duke@435: /* duke@435: * Copyright 2003-2006 Sun Microsystems, Inc. All Rights Reserved. duke@435: * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. duke@435: * duke@435: * This code is free software; you can redistribute it and/or modify it duke@435: * under the terms of the GNU General Public License version 2 only, as duke@435: * published by the Free Software Foundation. duke@435: * duke@435: * This code is distributed in the hope that it will be useful, but WITHOUT duke@435: * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or duke@435: * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License duke@435: * version 2 for more details (a copy is included in the LICENSE file that duke@435: * accompanied this code). duke@435: * duke@435: * You should have received a copy of the GNU General Public License version duke@435: * 2 along with this work; if not, write to the Free Software Foundation, duke@435: * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. duke@435: * duke@435: * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, duke@435: * CA 95054 USA or visit www.sun.com if you need additional information or duke@435: * have any questions. duke@435: * duke@435: */ duke@435: duke@435: # include "incls/_precompiled.incl" duke@435: # include "incls/_memoryService.cpp.incl" duke@435: duke@435: GrowableArray* MemoryService::_pools_list = duke@435: new (ResourceObj::C_HEAP) GrowableArray(init_pools_list_size, true); duke@435: GrowableArray* MemoryService::_managers_list = duke@435: new (ResourceObj::C_HEAP) GrowableArray(init_managers_list_size, true); duke@435: duke@435: GCMemoryManager* MemoryService::_minor_gc_manager = NULL; duke@435: GCMemoryManager* MemoryService::_major_gc_manager = NULL; duke@435: MemoryPool* MemoryService::_code_heap_pool = NULL; duke@435: duke@435: class GcThreadCountClosure: public ThreadClosure { duke@435: private: duke@435: int _count; duke@435: public: duke@435: GcThreadCountClosure() : _count(0) {}; duke@435: void do_thread(Thread* thread); duke@435: int count() { return _count; } duke@435: }; duke@435: duke@435: void GcThreadCountClosure::do_thread(Thread* thread) { duke@435: _count++; duke@435: } duke@435: duke@435: void MemoryService::set_universe_heap(CollectedHeap* heap) { duke@435: CollectedHeap::Name kind = heap->kind(); duke@435: switch (kind) { duke@435: case CollectedHeap::GenCollectedHeap : { duke@435: add_gen_collected_heap_info(GenCollectedHeap::heap()); duke@435: break; duke@435: } duke@435: #ifndef SERIALGC duke@435: case CollectedHeap::ParallelScavengeHeap : { duke@435: add_parallel_scavenge_heap_info(ParallelScavengeHeap::heap()); duke@435: break; duke@435: } ysr@777: case CollectedHeap::G1CollectedHeap : { ysr@777: G1CollectedHeap::g1_unimplemented(); ysr@777: return; ysr@777: } duke@435: #endif // SERIALGC duke@435: default: { ysr@777: guarantee(false, "Unrecognized kind of heap"); duke@435: } duke@435: } duke@435: duke@435: // set the GC thread count duke@435: GcThreadCountClosure gctcc; duke@435: heap->gc_threads_do(&gctcc); duke@435: int count = gctcc.count(); duke@435: if (count > 0) { duke@435: _minor_gc_manager->set_num_gc_threads(count); duke@435: _major_gc_manager->set_num_gc_threads(count); duke@435: } duke@435: duke@435: // All memory pools and memory managers are initialized. duke@435: // duke@435: _minor_gc_manager->initialize_gc_stat_info(); duke@435: _major_gc_manager->initialize_gc_stat_info(); duke@435: } duke@435: duke@435: // Add memory pools for GenCollectedHeap duke@435: // This function currently only supports two generations collected heap. duke@435: // The collector for GenCollectedHeap will have two memory