iveresov@2630: /* jiangli@4936: * Copyright (c) 2010, 2013, Oracle and/or its affiliates. All rights reserved. iveresov@2890: * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. iveresov@2890: * iveresov@2890: * This code is free software; you can redistribute it and/or modify it iveresov@2890: * under the terms of the GNU General Public License version 2 only, as iveresov@2890: * published by the Free Software Foundation. iveresov@2890: * iveresov@2890: * This code is distributed in the hope that it will be useful, but WITHOUT iveresov@2890: * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or iveresov@2890: * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License iveresov@2890: * version 2 for more details (a copy is included in the LICENSE file that iveresov@2890: * accompanied this code). iveresov@2890: * iveresov@2890: * You should have received a copy of the GNU General Public License version iveresov@2890: * 2 along with this work; if not, write to the Free Software Foundation, iveresov@2890: * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. iveresov@2890: * iveresov@2890: * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA iveresov@2890: * or visit www.oracle.com if you need additional information or have any iveresov@2890: * questions. iveresov@2890: * iveresov@2890: */ iveresov@2630: iveresov@2630: #include "precompiled.hpp" iveresov@2630: #include "runtime/advancedThresholdPolicy.hpp" iveresov@2630: #include "runtime/simpleThresholdPolicy.inline.hpp" iveresov@2630: iveresov@2630: #ifdef TIERED iveresov@2630: // Print an event. iveresov@2630: void AdvancedThresholdPolicy::print_specific(EventType type, methodHandle mh, methodHandle imh, iveresov@2630: int bci, CompLevel level) { twisti@4111: tty->print(" rate="); iveresov@2630: if (mh->prev_time() == 0) tty->print("n/a"); iveresov@2630: else tty->print("%f", mh->rate()); iveresov@2630: twisti@4111: tty->print(" k=%.2lf,%.2lf", threshold_scale(CompLevel_full_profile, Tier3LoadFeedback), twisti@4111: threshold_scale(CompLevel_full_optimization, Tier4LoadFeedback)); iveresov@2630: iveresov@2630: } iveresov@2630: iveresov@2630: void AdvancedThresholdPolicy::initialize() { iveresov@2630: // Turn on ergonomic compiler count selection iveresov@2630: if (FLAG_IS_DEFAULT(CICompilerCountPerCPU) && FLAG_IS_DEFAULT(CICompilerCount)) { iveresov@2630: FLAG_SET_DEFAULT(CICompilerCountPerCPU, true); iveresov@2630: } iveresov@2630: int count = CICompilerCount; iveresov@2630: if (CICompilerCountPerCPU) { iveresov@2630: // Simple log n seems to grow too slowly for tiered, try something faster: log n * log log n iveresov@2630: int log_cpu = log2_intptr(os::active_processor_count()); iveresov@2630: int loglog_cpu = log2_intptr(MAX2(log_cpu, 1)); iveresov@2630: count = MAX2(log_cpu * loglog_cpu, 1) * 3 / 2; iveresov@2630: } iveresov@2630: iveresov@2630: set_c1_count(MAX2(count / 3, 1)); anoll@6649: set_c2_count(MAX2(count - c1_count(), 1)); anoll@6649: FLAG_SET_ERGO(intx, CICompilerCount, c1_count() + c2_count()); iveresov@2630: iveresov@2630: // Some inlining tuning iveresov@2630: #ifdef X86 iveresov@2630: if (FLAG_IS_DEFAULT(InlineSmallCode)) { iveresov@2630: FLAG_SET_DEFAULT(InlineSmallCode, 2000); iveresov@2630: } iveresov@2630: #endif iveresov@2630: iveresov@2630: #ifdef SPARC iveresov@2630: if (FLAG_IS_DEFAULT(InlineSmallCode)) { iveresov@2630: FLAG_SET_DEFAULT(InlineSmallCode, 2500); iveresov@2630: } iveresov@2630: #endif iveresov@2630: anoll@5151: set_increase_threshold_at_ratio(); iveresov@2630: set_start_time(os::javaTimeMillis()); iveresov@2630: } iveresov@2630: iveresov@2630: // update_rate() is called from select_task() while holding a compile queue lock. coleenp@4037: void AdvancedThresholdPolicy::update_rate(jlong t, Method* m) { vlivanov@7179: // Skip update if counters are absent. vlivanov@7179: // Can't allocate