duke@435: /* xdono@631: * Copyright 1997-2008 Sun Microsystems, Inc. All Rights Reserved. duke@435: * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. duke@435: * duke@435: * This code is free software; you can redistribute it and/or modify it duke@435: * under the terms of the GNU General Public License version 2 only, as duke@435: * published by the Free Software Foundation. duke@435: * duke@435: * This code is distributed in the hope that it will be useful, but WITHOUT duke@435: * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or duke@435: * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License duke@435: * version 2 for more details (a copy is included in the LICENSE file that duke@435: * accompanied this code). duke@435: * duke@435: * You should have received a copy of the GNU General Public License version duke@435: * 2 along with this work; if not, write to the Free Software Foundation, duke@435: * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. duke@435: * duke@435: * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, duke@435: * CA 95054 USA or visit www.sun.com if you need additional information or duke@435: * have any questions. duke@435: * duke@435: */ duke@435: duke@435: class Compile; duke@435: class ConINode; duke@435: class ConLNode; duke@435: class Node; duke@435: class Type; duke@435: class PhaseTransform; duke@435: class PhaseGVN; duke@435: class PhaseIterGVN; duke@435: class PhaseCCP; duke@435: class PhasePeephole; duke@435: class PhaseRegAlloc; duke@435: duke@435: duke@435: //----------------------------------------------------------------------------- duke@435: // Expandable closed hash-table of nodes, initialized to NULL. duke@435: // Note that the constructor just zeros things duke@435: // Storage is reclaimed when the Arena's lifetime is over. duke@435: class NodeHash : public StackObj { duke@435: protected: duke@435: Arena *_a; // Arena to allocate in duke@435: uint _max; // Size of table (power of 2) duke@435: uint _inserts; // For grow and debug, count of hash_inserts duke@435: uint _insert_limit; // 'grow' when _inserts reaches _insert_limit duke@435: Node **_table; // Hash table of Node pointers duke@435: Node *_sentinel; // Replaces deleted entries in hash table duke@435: duke@435: public: duke@435: NodeHash(uint est_max_size); duke@435: NodeHash(Arena *arena, uint est_max_size); duke@435: NodeHash(NodeHash *use_this_state); duke@435: #ifdef ASSERT duke@435: ~NodeHash(); // Unlock all nodes upon destruction of table. duke@435: void operator=(const NodeHash&); // Unlock all nodes upon replacement of table. duke@435: #endif duke@435: Node *hash_find(const Node*);// Find an equivalent version in hash table duke@435: Node *hash_find_insert(Node*);// If not in table insert else return found node duke@435: void hash_insert(Node*); // Insert into hash table duke@435: bool hash_delete(const Node*);// Replace with _sentinel in hash table duke@435: void check_grow() { duke@435: _inserts++; duke@435: if( _inserts == _insert_limit ) { grow(); } duke@435: assert( _inserts <= _insert_limit, "hash table overflow"); duke@435: assert( _inserts < _max, "hash table overflow" ); duke@435: } duke@435: static uint round_up(uint); // Round up to nearest power of 2 duke@435: void grow(); // Grow _table to next power of 2 and rehash duke@435: // Return 75% of _max, rounded up. duke@435: uint insert_limit() const { return _max - (_max>>2); } duke@435: duke@435: void clear(); // Set all entries to NULL, keep storage. duke@435: // Size of hash table duke@435: uint size() const { return _max; } duke@435: // Return Node* at index in table duke@435: Node *at(uint table_index) { duke@435: assert(table_index < _max, "Must be within table"); duke@435: return _table[table_index]; duke@435: } duke@435: duke@435: void remove_useless_nodes(VectorSet &useful); // replace with sentinel duke@435: duke@435: Node *sentinel() { return _sentinel; } duke@435: duke@435: #ifndef PRODUCT duke@435: Node *find_index(uint idx); // For debugging duke@435: void dump(); // For debugging, dump statistics duke@435: #endif duke@435: uint _grows; // For debugging, count of table grow()s duke@435: uint _look_probes; // For debugging, count of hash probes duke@435: uint _lookup_hits; // For debugging, count of