ysr@777: /* trims@1907: * Copyright (c) 2001, 2010, Oracle and/or its affiliates. All rights reserved. ysr@777: * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. ysr@777: * ysr@777: * This code is free software; you can redistribute it and/or modify it ysr@777: * under the terms of the GNU General Public License version 2 only, as ysr@777: * published by the Free Software Foundation. ysr@777: * ysr@777: * This code is distributed in the hope that it will be useful, but WITHOUT ysr@777: * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or ysr@777: * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License ysr@777: * version 2 for more details (a copy is included in the LICENSE file that ysr@777: * accompanied this code). ysr@777: * ysr@777: * You should have received a copy of the GNU General Public License version ysr@777: * 2 along with this work; if not, write to the Free Software Foundation, ysr@777: * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. ysr@777: * trims@1907: * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA trims@1907: * or visit www.oracle.com if you need additional information or have any trims@1907: * questions. ysr@777: * ysr@777: */ ysr@777: ysr@777: #include "incls/_precompiled.incl" ysr@777: #include "incls/_g1CollectedHeap.cpp.incl" ysr@777: tonyp@1377: size_t G1CollectedHeap::_humongous_object_threshold_in_words = 0; tonyp@1377: ysr@777: // turn it on so that the contents of the young list (scan-only / ysr@777: // to-be-collected) are printed at "strategic" points before / during ysr@777: // / after the collection --- this is useful for debugging johnc@1829: #define YOUNG_LIST_VERBOSE 0 ysr@777: // CURRENT STATUS ysr@777: // This file is under construction. Search for "FIXME". ysr@777: ysr@777: // INVARIANTS/NOTES ysr@777: // ysr@777: // All allocation activity covered by the G1CollectedHeap interface is ysr@777: // serialized by acquiring the HeapLock. This happens in ysr@777: // mem_allocate_work, which all such allocation functions call. ysr@777: // (Note that this does not apply to TLAB allocation, which is not part ysr@777: // of this interface: it is done by clients of this interface.) ysr@777: ysr@777: // Local to this file. ysr@777: ysr@777: class RefineCardTableEntryClosure: public CardTableEntryClosure { ysr@777: SuspendibleThreadSet* _sts; ysr@777: G1RemSet* _g1rs; ysr@777: ConcurrentG1Refine* _cg1r; ysr@777: bool _concurrent; ysr@777: public: ysr@777: RefineCardTableEntryClosure(SuspendibleThreadSet* sts, ysr@777: G1RemSet* g1rs, ysr@777: ConcurrentG1Refine* cg1r) : ysr@777: _sts(sts), _g1rs(g1rs), _cg1r(cg1r), _concurrent(true) ysr@777: {} ysr@777: bool do_card_ptr(jbyte* card_ptr, int worker_i) { johnc@2060: bool oops_into_cset = _g1rs->concurrentRefineOneCard(card_ptr, worker_i, false); johnc@2060: // This path is executed by the concurrent refine or mutator threads, johnc@2060: // concurrently, and so we do not care if card_ptr contains references johnc@2060: // that point into the collection set. johnc@2060: assert(!oops_into_cset, "should be"); johnc@2060: ysr@777: if (_concurrent && _sts->should_yield()) { ysr@777: // Caller will actually yield. ysr@777: return false; ysr@777: } ysr@777: // Otherwise, we finished successfully; return true. ysr@777: return true; ysr@777: } ysr@777: void set_concurrent(bool b) { _concurrent = b; } ysr@777: }; ysr@777: ysr@777: ysr@777: class ClearLoggedCardTableEntryClosure: public CardTableEntryClosure { ysr@777: int _calls; ysr@777: G1CollectedHeap* _g1h; ysr@777: CardTableModRefBS* _ctbs; ysr@777: int _histo[256]; ysr@777: public: ysr@777: ClearLoggedCardTableEntryClosure() : ysr@777: _calls(0) ysr@777: { ysr@777: _g1h = G1CollectedHeap::heap(); ysr@777: _ctbs = (CardTableModRefBS*)_g1h->barrier_set(); ysr@777: for (int i = 0; i < 256; i++) _histo[i] = 0; ysr@777: } ysr@777: bool do_card_ptr(jbyte* card_ptr, int worker_i) { ysr@777: if (_g1h->is_in_reserved(_ctbs->addr_for(card_ptr))) { ysr@777: _calls++; ysr@777: unsigned char* ujb = (unsigned char*)card_ptr; ysr@777: int ind = (int)(*ujb); ysr@777: _histo[ind]++; ysr@777: *card_ptr = -1; ysr@777: } ysr@777: return true; ysr@777: } ysr@777: int calls() { return _calls; } ysr@777: void print_histo() { ysr@777: gclog_or_tty->print_cr("Card table value histogram:"); ysr@777: for (int i = 0; i < 256; i++) { ysr@777: if (_histo[i] != 0) { ysr@777: gclog_or_tty->print_cr(" %d: %d", i, _histo[i]); ysr@777: } ysr@777: } ysr@777: } ysr@777: }; ysr@777: ysr@777: class RedirtyLoggedCardTableEntryClosure: public CardTableEntryClosure { ysr@777: int _calls; ysr@777: G1CollectedHeap* _g1h; ysr@777: CardTableModRefBS* _ctbs; ysr@777: public: ysr@777: RedirtyLoggedCardTableEntryClosure() : ysr@777: _calls(0) ysr@777: { ysr@777: _g1h = G1CollectedHeap::heap(); ysr@777: _ctbs = (CardTableModRefBS*)_g1h->barrier_set(); ysr@777: } ysr@777: bool do_card_ptr(jbyte* card_ptr, int worker_i) { ysr@777: if (_g1h->is_in_reserved(_ctbs->addr_for(card_ptr))) { ysr@777: _calls++; ysr@777: *card_ptr = 0; ysr@777: } ysr@777: return true; ysr@777: } ysr@777: int calls() { return _calls; } ysr@777: }; ysr@777: iveresov@1051: class RedirtyLoggedCardTableEntryFastClosure : public CardTableEntryClosure { iveresov@1051: public: iveresov@1051: bool do_card_ptr(jbyte* card_ptr, int worker_i) { iveresov@1051: *card_ptr = CardTableModRefBS::dirty_card_val(); iveresov@1051: return true; iveresov@1051: } iveresov@1051: }; iveresov@1051: ysr@777: YoungList::YoungList(G1CollectedHeap* g1h) ysr@777: : _g1h(g1h), _head(NULL), johnc@1829: _length(0), ysr@777: _last_sampled_rs_lengths(0), apetrusenko@980: _survivor_head(NULL), _survivor_tail(NULL), _survivor_length(0) ysr@777: { ysr@777: guarantee( check_list_empty(false), "just making sure..." ); ysr@777: } ysr@777: ysr@777: void YoungList::push_region(HeapRegion *hr) { ysr@777: assert(!hr->is_young(), "should not already be young"); ysr@777: assert(hr->get_next_young_region() == NULL, "cause it should!"); ysr@777: ysr@777: hr->set_next_young_region(_head); ysr@777: _head = hr; ysr@777: ysr@777: hr->set_young(); ysr@777: double yg_surv_rate = _g1h->g1_policy()->predict_yg_surv_rate((int)_length); ysr@777: ++_length; ysr@777: } ysr@777: ysr@777: void YoungList::add_survivor_region(HeapRegion* hr) { apetrusenko@980: assert(hr->is_survivor(), "should be flagged as survivor region"); ysr@777: assert(hr->get_next_young_region() == NULL, "cause it should!"); ysr@777: ysr@777: hr->set_next_young_region(_survivor_head); ysr@777: if (_survivor_head == NULL) { apetrusenko@980: _survivor_tail = hr; ysr@777: } ysr@777: _survivor_head = hr; ysr@777: ysr@777: ++_survivor_length; ysr@777: } ysr@777: ysr@777: void YoungList::empty_list(HeapRegion* list) { ysr@777: while (list != NULL) { ysr@777: HeapRegion* next = list->get_next_young_region(); ysr@777: list->set_next_young_region(NULL); ysr@777: list->uninstall_surv_rate_group(); ysr@777: list->set_not_young(); ysr@777: list = next; ysr@777: } ysr@777: } ysr@777: ysr@777: void YoungList::empty_list() { ysr@777: assert(check_list_well_formed(), "young list should be well formed"); ysr@777: ysr@777: empty_list(_head); ysr@777: _head = NULL; ysr@777: _length = 0; ysr@777: ysr@777: empty_list(_survivor_head); ysr@777: _survivor_head = NULL; apetrusenko@980: _survivor_tail = NULL; ysr@777: _survivor_length = 0; ysr@777: ysr@777: _last_sampled_rs_lengths = 0; ysr@777: ysr@777: assert(check_list_empty(false), "just making sure..."); ysr@777: } ysr@777: ysr@777: bool YoungList::check_list_well_formed() { ysr@777: bool ret = true; ysr@777: ysr@777: size_t length = 0; ysr@777: HeapRegion* curr = _head; ysr@777: HeapRegion* last = NULL; ysr@777: while (curr != NULL) { johnc@1829: if (!curr->is_young()) { ysr@777: gclog_or_tty->print_cr("### YOUNG REGION "PTR_FORMAT"-"PTR_FORMAT" " johnc@1829: "incorrectly tagged (y: %d, surv: %d)", ysr@777: curr->bottom(), curr->end(), johnc@1829: curr->is_young(), curr->is_survivor()); ysr@777: ret = false; ysr@777: } ysr@777: ++length; ysr@777: last = curr; ysr@777: curr = curr->get_next_young_region(); ysr@777: } ysr@777: ret = ret && (length == _length); ysr@777: ysr@777: if (!ret) { ysr@777: gclog_or_tty->print_cr("### YOUNG LIST seems not well formed!"); ysr@777: gclog_or_tty->print_cr("### list has %d entries, _length is %d", ysr@777: length, _length); ysr@777: } ysr@777: johnc@1829: return ret; ysr@777: } ysr@777: johnc@1829: bool YoungList::check_list_empty(bool check_sample) { ysr@777: bool ret = true; ysr@777: ysr@777: if (_length != 0) { ysr@777: gclog_or_tty->print_cr("### YOUNG LIST should have 0 length, not %d", ysr@777: _length); ysr@777: ret = false; ysr@777: } ysr@777: if (check_sample && _last_sampled_rs_lengths != 0) { ysr@777: gclog_or_tty->print_cr("### YOUNG LIST has non-zero last sampled RS lengths"); ysr@777: ret = false; ysr@777: } ysr@777: if (_head != NULL) { ysr@777: gclog_or_tty->print_cr("### YOUNG LIST does not have a NULL head"); ysr@777: ret = false; ysr@777: } ysr@777: if (!ret) { ysr@777: gclog_or_tty->print_cr("### YOUNG LIST does not seem empty"); ysr@777: } ysr@777: johnc@1829: return ret; ysr@777: } ysr@777: ysr@777: void ysr@777: YoungList::rs_length_sampling_init() { ysr@777: _sampled_rs_lengths = 0; ysr@777: _curr = _head; ysr@777: } ysr@777: ysr@777: bool ysr@777: YoungList::rs_length_sampling_more() { ysr@777: return _curr != NULL; ysr@777: } ysr@777: ysr@777: void ysr@777: YoungList::rs_length_sampling_next() { ysr@777: assert( _curr != NULL, "invariant" ); johnc@1829: size_t rs_length = _curr->rem_set()->occupied(); johnc@1829: johnc@1829: _sampled_rs_lengths += rs_length; johnc@1829: johnc@1829: // The current region may not yet have been added to the johnc@1829: // incremental collection set (it gets added when it is johnc@1829: // retired as the current allocation region). johnc@1829: if (_curr->in_collection_set()) { johnc@1829: // Update the collection set policy information for this region johnc@1829: _g1h->g1_policy()->update_incremental_cset_info(_curr, rs_length); johnc@1829: } johnc@1829: ysr@777: _curr = _curr->get_next_young_region(); ysr@777: if (_curr == NULL) { ysr@777: _last_sampled_rs_lengths = _sampled_rs_lengths; ysr@777: // gclog_or_tty->print_cr("last sampled RS lengths = %d", _last_sampled_rs_lengths); ysr@777: } ysr@777: } ysr@777: ysr@777: void ysr@777: YoungList::reset_auxilary_lists() { ysr@777: guarantee( is_empty(), "young list should be empty" ); ysr@777: assert(check_list_well_formed(), "young list should be well formed"); ysr@777: ysr@777: // Add survivor regions to SurvRateGroup. ysr@777: _g1h->g1_policy()->note_start_adding_survivor_regions(); apetrusenko@980: _g1h->g1_policy()->finished_recalculating_age_indexes(true /* is_survivors */); johnc@1829: ysr@777: for (HeapRegion* curr = _survivor_head; ysr@777: curr != NULL; ysr@777: curr = curr->get_next_young_region()) { ysr@777: _g1h->g1_policy()->set_region_survivors(curr); johnc@1829: johnc@1829: // The region is a non-empty survivor so let's add it to johnc@1829: // the incremental collection set for the next evacuation johnc@1829: // pause. johnc@1829: _g1h->g1_policy()->add_region_to_incremental_cset_rhs(curr); ysr@777: } ysr@777: _g1h->g1_policy()->note_stop_adding_survivor_regions(); ysr@777: johnc@1829: _head = _survivor_head; johnc@1829: _length = _survivor_length; ysr@777: if (_survivor_head != NULL) { johnc@1829: assert(_survivor_tail != NULL, "cause it shouldn't be"); johnc@1829: assert(_survivor_length > 0, "invariant"); johnc@1829: _survivor_tail->set_next_young_region(NULL); johnc@1829: } johnc@1829: johnc@1829: // Don't clear the survivor list