them since we are holding compile queue lock. vlivanov@7179: if (m->method_counters() == NULL) return; vlivanov@7179: iveresov@2630: if (is_old(m)) { iveresov@2630: // We don't remove old methods from the queue, iveresov@2630: // so we can just zero the rate. vlivanov@7179: m->set_rate(0); iveresov@2630: return; iveresov@2630: } iveresov@2630: iveresov@2630: // We don't update the rate if we've just came out of a safepoint. iveresov@2630: // delta_s is the time since last safepoint in milliseconds. iveresov@2630: jlong delta_s = t - SafepointSynchronize::end_of_last_safepoint(); iveresov@2630: jlong delta_t = t - (m->prev_time() != 0 ? m->prev_time() : start_time()); // milliseconds since the last measurement iveresov@2630: // How many events were there since the last time? iveresov@2630: int event_count = m->invocation_count() + m->backedge_count(); iveresov@2630: int delta_e = event_count - m->prev_event_count(); iveresov@2630: iveresov@2630: // We should be running for at least 1ms. iveresov@2630: if (delta_s >= TieredRateUpdateMinTime) { iveresov@2630: // And we must've taken the previous point at least 1ms before. iveresov@2630: if (delta_t >= TieredRateUpdateMinTime && delta_e > 0) { vlivanov@7179: m->set_prev_time(t); vlivanov@7179: m->set_prev_event_count(event_count); vlivanov@7179: m->set_rate((float)delta_e / (float)delta_t); // Rate is events per millisecond vlivanov@7179: } else { iveresov@2630: if (delta_t > TieredRateUpdateMaxTime && delta_e == 0) { iveresov@2630: // If nothing happened for 25ms, zero the rate. Don't modify prev values. vlivanov@7179: m->set_rate(0); iveresov@2630: } vlivanov@7179: } iveresov@2630: } iveresov@2630: } iveresov@2630: iveresov@2630: // Check if this method has been stale from a given number of milliseconds. iveresov@2630: // See select_task(). coleenp@4037: bool AdvancedThresholdPolicy::is_stale(jlong t, jlong timeout, Method* m) { iveresov@2630: jlong delta_s = t - SafepointSynchronize::end_of_last_safepoint(); iveresov@2630: jlong delta_t = t - m->prev_time(); iveresov@2630: if (delta_t > timeout && delta_s > timeout) { iveresov@2630: int event_count = m->invocation_count() + m->backedge_count(); iveresov@2630: int delta_e = event_count - m->prev_event_count(); iveresov@2630: // Return true if there were no events. iveresov@2630: return delta_e == 0; iveresov@2630: } iveresov@2630: return false; iveresov@2630: } iveresov@2630: iveresov@2630: // We don't remove old methods from the compile queue even if they have iveresov@2630: // very low activity. See select_task(). coleenp@4037: bool AdvancedThresholdPolicy::is_old(Method* method) { iveresov@2630: return method->invocation_count() > 50000 || method->backedge_count() > 500000; iveresov@2630: } iveresov@2630: coleenp@4037: double AdvancedThresholdPolicy::weight(Method* method) { iveresov@2630: return (method->rate() + 1) * ((method->invocation_count() + 1) * (method->backedge_count() + 1)); iveresov@2630: } iveresov@2630: iveresov@2630: // Apply heuristics and return true if x should be compiled before y coleenp@4037: bool AdvancedThresholdPolicy::compare_methods(Method* x, Method* y) { iveresov@2630: if (x->highest_comp_level() > y->highest_comp_level()) { iveresov@2630: // recompilation after deopt iveresov@2630: return true; iveresov@2630: } else iveresov@2630: if (x->highest_comp_level() == y->highest_comp_level()) { iveresov@2630: if (weight(x) > weight(y)) { iveresov@2630: return true; iveresov@2630: } iveresov@2630: } iveresov@2630: return false; iveresov@2630: } iveresov@2630: iveresov@2630: // Is method profiled enough? coleenp@4037: bool AdvancedThresholdPolicy::is_method_profiled(Method* method) { coleenp@4037: MethodData* mdo = method->method_data(); iveresov@2630: if (mdo != NULL) { iveresov@2630: int i = mdo->invocation_count_delta(); iveresov@2630: int b = mdo->backedge_count_delta(); iveresov@2630: return call_predicate_helper(i, b, 1); iveresov@2630: } iveresov@2630: return false; iveresov@2630: } iveresov@2630: iveresov@2630: // Called with the queue locked and with at least one element iveresov@2630: CompileTask* AdvancedThresholdPolicy::select_task(CompileQueue* compile_queue) { iveresov@2630: CompileTask *max_task = NULL; coleenp@4142: Method* max_method = NULL; iveresov@2630: jlong t = os::javaTimeMillis(); iveresov@2630: // Iterate through the queue and find a method with a maximum rate. iveresov@2630: for (CompileTask* task = compile_queue->first(); task != NULL;) { iveresov@2630: CompileTask* next_task = task->next(); coleenp@4037: Method* method = task->method(); coleenp@4037: update_rate(t, method); iveresov@2630: if (max_task == NULL) { iveresov@2630: max_task = task; iveresov@2630: max_method = method; iveresov@2630: } else { iveresov@2630: // If a method has been stale for some time, remove it from the queue. coleenp@4037: if (is_stale(t, TieredCompileTaskTimeout, method) && !is_old(method)) { iveresov@2630: if (PrintTieredEvents) { iveresov@2988: print_event(REMOVE_FROM_QUEUE, method, method, task->osr_bci(), (CompLevel)task->comp_level()); iveresov@2630: } vlivanov@7179: compile_queue->remove_and_mark_stale(task); iveresov@2630: method->clear_queued_for_compilation(); iveresov@2630: task = next_task; iveresov@2630: continue; iveresov@2630: } iveresov@2630: iveresov@2630: // Select a method with a higher rate coleenp@4037: if (compare_methods(method, max_method)) { iveresov@2630: max_task = task; iveresov@2630: max_method = method; iveresov@2630: } iveresov@2630: } iveresov@2630: task = next_task; iveresov@2630: } iveresov@2630: iveresov@3035: if (max_task->comp_level() == CompLevel_full_profile && TieredStopAtLevel > CompLevel_full_profile coleenp@4037: && is_method_profiled(max_method)) { iveresov@2630: max_task->set_comp_level(CompLevel_limited_profile); iveresov@2630: if (PrintTieredEvents) { iveresov@2988: print_event(UPDATE_IN_QUEUE, max_method, max_method, max_task->osr_bci(), (CompLevel)max_task->comp_level()); iveresov@2630: } iveresov@2630: } iveresov@2630: iveresov@2630: return max_task; iveresov@2630: } iveresov@2630: iveresov@2630: double AdvancedThresholdPolicy::threshold_scale(CompLevel level, int feedback_k) { iveresov@2630: double queue_size = CompileBroker::queue_size(level); iveresov@2630: int comp_count = compiler_count(level); iveresov@2630: double k = queue_size / (feedback_k * comp_count) + 1; anoll@5151: anoll@5151: // Increase C1 compile threshold when the code cache is filled more anoll@5151: // than specified by IncreaseFirstTierCompileThresholdAt percentage. anoll@5151: // The main intention is to keep enough free space for C2 compiled code anoll@5151: // to achieve peak performance if the code cache is under stress. anoll@5151: if ((TieredStopAtLevel == CompLevel_full_optimization) && (level != CompLevel_full_optimization)) { anoll@5151: double current_reverse_free_ratio = CodeCache::reverse_free_ratio(); anoll@5151: if (current_reverse_free_ratio > _increase_threshold_at_ratio) { anoll@5151: k *= exp(current_reverse_free_ratio - _increase_threshold_at_ratio); anoll@5151: } anoll@5151: } iveresov@2630: return k; iveresov@2630: } iveresov@2630: iveresov@2630: // Call and loop predicates determine whether a transition to a higher iveresov@2630: // compilation level should be performed (pointers to predicate functions iveresov@2630: // are passed to common()). iveresov@2630: // Tier?LoadFeedback is basically a coefficient that determines of iveresov@2630: // how many methods per compiler thread can be in the queue before iveresov@2630: // the threshold values double. iveresov@2630: bool AdvancedThresholdPolicy::loop_predicate(int i, int b, CompLevel cur_level) { iveresov@2630: switch(cur_level) { iveresov@2630: case CompLevel_none: iveresov@2630: case CompLevel_limited_profile: { iveresov@2630: double k = threshold_scale(CompLevel_full_profile, Tier3LoadFeedback); iveresov@2630: return loop_predicate_helper(i, b, k); iveresov@2630: } iveresov@2630: case CompLevel_full_profile: { iveresov@2630: double k = threshold_scale(CompLevel_full_optimization, Tier4LoadFeedback); iveresov@2630: return loop_predicate_helper(i, b, k); iveresov@2630: } iveresov@2630: default: iveresov@2630: return true; iveresov@2630: } iveresov@2630: } iveresov@2630: iveresov@2630: bool AdvancedThresholdPolicy::call_predicate(int i, int b, CompLevel cur_level) { iveresov@2630: switch(cur_level) { iveresov@2630: case CompLevel_none: iveresov@2630: case CompLevel_limited_profile: { iveresov@2630: double k = threshold_scale(CompLevel_full_profile, Tier3LoadFeedback); iveresov@2630: return call_predicate_helper(i, b, k); iveresov@2630: } iveresov@2630: case CompLevel_full_profile: { iveresov@2630: double k = threshold_scale(CompLevel_full_optimization, Tier4LoadFeedback); iveresov@2630: return call_predicate_helper(i, b, k); iveresov@2630: } iveresov@2630: default: iveresov@2630: return true; iveresov@2630: } iveresov@2630: } iveresov@2630: iveresov@2630: // If a method is old enough and is still in the interpreter we would want to iveresov@2630: // start profiling without waiting for the compiled method to arrive. iveresov@2630: // We also take the load on compilers into the account. coleenp@4037: bool AdvancedThresholdPolicy::should_create_mdo(Method* method, CompLevel cur_level) { iveresov@2630: if (cur_level == CompLevel_none && iveresov@2630: CompileBroker::queue_size(CompLevel_full_optimization) <= iveresov@2630: Tier3DelayOn * compiler_count(CompLevel_full_optimization)) { iveresov@2630: int i = method->invocation_count(); iveresov@2630: int b = method->backedge_count(); iveresov@2630: double k = Tier0ProfilingStartPercentage / 100.0; iveresov@2630: return call_predicate_helper(i, b, k) || loop_predicate_helper(i, b, k); iveresov@2630: } iveresov@2630: return false; iveresov@2630: } iveresov@2630: iveresov@2988: // Inlining control: if we're compiling a profiled method with C1 and the callee iveresov@2988: // is known to have OSRed in a C2 version, don't inline it. iveresov@2988: bool AdvancedThresholdPolicy::should_not_inline(ciEnv* env, ciMethod* callee) { iveresov@2988: CompLevel comp_level = (CompLevel)env->comp_level(); iveresov@2988: if (comp_level == CompLevel_full_profile || iveresov@2988: comp_level == CompLevel_limited_profile) { iveresov@2988: return callee->highest_osr_comp_level() == CompLevel_full_optimization; iveresov@2988: } iveresov@2988: return false; iveresov@2988: } iveresov@2988: iveresov@2630: // Create MDO if necessary. iveresov@3452: void AdvancedThresholdPolicy::create_mdo(methodHandle mh, JavaThread* THREAD) { iveresov@2630: if (mh->is_native() || mh->is_abstract() || mh->is_accessor()) return; iveresov@2630: if (mh->method_data() == NULL) { coleenp@4037: Method::build_interpreter_method_data(mh, CHECK_AND_CLEAR); iveresov@2630: } iveresov@2630: } iveresov@2630: iveresov@2630: iveresov@2630: /* iveresov@2630: * Method states: iveresov@2630: * 0 - interpreter (CompLevel_none) iveresov@2630: * 1 - pure C1 (CompLevel_simple) iveresov@2630: * 2 - C1 with invocation and backedge counting (CompLevel_limited_profile) iveresov@2630: * 3 - C1 with full profiling (CompLevel_full_profile) iveresov@2630: * 4 - C2 (CompLevel_full_optimization) iveresov@2630: * iveresov@2630: * Common state transition patterns: iveresov@2630: * a. 0 -> 3 -> 4. iveresov@2630: * The most common path. But note that even in this straightforward case iveresov@2630: * profiling can start at level 0 and finish at level 3. iveresov@2630: * iveresov@2630: * b. 0 -> 2 -> 3 -> 4. iveresov@2630: * This case occures when the load on C2 is deemed too