managers. duke@435: void MemoryService::add_gen_collected_heap_info(GenCollectedHeap* heap) { duke@435: CollectorPolicy* policy = heap->collector_policy(); duke@435: duke@435: assert(policy->is_two_generation_policy(), "Only support two generations"); duke@435: guarantee(heap->n_gens() == 2, "Only support two-generation heap"); duke@435: duke@435: TwoGenerationCollectorPolicy* two_gen_policy = policy->as_two_generation_policy(); duke@435: if (two_gen_policy != NULL) { duke@435: GenerationSpec** specs = two_gen_policy->generations(); duke@435: Generation::Name kind = specs[0]->name(); duke@435: switch (kind) { duke@435: case Generation::DefNew: duke@435: _minor_gc_manager = MemoryManager::get_copy_memory_manager(); duke@435: break; duke@435: #ifndef SERIALGC duke@435: case Generation::ParNew: duke@435: case Generation::ASParNew: duke@435: _minor_gc_manager = MemoryManager::get_parnew_memory_manager(); duke@435: break; duke@435: #endif // SERIALGC duke@435: default: duke@435: guarantee(false, "Unrecognized generation spec"); duke@435: break; duke@435: } duke@435: if (policy->is_mark_sweep_policy()) { duke@435: _major_gc_manager = MemoryManager::get_msc_memory_manager(); duke@435: #ifndef SERIALGC duke@435: } else if (policy->is_concurrent_mark_sweep_policy()) { duke@435: _major_gc_manager = MemoryManager::get_cms_memory_manager(); duke@435: #endif // SERIALGC duke@435: } else { duke@435: guarantee(false, "Unknown two-gen policy"); duke@435: } duke@435: } else { duke@435: guarantee(false, "Non two-gen policy"); duke@435: } duke@435: _managers_list->append(_minor_gc_manager); duke@435: _managers_list->append(_major_gc_manager); duke@435: duke@435: add_generation_memory_pool(heap->get_gen(minor), _major_gc_manager, _minor_gc_manager); duke@435: add_generation_memory_pool(heap->get_gen(major), _major_gc_manager); duke@435: duke@435: PermGen::Name name = policy->permanent_generation()->name(); duke@435: switch (name) { duke@435: case PermGen::MarkSweepCompact: { duke@435: CompactingPermGenGen* perm_gen = (CompactingPermGenGen*) heap->perm_gen(); duke@435: add_compact_perm_gen_memory_pool(perm_gen, _major_gc_manager); duke@435: break; duke@435: } duke@435: #ifndef SERIALGC duke@435: case PermGen::ConcurrentMarkSweep: { duke@435: CMSPermGenGen* cms_gen = (CMSPermGenGen*) heap->perm_gen(); duke@435: add_cms_perm_gen_memory_pool(cms_gen, _major_gc_manager); duke@435: break; duke@435: } duke@435: #endif // SERIALGC duke@435: default: duke@435: guarantee(false, "Unrecognized perm generation"); duke@435: break; duke@435: } duke@435: } duke@435: duke@435: #ifndef SERIALGC duke@435: // Add memory pools for ParallelScavengeHeap duke@435: // This function currently only supports two generations collected heap. duke@435: // The collector for ParallelScavengeHeap will have two memory managers. duke@435: void MemoryService::add_parallel_scavenge_heap_info(ParallelScavengeHeap* heap) { duke@435: // Two managers to keep statistics about _minor_gc_manager and _major_gc_manager GC. duke@435: _minor_gc_manager = MemoryManager::get_psScavenge_memory_manager(); duke@435: _major_gc_manager = MemoryManager::get_psMarkSweep_memory_manager(); duke@435: _managers_list->append(_minor_gc_manager); duke@435: _managers_list->append(_major_gc_manager); duke@435: duke@435: add_psYoung_memory_pool(heap->young_gen(), _major_gc_manager, _minor_gc_manager); duke@435: add_psOld_memory_pool(heap->old_gen(), _major_gc_manager); duke@435: add_psPerm_memory_pool(heap->perm_gen(), _major_gc_manager); duke@435: } duke@435: #endif // SERIALGC duke@435: duke@435: MemoryPool* MemoryService::add_gen(Generation* gen, duke@435: const char* name, duke@435: bool