hash_finds duke@435: uint _lookup_misses; // For debugging, count of hash_finds duke@435: uint _insert_probes; // For debugging, count of hash probes duke@435: uint _delete_probes; // For debugging, count of hash probes for deletes duke@435: uint _delete_hits; // For debugging, count of hash probes for deletes duke@435: uint _delete_misses; // For debugging, count of hash probes for deletes duke@435: uint _total_inserts; // For debugging, total inserts into hash table duke@435: uint _total_insert_probes; // For debugging, total probes while inserting duke@435: }; duke@435: duke@435: duke@435: //----------------------------------------------------------------------------- duke@435: // Map dense integer indices to Types. Uses classic doubling-array trick. duke@435: // Abstractly provides an infinite array of Type*'s, initialized to NULL. duke@435: // Note that the constructor just zeros things, and since I use Arena duke@435: // allocation I do not need a destructor to reclaim storage. duke@435: // Despite the general name, this class is customized for use by PhaseTransform. duke@435: class Type_Array : public StackObj { duke@435: Arena *_a; // Arena to allocate in duke@435: uint _max; duke@435: const Type **_types; duke@435: void grow( uint i ); // Grow array node to fit duke@435: const Type *operator[] ( uint i ) const // Lookup, or NULL for not mapped duke@435: { return (i<_max) ? _types[i] : (Type*)NULL; } duke@435: friend class PhaseTransform; duke@435: public: duke@435: Type_Array(Arena *a) : _a(a), _max(0), _types(0) {} duke@435: Type_Array(Type_Array *ta) : _a(ta->_a), _max(ta->_max), _types(ta->_types) { } duke@435: const Type *fast_lookup(uint i) const{assert(i<_max,"oob");return _types[i];} duke@435: // Extend the mapping: index i maps to Type *n. duke@435: void map( uint i, const Type *n ) { if( i>=_max ) grow(i); _types[i] = n; } duke@435: uint Size() const { return _max; } duke@435: #ifndef PRODUCT duke@435: void dump() const; duke@435: #endif duke@435: }; duke@435: duke@435: duke@435: //------------------------------PhaseRemoveUseless----------------------------- duke@435: // Remove useless nodes from GVN hash-table, worklist, and graph duke@435: class PhaseRemoveUseless : public Phase { duke@435: protected: duke@435: Unique_Node_List _useful; // Nodes reachable from root duke@435: // list is allocated from current resource area duke@435: public: duke@435: PhaseRemoveUseless( PhaseGVN *gvn, Unique_Node_List *worklist ); duke@435: duke@435: Unique_Node_List *get_useful() { return &_useful; } duke@435: }; duke@435: duke@435: duke@435: //------------------------------PhaseTransform--------------------------------- duke@435: // Phases that analyze, then transform. Constructing the Phase object does any duke@435: // global or slow analysis. The results are cached later for a fast duke@435: // transformation pass. When the Phase object is deleted the cached analysis duke@435: // results are deleted. duke@435: class PhaseTransform : public Phase { duke@435: protected: duke@435: Arena* _arena; duke@435: Node_Array _nodes; // Map old node indices to new nodes. duke@435: Type_Array _types; // Map old node indices to Types. duke@435: duke@435: // ConNode caches: duke@435: enum { _icon_min = -1 * HeapWordSize, duke@435: _icon_max = 16 * HeapWordSize, duke@435: _lcon_min = _icon_min, duke@435: _lcon_max = _icon_max, duke@435: _zcon_max = (uint)T_CONFLICT duke@435: }; duke@435: ConINode* _icons[_icon_max - _icon_min + 1]; // cached jint constant nodes duke@435: ConLNode* _lcons[_lcon_max - _lcon_min + 1]; // cached jlong constant nodes duke@435: ConNode* _zcons[_zcon_max + 1]; // cached is_zero_type nodes duke@435: void init_con_caches(); duke@435: duke@435: // Support both int and long caches because either might be an intptr_t, duke@435: // so they show up frequently in address computations. duke@435: duke@435: public: duke@435: PhaseTransform( PhaseNumber pnum ); duke@435: PhaseTransform( Arena *arena, PhaseNumber pnum ); duke@435: PhaseTransform( PhaseTransform *phase, PhaseNumber pnum ); duke@435: duke@435: Arena* arena() { return _arena; } duke@435: Type_Array& types() { return _types; } duke@435: // _nodes is used in varying ways by subclasses, which define local accessors duke@435: duke@435: public: duke@435: // Get a previously recorded type for the node n. duke@435: // This type must already have been recorded. duke@435: // If you want the type of a very new (untransformed) node, duke@435: // you must use type_or_null, and test the result for NULL. duke@435: const Type* type(const Node* n) const { duke@435: const Type* t = _types.fast_lookup(n->_idx); duke@435: assert(t != NULL, "must set before get"); duke@435: return t; duke@435: } duke@435: // Get a previously recorded type for the node n, duke@435: // or else return NULL if there is none. duke@435: const Type* type_or_null(const Node* n) const { duke@435: return _types.fast_lookup(n->_idx); duke@435: } duke@435: // Record a type for a node. duke@435: void set_type(const Node* n, const Type *t) { duke@435: assert(t != NULL, "type must not be null"); duke@435: _types.map(n->_idx, t); duke@435: } duke@435: // Record an initial type for a node, the node's bottom type. duke@435: void set_type_bottom(const Node* n) { duke@435: // Use this for initialization when bottom_type() (or better) is not handy. duke@435: // Usually the initialization shoudl be to n->Value(this) instead, duke@435: // or a hand-optimized value like Type::MEMORY or Type::CONTROL. duke@435: assert(_types[n->_idx] == NULL, "must set the initial type just once"); duke@435: _types.map(n->_idx, n->bottom_type()); duke@435: } duke@435: // Make sure the types array is big enough to record a size for the node n. duke@435: // (In product builds, we never want to do range checks on the types array!) duke@435: void ensure_type_or_null(const Node* n) { duke@435: if (n->_idx >= _types.Size()) duke@435: _types.map(n->_idx, NULL); // Grow the types array as needed. duke@435: } duke@435: duke@435: // Utility functions: duke@435: const TypeInt* find_int_type( Node* n); duke@435: const TypeLong* find_long_type(Node* n); duke@435: jint find_int_con( Node* n, jint value_if_unknown) { duke@435: const TypeInt* t = find_int_type(n); duke@435: return (t != NULL && t->is_con()) ? t->get_con() : value_if_unknown; duke@435: } duke@435: jlong find_long_con(Node* n, jlong value_if_unknown) { duke@435: const TypeLong* t = find_long_type(n); duke@435: return (t != NULL && t->is_con()) ? t->get_con() : value_if_unknown; duke@435: } duke@435: duke@435: // Make an idealized constant, i.e., one of ConINode, ConPNode, ConFNode, etc. duke@435: // Same as transform(ConNode::make(t)). duke@435: ConNode* makecon(const Type* t); duke@435: virtual ConNode* uncached_makecon(const Type* t) // override in PhaseValues duke@435: { ShouldNotCallThis(); return NULL; } duke@435: duke@435: // Fast int or long constant. Same as TypeInt::make(i) or TypeLong::make(l). duke@435: ConINode* intcon(jint i); duke@435: ConLNode* longcon(jlong l); duke@435: duke@435: // Fast zero or null constant. Same as makecon(Type::get_zero_type(bt)). duke@435: ConNode* zerocon(BasicType bt); duke@435: duke@435: // Return a node which computes the same function as this node, but duke@435: // in a faster or cheaper fashion. duke@435: virtual Node *transform( Node *n ) = 0; duke@435: duke@435: // Return whether two Nodes are equivalent. duke@435: // Must not be recursive, since the recursive version is built from this. duke@435: // For pessimistic optimizations this is simply pointer equivalence. duke@435: bool eqv(const Node* n1, const Node* n2) const { return n1 == n2; } duke@435: duke@435: // Return whether two Nodes are equivalent, after stripping casting. duke@435: bool eqv_uncast(const Node* n1, const Node* n2) const { duke@435: return eqv(n1->uncast(), n2->uncast()); duke@435: } duke@435: duke@435: // For pessimistic passes, the return type must monotonically narrow. duke@435: // For optimistic passes, the return type must monotonically widen. duke@435: // It is possible to get into a "death march" in either type of pass, duke@435: // where the types are continually moving but it will take 2**31 or duke@435: // more steps to converge. This doesn't happen on most normal loops. duke@435: // duke@435: // Here is an example of a deadly loop for an optimistic pass, along duke@435: // with a partial trace of inferred types: duke@435: // x = phi(0,x'); L: x' = x+1; if (x' >= 0) goto L; duke@435: // 0 1 join([0..max], 1) duke@435: // [0..1] [1..2] join([0..max], [1..2]) duke@435: // [0..2] [1..3] join([0..max], [1..3]) duke@435: // ... ... ... duke@435: // [0..max] [min]u[1..max] join([0..max], [min..max]) duke@435: // [0..max] ==> fixpoint duke@435: // We would have proven, the hard way, that the iteration space is all duke@435: // non-negative ints, with the loop terminating due to 32-bit overflow. duke@435: // duke@435: // Here is the corresponding example for a pessimistic pass: duke@435: // x = phi(0,x'); L: x' = x-1; if (x' >= 0) goto L; duke@435: // int int join([0..max], int) duke@435: // [0..max] [-1..max-1] join([0..max], [-1..max-1]) duke@435: // [0..max-1] [-1..max-2] join([0..max], [-1..max-2]) duke@435: // ... ... ... duke@435: // [0..1] [-1..0] join([0..max], [-1..0]) duke@435: // 0 -1 join([0..max], -1) duke@435: // 0 == fixpoint duke@435: // We would have proven, the hard way, that the iteration space is {0}. duke@435: // (Usually, other optimizations will make the "if (x >= 0)" fold up duke@435: // before we get into trouble. But not always.) duke@435: // duke@435: // It's a pleasant thing to observe that the pessimistic pass duke@435: // will make short work of the optimistic pass's deadly loop, duke@435: // and vice versa. That is a good example of the complementary duke@435: // purposes of the CCP (optimistic) vs. GVN (pessimistic) phases. duke@435: // duke@435: // In any case, only widen or narrow a few times before going to the duke@435: // correct flavor of top or bottom. duke@435: // duke@435: // This call only needs to be made once as the data flows around any duke@435: // given cycle. We do it at Phis, and nowhere else. duke@435: // The types presented are the new type of a phi (computed by PhiNode::Value) duke@435: // and the previously computed type, last time the phi was visited. duke@435: // duke@435: // The third argument is upper limit for the saturated value, duke@435: // if the phase wishes to widen the new_type. duke@435: // If the phase is narrowing, the old type provides a lower limit. duke@435: // Caller guarantees that old_type and new_type are no higher than limit_type. duke@435: virtual const Type* saturate(const Type* new_type, const Type* old_type, duke@435: const Type* limit_type) const duke@435: { ShouldNotCallThis(); return NULL; } duke@435: duke@435: #ifndef PRODUCT duke@435: void dump_old2new_map() const; duke@435: void dump_new( uint new_lidx ) const; duke@435: void dump_types() const; duke@435: void dump_nodes_and_types(const Node *root, uint depth, bool only_ctrl = true); duke@435: void dump_nodes_and_types_recur( const Node *n, uint depth, bool only_ctrl, VectorSet &visited); duke@435: duke@435: uint _count_progress; // For profiling, count transforms that make progress duke@435: void set_progress() { ++_count_progress; assert( allow_progress(),"No progress allowed during verification") } duke@435: void clear_progress() { _count_progress = 0; } duke@435: uint made_progress() const { return _count_progress; } duke@435: duke@435: uint _count_transforms; // For profiling, count transforms performed duke@435: void set_transforms() { ++_count_transforms; } duke@435: void clear_transforms() { _count_transforms = 0; } duke@435: uint made_transforms() const{ return _count_transforms; } duke@435: duke@435: bool _allow_progress; // progress not allowed during verification pass duke@435: void set_allow_progress(bool allow) { _allow_progress = allow; } duke@435: bool allow_progress() { return _allow_progress; } duke@435: #endif duke@435: }; duke@435: duke@435: //------------------------------PhaseValues------------------------------------ duke@435: // Phase infrastructure to support values duke@435: class PhaseValues : public PhaseTransform { duke@435: protected: duke@435: NodeHash _table; // Hash table for value-numbering duke@435: duke@435: public: duke@435: PhaseValues( Arena *arena, uint est_max_size ); duke@435: PhaseValues( PhaseValues *pt ); duke@435: PhaseValues( PhaseValues *ptv, const char *dummy ); duke@435: NOT_PRODUCT( ~PhaseValues(); ) duke@435: virtual PhaseIterGVN *is_IterGVN() { return 0; } duke@435: duke@435: // Some Ideal and other transforms delete --> modify --> insert values duke@435: bool hash_delete(Node *n) { return _table.hash_delete(n); } duke@435: void hash_insert(Node *n) { _table.hash_insert(n); } duke@435: Node *hash_find_insert(Node *n){ return _table.hash_find_insert(n); } duke@435: Node *hash_find(const Node *n) { return _table.hash_find(n); } duke@435: duke@435: // Used after parsing to eliminate values that are no longer in program duke@435: void remove_useless_nodes(VectorSet &useful) { _table.remove_useless_nodes(useful); } duke@435: duke@435: virtual ConNode* uncached_makecon(const Type* t); // override from PhaseTransform duke@435: duke@435: virtual const Type* saturate(const Type* new_type, const Type* old_type, duke@435: const Type* limit_type) const duke@435: { return new_type; } duke@435: duke@435: #ifndef PRODUCT duke@435: uint _count_new_values; // For profiling, count new values produced duke@435: void inc_new_values() { ++_count_new_values; } duke@435: void clear_new_values() { _count_new_values = 0; } duke@435: uint made_new_values() const { return _count_new_values; } duke@435: #endif duke@435: }; duke@435: duke@435: duke@435: //------------------------------PhaseGVN--------------------------------------- duke@435: // Phase for performing local, pessimistic GVN-style optimizations. duke@435: class PhaseGVN : public PhaseValues { duke@435: public: duke@435: PhaseGVN( Arena *arena, uint est_max_size ) : PhaseValues( arena, est_max_size ) {} duke@435: PhaseGVN( PhaseGVN *gvn ) : PhaseValues( gvn ) {} duke@435: PhaseGVN( PhaseGVN *gvn, const char *dummy ) : PhaseValues( gvn, dummy ) {} duke@435: duke@435: // Return a node which computes the same function as this node, but duke@435: // in a faster or cheaper fashion. duke@435: Node *transform( Node *n ); duke@435: Node *transform_no_reclaim( Node *n ); duke@435: duke@435: // Check for a simple dead loop when a data node references itself. duke@435: DEBUG_ONLY(void dead_loop_check(Node *n);) duke@435: }; duke@435: duke@435: //------------------------------PhaseIterGVN----------------------------------- duke@435: // Phase for iteratively performing local, pessimistic GVN-style optimizations. duke@435: // and ideal transformations on the graph. duke@435: class PhaseIterGVN : public PhaseGVN { coleenp@548: private: coleenp@548: bool _delay_transform; // When true simply register the node when calling transform coleenp@548: // instead of actually optimizing it coleenp@548: duke@435: // Idealize old Node 'n' with respect to its inputs and its value duke@435: virtual Node *transform_old( Node *a_node ); duke@435: protected: duke@435: duke@435: // Idealize new Node 'n' with respect to its inputs and its value duke@435: virtual Node *transform( Node *a_node ); duke@435: duke@435: // Warm up hash table, type table and initial worklist duke@435: void init_worklist( Node *a_root ); duke@435: duke@435: virtual const Type* saturate(const Type* new_type, const Type* old_type, duke@435: const Type* limit_type) const; duke@435: // Usually returns new_type. Returns old_type if new_type is only a slight duke@435: // improvement, such that it would take many (>>10) steps to reach 2**32. duke@435: duke@435: public: duke@435: PhaseIterGVN( PhaseIterGVN *igvn ); // Used by CCP constructor duke@435: PhaseIterGVN( PhaseGVN *gvn ); // Used after Parser duke@435: PhaseIterGVN( PhaseIterGVN *igvn, const char *dummy ); // Used after +VerifyOpto duke@435: duke@435: virtual PhaseIterGVN *is_IterGVN() { return this; } duke@435: duke@435: Unique_Node_List _worklist; // Iterative worklist duke@435: duke@435: // Given def-use info and an initial worklist, apply Node::Ideal, duke@435: // Node::Value, Node::Identity, hash-based value numbering, Node::Ideal_DU duke@435: // and dominator info to a fixed point. duke@435: void optimize(); duke@435: duke@435: // Register a new node with the iter GVN pass without transforming it. duke@435: // Used when we need to restructure a Region/Phi area and all the Regions duke@435: // and Phis need to complete this one big transform before any other duke@435: // transforms can be triggered on the region. duke@435: // Optional 'orig' is an earlier version of this node. duke@435: // It is significant only for debugging and profiling. duke@435: Node* register_new_node_with_optimizer(Node* n, Node* orig = NULL); duke@435: duke@435: // Kill a globally dead Node. It is allowed to have uses which are duke@435: // assumed dead and left 