high. So, instead of transitioning iveresov@2630: * into state 3 directly and over-profiling while a method is in the C2 queue we transition to iveresov@2630: * level 2 and wait until the load on C2 decreases. This path is disabled for OSRs. iveresov@2630: * iveresov@2630: * c. 0 -> (3->2) -> 4. iveresov@2630: * In this case we enqueue a method for compilation at level 3, but the C1 queue is long enough iveresov@2630: * to enable the profiling to fully occur at level 0. In this case we change the compilation level iveresov@2630: * of the method to 2, because it'll allow it to run much faster without full profiling while c2 iveresov@2630: * is compiling. iveresov@2630: * iveresov@2630: * d. 0 -> 3 -> 1 or 0 -> 2 -> 1. iveresov@2630: * After a method was once compiled with C1 it can be identified as trivial and be compiled to iveresov@2630: * level 1. These transition can also occur if a method can't be compiled with C2 but can with C1. iveresov@2630: * iveresov@2630: * e. 0 -> 4. iveresov@2630: * This can happen if a method fails C1 compilation (it will still be profiled in the interpreter) iveresov@2630: * or because of a deopt that didn't require reprofiling (compilation won't happen in this case because iveresov@2630: * the compiled version already exists). iveresov@2630: * iveresov@2630: * Note that since state 0 can be reached from any other state via deoptimization different loops iveresov@2630: * are possible. iveresov@2630: * iveresov@2630: */ iveresov@2630: iveresov@2630: // Common transition function. Given a predicate determines if a method should transition to another level. coleenp@4037: CompLevel AdvancedThresholdPolicy::common(Predicate p, Method* method, CompLevel cur_level, bool disable_feedback) { iveresov@2630: CompLevel next_level = cur_level; iveresov@2630: int i = method->invocation_count(); iveresov@2630: int b = method->backedge_count(); iveresov@2630: iveresov@3035: if (is_trivial(method)) { iveresov@3035: next_level = CompLevel_simple; iveresov@3035: } else { iveresov@3035: switch(cur_level) { iveresov@3035: case CompLevel_none: iveresov@3035: // If we were at full profile level, would we switch to full opt? iveresov@3035: if (common(p, method, CompLevel_full_profile, disable_feedback) == CompLevel_full_optimization) { iveresov@3035: next_level = CompLevel_full_optimization; iveresov@3035: } else if ((this->*p)(i, b, cur_level)) { iveresov@3035: // C1-generated fully profiled code is about 30% slower than the limited profile iveresov@3035: // code that has only invocation and backedge counters. The observation is that iveresov@3035: // if C2 queue is large enough we can spend too much time in the fully profiled code iveresov@3035: // while waiting for C2 to pick the method from the queue. To alleviate this problem iveresov@3035: // we introduce a feedback on the C2 queue size. If the C2 queue is sufficiently long iveresov@3035: // we choose to compile a limited profiled version and then recompile with full profiling iveresov@3035: // when the load on C2 goes down. iveresov@3035: if (!disable_feedback && CompileBroker::queue_size(CompLevel_full_optimization) > iveresov@3035: Tier3DelayOn * compiler_count(CompLevel_full_optimization)) { iveresov@3035: next_level = CompLevel_limited_profile; iveresov@2630: } else { iveresov@3035: next_level = CompLevel_full_profile; iveresov@2630: } iveresov@2630: } iveresov@3035: break; iveresov@3035: case CompLevel_limited_profile: iveresov@3035: if (is_method_profiled(method)) { iveresov@3035: // Special case: we got here because this method was fully profiled in the interpreter. iveresov@3035: next_level = CompLevel_full_optimization; iveresov@3035: } else { coleenp@4037: MethodData* mdo = method->method_data(); iveresov@3035: if (mdo != NULL) { iveresov@3035: if (mdo->would_profile()) { iveresov@3035: if (disable_feedback || (CompileBroker::queue_size(CompLevel_full_optimization) <= iveresov@3035: Tier3DelayOff * compiler_count(CompLevel_full_optimization) && iveresov@3035: (this->*p)(i, b, cur_level))) { iveresov@3035: next_level = CompLevel_full_profile; iveresov@3035: } iveresov@3035: } else { iveresov@2630: next_level = CompLevel_full_optimization; iveresov@2630: } iveresov@2630: } iveresov@2630: } iveresov@3035: break; iveresov@3035: case CompLevel_full_profile: iveresov@3035: { coleenp@4037: MethodData* mdo = method->method_data(); iveresov@3035: if (mdo != NULL) { iveresov@3035: if (mdo->would_profile()) { iveresov@3035: int mdo_i = mdo->invocation_count_delta(); iveresov@3035: int mdo_b = mdo->backedge_count_delta(); iveresov@3035: if ((this->*p)(mdo_i, mdo_b, cur_level)) { iveresov@3035: next_level = CompLevel_full_optimization; iveresov@3035: } iveresov@3035: } else { iveresov@3035: next_level = CompLevel_full_optimization; iveresov@3035: } iveresov@3035: } iveresov@3035: } iveresov@3035: break; iveresov@2630: } iveresov@2630: } iveresov@3035: return MIN2(next_level, (CompLevel)TieredStopAtLevel); iveresov@2630: } iveresov@2630: iveresov@2630: // Determine if a method should be compiled with a normal entry point at a different level. coleenp@4037: CompLevel AdvancedThresholdPolicy::call_event(Method* method, CompLevel cur_level) { iveresov@2987: CompLevel osr_level = MIN2((CompLevel) method->highest_osr_comp_level(), iveresov@3035: common(&AdvancedThresholdPolicy::loop_predicate, method, cur_level, true)); iveresov@2630: CompLevel next_level = common(&AdvancedThresholdPolicy::call_predicate, method, cur_level); iveresov@2630: iveresov@2630: // If OSR method level is greater than the regular method level, the levels should be iveresov@2630: // equalized by raising the regular method level in order to avoid OSRs during each iveresov@2630: // invocation of the method. iveresov@2630: if (osr_level == CompLevel_full_optimization && cur_level == CompLevel_full_profile) { coleenp@4037: MethodData* mdo = method->method_data(); iveresov@2630: guarantee(mdo != NULL, "MDO should not be NULL"); iveresov@2630: if (mdo->invocation_count() >= 1) { iveresov@2630: next_level = CompLevel_full_optimization; iveresov@2630: } iveresov@2630: } else { iveresov@2630: next_level = MAX2(osr_level, next_level); iveresov@2630: } iveresov@2630: return next_level; iveresov@2630: } iveresov@2630: iveresov@2630: // Determine if we should do an OSR compilation of a given method. coleenp@4037: CompLevel AdvancedThresholdPolicy::loop_event(Method* method, CompLevel cur_level) { iveresov@3035: CompLevel next_level = common(&AdvancedThresholdPolicy::loop_predicate, method, cur_level, true); iveresov@2630: if (cur_level == CompLevel_none) { iveresov@2630: // If there is a live OSR method that means that we deopted to the interpreter iveresov@2630: // for the transition. iveresov@2987: CompLevel osr_level = MIN2((CompLevel)method->highest_osr_comp_level(), next_level); iveresov@2630: if (osr_level > CompLevel_none) { iveresov@2630: return osr_level; iveresov@2630: } iveresov@2630: } iveresov@2987: return next_level; iveresov@2630: } iveresov@2630: iveresov@2630: // Update the rate and submit compile iveresov@3452: void AdvancedThresholdPolicy::submit_compile(methodHandle mh, int bci, CompLevel level, JavaThread* thread) { iveresov@2630: int hot_count = (bci == InvocationEntryBci) ? mh->invocation_count() : mh->backedge_count(); iveresov@2630: update_rate(os::javaTimeMillis(), mh()); iveresov@3452: CompileBroker::compile_method(mh, bci, level, mh, hot_count, "tiered", thread); iveresov@2630: } iveresov@2630: iveresov@2630: // Handle the invocation event. iveresov@2630: void AdvancedThresholdPolicy::method_invocation_event(methodHandle mh, methodHandle imh, iveresov@3452: CompLevel level, nmethod* nm, JavaThread* thread) { iveresov@2630: if (should_create_mdo(mh(), level)) { iveresov@3452: create_mdo(mh, thread); iveresov@2630: } iveresov@2630: if (is_compilation_enabled() && !CompileBroker::compilation_is_in_queue(mh, InvocationEntryBci)) { iveresov@2630: CompLevel next_level = call_event(mh(), level); iveresov@2630: if (next_level != level) { iveresov@3452: compile(mh, InvocationEntryBci, next_level, thread); iveresov@2630: } iveresov@2630: } iveresov@2630: } iveresov@2630: iveresov@2630: // Handle the back branch event. Notice that we can compile the method iveresov@2630: // with a regular entry from here. iveresov@2630: void AdvancedThresholdPolicy::method_back_branch_event(methodHandle mh, methodHandle imh, iveresov@3452: int bci, CompLevel level, nmethod* nm, JavaThread* thread) { iveresov@2630: if (should_create_mdo(mh(), level)) { iveresov@3452: create_mdo(mh, thread); iveresov@2630: } iveresov@2988: // Check if MDO should be created for the inlined method iveresov@2988: if (should_create_mdo(imh(), level)) { iveresov@3452: create_mdo(imh, thread); iveresov@2988: } iveresov@2630: iveresov@2988: if (is_compilation_enabled()) { iveresov@2988: CompLevel next_osr_level = loop_event(imh(), level); iveresov@2988: CompLevel max_osr_level = (CompLevel)imh->highest_osr_comp_level(); iveresov@2988: // At the very least compile the OSR version iveresov@3035: if (!CompileBroker::compilation_is_in_queue(imh, bci) && next_osr_level != level) { iveresov@3452: compile(imh, bci, next_osr_level, thread); iveresov@2630: } iveresov@2630: iveresov@2988: // Use loop event as an opportunity to also check if there's been iveresov@2988: // enough calls. iveresov@2988: CompLevel cur_level, next_level; iveresov@2988: if (mh() != imh()) { // If there is an enclosing method iveresov@2988: guarantee(nm != NULL, "Should have nmethod here"); iveresov@2988: cur_level = comp_level(mh()); iveresov@2988: next_level = call_event(mh(), cur_level); iveresov@2988: iveresov@2988: if (max_osr_level == CompLevel_full_optimization) { iveresov@2988: // The inlinee OSRed to full opt, we need to modify the enclosing method to avoid deopts iveresov@2988: bool make_not_entrant = false; iveresov@2988: if (nm->is_osr_method()) { iveresov@2988: // This is an osr method, just make it not entrant and recompile later if needed iveresov@2988: make_not_entrant = true; iveresov@2988: } else { iveresov@2988: if (next_level != CompLevel_full_optimization) { iveresov@2988: // next_level is not full opt, so we need to recompile the iveresov@2988: // enclosing method without the inlinee iveresov@2988: cur_level = CompLevel_none; iveresov@2988: make_not_entrant = true; iveresov@2988: } iveresov@2988: } iveresov@2988: if (make_not_entrant) { iveresov@2988: if (PrintTieredEvents) { iveresov@2988: int osr_bci = nm->is_osr_method() ? nm->osr_entry_bci() : InvocationEntryBci; iveresov@2988: print_event(MAKE_NOT_ENTRANT, mh(), mh(), osr_bci, level); iveresov@2988: } iveresov@2988: nm->make_not_entrant(); iveresov@2988: } iveresov@2988: } iveresov@2988: if (!CompileBroker::compilation_is_in_queue(mh, InvocationEntryBci)) { iveresov@2988: // Fix up next_level if necessary to avoid deopts iveresov@2988: if (next_level == CompLevel_limited_profile && max_osr_level == CompLevel_full_profile) { iveresov@2988: next_level = CompLevel_full_profile; iveresov@2988: } iveresov@2988: if (cur_level != next_level) { iveresov@3452: compile(mh, InvocationEntryBci, next_level, thread); iveresov@2988: } iveresov@2988: } iveresov@2988: } else { iveresov@2988: cur_level = comp_level(imh()); iveresov@2988: next_level = call_event(imh(), cur_level); iveresov@2988: if (!CompileBroker::compilation_is_in_queue(imh, bci) && next_level != cur_level) { iveresov@3452: compile(imh, InvocationEntryBci, next_level, thread); iveresov@2988: } iveresov@2630: } iveresov@2630: } iveresov@2630: } iveresov@2630: iveresov@2630: #endif // TIERED