handles until the start of johnc@1829: // the next evacuation pause - we need it in order to re-tag johnc@1829: // the survivor regions from this evacuation pause as 'young' johnc@1829: // at the start of the next. johnc@1829: apetrusenko@980: _g1h->g1_policy()->finished_recalculating_age_indexes(false /* is_survivors */); ysr@777: ysr@777: assert(check_list_well_formed(), "young list should be well formed"); ysr@777: } ysr@777: ysr@777: void YoungList::print() { johnc@1829: HeapRegion* lists[] = {_head, _survivor_head}; johnc@1829: const char* names[] = {"YOUNG", "SURVIVOR"}; ysr@777: ysr@777: for (unsigned int list = 0; list < ARRAY_SIZE(lists); ++list) { ysr@777: gclog_or_tty->print_cr("%s LIST CONTENTS", names[list]); ysr@777: HeapRegion *curr = lists[list]; ysr@777: if (curr == NULL) ysr@777: gclog_or_tty->print_cr(" empty"); ysr@777: while (curr != NULL) { ysr@777: gclog_or_tty->print_cr(" [%08x-%08x], t: %08x, P: %08x, N: %08x, C: %08x, " johnc@1829: "age: %4d, y: %d, surv: %d", ysr@777: curr->bottom(), curr->end(), ysr@777: curr->top(), ysr@777: curr->prev_top_at_mark_start(), ysr@777: curr->next_top_at_mark_start(), ysr@777: curr->top_at_conc_mark_count(), ysr@777: curr->age_in_surv_rate_group_cond(), ysr@777: curr->is_young(), ysr@777: curr->is_survivor()); ysr@777: curr = curr->get_next_young_region(); ysr@777: } ysr@777: } ysr@777: ysr@777: gclog_or_tty->print_cr(""); ysr@777: } ysr@777: apetrusenko@1231: void G1CollectedHeap::push_dirty_cards_region(HeapRegion* hr) apetrusenko@1231: { apetrusenko@1231: // Claim the right to put the region on the dirty cards region list apetrusenko@1231: // by installing a self pointer. apetrusenko@1231: HeapRegion* next = hr->get_next_dirty_cards_region(); apetrusenko@1231: if (next == NULL) { apetrusenko@1231: HeapRegion* res = (HeapRegion*) apetrusenko@1231: Atomic::cmpxchg_ptr(hr, hr->next_dirty_cards_region_addr(), apetrusenko@1231: NULL); apetrusenko@1231: if (res == NULL) { apetrusenko@1231: HeapRegion* head; apetrusenko@1231: do { apetrusenko@1231: // Put the region to the dirty cards region list. apetrusenko@1231: head = _dirty_cards_region_list; apetrusenko@1231: next = (HeapRegion*) apetrusenko@1231: Atomic::cmpxchg_ptr(hr, &_dirty_cards_region_list, head); apetrusenko@1231: if (next == head) { apetrusenko@1231: assert(hr->get_next_dirty_cards_region() == hr, apetrusenko@1231: "hr->get_next_dirty_cards_region() != hr"); apetrusenko@1231: if (next == NULL) { apetrusenko@1231: // The last region in the list points to itself. apetrusenko@1231: hr->set_next_dirty_cards_region(hr); apetrusenko@1231: } else { apetrusenko@1231: hr->set_next_dirty_cards_region(next); apetrusenko@1231: } apetrusenko@1231: } apetrusenko@1231: } while (next != head); apetrusenko@1231: } apetrusenko@1231: } apetrusenko@1231: } apetrusenko@1231: apetrusenko@1231: HeapRegion* G1CollectedHeap::pop_dirty_cards_region() apetrusenko@1231: { apetrusenko@1231: HeapRegion* head; apetrusenko@1231: HeapRegion* hr; apetrusenko@1231: do { apetrusenko@1231: head = _dirty_cards_region_list; apetrusenko@1231: if (head == NULL) { apetrusenko@1231: return NULL; apetrusenko@1231: } apetrusenko@1231: HeapRegion* new_head = head->get_next_dirty_cards_region(); apetrusenko@1231: if (head == new_head) { apetrusenko@1231: // The last region. apetrusenko@1231: new_head = NULL; apetrusenko@1231: } apetrusenko@1231: hr = (HeapRegion*)Atomic::cmpxchg_ptr(new_head, &_dirty_cards_region_list, apetrusenko@1231: head); apetrusenko@1231: } while (hr != head); apetrusenko@1231: assert(hr != NULL, "invariant"); apetrusenko@1231: hr->set_next_dirty_cards_region(NULL); apetrusenko@1231: return hr; apetrusenko@1231: } apetrusenko@1231: ysr@777: void G1CollectedHeap::stop_conc_gc_threads() { iveresov@1229: _cg1r->stop(); ysr@777: _czft->stop(); ysr@777: _cmThread->stop(); ysr@777: } ysr@777: ysr@777: ysr@777: void G1CollectedHeap::check_ct_logs_at_safepoint() { ysr@777: DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set(); ysr@777: CardTableModRefBS* ct_bs = (CardTableModRefBS*)barrier_set(); ysr@777: ysr@777: // Count the dirty cards at the start. ysr@777: CountNonCleanMemRegionClosure count1(this); ysr@777: ct_bs->mod_card_iterate(&count1); ysr@777: int orig_count = count1.n(); ysr@777: ysr@777: // First clear the logged cards. ysr@777: ClearLoggedCardTableEntryClosure clear; ysr@777: dcqs.set_closure(&clear); ysr@777: dcqs.apply_closure_to_all_completed_buffers(); ysr@777: dcqs.iterate_closure_all_threads(false); ysr@777: clear.print_histo(); ysr@777: ysr@777: // Now ensure that there's no dirty cards. ysr@777: CountNonCleanMemRegionClosure count2(this); ysr@777: ct_bs->mod_card_iterate(&count2); ysr@777: if (count2.n() != 0) { ysr@777: gclog_or_tty->print_cr("Card table has %d entries; %d originally", ysr@777: count2.n(), orig_count); ysr@777: } ysr@777: guarantee(count2.n() == 0, "Card table should be clean."); ysr@777: ysr@777: RedirtyLoggedCardTableEntryClosure redirty; ysr@777: JavaThread::dirty_card_queue_set().set_closure(&redirty); ysr@777: dcqs.apply_closure_to_all_completed_buffers(); ysr@777: dcqs.iterate_closure_all_threads(false); ysr@777: gclog_or_tty->print_cr("Log entries = %d, dirty cards = %d.", ysr@777: clear.calls(), orig_count); ysr@777: guarantee(redirty.calls() == clear.calls(), ysr@777: "Or else mechanism is broken."); ysr@777: ysr@777: CountNonCleanMemRegionClosure count3(this); ysr@777: ct_bs->mod_card_iterate(&count3); ysr@777: if (count3.n() != orig_count) { ysr@777: gclog_or_tty->print_cr("Should have restored them all: orig = %d, final = %d.", ysr@777: orig_count, count3.n()); ysr@777: guarantee(count3.n() >= orig_count, "Should have restored them all."); ysr@777: } ysr@777: ysr@777: JavaThread::dirty_card_queue_set().set_closure(_refine_cte_cl); ysr@777: } ysr@777: ysr@777: // Private class members. ysr@777: ysr@777: G1CollectedHeap* G1CollectedHeap::_g1h; ysr@777: ysr@777: // Private methods. ysr@777: ysr@777: // Finds a HeapRegion that can be used to allocate a given size of block. ysr@777: ysr@777: ysr@777: HeapRegion* G1CollectedHeap::newAllocRegion_work(size_t word_size, ysr@777: bool do_expand, ysr@777: bool zero_filled) { ysr@777: ConcurrentZFThread::note_region_alloc(); ysr@777: HeapRegion* res = alloc_free_region_from_lists(zero_filled); ysr@777: if (res == NULL && do_expand) { ysr@777: expand(word_size * HeapWordSize); ysr@777: res = alloc_free_region_from_lists(zero_filled); ysr@777: assert(res == NULL || ysr@777: (!res->isHumongous() && ysr@777: (!zero_filled || ysr@777: res->zero_fill_state() == HeapRegion::Allocated)), ysr@777: "Alloc Regions must be zero filled (and non-H)"); ysr@777: } apetrusenko@1900: if (res != NULL) { apetrusenko@1900: if (res->is_empty()) { apetrusenko@1900: _free_regions--; apetrusenko@1900: } apetrusenko@1900: assert(!res->isHumongous() && apetrusenko@1900: (!zero_filled || res->zero_fill_state() == HeapRegion::Allocated), apetrusenko@1900: err_msg("Non-young alloc Regions must be zero filled (and non-H):" apetrusenko@1900: " res->isHumongous()=%d, zero_filled=%d, res->zero_fill_state()=%d", apetrusenko@1900: res->isHumongous(), zero_filled, res->zero_fill_state())); apetrusenko@1900: assert(!res->is_on_unclean_list(), apetrusenko@1900: "Alloc Regions must not be on the unclean list"); apetrusenko@1900: if (G1PrintHeapRegions) { ysr@777: gclog_or_tty->print_cr("new alloc region %d:["PTR_FORMAT", "PTR_FORMAT"], " ysr@777: "top "PTR_FORMAT, ysr@777: res->hrs_index(), res->bottom(), res->end(), res->top()); ysr@777: } ysr@777: } ysr@777: return res; ysr@777: } ysr@777: ysr@777: HeapRegion* G1CollectedHeap::newAllocRegionWithExpansion(int purpose, ysr@777: size_t word_size, ysr@777: bool zero_filled) { ysr@777: HeapRegion* alloc_region = NULL; ysr@777: if (_gc_alloc_region_counts[purpose] < g1_policy()->max_regions(purpose)) { ysr@777: alloc_region = newAllocRegion_work(word_size, true, zero_filled); ysr@777: if (purpose == GCAllocForSurvived && alloc_region != NULL) { apetrusenko@980: alloc_region->set_survivor(); ysr@777: } ysr@777: ++_gc_alloc_region_counts[purpose]; ysr@777: } else { ysr@777: g1_policy()->note_alloc_region_limit_reached(purpose); ysr@777: } ysr@777: return alloc_region; ysr@777: } ysr@777: ysr@777: // If could fit into free regions w/o expansion, try. ysr@777: // Otherwise, if can expand, do so. ysr@777: // Otherwise, if using ex regions might help, try with ex given back. ysr@777: HeapWord* G1CollectedHeap::humongousObjAllocate(size_t word_size) { ysr@777: assert(regions_accounted_for(), "Region leakage!"); ysr@777: ysr@777: // We can't allocate H regions while cleanupComplete is running, since ysr@777: // some of the regions we find to be empty might not yet be added to the ysr@777: // unclean list. (If we're already at a safepoint, this call is ysr@777: // unnecessary, not to mention wrong.) ysr@777: if (!SafepointSynchronize::is_at_safepoint()) ysr@777: wait_for_cleanup_complete(); ysr@777: ysr@777: size_t num_regions = ysr@777: round_to(word_size, HeapRegion::GrainWords) / HeapRegion::GrainWords; ysr@777: ysr@777: // Special case if < one region??? ysr@777: ysr@777: // Remember the ft size. ysr@777: size_t x_size = expansion_regions(); ysr@777: ysr@777: HeapWord* res = NULL; ysr@777: bool eliminated_allocated_from_lists = false; ysr@777: ysr@777: // Can the allocation potentially fit in the free regions? ysr@777: if (free_regions() >= num_regions) { ysr@777: res = _hrs->obj_allocate(word_size); ysr@777: } ysr@777: if (res == NULL) { ysr@777: // Try expansion. ysr@777: size_t fs = _hrs->free_suffix(); ysr@777: if (fs + x_size >= num_regions) { ysr@777: expand((num_regions - fs) * HeapRegion::GrainBytes); ysr@777: res = _hrs->obj_allocate(word_size); ysr@777: assert(res != NULL, "This should have worked."); ysr@777: } else { ysr@777: // Expansion won't help. Are there enough free regions if we get rid ysr@777: // of reservations? ysr@777: size_t avail = free_regions(); ysr@777: if (avail >= num_regions) { ysr@777: res = _hrs->obj_allocate(word_size); ysr@777: if (res != NULL) { ysr@777: remove_allocated_regions_from_lists(); ysr@777: eliminated_allocated_from_lists = true; ysr@777: } ysr@777: } ysr@777: } ysr@777: } ysr@777: if (res != NULL) { ysr@777: // Increment by the number of regions allocated. ysr@777: // FIXME: Assumes regions all of size GrainBytes. ysr@777: #ifndef PRODUCT ysr@777: mr_bs()->verify_clean_region(MemRegion(res, res + num_regions * ysr@777: HeapRegion::GrainWords)); ysr@777: #endif ysr@777: if (!eliminated_allocated_from_lists) ysr@777: remove_allocated_regions_from_lists(); ysr@777: _summary_bytes_used += word_size * HeapWordSize; ysr@777: _free_regions -= num_regions; ysr@777: _num_humongous_regions += (int) num_regions; ysr@777: } ysr@777: assert(regions_accounted_for(), "Region Leakage"); ysr@777: return res; ysr@777: } ysr@777: ysr@777: HeapWord* ysr@777: G1CollectedHeap::attempt_allocation_slow(size_t word_size, ysr@777: bool permit_collection_pause) { ysr@777: HeapWord* res = NULL; ysr@777: HeapRegion* allocated_young_region = NULL; ysr@777: ysr@777: assert( SafepointSynchronize::is_at_safepoint() || ysr@777: Heap_lock->owned_by_self(), "pre condition of the call" ); ysr@777: ysr@777: if (isHumongous(word_size)) { ysr@777: // Allocation of a humongous object can, in a sense, complete a ysr@777: // partial region, if the previous alloc was also humongous, and ysr@777: // caused the test below to succeed. ysr@777: if (permit_collection_pause) ysr@777: do_collection_pause_if_appropriate(word_size); ysr@777: res = humongousObjAllocate(word_size); ysr@777: assert(_cur_alloc_region == NULL ysr@777: || !