is_heap, duke@435: bool support_usage_threshold) { duke@435: duke@435: MemoryPool::PoolType type = (is_heap ? MemoryPool::Heap : MemoryPool::NonHeap); duke@435: GenerationPool* pool = new GenerationPool(gen, name, type, support_usage_threshold); duke@435: _pools_list->append(pool); duke@435: return (MemoryPool*) pool; duke@435: } duke@435: duke@435: MemoryPool* MemoryService::add_space(ContiguousSpace* space, duke@435: const char* name, duke@435: bool is_heap, duke@435: size_t max_size, duke@435: bool support_usage_threshold) { duke@435: MemoryPool::PoolType type = (is_heap ? MemoryPool::Heap : MemoryPool::NonHeap); duke@435: ContiguousSpacePool* pool = new ContiguousSpacePool(space, name, type, max_size, support_usage_threshold); duke@435: duke@435: _pools_list->append(pool); duke@435: return (MemoryPool*) pool; duke@435: } duke@435: duke@435: MemoryPool* MemoryService::add_survivor_spaces(DefNewGeneration* gen, duke@435: const char* name, duke@435: bool is_heap, duke@435: size_t max_size, duke@435: bool support_usage_threshold) { duke@435: MemoryPool::PoolType type = (is_heap ? MemoryPool::Heap : MemoryPool::NonHeap); duke@435: SurvivorContiguousSpacePool* pool = new SurvivorContiguousSpacePool(gen, name, type, max_size, support_usage_threshold); duke@435: duke@435: _pools_list->append(pool); duke@435: return (MemoryPool*) pool; duke@435: } duke@435: duke@435: #ifndef SERIALGC duke@435: MemoryPool* MemoryService::add_cms_space(CompactibleFreeListSpace* space, duke@435: const char* name, duke@435: bool is_heap, duke@435: size_t max_size, duke@435: bool support_usage_threshold) { duke@435: MemoryPool::PoolType type = (is_heap ? MemoryPool::Heap : MemoryPool::NonHeap); duke@435: CompactibleFreeListSpacePool* pool = new CompactibleFreeListSpacePool(space, name, type, max_size, support_usage_threshold); duke@435: _pools_list->append(pool); duke@435: return (MemoryPool*) pool; duke@435: } duke@435: #endif // SERIALGC duke@435: duke@435: // Add memory pool(s) for one generation duke@435: void MemoryService::add_generation_memory_pool(Generation* gen, duke@435: MemoryManager* major_mgr, duke@435: MemoryManager* minor_mgr) { duke@435: Generation::Name kind = gen->kind(); duke@435: int index = _pools_list->length(); duke@435: duke@435: switch (kind) { duke@435: case Generation::DefNew: { duke@435: assert(major_mgr != NULL && minor_mgr != NULL, "Should have two managers"); duke@435: DefNewGeneration* young_gen = (DefNewGeneration*) gen; duke@435: // Add a memory pool for each space and young gen doesn't duke@435: // support low memory detection as it is expected to get filled up. duke@435: MemoryPool* eden = add_space(young_gen->eden(), duke@435: "Eden Space", duke@435: true, /* is_heap */ duke@435: young_gen->max_eden_size(), duke@435: false /* support_usage_threshold */); duke@435: MemoryPool* survivor = add_survivor_spaces(young_gen, duke@435: "Survivor Space", duke@435: true, /* is_heap */ duke@435: young_gen->max_survivor_size(), duke@435: false /* support_usage_threshold */); duke@435: break; duke@435: } duke@435: duke@435: #ifndef SERIALGC duke@435: case Generation::ParNew: duke@435: case Generation::ASParNew: duke@435: { duke@435: assert(major_mgr != NULL && minor_mgr != NULL, "Should have two managers"); duke@435: // Add a memory pool for each space and young gen doesn't duke@435: // support low memory detection as it is expected to get filled up. duke@435: ParNewGeneration* parnew_gen = (ParNewGeneration*) gen; duke@435: MemoryPool* eden = add_space(parnew_gen->eden(), duke@435: "Par Eden Space", duke@435: true /* is_heap */, duke@435: parnew_gen->max_eden_size(), duke@435: false /* support_usage_threshold */); duke@435: MemoryPool* survivor = add_survivor_spaces(parnew_gen, duke@435: "Par Survivor Space", duke@435: true, /* is_heap */ duke@435: parnew_gen->max_survivor_size(), duke@435: false /* support_usage_threshold */); duke@435: duke@435: break; duke@435: } duke@435: #endif // SERIALGC duke@435: duke@435: case Generation::MarkSweepCompact: { duke@435: assert(major_mgr != NULL && minor_mgr == NULL, "Should have only one manager"); duke@435: add_gen(gen, duke@435: "Tenured Gen", duke@435: true, /* is_heap */ duke@435: true /* support_usage_threshold */); duke@435: break; duke@435: } duke@435: duke@435: #ifndef SERIALGC duke@435: case Generation::ConcurrentMarkSweep: duke@435: case Generation::ASConcurrentMarkSweep: duke@435: { duke@435: assert(major_mgr != NULL && minor_mgr == NULL, "Should have only one manager"); duke@435: ConcurrentMarkSweepGeneration* cms = (ConcurrentMarkSweepGeneration*) gen; duke@435: MemoryPool* pool = add_cms_space(cms->cmsSpace(), duke@435: "CMS Old Gen", duke@435: true, /* is_heap */ duke@435: cms->reserved().byte_size(), duke@435: true /* support_usage_threshold */); duke@435: break; duke@435: } duke@435: #endif // SERIALGC duke@435: duke@435: default: duke@435: assert(false, "should not reach here"); duke@435: // no memory pool added for others duke@435: break; duke@435: } duke@435: duke@435: assert(major_mgr != NULL, "Should have at least one manager"); duke@435: // Link managers and the memory pools together duke@435: for (int i = index; i < _pools_list->length(); i++) { duke@435: MemoryPool* pool = _pools_list->at(i); duke@435: major_mgr->add_pool(pool); duke@435: if (minor_mgr != NULL) { duke@435: minor_mgr->add_pool(pool); duke@435: } duke@435: } duke@435: } duke@435: duke@435: void MemoryService::add_compact_perm_gen_memory_pool(CompactingPermGenGen* perm_gen, duke@435: MemoryManager* mgr) { duke@435: PermanentGenerationSpec* spec = perm_gen->spec(); duke@435: size_t max_size = spec->max_size() - spec->read_only_size() - spec->read_write_size(); duke@435: MemoryPool* pool = add_space(perm_gen->unshared_space(), duke@435: "Perm Gen", duke@435: false, /* is_heap */ duke@435: max_size, duke@435: true /* support_usage_threshold */); duke@435: mgr->add_pool(pool); duke@435: if (UseSharedSpaces) { duke@435: pool = add_space(perm_gen->ro_space(), duke@435: "Perm Gen [shared-ro]", duke@435: false, /* is_heap */ duke@435: spec->read_only_size(), duke@435: true /* support_usage_threshold */); duke@435: mgr->add_pool(pool); duke@435: duke@435: pool = add_space(perm_gen->rw_space(), duke@435: "Perm Gen [shared-rw]", duke@435: false, /* is_heap */ duke@435: spec->read_write_size(), duke@435: true /* support_usage_threshold */); duke@435: mgr->add_pool(pool); duke@435: } duke@435: } duke@435: duke@435: #ifndef SERIALGC duke@435: void MemoryService::add_cms_perm_gen_memory_pool(CMSPermGenGen* cms_gen, duke@435: MemoryManager* mgr) { duke@435: duke@435: MemoryPool* pool = add_cms_space(cms_gen->cmsSpace(), duke@435: "CMS Perm Gen", duke@435: false, /* is_heap */ duke@435: cms_gen->reserved().byte_size(), duke@435: true /* support_usage_threshold */); duke@435: mgr->add_pool(pool); duke@435: } duke@435: duke@435: void MemoryService::add_psYoung_memory_pool(PSYoungGen* gen, MemoryManager* major_mgr, MemoryManager* minor_mgr) { duke@435: assert(major_mgr != NULL && minor_mgr != NULL, "Should have two managers"); duke@435: duke@435: // Add a memory pool for each space and young gen doesn't duke@435: // support low memory detection as it is expected to get filled up. duke@435: EdenMutableSpacePool* eden = new EdenMutableSpacePool(gen, duke@435: gen->eden_space(), duke@435: "PS Eden