _mergemem_worklist.at(next); kvn@1535: assert(!visited.test_set(nmm->_idx), "should not be visited before"); duke@435: // Note: we don't want to use MergeMemStream here because we only want to kvn@1535: // scan inputs which exist at the start, not ones we add during processing. kvn@1535: // Note 2: MergeMem may already contains instance memory slices added kvn@1535: // during find_inst_mem() call when memory nodes were processed above. kvn@1535: igvn->hash_delete(nmm); duke@435: uint nslices = nmm->req(); duke@435: for (uint i = Compile::AliasIdxRaw+1; i < nslices; i++) { kvn@500: Node* mem = nmm->in(i); kvn@500: Node* cur = NULL; duke@435: if (mem == NULL || mem->is_top()) duke@435: continue; kvn@1536: // First, update mergemem by moving memory nodes to corresponding slices kvn@1536: // if their type became more precise since this mergemem was created. duke@435: while (mem->is_Mem()) { duke@435: const Type *at = igvn->type(mem->in(MemNode::Address)); duke@435: if (at != Type::TOP) { duke@435: assert (at->isa_ptr() != NULL, "pointer type required."); duke@435: uint idx = (uint)_compile->get_alias_index(at->is_ptr()); duke@435: if (idx == i) { duke@435: if (cur == NULL) duke@435: cur = mem; duke@435: } else { duke@435: if (idx >= nmm->req() || nmm->is_empty_memory(nmm->in(idx))) { duke@435: nmm->set_memory_at(idx, mem); duke@435: } duke@435: } duke@435: } duke@435: mem = mem->in(MemNode::Memory); duke@435: } duke@435: nmm->set_memory_at(i, (cur != NULL) ? cur : mem); kvn@500: // Find any instance of the current type if we haven't encountered kvn@1536: // already a memory slice of the instance along the memory chain. kvn@500: for (uint ni = new_index_start; ni < new_index_end; ni++) { kvn@500: if((uint)_compile->get_general_index(ni) == i) { kvn@500: Node *m = (ni >= nmm->req()) ? nmm->empty_memory() : nmm->in(ni); kvn@500: if (nmm->is_empty_memory(m)) { kvn@3651: Node* result = find_inst_mem(mem, ni, orig_phis); kvn@500: if (_compile->failing()) { kvn@500: return; kvn@500: } kvn@500: nmm->set_memory_at(ni, result); kvn@500: } kvn@500: } kvn@500: } kvn@500: } kvn@500: // Find the rest of instances values kvn@500: for (uint ni = new_index_start; ni < new_index_end; ni++) { kvn@1536: const TypeOopPtr *tinst = _compile->get_adr_type(ni)->isa_oopptr(); kvn@500: Node* result = step_through_mergemem(nmm, ni, tinst); kvn@500: if (result == nmm->base_memory()) { kvn@500: // Didn't find instance memory, search through general slice recursively. kvn@1536: result = nmm->memory_at(_compile->get_general_index(ni)); kvn@3651: result = find_inst_mem(result, ni, orig_phis); kvn@500: if (_compile->failing()) { kvn@500: return; kvn@500: } kvn@500: nmm->set_memory_at(ni, result); kvn@500: } kvn@500: } kvn@500: igvn->hash_insert(nmm); kvn@500: record_for_optimizer(nmm); duke@435: } duke@435: kvn@500: // Phase 4: Update the inputs of non-instance memory Phis and kvn@500: // the Memory input of memnodes duke@435: // First update the inputs of any non-instance Phi's from duke@435: // which we split out an instance Phi. Note we don't have duke@435: // to recursively process Phi's encounted on the input memory duke@435: // chains as is done in split_memory_phi() since they will duke@435: // also be processed here. kvn@682: for (int j = 0; j < orig_phis.length(); j++) { kvn@682: PhiNode *phi = orig_phis.at(j); duke@435: int alias_idx = _compile->get_alias_index(phi->adr_type()); duke@435: igvn->hash_delete(phi); duke@435: for (uint i = 1; i < phi->req(); i++) { duke@435: Node *mem = phi->in(i); kvn@3651: Node *new_mem = find_inst_mem(mem, alias_idx, orig_phis); kvn@500: if (_compile->failing()) { kvn@500: return; kvn@500: } duke@435: if (mem != new_mem) { duke@435: phi->set_req(i, new_mem); duke@435: } duke@435: } duke@435: igvn->hash_insert(phi); duke@435: record_for_optimizer(phi); duke@435: } duke@435: duke@435: // Update the memory inputs of MemNodes with the value we computed kvn@1536: // in Phase 2 and move stores memory users to corresponding memory slices. kvn@2810: // Disable memory split verification code until the fix for 6984348. kvn@2810: // Currently it produces false negative results since it does not cover all cases. kvn@2810: #if 0 // ifdef ASSERT kvn@2556: visited.Reset(); kvn@1536: Node_Stack old_mems(arena, _compile->unique() >> 2); kvn@1536: #endif kvn@3651: for (uint i = 0; i < ideal_nodes.size(); i++) { kvn@3651: Node* n = ideal_nodes.at(i); kvn@3651: Node* nmem = get_map(n->_idx); kvn@3651: assert(nmem != NULL, "sanity"); kvn@3651: if (n->is_Mem()) { kvn@2810: #if 0 // ifdef ASSERT kvn@3651: Node* old_mem = n->in(MemNode::Memory); kvn@3651: if (!visited.test_set(old_mem->_idx)) { kvn@3651: old_mems.push(old_mem, old_mem->outcnt()); kvn@3651: } kvn@1536: #endif kvn@3651: assert(n->in(MemNode::Memory) != nmem, "sanity"); kvn@3651: if (!n->is_Load()) { kvn@3651: // Move memory users of a store first. kvn@3651: move_inst_mem(n, orig_phis); duke@435: } kvn@3651: // Now update memory input kvn@3651: igvn->hash_delete(n); kvn@3651: n->set_req(MemNode::Memory, nmem); kvn@3651: igvn->hash_insert(n); kvn@3651: record_for_optimizer(n); kvn@3651: } else { kvn@3651: assert(n->is_Allocate() || n->is_CheckCastPP() || kvn@3651: n->is_AddP() || n->is_Phi(), "unknown node used for set_map()"); duke@435: } duke@435: } kvn@2810: #if 0 // ifdef ASSERT kvn@1536: // Verify that memory was split correctly kvn@1536: while (old_mems.is_nonempty()) { kvn@1536: Node* old_mem = old_mems.node(); kvn@1536: uint old_cnt = old_mems.index(); kvn@1536: old_mems.pop(); kvn@2810: assert(old_cnt == old_mem->outcnt(), "old mem could be lost"); kvn@1536: } kvn@1536: #endif duke@435: } duke@435: kvn@3651: #ifndef PRODUCT kvn@3651: static const char *node_type_names[] = { kvn@3651: "UnknownType", kvn@3651: "JavaObject", kvn@3651: "LocalVar", kvn@3651: "Field", kvn@3651: "Arraycopy" kvn@3651: }; kvn@3651: kvn@3651: static const char *esc_names[] = { kvn@3651: "UnknownEscape", kvn@3651: "NoEscape", kvn@3651: "ArgEscape", kvn@3651: "GlobalEscape" kvn@3651: }; kvn@3651: kvn@3651: void PointsToNode::dump(bool print_state) const { kvn@3651: NodeType nt = node_type(); kvn@3651: tty->print("%s ", node_type_names[(int) nt]); kvn@3651: if (print_state) { kvn@3651: EscapeState es = escape_state(); kvn@3651: EscapeState fields_es = fields_escape_state(); kvn@3651: tty->print("%s(%s) ", esc_names[(int)es], esc_names[(int)fields_es]); kvn@3651: if (nt == PointsToNode::JavaObject && !this->scalar_replaceable()) kvn@3651: tty->print("NSR"); kvn@3651: } kvn@3651: if (is_Field()) { kvn@3651: FieldNode* f = (FieldNode*)this; kvn@3651: tty->print("("); kvn@3651: for (BaseIterator i(f); i.has_next(); i.next()) { kvn@3651: PointsToNode* b = i.get(); kvn@3651: tty->print(" %d%s", b->idx(),(b->is_JavaObject() ? "P" : "")); kvn@679: } kvn@3651: tty->print(" )"); kvn@679: } kvn@3651: tty->print("["); kvn@3651: for (EdgeIterator i(this); i.has_next(); i.next()) { kvn@3651: PointsToNode* e = i.get(); kvn@3651: tty->print(" %d%s%s", e->idx(),(e->is_JavaObject() ? "P" : (e->is_Field() ? "F" : "")), e->is_Arraycopy() ? "cp" : ""); kvn@3651: } kvn@3651: tty->print(" ["); kvn@3651: for (UseIterator i(this); i.has_next(); i.next()) { kvn@3651: PointsToNode* u = i.get(); kvn@3651: bool is_base = false; kvn@3651: if (PointsToNode::is_base_use(u)) { kvn@3651: is_base = true; kvn@3651: u = PointsToNode::get_use_node(u)->as_Field(); kvn@3651: } kvn@3651: tty->print(" %d%s%s", u->idx(), is_base ? "b" : "", u->is_Arraycopy() ? "cp" : ""); kvn@3651: } kvn@3651: tty->print(" ]] "); kvn@3651: if (_node == NULL) kvn@3651: tty->print_cr(""); kvn@3651: else kvn@3651: _node->dump(); kvn@679: } kvn@679: kvn@3651: void ConnectionGraph::dump(GrowableArray& ptnodes_worklist) { duke@435: bool first = true; kvn@3651: int ptnodes_length = ptnodes_worklist.length(); kvn@3651: for (int i = 0; i < ptnodes_length; i++) { kvn@3651: PointsToNode *ptn = ptnodes_worklist.at(i); kvn@3651: if (ptn == NULL || !ptn->is_JavaObject()) duke@435: continue; kvn@3651: PointsToNode::EscapeState es = ptn->escape_state(); kvn@3651: if (ptn->ideal_node()->is_Allocate() && (es == PointsToNode::NoEscape || Verbose)) { kvn@500: if (first) { kvn@500: tty->cr(); kvn@500: tty->print("======== Connection graph for "); kvn@679: _compile->method()->print_short_name(); kvn@500: tty->cr(); kvn@500: first = false; kvn@500: } kvn@500: ptn->dump(); kvn@3651: // Print all locals and fields which reference this allocation kvn@3651: for (UseIterator j(ptn); j.has_next(); j.next()) { kvn@3651: PointsToNode* use = j.get(); kvn@3651: if (use->is_LocalVar()) { kvn@3651: use->dump(Verbose); kvn@3651: } else if (Verbose) { kvn@3651: use->dump(); kvn@500: } kvn@500: } kvn@500: tty->cr(); duke@435: } duke@435: } duke@435: } duke@435: #endif