_cur_alloc_region->isHumongous(), ysr@777: "Prevent a regression of this bug."); ysr@777: ysr@777: } else { iveresov@789: // We may have concurrent cleanup working at the time. Wait for it iveresov@789: // to complete. In the future we would probably want to make the iveresov@789: // concurrent cleanup truly concurrent by decoupling it from the iveresov@789: // allocation. iveresov@789: if (!SafepointSynchronize::is_at_safepoint()) iveresov@789: wait_for_cleanup_complete(); ysr@777: // If we do a collection pause, this will be reset to a non-NULL ysr@777: // value. If we don't, nulling here ensures that we allocate a new ysr@777: // region below. ysr@777: if (_cur_alloc_region != NULL) { ysr@777: // We're finished with the _cur_alloc_region. johnc@1829: // As we're builing (at least the young portion) of the collection johnc@1829: // set incrementally we'll add the current allocation region to johnc@1829: // the collection set here. johnc@1829: if (_cur_alloc_region->is_young()) { johnc@1829: g1_policy()->add_region_to_incremental_cset_lhs(_cur_alloc_region); johnc@1829: } ysr@777: _summary_bytes_used += _cur_alloc_region->used(); ysr@777: _cur_alloc_region = NULL; ysr@777: } ysr@777: assert(_cur_alloc_region == NULL, "Invariant."); ysr@777: // Completion of a heap region is perhaps a good point at which to do ysr@777: // a collection pause. ysr@777: if (permit_collection_pause) ysr@777: do_collection_pause_if_appropriate(word_size); ysr@777: // Make sure we have an allocation region available. ysr@777: if (_cur_alloc_region == NULL) { ysr@777: if (!SafepointSynchronize::is_at_safepoint()) ysr@777: wait_for_cleanup_complete(); ysr@777: bool next_is_young = should_set_young_locked(); ysr@777: // If the next region is not young, make sure it's zero-filled. ysr@777: _cur_alloc_region = newAllocRegion(word_size, !next_is_young); ysr@777: if (_cur_alloc_region != NULL) { ysr@777: _summary_bytes_used -= _cur_alloc_region->used(); ysr@777: if (next_is_young) { ysr@777: set_region_short_lived_locked(_cur_alloc_region); ysr@777: allocated_young_region = _cur_alloc_region; ysr@777: } ysr@777: } ysr@777: } ysr@777: assert(_cur_alloc_region == NULL || !_cur_alloc_region->isHumongous(), ysr@777: "Prevent a regression of this bug."); ysr@777: ysr@777: // Now retry the allocation. ysr@777: if (_cur_alloc_region != NULL) { johnc@2021: if (allocated_young_region != NULL) { johnc@2021: // We need to ensure that the store to top does not johnc@2021: // float above the setting of the young type. johnc@2021: OrderAccess::storestore(); johnc@2021: } ysr@777: res = _cur_alloc_region->allocate(word_size); ysr@777: } ysr@777: } ysr@777: ysr@777: // NOTE: fails frequently in PRT ysr@777: assert(regions_accounted_for(), "Region leakage!"); ysr@777: ysr@777: if (res != NULL) { ysr@777: if (!SafepointSynchronize::is_at_safepoint()) { ysr@777: assert( permit_collection_pause, "invariant" ); ysr@777: assert( Heap_lock->owned_by_self(), "invariant" ); ysr@777: Heap_lock->unlock(); ysr@777: } ysr@777: ysr@777: if (allocated_young_region != NULL) { ysr@777: HeapRegion* hr = allocated_young_region; ysr@777: HeapWord* bottom = hr->bottom(); ysr@777: HeapWord* end = hr->end(); ysr@777: MemRegion mr(bottom, end); ysr@777: ((CardTableModRefBS*)_g1h->barrier_set())->dirty(mr); ysr@777: } ysr@777: } ysr@777: ysr@777: assert( SafepointSynchronize::is_at_safepoint() || ysr@777: (res == NULL && Heap_lock->owned_by_self()) || ysr@777: (res != NULL && !Heap_lock->owned_by_self()), ysr@777: "post condition of the call" ); ysr@777: ysr@777: return res; ysr@777: } ysr@777: ysr@777: HeapWord* ysr@777: G1CollectedHeap::mem_allocate(size_t word_size, ysr@777: bool is_noref, ysr@777: bool is_tlab, ysr@777: bool* gc_overhead_limit_was_exceeded) { ysr@777: debug_only(check_for_valid_allocation_state()); ysr@777: assert(no_gc_in_progress(), "Allocation during gc not allowed"); ysr@777: HeapWord* result = NULL; ysr@777: ysr@777: // Loop until the allocation is satisified, ysr@777: // or unsatisfied after GC. ysr@777: for (int try_count = 1; /* return or throw */; try_count += 1) { ysr@777: int gc_count_before; ysr@777: { ysr@777: Heap_lock->lock(); ysr@777: result = attempt_allocation(word_size); ysr@777: if (result != NULL) { ysr@777: // attempt_allocation should have unlocked the heap lock ysr@777: assert(is_in(result), "result not in heap"); ysr@777: return result; ysr@777: } ysr@777: // Read the gc count while the heap lock is held. ysr@777: gc_count_before = SharedHeap::heap()->total_collections(); ysr@777: Heap_lock->unlock(); ysr@777: } ysr@777: ysr@777: // Create the garbage collection operation... ysr@777: VM_G1CollectForAllocation op(word_size, ysr@777: gc_count_before); ysr@777: ysr@777: // ...and get the VM thread to execute it. ysr@777: VMThread::execute(&op); ysr@777: if (op.prologue_succeeded()) { ysr@777: result = op.result(); ysr@777: assert(result == NULL || is_in(result), "result not in heap"); ysr@777: return result; ysr@777: } ysr@777: ysr@777: // Give a warning if we seem to be looping forever. ysr@777: if ((QueuedAllocationWarningCount > 0) && ysr@777: (try_count % QueuedAllocationWarningCount == 0)) { ysr@777: warning("G1CollectedHeap::mem_allocate_work retries %d times", ysr@777: try_count); ysr@777: } ysr@777: } ysr@777: } ysr@777: ysr@777: void G1CollectedHeap::abandon_cur_alloc_region() { ysr@777: if (_cur_alloc_region != NULL) { ysr@777: // We're finished with the _cur_alloc_region. ysr@777: if (_cur_alloc_region->is_empty()) { ysr@777: _free_regions++; ysr@777: free_region(_cur_alloc_region); ysr@777: } else { johnc@1829: // As we're builing (at least the young portion) of the collection johnc@1829: // set incrementally we'll add the current allocation region to johnc@1829: // the collection set here. johnc@1829: if (_cur_alloc_region->is_young()) { johnc@1829: g1_policy()->add_region_to_incremental_cset_lhs(_cur_alloc_region); johnc@1829: } ysr@777: _summary_bytes_used += _cur_alloc_region->used(); ysr@777: } ysr@777: _cur_alloc_region = NULL; ysr@777: } ysr@777: } ysr@777: tonyp@1071: void G1CollectedHeap::abandon_gc_alloc_regions() { tonyp@1071: // first, make sure that the GC alloc region list is empty (it should!) tonyp@1071: assert(_gc_alloc_region_list == NULL, "invariant"); tonyp@1071: release_gc_alloc_regions(true /* totally */); tonyp@1071: } tonyp@1071: ysr@777: class PostMCRemSetClearClosure: public HeapRegionClosure { ysr@777: ModRefBarrierSet* _mr_bs; ysr@777: public: ysr@777: PostMCRemSetClearClosure(ModRefBarrierSet* mr_bs) : _mr_bs(mr_bs) {} ysr@777: bool doHeapRegion(HeapRegion* r) { ysr@777: r->reset_gc_time_stamp(); ysr@777: if (r->continuesHumongous()) ysr@777: return false; ysr@777: HeapRegionRemSet* hrrs = r->rem_set(); ysr@777: if (hrrs != NULL) hrrs->clear(); ysr@777: // You might think here that we could clear just the cards ysr@777: // corresponding to the used region. But no: if we leave a dirty card ysr@777: // in a region we might allocate into, then it would prevent that card ysr@777: // from being enqueued, and cause it to be missed. ysr@777: // Re: the performance cost: we shouldn't be doing full GC anyway! ysr@777: _mr_bs->clear(MemRegion(r->bottom(), r->end())); ysr@777: return false; ysr@777: } ysr@777: }; ysr@777: ysr@777: ysr@777: class PostMCRemSetInvalidateClosure: public HeapRegionClosure { ysr@777: ModRefBarrierSet* _mr_bs; ysr@777: public: ysr@777: PostMCRemSetInvalidateClosure(ModRefBarrierSet* mr_bs) : _mr_bs(mr_bs) {} ysr@777: bool doHeapRegion(HeapRegion* r) { ysr@777: if (r->continuesHumongous()) return false; ysr@777: if (r->used_region().word_size() != 0) { ysr@777: _mr_bs->invalidate(r->used_region(), true /*whole heap*/); ysr@777: } ysr@777: return false; ysr@777: } ysr@777: }; ysr@777: apetrusenko@1061: class RebuildRSOutOfRegionClosure: public HeapRegionClosure { apetrusenko@1061: G1CollectedHeap* _g1h; apetrusenko@1061: UpdateRSOopClosure _cl; apetrusenko@1061: int _worker_i; apetrusenko@1061: public: apetrusenko@1061: RebuildRSOutOfRegionClosure(G1CollectedHeap* g1, int worker_i = 0) : apetrusenko@1061: _cl(g1->g1_rem_set()->as_HRInto_G1RemSet(), worker_i), apetrusenko@1061: _worker_i(worker_i), apetrusenko@1061: _g1h(g1) apetrusenko@1061: { } apetrusenko@1061: bool doHeapRegion(HeapRegion* r) { apetrusenko@1061: if (!r->continuesHumongous()) { apetrusenko@1061: _cl.set_from(r); apetrusenko@1061: r->oop_iterate(&_cl); apetrusenko@1061: } apetrusenko@1061: return false; apetrusenko@1061: } apetrusenko@1061: }; apetrusenko@1061: apetrusenko@1061: class ParRebuildRSTask: public AbstractGangTask { apetrusenko@1061: G1CollectedHeap* _g1; apetrusenko@1061: public: apetrusenko@1061: ParRebuildRSTask(G1CollectedHeap* g1) apetrusenko@1061: : AbstractGangTask("ParRebuildRSTask"), apetrusenko@1061: _g1(g1) apetrusenko@1061: { } apetrusenko@1061: apetrusenko@1061: void work(int i) { apetrusenko@1061: RebuildRSOutOfRegionClosure rebuild_rs(_g1, i); apetrusenko@1061: _g1->heap_region_par_iterate_chunked(&rebuild_rs, i, apetrusenko@1061: HeapRegion::RebuildRSClaimValue); apetrusenko@1061: } apetrusenko@1061: }; apetrusenko@1061: tonyp@2011: void G1CollectedHeap::do_collection(bool explicit_gc, tonyp@2011: bool clear_all_soft_refs, ysr@777: size_t word_size) { tonyp@1794: if (GC_locker::check_active_before_gc()) { tonyp@1794: return; // GC is disabled (e.g. JNI GetXXXCritical operation) tonyp@1794: } tonyp@1794: ysr@777: ResourceMark rm; ysr@777: tonyp@1273: if (PrintHeapAtGC) { tonyp@1273: Universe::print_heap_before_gc(); tonyp@1273: } tonyp@1273: ysr@777: assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint"); ysr@777: assert(Thread::current() == VMThread::vm_thread(), "should be in vm thread"); ysr@777: jmasa@1822: const bool do_clear_all_soft_refs = clear_all_soft_refs || jmasa@1822: collector_policy()->should_clear_all_soft_refs(); jmasa@1822: jmasa@1822: ClearedAllSoftRefs casr(do_clear_all_soft_refs, collector_policy()); jmasa@1822: ysr@777: { ysr@777: IsGCActiveMark x; ysr@777: ysr@777: // Timing tonyp@2011: bool system_gc = (gc_cause() == GCCause::_java_lang_system_gc); tonyp@2011: assert(!system_gc || explicit_gc, "invariant"); ysr@777: gclog_or_tty->date_stamp(PrintGC && PrintGCDateStamps); ysr@777: TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty); tonyp@2011: TraceTime t(system_gc ? "Full GC (System.gc())" : "Full GC", jmasa@1822: PrintGC, true, gclog_or_tty); ysr@777: tonyp@1524: TraceMemoryManagerStats tms(true /* fullGC */); tonyp@1524: ysr@777: double start = os::elapsedTime(); ysr@777: g1_policy()->record_full_collection_start(); ysr@777: ysr@777: gc_prologue(true); tonyp@1273: increment_total_collections(true /* full gc */); ysr@777: ysr@777: size_t g1h_prev_used = used(); ysr@777: assert(used() == recalculate_used(), "Should be equal"); ysr@777: ysr@777: if (VerifyBeforeGC && total_collections() >= VerifyGCStartAt) { ysr@777: HandleMark hm; // Discard invalid handles created during verification ysr@777: prepare_for_verify(); ysr@777: gclog_or_tty->print(" VerifyBeforeGC:"); ysr@777: Universe::verify(true); ysr@777: } ysr@777: assert(regions_accounted_for(), "Region leakage!"); ysr@777: ysr@777: COMPILER2_PRESENT(DerivedPointerTable::clear()); ysr@777: ysr@777: // We want to discover references, but not process them yet. ysr@777: // This mode is disabled in ysr@777: // instanceRefKlass::process_discovered_references if the ysr@777: // generation does some collection work, or ysr@777: // instanceRefKlass::enqueue_discovered_references if the ysr@777: // generation returns without doing any work. ysr@777: ref_processor()->disable_discovery(); ysr@777: ref_processor()->abandon_partial_discovery(); ysr@777: ref_processor()->verify_no_references_recorded(); ysr@777: ysr@777: // Abandon current iterations of concurrent marking and concurrent ysr@777: // refinement, if any are in progress. ysr@777: concurrent_mark()->abort(); ysr@777: ysr@777: // Make sure we'll choose a new allocation region afterwards. ysr@777: abandon_cur_alloc_region(); tonyp@1071: abandon_gc_alloc_regions(); ysr@777: assert(_cur_alloc_region == NULL, "Invariant."); ysr@777: g1_rem_set()->as_HRInto_G1RemSet()->cleanupHRRS(); ysr@777: tear_down_region_lists(); ysr@777: set_used_regions_to_need_zero_fill(); johnc@1829: johnc@1829: // We may have added regions to the current incremental collection johnc@1829: // set between the last GC or pause and now. We need to clear the johnc@1829: // incremental collection set and then start rebuilding it afresh johnc@1829: // after this full GC. johnc@1829: abandon_collection_set(g1_policy()->inc_cset_head()); johnc@1829: g1_policy()->clear_incremental_cset(); johnc@1829: g1_policy()->stop_incremental_cset_building(); johnc@1829: ysr@777: if (g1_policy()->in_young_gc_mode()) { ysr@777: empty_young_list(); ysr@777: g1_policy()->set_full_young_gcs(true); ysr@777: } ysr@777: ysr@777: // Temporarily make reference _discovery_ single threaded (non-MT). ysr@777: ReferenceProcessorMTMutator rp_disc_ser(ref_processor(), false); ysr@777: ysr@777: // Temporarily make refs discovery atomic ysr@777: ReferenceProcessorAtomicMutator rp_disc_atomic(ref_processor(), true); ysr@777: ysr@777: // Temporarily clear _is_alive_non_header ysr@777: ReferenceProcessorIsAliveMutator rp_is_alive_null(ref_processor(), NULL); ysr@777: ysr@777: ref_processor()->enable_discovery(); jmasa@1822: ref_processor()->setup_policy(do_clear_all_soft_refs); ysr@777: ysr@777: // Do collection work ysr@777: { ysr@777: HandleMark hm; // Discard invalid handles created during gc jmasa@1822: G1MarkSweep::invoke_at_safepoint(ref_processor(), do_clear_all_soft_refs); ysr@777: } ysr@777: // Because freeing humongous regions may have added some unclean ysr@777: // regions, it is necessary to tear down again before rebuilding. ysr@777: tear_down_region_lists(); ysr@777: rebuild_region_lists(); ysr@777: ysr@777: _summary_bytes_used = recalculate_used(); ysr@777: ysr@777: ref_processor()->enqueue_discovered_references(); ysr@777: ysr@777: COMPILER2_PRESENT(DerivedPointerTable::update_pointers()); ysr@777: tonyp@1524: MemoryService::track_memory_usage(); tonyp@1524: ysr@777: if (VerifyAfterGC && total_collections() >= VerifyGCStartAt) { ysr@777: HandleMark hm; // Discard invalid handles created during verification ysr@777: gclog_or_tty->print(" VerifyAfterGC:"); iveresov@1072: prepare_for_verify(); ysr@777: Universe::verify(false); ysr@777: } ysr@777: NOT_PRODUCT(ref_processor()->verify_no_references_recorded()); ysr@777: ysr@777: reset_gc_time_stamp(); ysr@777: // Since everything potentially moved, we will clear all remembered apetrusenko@1061: // sets, and clear all cards. Later we will rebuild remebered apetrusenko@1061: // sets. We will also reset the GC time stamps of the regions. ysr@777: PostMCRemSetClearClosure rs_clear(mr_bs()); ysr@777: heap_region_iterate(&rs_clear); ysr@777: ysr@777: // Resize the heap if necessary. tonyp@2011: resize_if_necessary_after_full_collection(explicit_gc ? 0 : word_size); ysr@777: ysr@777: if (_cg1r->use_cache()) { ysr@777: _cg1r->clear_and_record_card_counts(); ysr@777: _cg1r->clear_hot_cache(); ysr@777: } ysr@777: apetrusenko@1061: // Rebuild remembered sets of all regions. apetrusenko@1061: if (ParallelGCThreads > 0) { apetrusenko@1061: ParRebuildRSTask rebuild_rs_task(this); apetrusenko@1061: assert(check_heap_region_claim_values( apetrusenko@1061: HeapRegion::InitialClaimValue), "sanity check"); apetrusenko@1061: set_par_threads(workers()->total_workers()); apetrusenko@1061: workers()->run_task(&rebuild_rs_task); apetrusenko@1061: set_par_threads(0); apetrusenko@1061: assert(check_heap_region_claim_values( apetrusenko@1061: HeapRegion::RebuildRSClaimValue), "sanity check"); apetrusenko@1061: reset_heap_region_claim_values(); apetrusenko@1061: } else { apetrusenko@1061: RebuildRSOutOfRegionClosure rebuild_rs(this); apetrusenko@1061: heap_region_iterate(&rebuild_rs); apetrusenko@1061: } apetrusenko@1061: ysr@777: if (PrintGC) { ysr@777: print_size_transition(gclog_or_tty, g1h_prev_used, used(), capacity()); ysr@777: } ysr@777: ysr@777: if (true) { // FIXME ysr@777: // Ask the permanent generation to adjust size for full collections ysr@777: perm()->compute_new_size(); ysr@777: } ysr@777: johnc@1829: // Start a new incremental collection set for the next pause johnc@1829: assert(g1_policy()->collection_set() == NULL, "must be"); johnc@1829: g1_policy()->start_incremental_cset_building(); johnc@1829: johnc@1829: // Clear the _cset_fast_test bitmap in anticipation of adding johnc@1829: // regions to the incremental collection set for the next johnc@1829: // evacuation pause. johnc@1829: clear_cset_fast_test(); johnc@1829: ysr@777: double end = os::elapsedTime(); ysr@777: g1_policy()->record_full_collection_end(); ysr@777: jmasa@981: #ifdef TRACESPINNING jmasa@981: ParallelTaskTerminator::print_termination_counts(); jmasa@981: #endif jmasa@981: ysr@777: gc_epilogue(true); ysr@777: iveresov@1229: // Discard all rset updates iveresov@1229: JavaThread::dirty_card_queue_set().abandon_logs(); iveresov@1051: assert(!G1DeferredRSUpdate iveresov@1051: || (G1DeferredRSUpdate && (dirty_card_queue_set().completed_buffers_num() == 0)), "Should not be any"); ysr@777: assert(regions_accounted_for(), "Region leakage!"); ysr@777: } ysr@777: ysr@777: if (g1_policy()->in_young_gc_mode()) { ysr@777: _young_list->reset_sampled_info(); johnc@1829: // At this point there should be no regions in the johnc@1829: // entire heap tagged as young. johnc@1829: assert( check_young_list_empty(true /* check_heap */), ysr@777: "young list should be empty at this point"); ysr@777: } tonyp@1273: tonyp@2011: // Update the number of full collections that have been completed. tonyp@2011: increment_full_collections_completed(false /* outer */); tonyp@2011: tonyp@1273: if (PrintHeapAtGC) { tonyp@1273: Universe::print_heap_after_gc(); tonyp@1273: } ysr@777: } ysr@777: ysr@777: void G1CollectedHeap::do_full_collection(bool clear_all_soft_refs) { tonyp@2011: do_collection(true, /* explicit_gc */ tonyp@2011: clear_all_soft_refs, tonyp@2011: 0 /* word_size */); ysr@777: } ysr@777: ysr@777: // This code is mostly copied from TenuredGeneration. ysr@777: void ysr@777: G1CollectedHeap:: ysr@777: resize_if_necessary_after_full_collection(size_t word_size) { ysr@777: assert(MinHeapFreeRatio <= MaxHeapFreeRatio, "sanity check"); ysr@777: ysr@777: // Include the current allocation, if any, and bytes that will be ysr@777: // pre-allocated to support collections, as "used". ysr@777: const size_t used_after_gc = used(); ysr@777: const size_t capacity_after_gc = capacity(); ysr@777: const size_t free_after_gc = capacity_after_gc - used_after_gc; ysr@777: ysr@777: // We don't have floating point command-line arguments ysr@777: const double minimum_free_percentage = (double) MinHeapFreeRatio / 100; ysr@777: const double maximum_used_percentage = 1.0 - minimum_free_percentage; ysr@777: const double maximum_free_percentage = (double) MaxHeapFreeRatio / 100; ysr@777: const double minimum_used_percentage = 1.0 - maximum_free_percentage; ysr@777: ysr@777: size_t minimum_desired_capacity = (size_t) (used_after_gc / maximum_used_percentage); ysr@777: size_t maximum_desired_capacity = (size_t) (used_after_gc / minimum_used_percentage); ysr@777: ysr@777: // Don't shrink less than the initial size. ysr@777: minimum_desired_capacity = ysr@777: MAX2(minimum_desired_capacity, ysr@777: collector_policy()->initial_heap_byte_size()); ysr@777: maximum_desired_capacity = ysr@777: MAX2(maximum_desired_capacity, ysr@777: collector_policy()->initial_heap_byte_size()); ysr@777: ysr@777: // We are failing here because minimum_desired_capacity is ysr@777: assert(used_after_gc <= minimum_desired_capacity, "sanity check"); ysr@777: assert(minimum_desired_capacity <= maximum_desired_capacity, "sanity check"); ysr@777: ysr@777: if (PrintGC && Verbose) { ysr@777: const double free_percentage = ((double)free_after_gc) / capacity(); ysr@777: gclog_or_tty->print_cr("Computing new size after full GC "); ysr@777: gclog_or_tty->print_cr(" " ysr@777: " minimum_free_percentage: %6.2f", ysr@777: minimum_free_percentage); ysr@777: gclog_or_tty->print_cr(" " ysr@777: " maximum_free_percentage: %6.2f", ysr@777: maximum_free_percentage); ysr@777: gclog_or_tty->print_cr(" " ysr@777: " capacity: %6.1fK" ysr@777: " minimum_desired_capacity: %6.1fK" ysr@777: " maximum_desired_capacity: %6.1fK", ysr@777: capacity() / (double) K, ysr@777: minimum_desired_capacity / (double) K, ysr@777: maximum_desired_capacity / (double) K); ysr@777: gclog_or_tty->print_cr(" " ysr@777: " free_after_gc : %6.1fK" ysr@777: " used_after_gc : %6.1fK", ysr@777: free_after_gc / (double) K, ysr@777: used_after_gc / (double) K); ysr@777: gclog_or_tty->print_cr(" " ysr@777: " free_percentage: %6.2f", ysr@777: free_percentage); ysr@777: } ysr@777: if (capacity() < minimum_desired_capacity) { ysr@777: // Don't expand unless it's significant ysr@777: size_t expand_bytes = minimum_desired_capacity - capacity_after_gc; ysr@777: expand(expand_bytes); ysr@777: if (PrintGC && Verbose) { ysr@777: gclog_or_tty->print_cr(" expanding:" ysr@777: " minimum_desired_capacity: %6.1fK" ysr@777: " expand_bytes: %6.1fK", ysr@777: minimum_desired_capacity / (double) K, ysr@777: expand_bytes / (double) K); ysr@777: } ysr@777: ysr@777: // No expansion, now see if we want to shrink ysr@777: } else if (capacity() > maximum_desired_capacity) { ysr@777: // Capacity too large, compute shrinking size ysr@777: size_t shrink_bytes = capacity_after_gc - maximum_desired_capacity; ysr@777: shrink(shrink_bytes); ysr@777: if (PrintGC && Verbose) { ysr@777: gclog_or_tty->print_cr(" " ysr@777: " shrinking:" ysr@777: " initSize: %.1fK" ysr@777: " maximum_desired_capacity: %.1fK", ysr@777: collector_policy()->initial_heap_byte_size() / (double) K, ysr@777: maximum_desired_capacity / (double) K); ysr@777: gclog_or_tty->print_cr(" " ysr@777: " shrink_bytes: %.1fK", ysr@777: shrink_bytes / (double) K); ysr@777: } ysr@777: } ysr@777: } ysr@777: ysr@777: ysr@777: HeapWord* ysr@777: G1CollectedHeap::satisfy_failed_allocation(size_t word_size) { ysr@777: HeapWord* result = NULL; ysr@777: ysr@777: // In a G1 heap, we're supposed to keep allocation from failing by ysr@777: // incremental pauses. Therefore, at least for now, we'll favor ysr@777: // expansion over collection. (This might change in the future if we can ysr@777: // do something smarter than full collection to satisfy a failed alloc.) ysr@777: ysr@777: result = expand_and_allocate(word_size); ysr@777: if (result != NULL) { ysr@777: assert(is_in(result), "result not in heap"); ysr@777: return result; ysr@777: } ysr@777: ysr@777: // OK, I guess we have to try collection. ysr@777: ysr@777: do_collection(false, false, word_size); ysr@777: ysr@777: result = attempt_allocation(word_size, /*permit_collection_pause*/false); ysr@777: ysr@777: if (result != NULL) { ysr@777: assert(is_in(result), "result not in heap"); ysr@777: return result; ysr@777: } ysr@777: ysr@777: // Try collecting soft references. ysr@777: do_collection(false, true, word_size); ysr@777: result = attempt_allocation(word_size, /*permit_collection_pause*/false); ysr@777: if (result != NULL) { ysr@777: assert(is_in(result), "result not in heap"); ysr@777: return result; ysr@777: } ysr@777: jmasa@1822: assert(!collector_policy()->should_clear_all_soft_refs(), jmasa@1822: "Flag should have been handled and cleared prior to this point"); jmasa@1822: ysr@777: // What else? We might try synchronous finalization later. If the total ysr@777: // space available is large enough for the allocation, then a more ysr@777: // complete compaction phase than we've tried so far might be ysr@777: // appropriate. ysr@777: return NULL; ysr@777: } ysr@777: ysr@777: // Attempting to expand the heap sufficiently ysr@777: // to support an allocation of the given "word_size". If ysr@777: // successful, perform the allocation and return the address of the ysr@777: // allocated block, or else "NULL". ysr@777: ysr@777: HeapWord* G1CollectedHeap::expand_and_allocate(size_t word_size) { ysr@777: size_t expand_bytes = word_size * HeapWordSize; ysr@777: if (expand_bytes < MinHeapDeltaBytes) { ysr@777: expand_bytes = MinHeapDeltaBytes; ysr@777: } ysr@777: expand(expand_bytes); ysr@777: assert(regions_accounted_for(), "Region leakage!"); ysr@777: HeapWord* result = attempt_allocation(word_size, false /* permit_collection_pause */); ysr@777: return result; ysr@777: } ysr@777: ysr@777: size_t G1CollectedHeap::free_region_if_totally_empty(HeapRegion* hr) { ysr@777: size_t pre_used = 0; ysr@777: size_t cleared_h_regions = 0; ysr@777: size_t freed_regions = 0; ysr@777: UncleanRegionList local_list; ysr@777: free_region_if_totally_empty_work(hr, pre_used, cleared_h_regions, ysr@777: freed_regions, &local_list); ysr@777: ysr@777: finish_free_region_work(pre_used, cleared_h_regions, freed_regions, ysr@777: &local_list); ysr@777: return pre_used; ysr@777: } ysr@777: ysr@777: void ysr@777: G1CollectedHeap::free_region_if_totally_empty_work(HeapRegion* hr, ysr@777: size_t& pre_used, ysr@777: size_t& cleared_h, ysr@777: size_t& freed_regions, ysr@777: UncleanRegionList* list, ysr@777: bool par) { ysr@777: assert(!hr->continuesHumongous(), "should have filtered these out"); ysr@777: size_t res = 0; apetrusenko@1112: if (hr->used() > 0 && hr->garbage_bytes() == hr->used() && apetrusenko@1112: !hr->is_young()) { apetrusenko@1112: if (G1PolicyVerbose > 0) apetrusenko@1112: gclog_or_tty->print_cr("Freeing empty region "PTR_FORMAT "(" SIZE_FORMAT " bytes)" apetrusenko@1112: " during cleanup", hr, hr->used()); apetrusenko@1112: free_region_work(hr, pre_used, cleared_h, freed_regions, list, par); ysr@777: } ysr@777: } ysr@777: ysr@777: // FIXME: both this and shrink could probably be more efficient by ysr@777: // doing one "VirtualSpace::expand_by" call rather than several. ysr@777: void G1CollectedHeap::expand(size_t expand_bytes) { ysr@777: size_t old_mem_size = _g1_storage.committed_size(); ysr@777: // We expand by a minimum of 1K. ysr@777: expand_bytes = MAX2(expand_bytes, (size_t)K); ysr@777: size_t aligned_expand_bytes = ysr@777: ReservedSpace::page_align_size_up(expand_bytes); ysr@777: aligned_expand_bytes = align_size_up(aligned_expand_bytes, ysr@777: HeapRegion::GrainBytes); ysr@777: expand_bytes = aligned_expand_bytes; ysr@777: while (expand_bytes > 0) { ysr@777: HeapWord* base = (HeapWord*)_g1_storage.high(); ysr@777: // Commit more storage. ysr@777: bool successful = _g1_storage.expand_by(HeapRegion::GrainBytes); ysr@777: if (!successful) { ysr@777: expand_bytes = 0; ysr@777: } else { ysr@777: expand_bytes -= HeapRegion::GrainBytes; ysr@777: // Expand the committed region. ysr@777: HeapWord* high = (HeapWord*) _g1_storage.high(); ysr@777: _g1_committed.set_end(high); ysr@777: // Create a new HeapRegion. ysr@777: MemRegion mr(base, high); ysr@777: bool is_zeroed = !_g1_max_committed.contains(base); ysr@777: HeapRegion* hr = new HeapRegion(_bot_shared, mr, is_zeroed); ysr@777: ysr@777: // Now update max_committed if necessary. ysr@777: _g1_max_committed.set_end(MAX2(_g1_max_committed.end(), high)); ysr@777: ysr@777: // Add it to the HeapRegionSeq. ysr@777: _hrs->insert(hr); ysr@777: // Set the zero-fill state, according to whether it's already ysr@777: // zeroed. ysr@777: { ysr@777: MutexLockerEx x(ZF_mon, Mutex::_no_safepoint_check_flag); ysr@777: if (is_zeroed) { ysr@777: hr->set_zero_fill_complete(); ysr@777: put_free_region_on_list_locked(hr); ysr@777: } else { ysr@777: hr->set_zero_fill_needed(); ysr@777: put_region_on_unclean_list_locked(hr); ysr@777: } ysr@777: } ysr@777: _free_regions++; ysr@777: // And we used up an expansion region to create it. ysr@777: _expansion_regions--; ysr@777: // Tell the cardtable about it. ysr@777: Universe::heap()->barrier_set()->resize_covered_region(_g1_committed); ysr@777: // And the offset table as well. ysr@777: _bot_shared->resize(_g1_committed.word_size()); ysr@777: } ysr@777: } ysr@777: if (Verbose && PrintGC) { ysr@777: size_t new_mem_size = _g1_storage.committed_size(); ysr@777: gclog_or_tty->print_cr("Expanding garbage-first heap from %ldK by %ldK to %ldK", ysr@777: old_mem_size/K, aligned_expand_bytes/K, ysr@777: new_mem_size/K); ysr@777: } ysr@777: } ysr@777: ysr@777: void G1CollectedHeap::shrink_helper(size_t shrink_bytes) ysr@777: { ysr@777: size_t old_mem_size = _g1_storage.committed_size(); ysr@777: size_t aligned_shrink_bytes = ysr@777: ReservedSpace::page_align_size_down(shrink_bytes); ysr@777: aligned_shrink_bytes = align_size_down(aligned_shrink_bytes, ysr@777: HeapRegion::GrainBytes); ysr@777: size_t num_regions_deleted = 0; ysr@777: MemRegion mr = _hrs->shrink_by(aligned_shrink_bytes, num_regions_deleted); ysr@777: ysr@777: assert(mr.end() == (HeapWord*)_g1_storage.high(), "Bad shrink!"); ysr@777: if (mr.byte_size() > 0) ysr@777: _g1_storage.shrink_by(mr.byte_size()); ysr@777: assert(mr.start() == (HeapWord*)_g1_storage.high(), "Bad shrink!"); ysr@777: ysr@777: _g1_committed.set_end(mr.start()); ysr@777: _free_regions -= num_regions_deleted; ysr@777: _expansion_regions += num_regions_deleted; ysr@777: ysr@777: // Tell the cardtable about it. ysr@777: Universe::heap()->barrier_set()->resize_covered_region(_g1_committed); ysr@777: ysr@777: // And the offset table as well. ysr@777: _bot_shared->resize(_g1_committed.word_size()); ysr@777: ysr@777: HeapRegionRemSet::shrink_heap(n_regions()); ysr@777: ysr@777: if (Verbose && PrintGC) { ysr@777: size_t new_mem_size = _g1_storage.committed_size(); ysr@777: gclog_or_tty->print_cr("Shrinking garbage-first heap from %ldK by %ldK to %ldK", ysr@777: old_mem_size/K, aligned_shrink_bytes/K, ysr@777: new_mem_size/K); ysr@777: } ysr@777: } ysr@777: ysr@777: void G1CollectedHeap::shrink(size_t shrink_bytes) { tonyp@1071: release_gc_alloc_regions(true /* totally */); ysr@777: tear_down_region_lists(); // We will rebuild them in a moment. ysr@777: shrink_helper(shrink_bytes); ysr@777: rebuild_region_lists(); ysr@777: } ysr@777: ysr@777: // Public methods. ysr@777: ysr@777: #ifdef _MSC_VER // the use of 'this' below gets a warning, make it go away ysr@777: #pragma warning( disable:4355 ) // 'this' : used in base member initializer list ysr@777: #endif // _MSC_VER ysr@777: ysr@777: ysr@777: G1CollectedHeap::G1CollectedHeap(G1CollectorPolicy* policy_) : ysr@777: SharedHeap(policy_), ysr@777: _g1_policy(policy_), iveresov@1546: _dirty_card_queue_set(false), johnc@2060: _into_cset_dirty_card_queue_set(false), ysr@777: _ref_processor(NULL), ysr@777: _process_strong_tasks(new SubTasksDone(G1H_PS_NumElements)), ysr@777: _bot_shared(NULL), ysr@777: _par_alloc_during_gc_lock(Mutex::leaf, "par alloc during GC lock"), ysr@777: _objs_with_preserved_marks(NULL), _preserved_marks_of_objs(NULL), ysr@777: _evac_failure_scan_stack(NULL) , ysr@777: _mark_in_progress(false), ysr@777: _cg1r(NULL), _czft(NULL), _summary_bytes_used(0), ysr@777: _cur_alloc_region(NULL), ysr@777: _refine_cte_cl(NULL), ysr@777: _free_region_list(NULL), _free_region_list_size(0), ysr@777: _free_regions(0), ysr@777: _full_collection(false), ysr@777: _unclean_region_list(), ysr@777: _unclean_regions_coming(false), ysr@777: _young_list(new YoungList(this)), ysr@777: _gc_time_stamp(0), tonyp@961: _surviving_young_words(NULL), tonyp@2011: _full_collections_completed(0), tonyp@961: _in_cset_fast_test(NULL), apetrusenko@1231: _in_cset_fast_test_base(NULL), apetrusenko@1231: _dirty_cards_region_list(NULL) { ysr@777: _g1h = this; // To catch bugs. ysr@777: if (_process_strong_tasks == NULL || !_process_strong_tasks->valid()) { ysr@777: vm_exit_during_initialization("Failed necessary allocation."); ysr@777: } tonyp@1377: tonyp@1377: _humongous_object_threshold_in_words = HeapRegion::GrainWords / 2; tonyp@1377: ysr@777: int n_queues = MAX2((int)ParallelGCThreads, 1); ysr@777: _task_queues = new RefToScanQueueSet(n_queues); ysr@777: ysr@777: int n_rem_sets = HeapRegionRemSet::num_par_rem_sets(); ysr@777: assert(n_rem_sets > 0, "Invariant."); ysr@777: ysr@777: HeapRegionRemSetIterator** iter_arr = ysr@777: NEW_C_HEAP_ARRAY(HeapRegionRemSetIterator*, n_queues); ysr@777: for (int i = 0; i < n_queues; i++) { ysr@777: iter_arr[i] = new HeapRegionRemSetIterator(); ysr@777: } ysr@777: _rem_set_iterator = iter_arr; ysr@777: ysr@777: for (int i = 0; i < n_queues; i++) { ysr@777: RefToScanQueue* q = new RefToScanQueue(); ysr@777: q->initialize(); ysr@777: _task_queues->register_queue(i, q); ysr@777: } ysr@777: ysr@777: for (int ap = 0; ap < GCAllocPurposeCount; ++ap) { tonyp@1071: _gc_alloc_regions[ap] = NULL; tonyp@1071: _gc_alloc_region_counts[ap] = 0; tonyp@1071: _retained_gc_alloc_regions[ap] = NULL; tonyp@1071: // by default, we do not retain a GC alloc region for each ap; tonyp@1071: // we'll override this, when appropriate, below tonyp@1071: _retain_gc_alloc_region[ap] = false; tonyp@1071: } tonyp@1071: tonyp@1071: // We will try to remember the last half-full tenured region we tonyp@1071: // allocated to at the end of a collection so that we can re-use it tonyp@1071: // during the next collection. tonyp@1071: _retain_gc_alloc_region[GCAllocForTenured] = true; tonyp@1071: ysr@777: guarantee(_task_queues != NULL, "task_queues allocation failure."); ysr@777: } ysr@777: ysr@777: jint G1CollectedHeap::initialize() { ysr@1601: CollectedHeap::pre_initialize(); ysr@777: os::enable_vtime(); ysr@777: ysr@777: // Necessary to satisfy locking discipline assertions. ysr@777: ysr@777: MutexLocker x(Heap_lock); ysr@777: ysr@777: // While there are no constraints in the GC code that HeapWordSize ysr@777: // be any particular value, there are multiple other areas in the ysr@777: // system which believe this to be true (e.g. oop->object_size in some ysr@777: // cases incorrectly returns the size in wordSize units rather than ysr@777: // HeapWordSize). ysr@777: guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize"); ysr@777: ysr@777: size_t init_byte_size = collector_policy()->initial_heap_byte_size(); ysr@777: size_t max_byte_size = collector_policy()->max_heap_byte_size(); ysr@777: ysr@777: // Ensure that the sizes are properly aligned. ysr@777: Universe::check_alignment(init_byte_size, HeapRegion::GrainBytes, "g1 heap"); ysr@777: Universe::check_alignment(max_byte_size, HeapRegion::GrainBytes, "g1 heap"); ysr@777: ysr@777: _cg1r = new ConcurrentG1Refine(); ysr@777: ysr@777: // Reserve the maximum. ysr@777: PermanentGenerationSpec* pgs = collector_policy()->permanent_generation(); ysr@777: // Includes the perm-gen. kvn@1077: kvn@1077: const size_t total_reserved = max_byte_size + pgs->max_size(); kvn@1077: char* addr = Universe::preferred_heap_base(total_reserved, Universe::UnscaledNarrowOop); kvn@1077: ysr@777: ReservedSpace heap_rs(max_byte_size + pgs->max_size(), ysr@777: HeapRegion::GrainBytes, kvn@1077: false /*ism*/, addr); kvn@1077: kvn@1077: if (UseCompressedOops) { kvn@1077: if (addr != NULL && !heap_rs.is_reserved()) { kvn@1077: // Failed to reserve at specified address - the requested memory kvn@1077: // region is taken already, for example, by 'java' launcher. kvn@1077: // Try again to reserver heap higher. kvn@1077: addr = Universe::preferred_heap_base(total_reserved, Universe::ZeroBasedNarrowOop); kvn@1077: ReservedSpace heap_rs0(total_reserved, HeapRegion::GrainBytes, kvn@1077: false /*ism*/, addr); kvn@1077: if (addr != NULL && !heap_rs0.is_reserved()) { kvn@1077: // Failed to reserve at specified address again - give up. kvn@1077: addr = Universe::preferred_heap_base(total_reserved, Universe::HeapBasedNarrowOop); kvn@1077: assert(addr == NULL, ""); kvn@1077: ReservedSpace heap_rs1(total_reserved, HeapRegion::GrainBytes, kvn@1077: false /*ism*/, addr); kvn@1077: heap_rs = heap_rs1; kvn@1077: } else { kvn@1077: heap_rs = heap_rs0; kvn@1077: } kvn@1077: } kvn@1077: } ysr@777: ysr@777: if (!heap_rs.is_reserved()) { ysr@777: vm_exit_during_initialization("Could not reserve enough space for object heap"); ysr@777: return JNI_ENOMEM; ysr@777: } ysr@777: ysr@777: // It is important to do this in a way such that concurrent readers can't ysr@777: // temporarily think somethings in the heap. (I've actually seen this ysr@777: // happen in asserts: DLD.) ysr@777: _reserved.set_word_size(0); ysr@777: _reserved.set_start((HeapWord*)heap_rs.base()); ysr@777: _reserved.set_end((HeapWord*)(heap_rs.base() + heap_rs.size())); ysr@777: ysr@777: _expansion_regions = max_byte_size/HeapRegion::GrainBytes; ysr@777: ysr@777: _num_humongous_regions = 0; ysr@777: ysr@777: // Create the gen rem set (and barrier set) for the entire reserved region. ysr@777: _rem_set = collector_policy()->create_rem_set(_reserved, 2); ysr@777: set_barrier_set(rem_set()->bs()); ysr@777: if (barrier_set()->is_a(BarrierSet::ModRef)) { ysr@777: _mr_bs = (ModRefBarrierSet*)_barrier_set; ysr@777: } else { ysr@777: vm_exit_during_initialization("G1 requires a mod ref bs."); ysr@777: return JNI_ENOMEM; ysr@777: } ysr@777: ysr@777: // Also create a G1 rem set. ysr@777: if (G1UseHRIntoRS) { ysr@777: if (mr_bs()->is_a(BarrierSet::CardTableModRef)) { ysr@777: _g1_rem_set = new HRInto_G1RemSet(this, (CardTableModRefBS*)mr_bs()); ysr@777: } else { ysr@777: vm_exit_during_initialization("G1 requires a cardtable mod ref bs."); ysr@777: return JNI_ENOMEM; ysr@777: } ysr@777: } else { ysr@777: _g1_rem_set = new StupidG1RemSet(this); ysr@777: } ysr@777: ysr@777: // Carve out the G1 part of the heap. ysr@777: ysr@777: ReservedSpace g1_rs = heap_rs.first_part(max_byte_size); ysr@777: _g1_reserved = MemRegion((HeapWord*)g1_rs.base(), ysr@777: g1_rs.size()/HeapWordSize); ysr@777: ReservedSpace perm_gen_rs = heap_rs.last_part(max_byte_size); ysr@777: ysr@777: _perm_gen = pgs->init(perm_gen_rs, pgs->init_size(), rem_set()); ysr@777: ysr@777: _g1_storage.initialize(g1_rs, 0); ysr@777: _g1_committed = MemRegion((HeapWord*)_g1_storage.low(), (size_t) 0); ysr@777: _g1_max_committed = _g1_committed; iveresov@828: _hrs = new HeapRegionSeq(_expansion_regions); ysr@777: guarantee(_hrs != NULL, "Couldn't allocate HeapRegionSeq"); ysr@777: guarantee(_cur_alloc_region == NULL, "from constructor"); ysr@777: johnc@1242: // 6843694 - ensure that the maximum region index can fit johnc@1242: // in the remembered set structures. johnc@1242: const size_t max_region_idx = ((size_t)1 << (sizeof(RegionIdx_t)*BitsPerByte-1)) - 1; johnc@1242: guarantee((max_regions() - 1) <= max_region_idx, "too many regions"); johnc@1242: johnc@1242: size_t max_cards_per_region = ((size_t)1 << (sizeof(CardIdx_t)*BitsPerByte-1)) - 1; tonyp@1377: guarantee(HeapRegion::CardsPerRegion > 0, "make sure it's initialized"); tonyp@1377: guarantee((size_t) HeapRegion::CardsPerRegion < max_cards_per_region, tonyp@1377: "too many cards per region"); johnc@1242: ysr@777: _bot_shared = new G1BlockOffsetSharedArray(_reserved, ysr@777: heap_word_size(init_byte_size)); ysr@777: ysr@777: _g1h = this; ysr@777: johnc@1829: _in_cset_fast_test_length = max_regions(); johnc@1829: _in_cset_fast_test_base = NEW_C_HEAP_ARRAY(bool, _in_cset_fast_test_length); johnc@1829: johnc@1829: // We're biasing _in_cset_fast_test to avoid subtracting the johnc@1829: // beginning of the heap every time we want to index; basically johnc@1829: // it's the same with what we do with the card table. johnc@1829: _in_cset_fast_test = _in_cset_fast_test_base - johnc@1829: ((size_t) _g1_reserved.start() >> HeapRegion::LogOfHRGrainBytes); johnc@1829: johnc@1829: // Clear the _cset_fast_test bitmap in anticipation of adding johnc@1829: // regions to the incremental collection set for the first johnc@1829: // evacuation pause. johnc@1829: clear_cset_fast_test(); johnc@1829: ysr@777: // Create the ConcurrentMark data structure and thread. ysr@777: // (Must do this late, so that "max_regions" is defined.) ysr@777: _cm = new ConcurrentMark(heap_rs, (int) max_regions()); ysr@777: _cmThread = _cm->cmThread(); ysr@777: ysr@777: // ...and the concurrent zero-fill thread, if necessary. ysr@777: if (G1ConcZeroFill) { ysr@777: _czft = new ConcurrentZFThread(); ysr@777: } ysr@777: ysr@777: // Initialize the from_card cache structure of HeapRegionRemSet. ysr@777: HeapRegionRemSet::init_heap(max_regions()); ysr@777: apetrusenko@1112: // Now expand into the initial heap size. apetrusenko@1112: expand(init_byte_size); ysr@777: ysr@777: // Perform any initialization actions delegated to the policy. ysr@777: g1_policy()->init(); ysr@777: ysr@777: g1_policy()->note_start_of_mark_thread(); ysr@777: ysr@777: _refine_cte_cl = ysr@777: new RefineCardTableEntryClosure(ConcurrentG1RefineThread::sts(), ysr@777: g1_rem_set(), ysr@777: concurrent_g1_refine()); ysr@777: JavaThread::dirty_card_queue_set().set_closure(_refine_cte_cl); ysr@777: ysr@777: JavaThread::satb_mark_queue_set().initialize(SATB_Q_CBL_mon, ysr@777: SATB_Q_FL_lock, iveresov@1546: G1SATBProcessCompletedThreshold, ysr@777: Shared_SATB_Q_lock); iveresov@1229: iveresov@1229: JavaThread::dirty_card_queue_set().initialize(DirtyCardQ_CBL_mon, iveresov@1229: DirtyCardQ_FL_lock, iveresov@1546: concurrent_g1_refine()->yellow_zone(), iveresov@1546: concurrent_g1_refine()->red_zone(), iveresov@1229: Shared_DirtyCardQ_lock); iveresov@1229: iveresov@1051: if (G1DeferredRSUpdate) { iveresov@1051: dirty_card_queue_set().initialize(DirtyCardQ_CBL_mon, iveresov@1051: DirtyCardQ_FL_lock, iveresov@1546: -1, // never trigger processing iveresov@1546: -1, // no limit on length iveresov@1051: Shared_DirtyCardQ_lock, iveresov@1051: &JavaThread::dirty_card_queue_set()); iveresov@1051: } johnc@2060: johnc@2060: // Initialize the card queue set used to hold cards containing johnc@2060: // references into the collection set. johnc@2060: _into_cset_dirty_card_queue_set.initialize(DirtyCardQ_CBL_mon, johnc@2060: DirtyCardQ_FL_lock, johnc@2060: -1, // never trigger processing johnc@2060: -1, // no limit on length johnc@2060: Shared_DirtyCardQ_lock, johnc@2060: &JavaThread::dirty_card_queue_set()); johnc@2060: ysr@777: // In case we're keeping closure specialization stats, initialize those ysr@777: // counts and that mechanism. ysr@777: SpecializationStats::clear(); ysr@777: ysr@777: _gc_alloc_region_list = NULL; ysr@777: ysr@777: // Do later initialization work for concurrent refinement. ysr@777: _cg1r->init(); ysr@777: ysr@777: return JNI_OK; ysr@777: } ysr@777: ysr@777: void G1CollectedHeap::ref_processing_init() { ysr@777: SharedHeap::ref_processing_init(); ysr@777: MemRegion mr = reserved_region(); ysr@777: _ref_processor = ReferenceProcessor::create_ref_processor( ysr@777: mr, // span ysr@777: false, // Reference discovery is not atomic ysr@777: // (though it shouldn't matter here.) ysr@777: true, // mt_discovery ysr@777: NULL, // is alive closure: need to fill this in for efficiency ysr@777: ParallelGCThreads, ysr@777: ParallelRefProcEnabled, ysr@777: true); // Setting next fields of discovered ysr@777: // lists requires a barrier. ysr@777: } ysr@777: ysr@777: size_t G1CollectedHeap::capacity() const { ysr@777: return _g1_committed.byte_size(); ysr@777: } ysr@777: johnc@2060: void G1CollectedHeap::iterate_dirty_card_closure(CardTableEntryClosure* cl, johnc@2060: DirtyCardQueue* into_cset_dcq, johnc@2060: bool concurrent, ysr@777: int worker_i) { johnc@1324: // Clean cards in the hot card cache johnc@2060: concurrent_g1_refine()->clean_up_cache(worker_i, g1_rem_set(), into_cset_dcq); johnc@1324: ysr@777: DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set(); ysr@777: int n_completed_buffers = 0; johnc@2060: while (dcqs.apply_closure_to_completed_buffer(cl, worker_i, 0, true)) { ysr@777: n_completed_buffers++; ysr@777: } ysr@777: g1_policy()->record_update_rs_processed_buffers(worker_i, ysr@777: (double) n_completed_buffers); ysr@777: dcqs.clear_n_completed_buffers(); ysr@777: assert(!dcqs.completed_buffers_exist_dirty(), "Completed buffers exist!"); ysr@777: } ysr@777: ysr@777: ysr@777: // Computes the sum of the storage used by the various regions. ysr@777: ysr@777: size_t G1CollectedHeap::used() const { ysr@1297: assert(Heap_lock->owner() != NULL, ysr@1297: "Should be owned on this thread's behalf."); ysr@777: size_t result = _summary_bytes_used; ysr@1280: // Read only once in case it is set to NULL concurrently ysr@1280: HeapRegion* hr = _cur_alloc_region; ysr@1280: if (hr != NULL) ysr@1280: result += hr->used(); ysr@777: return result; ysr@777: } ysr@777: tonyp@1281: size_t G1CollectedHeap::used_unlocked() const { tonyp@1281: size_t result = _summary_bytes_used; tonyp@1281: return result; tonyp@1281: } tonyp@1281: ysr@777: class SumUsedClosure: public HeapRegionClosure { ysr@777: size_t _used; ysr@777: public: ysr@777: SumUsedClosure() : _used(0) {} ysr@777: bool doHeapRegion(HeapRegion* r) { ysr@777: if (!r->continuesHumongous()) { ysr@777: _used += r->used(); ysr@777: } ysr@777: return false; ysr@777: } ysr@777: size_t result() { return _used; } ysr@777: }; ysr@777: ysr@777: size_t G1CollectedHeap::recalculate_used() const { ysr@777: SumUsedClosure blk; ysr@777: _hrs->iterate(&blk); ysr@777: return blk.result(); ysr@777: } ysr@777: ysr@777: #ifndef PRODUCT ysr@777: class SumUsedRegionsClosure: public HeapRegionClosure { ysr@777: size_t _num; ysr@777: public: apetrusenko@1112: SumUsedRegionsClosure() : _num(0) {} ysr@777: bool doHeapRegion(HeapRegion* r) { ysr@777: if (r->continuesHumongous() || r->used() > 0 || r->is_gc_alloc_region()) { ysr@777: _num += 1; ysr@777: } ysr@777: return false; ysr@777: } ysr@777: size_t result() { return _num; } ysr@777: }; ysr@777: ysr@777: size_t G1CollectedHeap::recalculate_used_regions() const { ysr@777: SumUsedRegionsClosure blk; ysr@777: _hrs->iterate(&blk); ysr@777: return blk.result(); ysr@777: } ysr@777: #endif // PRODUCT ysr@777: ysr@777: size_t G1CollectedHeap::unsafe_max_alloc() { ysr@777: if (_free_regions > 0) return HeapRegion::GrainBytes; ysr@777: // otherwise, is there space in the current allocation region? ysr@777: ysr@777: // We need to store the current allocation region in a local variable ysr@777: // here. The problem is that this method doesn't take any locks and ysr@777: // there may be other threads which overwrite the current allocation ysr@777: // region field. attempt_allocation(), for example, sets it to NULL ysr@777: // and this can happen *after* the NULL check here but before the call ysr@777: // to free(), resulting in a SIGSEGV. Note that this doesn't appear ysr@777: // to be a problem in the optimized build, since the two loads of the ysr@777: // current allocation