Space", duke@435: MemoryPool::Heap, duke@435: false /* support_usage_threshold */); duke@435: duke@435: SurvivorMutableSpacePool* survivor = new SurvivorMutableSpacePool(gen, duke@435: "PS Survivor Space", duke@435: MemoryPool::Heap, duke@435: false /* support_usage_threshold */); duke@435: duke@435: major_mgr->add_pool(eden); duke@435: major_mgr->add_pool(survivor); duke@435: minor_mgr->add_pool(eden); duke@435: minor_mgr->add_pool(survivor); duke@435: _pools_list->append(eden); duke@435: _pools_list->append(survivor); duke@435: } duke@435: duke@435: void MemoryService::add_psOld_memory_pool(PSOldGen* gen, MemoryManager* mgr) { duke@435: PSGenerationPool* old_gen = new PSGenerationPool(gen, duke@435: "PS Old Gen", duke@435: MemoryPool::Heap, duke@435: true /* support_usage_threshold */); duke@435: mgr->add_pool(old_gen); duke@435: _pools_list->append(old_gen); duke@435: } duke@435: duke@435: void MemoryService::add_psPerm_memory_pool(PSPermGen* gen, MemoryManager* mgr) { duke@435: PSGenerationPool* perm_gen = new PSGenerationPool(gen, duke@435: "PS Perm Gen", duke@435: MemoryPool::NonHeap, duke@435: true /* support_usage_threshold */); duke@435: mgr->add_pool(perm_gen); duke@435: _pools_list->append(perm_gen); duke@435: } duke@435: #endif // SERIALGC duke@435: duke@435: void MemoryService::add_code_heap_memory_pool(CodeHeap* heap) { duke@435: _code_heap_pool = new CodeHeapPool(heap, duke@435: "Code Cache", duke@435: true /* support_usage_threshold */); duke@435: MemoryManager* mgr = MemoryManager::get_code_cache_memory_manager(); duke@435: mgr->add_pool(_code_heap_pool); duke@435: duke@435: _pools_list->append(_code_heap_pool); duke@435: _managers_list->append(mgr); duke@435: } duke@435: duke@435: MemoryManager* MemoryService::get_memory_manager(instanceHandle mh) { duke@435: for (int i = 0; i < _managers_list->length(); i++) { duke@435: MemoryManager* mgr = _managers_list->at(i); duke@435: if (mgr->is_manager(mh)) { duke@435: return mgr; duke@435: } duke@435: } duke@435: return NULL; duke@435: } duke@435: duke@435: MemoryPool* MemoryService::get_memory_pool(instanceHandle ph) { duke@435: for (int i = 0; i < _pools_list->length(); i++) { duke@435: MemoryPool* pool = _pools_list->at(i); duke@435: if (pool->is_pool(ph)) { duke@435: return pool; duke@435: } duke@435: } duke@435: return NULL; duke@435: } duke@435: duke@435: void MemoryService::track_memory_usage() { duke@435: // Track the peak memory usage duke@435: for (int i = 0; i < _pools_list->length(); i++) { duke@435: MemoryPool* pool = _pools_list->at(i); duke@435: pool->record_peak_memory_usage(); duke@435: } duke@435: duke@435: // Detect low memory duke@435: LowMemoryDetector::detect_low_memory(); duke@435: } duke@435: duke@435: void MemoryService::track_memory_pool_usage(MemoryPool* pool) { duke@435: // Track the peak memory usage duke@435: pool->record_peak_memory_usage(); duke@435: duke@435: // Detect low memory duke@435: if (LowMemoryDetector::is_enabled(pool)) { duke@435: LowMemoryDetector::detect_low_memory(pool); duke@435: } duke@435: } duke@435: duke@435: void MemoryService::gc_begin(bool fullGC) { duke@435: GCMemoryManager* mgr; duke@435: if (fullGC) { duke@435: mgr = _major_gc_manager; duke@435: } else { duke@435: mgr = _minor_gc_manager; duke@435: } duke@435: assert(mgr->is_gc_memory_manager(), "Sanity check"); duke@435: mgr->gc_begin(); duke@435: duke@435: // Track the peak memory usage when GC begins duke@435: for (int i = 0; i < _pools_list->length(); i++) { duke@435: MemoryPool* pool = _pools_list->at(i); duke@435: pool->record_peak_memory_usage(); duke@435: } duke@435: } duke@435: duke@435: void MemoryService::gc_end(bool