'in limbo'. duke@435: void remove_globally_dead_node( Node *dead ); duke@435: duke@435: // Kill all inputs to a dead node, recursively making more dead nodes. duke@435: // The Node must be dead locally, i.e., have no uses. duke@435: void remove_dead_node( Node *dead ) { duke@435: assert(dead->outcnt() == 0 && !dead->is_top(), "node must be dead"); duke@435: remove_globally_dead_node(dead); duke@435: } duke@435: duke@435: // Subsume users of node 'old' into node 'nn' duke@435: // If no Def-Use info existed for 'nn' it will after call. duke@435: void subsume_node( Node *old, Node *nn ); duke@435: duke@435: // Add users of 'n' to worklist duke@435: void add_users_to_worklist0( Node *n ); duke@435: void add_users_to_worklist ( Node *n ); duke@435: kvn@508: // Replace old node with new one. kvn@508: void replace_node( Node *old, Node *nn ) { kvn@508: add_users_to_worklist(old); kvn@508: hash_delete(old); kvn@508: subsume_node(old, nn); kvn@508: } kvn@508: coleenp@548: void set_delay_transform(bool delay) { coleenp@548: _delay_transform = delay; coleenp@548: } coleenp@548: duke@435: #ifndef PRODUCT duke@435: protected: duke@435: // Sub-quadratic implementation of VerifyIterativeGVN. duke@435: unsigned long _verify_counter; duke@435: unsigned long _verify_full_passes; duke@435: enum { _verify_window_size = 30 }; duke@435: Node* _verify_window[_verify_window_size]; duke@435: void verify_step(Node* n); duke@435: #endif duke@435: }; duke@435: duke@435: //------------------------------PhaseCCP--------------------------------------- duke@435: // Phase for performing global Conditional Constant Propagation. duke@435: // Should be replaced with combined CCP & GVN someday. duke@435: class PhaseCCP : public PhaseIterGVN { duke@435: // Non-recursive. Use analysis to transform single Node. duke@435: virtual Node *transform_once( Node *n ); duke@435: duke@435: public: duke@435: PhaseCCP( PhaseIterGVN *igvn ); // Compute conditional constants duke@435: NOT_PRODUCT( ~PhaseCCP(); ) duke@435: duke@435: // Worklist algorithm identifies constants duke@435: void analyze(); duke@435: // Recursive traversal of program. Used analysis to modify program. duke@435: virtual Node *transform( Node *n ); duke@435: // Do any transformation after analysis duke@435: void do_transform(); duke@435: duke@435: virtual const Type* saturate(const Type* new_type, const Type* old_type, duke@435: const Type* limit_type) const; duke@435: // Returns new_type->widen(old_type), which increments the widen bits until duke@435: // giving up with TypeInt::INT or TypeLong::LONG. duke@435: // Result is clipped to limit_type if necessary. duke@435: duke@435: #ifndef PRODUCT duke@435: static uint _total_invokes; // For profiling, count invocations duke@435: void inc_invokes() { ++PhaseCCP::_total_invokes; } duke@435: duke@435: static uint _total_constants; // For profiling, count constants found duke@435: uint _count_constants; duke@435: void clear_constants() { _count_constants = 0; } duke@435: void inc_constants() { ++_count_constants; } duke@435: uint count_constants() const { return _count_constants; } duke@435: duke@435: static void print_statistics(); duke@435: #endif duke@435: }; duke@435: duke@435: duke@435: //------------------------------PhasePeephole---------------------------------- duke@435: // Phase for performing peephole optimizations on register allocated basic blocks. duke@435: class PhasePeephole : public PhaseTransform { duke@435: PhaseRegAlloc *_regalloc; duke@435: PhaseCFG &_cfg; duke@435: // Recursive traversal of program. Pure function is unused in this phase duke@435: virtual Node *transform( Node *n ); duke@435: duke@435: public: duke@435: PhasePeephole( PhaseRegAlloc *regalloc, PhaseCFG &cfg ); duke@435: NOT_PRODUCT( ~PhasePeephole(); ) duke@435: duke@435: // Do any transformation after analysis duke@435: void do_transform(); duke@435: duke@435: #ifndef PRODUCT duke@435: static uint _total_peepholes; // For profiling, count peephole rules applied duke@435: uint _count_peepholes; duke@435: void clear_peepholes() { _count_peepholes = 0; } duke@435: void inc_peepholes() { ++_count_peepholes; } duke@435: uint count_peepholes() const { return _count_peepholes; } duke@435: duke@435: static void print_statistics(); duke@435: #endif duke@435: };