region field are optimized away. ysr@777: HeapRegion* car = _cur_alloc_region; ysr@777: ysr@777: // FIXME: should iterate over all regions? ysr@777: if (car == NULL) { ysr@777: return 0; ysr@777: } ysr@777: return car->free(); ysr@777: } ysr@777: tonyp@2011: bool G1CollectedHeap::should_do_concurrent_full_gc(GCCause::Cause cause) { tonyp@2011: return tonyp@2011: ((cause == GCCause::_gc_locker && GCLockerInvokesConcurrent) || tonyp@2011: (cause == GCCause::_java_lang_system_gc && ExplicitGCInvokesConcurrent)); tonyp@2011: } tonyp@2011: tonyp@2011: void G1CollectedHeap::increment_full_collections_completed(bool outer) { tonyp@2011: MonitorLockerEx x(FullGCCount_lock, Mutex::_no_safepoint_check_flag); tonyp@2011: tonyp@2011: // We have already incremented _total_full_collections at the start tonyp@2011: // of the GC, so total_full_collections() represents how many full tonyp@2011: // collections have been started. tonyp@2011: unsigned int full_collections_started = total_full_collections(); tonyp@2011: tonyp@2011: // Given that this method is called at the end of a Full GC or of a tonyp@2011: // concurrent cycle, and those can be nested (i.e., a Full GC can tonyp@2011: // interrupt a concurrent cycle), the number of full collections tonyp@2011: // completed should be either one (in the case where there was no tonyp@2011: // nesting) or two (when a Full GC interrupted a concurrent cycle) tonyp@2011: // behind the number of full collections started. tonyp@2011: tonyp@2011: // This is the case for the inner caller, i.e. a Full GC. tonyp@2011: assert(outer || tonyp@2011: (full_collections_started == _full_collections_completed + 1) || tonyp@2011: (full_collections_started == _full_collections_completed + 2), tonyp@2011: err_msg("for inner caller: full_collections_started = %u " tonyp@2011: "is inconsistent with _full_collections_completed = %u", tonyp@2011: full_collections_started, _full_collections_completed)); tonyp@2011: tonyp@2011: // This is the case for the outer caller, i.e. the concurrent cycle. tonyp@2011: assert(!outer || tonyp@2011: (full_collections_started == _full_collections_completed + 1), tonyp@2011: err_msg("for outer caller: full_collections_started = %u " tonyp@2011: "is inconsistent with _full_collections_completed = %u", tonyp@2011: full_collections_started, _full_collections_completed)); tonyp@2011: tonyp@2011: _full_collections_completed += 1; tonyp@2011: tonyp@2011: // This notify_all() will ensure that a thread that called tonyp@2011: // System.gc() with (with ExplicitGCInvokesConcurrent set or not) tonyp@2011: // and it's waiting for a full GC to finish will be woken up. It is tonyp@2011: // waiting in VM_G1IncCollectionPause::doit_epilogue(). tonyp@2011: FullGCCount_lock->notify_all(); tonyp@2011: } tonyp@2011: ysr@777: void G1CollectedHeap::collect_as_vm_thread(GCCause::Cause cause) { ysr@777: assert(Thread::current()->is_VM_thread(), "Precondition#1"); ysr@777: assert(Heap_lock->is_locked(), "Precondition#2"); ysr@777: GCCauseSetter gcs(this, cause); ysr@777: switch (cause) { ysr@777: case GCCause::_heap_inspection: ysr@777: case GCCause::_heap_dump: { ysr@777: HandleMark hm; ysr@777: do_full_collection(false); // don't clear all soft refs ysr@777: break; ysr@777: } ysr@777: default: // XXX FIX ME ysr@777: ShouldNotReachHere(); // Unexpected use of this function ysr@777: } ysr@777: } ysr@777: ysr@1523: void G1CollectedHeap::collect(GCCause::Cause cause) { ysr@1523: // The caller doesn't have the Heap_lock ysr@1523: assert(!Heap_lock->owned_by_self(), "this thread should not own the Heap_lock"); ysr@1523: tonyp@2011: unsigned int gc_count_before; tonyp@2011: unsigned int full_gc_count_before; ysr@777: { ysr@1523: MutexLocker ml(Heap_lock); ysr@1523: // Read the GC count while holding the Heap_lock ysr@1523: gc_count_before = SharedHeap::heap()->total_collections(); tonyp@2011: full_gc_count_before = SharedHeap::heap()->total_full_collections(); ysr@1523: ysr@1523: // Don't want to do a GC until cleanup is completed. ysr@1523: wait_for_cleanup_complete(); tonyp@2011: tonyp@2011: // We give up heap lock; VMThread::execute gets it back below tonyp@2011: } tonyp@2011: tonyp@2011: if (should_do_concurrent_full_gc(cause)) { tonyp@2011: // Schedule an initial-mark evacuation pause that will start a tonyp@2011: // concurrent cycle. tonyp@2011: VM_G1IncCollectionPause op(gc_count_before, tonyp@2011: true, /* should_initiate_conc_mark */ tonyp@2011: g1_policy()->max_pause_time_ms(), tonyp@2011: cause); tonyp@2011: VMThread::execute(&op); tonyp@2011: } else { tonyp@2011: if (cause == GCCause::_gc_locker tonyp@2011: DEBUG_ONLY(|| cause == GCCause::_scavenge_alot)) { tonyp@2011: tonyp@2011: // Schedule a standard evacuation pause. tonyp@2011: VM_G1IncCollectionPause op(gc_count_before, tonyp@2011: false, /* should_initiate_conc_mark */ tonyp@2011: g1_policy()->max_pause_time_ms(), tonyp@2011: cause); ysr@1523: VMThread::execute(&op); tonyp@2011: } else { tonyp@2011: // Schedule a Full GC. tonyp@2011: VM_G1CollectFull op(gc_count_before, full_gc_count_before, cause); ysr@1523: VMThread::execute(&op); ysr@1523: } ysr@777: } ysr@777: } ysr@777: ysr@777: bool G1CollectedHeap::is_in(const void* p) const { ysr@777: if (_g1_committed.contains(p)) { ysr@777: HeapRegion* hr = _hrs->addr_to_region(p); ysr@777: return hr->is_in(p); ysr@777: } else { ysr@777: return _perm_gen->as_gen()->is_in(p); ysr@777: } ysr@777: } ysr@777: ysr@777: // Iteration functions. ysr@777: ysr@777: // Iterates an OopClosure over all ref-containing fields of objects ysr@777: // within a HeapRegion. ysr@777: ysr@777: class IterateOopClosureRegionClosure: public HeapRegionClosure { ysr@777: MemRegion _mr; ysr@777: OopClosure* _cl; ysr@777: public: ysr@777: IterateOopClosureRegionClosure(MemRegion mr, OopClosure* cl) ysr@777: : _mr(mr), _cl(cl) {} ysr@777: bool doHeapRegion(HeapRegion* r) { ysr@777: if (! r->continuesHumongous()) { ysr@777: r->oop_iterate(_cl); ysr@777: } ysr@777: return false; ysr@777: } ysr@777: }; ysr@777: iveresov@1113: void G1CollectedHeap::oop_iterate(OopClosure* cl, bool do_perm) { ysr@777: IterateOopClosureRegionClosure blk(_g1_committed, cl); ysr@777: _hrs->iterate(&blk); iveresov@1113: if (do_perm) { iveresov@1113: perm_gen()->oop_iterate(cl); iveresov@1113: } ysr@777: } ysr@777: iveresov@1113: void G1CollectedHeap::oop_iterate(MemRegion mr, OopClosure* cl, bool do_perm) { ysr@777: IterateOopClosureRegionClosure blk(mr, cl); ysr@777: _hrs->iterate(&blk); iveresov@1113: if (do_perm) { iveresov@1113: perm_gen()->oop_iterate(cl); iveresov@1113: } ysr@777: } ysr@777: ysr@777: // Iterates an ObjectClosure over all objects within a HeapRegion. ysr@777: ysr@777: class IterateObjectClosureRegionClosure: public HeapRegionClosure { ysr@777: ObjectClosure* _cl; ysr@777: public: ysr@777: IterateObjectClosureRegionClosure(ObjectClosure* cl) : _cl(cl) {} ysr@777: bool doHeapRegion(HeapRegion* r) { ysr@777: if (! r->continuesHumongous()) { ysr@777: r->object_iterate(_cl); ysr@777: } ysr@777: return false; ysr@777: } ysr@777: }; ysr@777: iveresov@1113: void G1CollectedHeap::object_iterate(ObjectClosure* cl, bool do_perm) { ysr@777: IterateObjectClosureRegionClosure blk(cl); ysr@777: _hrs->iterate(&blk); iveresov@1113: if (do_perm) { iveresov@1113: perm_gen()->object_iterate(cl); iveresov@1113: } ysr@777: } ysr@777: ysr@777: void G1CollectedHeap::object_iterate_since_last_GC(ObjectClosure* cl) { ysr@777: // FIXME: is this right? ysr@777: guarantee(false, "object_iterate_since_last_GC not supported by G1 heap"); ysr@777: } ysr@777: ysr@777: // Calls a SpaceClosure on a HeapRegion. ysr@777: ysr@777: class SpaceClosureRegionClosure: public HeapRegionClosure { ysr@777: SpaceClosure* _cl; ysr@777: public: ysr@777: SpaceClosureRegionClosure(SpaceClosure* cl) : _cl(cl) {} ysr@777: bool doHeapRegion(HeapRegion* r) { ysr@777: _cl->do_space(r); ysr@777: return false; ysr@777: } ysr@777: }; ysr@777: ysr@777: void G1CollectedHeap::space_iterate(SpaceClosure* cl) { ysr@777: SpaceClosureRegionClosure blk(cl); ysr@777: _hrs->iterate(&blk); ysr@777: } ysr@777: ysr@777: void G1CollectedHeap::heap_region_iterate(HeapRegionClosure* cl) { ysr@777: _hrs->iterate(cl); ysr@777: } ysr@777: ysr@777: void G1CollectedHeap::heap_region_iterate_from(HeapRegion* r, ysr@777: HeapRegionClosure* cl) { ysr@777: _hrs->iterate_from(r, cl); ysr@777: } ysr@777: ysr@777: void ysr@777: G1CollectedHeap::heap_region_iterate_from(int idx, HeapRegionClosure* cl) { ysr@777: _hrs->iterate_from(idx, cl); ysr@777: } ysr@777: ysr@777: HeapRegion* G1CollectedHeap::region_at(size_t idx) { return _hrs->at(idx); } ysr@777: ysr@777: void ysr@777: G1CollectedHeap::heap_region_par_iterate_chunked(HeapRegionClosure* cl, ysr@777: int worker, ysr@777: jint claim_value) { tonyp@790: const size_t regions = n_regions(); tonyp@790: const size_t worker_num = (ParallelGCThreads > 0 ? ParallelGCThreads : 1); tonyp@790: // try to spread out the starting points of the workers tonyp@790: const size_t start_index = regions / worker_num * (size_t) worker; tonyp@790: tonyp@790: // each worker will actually look at all regions tonyp@790: for (size_t count = 0; count < regions; ++count) { tonyp@790: const size_t index = (start_index + count) % regions; tonyp@790: assert(0 <= index && index < regions, "sanity"); tonyp@790: HeapRegion* r = region_at(index); tonyp@790: // we'll ignore "continues humongous" regions (we'll process them tonyp@790: // when we come across their corresponding "start humongous" tonyp@790: // region) and regions already claimed tonyp@790: if (r->claim_value() == claim_value || r->continuesHumongous()) { tonyp@790: continue; tonyp@790: } tonyp@790: // OK, try to claim it ysr@777: if (r->claimHeapRegion(claim_value)) { tonyp@790: // success! tonyp@790: assert(!r->continuesHumongous(), "sanity"); tonyp@790: if (r->startsHumongous()) { tonyp@790: // If the region is "starts humongous" we'll iterate over its tonyp@790: // "continues humongous" first; in fact we'll do them tonyp@790: // first. The order is important. In on case, calling the tonyp@790: // closure on the "starts humongous" region might de-allocate tonyp@790: // and clear all its "continues humongous" regions and, as a tonyp@790: // result, we might end up processing them twice. So, we'll do tonyp@790: // them first (notice: most closures will ignore them anyway) and tonyp@790: // then we'll do the "starts humongous" region. tonyp@790: for (size_t ch_index = index + 1; ch_index < regions; ++ch_index) { tonyp@790: HeapRegion* chr = region_at(ch_index); tonyp@790: tonyp@790: // if the region has already been claimed or it's not tonyp@790: // "continues humongous" we're done tonyp@790: if (chr->claim_value() == claim_value || tonyp@790: !chr->continuesHumongous()) { tonyp@790: break; tonyp@790: } tonyp@790: tonyp@790: // Noone should have claimed it directly. We can given tonyp@790: // that we claimed its "starts humongous" region. tonyp@790: assert(chr->claim_value() != claim_value, "sanity"); tonyp@790: assert(chr->humongous_start_region() == r, "sanity"); tonyp@790: tonyp@790: if (chr->claimHeapRegion(claim_value)) { tonyp@790: // we should always be able to claim it; noone else should tonyp@790: // be trying to claim this region tonyp@790: tonyp@790: bool res2 = cl->doHeapRegion(chr); tonyp@790: assert(!res2, "Should not abort"); tonyp@790: tonyp@790: // Right now, this holds (i.e., no closure that actually tonyp@790: // does something with "continues humongous" regions tonyp@790: // clears them). We might have to weaken it in the future, tonyp@790: // but let's leave these two asserts here for extra