fullGC) { duke@435: GCMemoryManager* mgr; duke@435: if (fullGC) { duke@435: mgr = (GCMemoryManager*) _major_gc_manager; duke@435: } else { duke@435: mgr = (GCMemoryManager*) _minor_gc_manager; duke@435: } duke@435: assert(mgr->is_gc_memory_manager(), "Sanity check"); duke@435: duke@435: // register the GC end statistics and memory usage duke@435: mgr->gc_end(); duke@435: } duke@435: duke@435: void MemoryService::oops_do(OopClosure* f) { duke@435: int i; duke@435: duke@435: for (i = 0; i < _pools_list->length(); i++) { duke@435: MemoryPool* pool = _pools_list->at(i); duke@435: pool->oops_do(f); duke@435: } duke@435: for (i = 0; i < _managers_list->length(); i++) { duke@435: MemoryManager* mgr = _managers_list->at(i); duke@435: mgr->oops_do(f); duke@435: } duke@435: } duke@435: duke@435: bool MemoryService::set_verbose(bool verbose) { duke@435: MutexLocker m(Management_lock); duke@435: // verbose will be set to the previous value duke@435: bool succeed = CommandLineFlags::boolAtPut((char*)"PrintGC", &verbose, MANAGEMENT); duke@435: assert(succeed, "Setting PrintGC flag fails"); duke@435: ClassLoadingService::reset_trace_class_unloading(); duke@435: duke@435: return verbose; duke@435: } duke@435: duke@435: Handle MemoryService::create_MemoryUsage_obj(MemoryUsage usage, TRAPS) { duke@435: klassOop k = Management::java_lang_management_MemoryUsage_klass(CHECK_NH); duke@435: instanceKlassHandle ik(THREAD, k); duke@435: duke@435: instanceHandle obj = ik->allocate_instance_handle(CHECK_NH); duke@435: duke@435: JavaValue result(T_VOID); duke@435: JavaCallArguments args(10); duke@435: args.push_oop(obj); // receiver duke@435: args.push_long(usage.init_size_as_jlong()); // Argument 1 duke@435: args.push_long(usage.used_as_jlong()); // Argument 2 duke@435: args.push_long(usage.committed_as_jlong()); // Argument 3 duke@435: args.push_long(usage.max_size_as_jlong()); // Argument 4 duke@435: duke@435: JavaCalls::call_special(&result, duke@435: ik, duke@435: vmSymbolHandles::object_initializer_name(), duke@435: vmSymbolHandles::long_long_long_long_void_signature(), duke@435: &args, duke@435: CHECK_NH); duke@435: return obj; duke@435: } duke@435: // duke@435: // GC manager type depends on the type of Generation. Depending the space duke@435: // availablity and vm option the gc uses major gc manager or minor gc duke@435: // manager or both. The type of gc manager depends on the generation kind. duke@435: // For DefNew, ParNew and ASParNew generation doing scavange gc uses minor duke@435: // gc manager (so _fullGC is set to false ) and for other generation kind duke@435: // DOing mark-sweep-compact uses major gc manager (so _fullGC is set duke@435: // to true). duke@435: TraceMemoryManagerStats::TraceMemoryManagerStats(Generation::Name kind) { duke@435: switch (kind) { duke@435: case Generation::DefNew: duke@435: #ifndef SERIALGC duke@435: case Generation::ParNew: duke@435: case Generation::ASParNew: duke@435: #endif // SERIALGC duke@435: _fullGC=false; duke@435: break; duke@435: case Generation::MarkSweepCompact: duke@435: #ifndef SERIALGC duke@435: case Generation::ConcurrentMarkSweep: duke@435: case Generation::ASConcurrentMarkSweep: duke@435: #endif // SERIALGC duke@435: _fullGC=true; duke@435: break; duke@435: default: duke@435: assert(false, "Unrecognized gc generation kind."); duke@435: } duke@435: MemoryService::gc_begin(_fullGC); duke@435: } duke@435: TraceMemoryManagerStats::TraceMemoryManagerStats(bool fullGC) { duke@435: _fullGC = fullGC; duke@435: MemoryService::gc_begin(_fullGC); duke@435: } duke@435: duke@435: TraceMemoryManagerStats::~TraceMemoryManagerStats() { duke@435: MemoryService::gc_end(_fullGC); duke@435: }