safety. tonyp@790: assert(chr->continuesHumongous(), "should still be the case"); tonyp@790: assert(chr->humongous_start_region() == r, "sanity"); tonyp@790: } else { tonyp@790: guarantee(false, "we should not reach here"); tonyp@790: } tonyp@790: } tonyp@790: } tonyp@790: tonyp@790: assert(!r->continuesHumongous(), "sanity"); tonyp@790: bool res = cl->doHeapRegion(r); tonyp@790: assert(!res, "Should not abort"); tonyp@790: } tonyp@790: } tonyp@790: } tonyp@790: tonyp@825: class ResetClaimValuesClosure: public HeapRegionClosure { tonyp@825: public: tonyp@825: bool doHeapRegion(HeapRegion* r) { tonyp@825: r->set_claim_value(HeapRegion::InitialClaimValue); tonyp@825: return false; tonyp@825: } tonyp@825: }; tonyp@825: tonyp@825: void tonyp@825: G1CollectedHeap::reset_heap_region_claim_values() { tonyp@825: ResetClaimValuesClosure blk; tonyp@825: heap_region_iterate(&blk); tonyp@825: } tonyp@825: tonyp@790: #ifdef ASSERT tonyp@790: // This checks whether all regions in the heap have the correct claim tonyp@790: // value. I also piggy-backed on this a check to ensure that the tonyp@790: // humongous_start_region() information on "continues humongous" tonyp@790: // regions is correct. tonyp@790: tonyp@790: class CheckClaimValuesClosure : public HeapRegionClosure { tonyp@790: private: tonyp@790: jint _claim_value; tonyp@790: size_t _failures; tonyp@790: HeapRegion* _sh_region; tonyp@790: public: tonyp@790: CheckClaimValuesClosure(jint claim_value) : tonyp@790: _claim_value(claim_value), _failures(0), _sh_region(NULL) { } tonyp@790: bool doHeapRegion(HeapRegion* r) { tonyp@790: if (r->claim_value() != _claim_value) { tonyp@790: gclog_or_tty->print_cr("Region ["PTR_FORMAT","PTR_FORMAT"), " tonyp@790: "claim value = %d, should be %d", tonyp@790: r->bottom(), r->end(), r->claim_value(), tonyp@790: _claim_value); tonyp@790: ++_failures; tonyp@790: } tonyp@790: if (!r->isHumongous()) { tonyp@790: _sh_region = NULL; tonyp@790: } else if (r->startsHumongous()) { tonyp@790: _sh_region = r; tonyp@790: } else if (r->continuesHumongous()) { tonyp@790: if (r->humongous_start_region() != _sh_region) { tonyp@790: gclog_or_tty->print_cr("Region ["PTR_FORMAT","PTR_FORMAT"), " tonyp@790: "HS = "PTR_FORMAT", should be "PTR_FORMAT, tonyp@790: r->bottom(), r->end(), tonyp@790: r->humongous_start_region(), tonyp@790: _sh_region); tonyp@790: ++_failures; ysr@777: } ysr@777: } tonyp@790: return false; tonyp@790: } tonyp@790: size_t failures() { tonyp@790: return _failures; tonyp@790: } tonyp@790: }; tonyp@790: tonyp@790: bool G1CollectedHeap::check_heap_region_claim_values(jint claim_value) { tonyp@790: CheckClaimValuesClosure cl(claim_value); tonyp@790: heap_region_iterate(&cl); tonyp@790: return cl.failures() == 0; tonyp@790: } tonyp@790: #endif // ASSERT ysr@777: ysr@777: void G1CollectedHeap::collection_set_iterate(HeapRegionClosure* cl) { ysr@777: HeapRegion* r = g1_policy()->collection_set(); ysr@777: while (r != NULL) { ysr@777: HeapRegion* next = r->next_in_collection_set(); ysr@777: if (cl->doHeapRegion(r)) { ysr@777: cl->incomplete(); ysr@777: return; ysr@777: } ysr@777: r = next; ysr@777: } ysr@777: } ysr@777: ysr@777: void G1CollectedHeap::collection_set_iterate_from(HeapRegion* r, ysr@777: HeapRegionClosure *cl) { tonyp@2011: if (r == NULL) { tonyp@2011: // The CSet is empty so there's nothing to do. tonyp@2011: return; tonyp@2011: } tonyp@2011: ysr@777: assert(r->in_collection_set(), ysr@777: "Start region must be a member of the collection set."); ysr@777: HeapRegion* cur = r; ysr@777: while (cur != NULL) { ysr@777: HeapRegion* next = cur->next_in_collection_set(); ysr@777: if (cl->doHeapRegion(cur) && false) { ysr@777: cl->incomplete(); ysr@777: return; ysr@777: } ysr@777: cur = next; ysr@777: } ysr@777: cur = g1_policy()->collection_set(); ysr@777: while (cur != r) { ysr@777: HeapRegion* next = cur->next_in_collection_set(); ysr@777: if (cl->doHeapRegion(cur) && false) { ysr@777: cl->incomplete(); ysr@777: return; ysr@777: } ysr@777: cur = next; ysr@777: } ysr@777: } ysr@777: ysr@777: CompactibleSpace* G1CollectedHeap::first_compactible_space() { ysr@777: return _hrs->length() > 0 ? _hrs->at(0) : NULL; ysr@777: } ysr@777: ysr@777: ysr@777: Space* G1CollectedHeap::space_containing(const void* addr) const { ysr@777: Space* res = heap_region_containing(addr); ysr@777: if (res == NULL) ysr@777: res = perm_gen()->space_containing(addr); ysr@777: return res; ysr@777: } ysr@777: ysr@777: HeapWord* G1CollectedHeap::block_start(const void* addr) const { ysr@777: Space* sp = space_containing(addr); ysr@777: if (sp != NULL) { ysr@777: return sp->block_start(addr); ysr@777: } ysr@777: return NULL; ysr@777: } ysr@777: ysr@777: size_t G1CollectedHeap::block_size(const HeapWord* addr) const { ysr@777: Space* sp = space_containing(addr); ysr@777: assert(sp != NULL, "block_size of address outside of heap"); ysr@777: return sp->block_size(addr); ysr@777: } ysr@777: ysr@777: bool G1CollectedHeap::block_is_obj(const HeapWord* addr) const { ysr@777: Space* sp = space_containing(addr); ysr@777: return sp->block_is_obj(addr); ysr@777: } ysr@777: ysr@777: bool G1CollectedHeap::supports_tlab_allocation() const { ysr@777: return true; ysr@777: } ysr@777: ysr@777: size_t G1CollectedHeap::tlab_capacity(Thread* ignored) const { ysr@777: return HeapRegion::GrainBytes; ysr@777: } ysr@777: ysr@777: size_t G1CollectedHeap::unsafe_max_tlab_alloc(Thread* ignored) const { ysr@777: // Return the remaining space in the cur alloc region, but not less than ysr@777: // the min TLAB size. johnc@1748: johnc@1748: // Also, this value can be at most the humongous object threshold, johnc@1748: // since we can't allow tlabs to grow big enough to accomodate johnc@1748: // humongous objects. johnc@1748: johnc@1748: // We need to store the cur alloc region locally, since it might change johnc@1748: // between when we test for NULL and when we use it later. ysr@777: ContiguousSpace* cur_alloc_space = _cur_alloc_region; johnc@1748: size_t max_tlab_size = _humongous_object_threshold_in_words * wordSize; johnc@1748: ysr@777: if (cur_alloc_space == NULL) { johnc@1748: return max_tlab_size; ysr@777: } else { johnc@1748: return MIN2(MAX2(cur_alloc_space->free(), (size_t)MinTLABSize), johnc@1748: max_tlab_size); ysr@777: } ysr@777: } ysr@777: ysr@777: HeapWord* G1CollectedHeap::allocate_new_tlab(size_t size) { ysr@777: bool dummy; ysr@777: return G1CollectedHeap::mem_allocate(size, false, true, &dummy); ysr@777: } ysr@777: ysr@777: bool G1CollectedHeap::allocs_are_zero_filled() { ysr@777: return false; ysr@777: } ysr@777: ysr@777: size_t G1CollectedHeap::large_typearray_limit() { ysr@777: // FIXME ysr@777: return HeapRegion::GrainBytes/HeapWordSize; ysr@777: } ysr@777: ysr@777: size_t G1CollectedHeap::max_capacity() const { tonyp@1527: return g1_reserved_obj_bytes(); ysr@777: } ysr@777: ysr@777: jlong G1CollectedHeap::millis_since_last_gc() { ysr@777: // assert(false, "NYI"); ysr@777: return 0; ysr@777: } ysr@777: ysr@777: ysr@777: void G1CollectedHeap::prepare_for_verify() { ysr@777: if (SafepointSynchronize::is_at_safepoint() || ! UseTLAB) { ysr@777: ensure_parsability(false); ysr@777: } ysr@777: g1_rem_set()->prepare_for_verify(); ysr@777: } ysr@777: ysr@777: class VerifyLivenessOopClosure: public OopClosure { ysr@777: G1CollectedHeap* g1h; ysr@777: public: ysr@777: VerifyLivenessOopClosure(G1CollectedHeap* _g1h) { ysr@777: g1h = _g1h; ysr@777: } ysr@1280: void do_oop(narrowOop *p) { do_oop_work(p); } ysr@1280: void do_oop( oop *p) { do_oop_work(p); } ysr@1280: ysr@1280: template void do_oop_work(T *p) { ysr@1280: oop obj = oopDesc::load_decode_heap_oop(p); ysr@1280: guarantee(obj == NULL || !g1h->is_obj_dead(obj), ysr@1280: "Dead object referenced by a not dead object"); ysr@777: } ysr@777: }; ysr@777: ysr@777: class VerifyObjsInRegionClosure: public ObjectClosure { tonyp@1246: private: ysr@777: G1CollectedHeap* _g1h; ysr@777: size_t _live_bytes; ysr@777: HeapRegion *_hr; tonyp@1246: bool _use_prev_marking; ysr@777: public: tonyp@1246: // use_prev_marking == true -> use "prev" marking information, tonyp@1246: // use_prev_marking == false -> use "next" marking information tonyp@1246: VerifyObjsInRegionClosure(HeapRegion *hr, bool use_prev_marking) tonyp@1246: : _live_bytes(0), _hr(hr), _use_prev_marking(use_prev_marking) { ysr@777: _g1h = G1CollectedHeap::heap(); ysr@777: } ysr@777: void do_object(oop o) { ysr@777: VerifyLivenessOopClosure isLive(_g1h); ysr@777: assert(o != NULL, "Huh?"); tonyp@1246: if (!_g1h->is_obj_dead_cond(o, _use_prev_marking)) { ysr@777: o->oop_iterate(&isLive); johnc@1824: if (!_hr->obj_allocated_since_prev_marking(o)) { johnc@1824: size_t obj_size = o->size(); // Make sure we don't overflow johnc@1824: _live_bytes += (obj_size * HeapWordSize); johnc@1824: } ysr@777: } ysr@777: } ysr@777: size_t live_bytes() { return _live_bytes; } ysr@777: }; ysr@777: ysr@777: class PrintObjsInRegionClosure : public ObjectClosure { ysr@777: HeapRegion *_hr; ysr@777: G1CollectedHeap *_g1; ysr@777: public: ysr@777: PrintObjsInRegionClosure(HeapRegion *hr) : _hr(hr) { ysr@777: _g1 = G1CollectedHeap::heap(); ysr@777: }; ysr@777: ysr@777: void do_object(oop o) { ysr@777: if (o != NULL) { ysr@777: HeapWord *start = (HeapWord *) o; ysr@777: size_t word_sz = o->size(); ysr@777: gclog_or_tty->print("\nPrinting obj "PTR_FORMAT" of size " SIZE_FORMAT ysr@777: " isMarkedPrev %d isMarkedNext %d isAllocSince %d\n", ysr@777: (void*) o, word_sz, ysr@777: _g1->isMarkedPrev(o), ysr@777: _g1->isMarkedNext(o), ysr@777: _hr->obj_allocated_since_prev_marking(o)); ysr@777: HeapWord *end = start + word_sz; ysr@777: HeapWord *cur; ysr@777: int *val; ysr@777: for (cur = start; cur < end; cur++) { ysr@777: val = (int *) cur; ysr@777: gclog_or_tty->print("\t "PTR_FORMAT":"PTR_FORMAT"\n", val, *val); ysr@777: } ysr@777: } ysr@777: } ysr@777: }; ysr@777: ysr@777: class VerifyRegionClosure: public HeapRegionClosure { tonyp@1246: private: ysr@777: bool _allow_dirty; tonyp@825: bool _par; tonyp@1246: bool _use_prev_marking; tonyp@1455: bool _failures; tonyp@1246: public: tonyp@1246: // use_prev_marking == true -> use "prev" marking information, tonyp@1246: // use_prev_marking == false -> use "next" marking information tonyp@1246: VerifyRegionClosure(bool allow_dirty, bool par, bool use_prev_marking) ysr@1280: : _allow_dirty(allow_dirty), ysr@1280: _par(par), tonyp@1455: _use_prev_marking(use_prev_marking), tonyp@1455: _failures(false) {} tonyp@1455: tonyp@1455: bool failures() { tonyp@1455: return _failures; tonyp@1455: } ysr@1280: ysr@777: bool doHeapRegion(HeapRegion* r) { tonyp@825: guarantee(_par || r->claim_value() == HeapRegion::InitialClaimValue, tonyp@825: "Should be unclaimed at verify points."); iveresov@1072: if (!r->continuesHumongous()) { tonyp@1455: bool failures = false; tonyp@1455: r->verify(_allow_dirty, _use_prev_marking, &failures); tonyp@1455: if (failures) { tonyp@1455: _failures = true; tonyp@1455: } else { tonyp@1455: VerifyObjsInRegionClosure not_dead_yet_cl(r, _use_prev_marking); tonyp@1455: r->object_iterate(¬_dead_yet_cl); tonyp@1455: if (r->max_live_bytes() < not_dead_yet_cl.live_bytes()) { tonyp@1455: gclog_or_tty->print_cr("["PTR_FORMAT","PTR_FORMAT"] " tonyp@1455: "max_live_bytes "SIZE_FORMAT" " tonyp@1455: "< calculated "SIZE_FORMAT, tonyp@1455: r->bottom(), r->end(), tonyp@1455: r->max_live_bytes(), tonyp@1455: not_dead_yet_cl.live_bytes()); tonyp@1455: _failures = true; tonyp@1455: } tonyp@1455: } ysr@777: } tonyp@1455: return false; // stop the region iteration if we hit a failure ysr@777: } ysr@777: }; ysr@777: ysr@777: class VerifyRootsClosure: public OopsInGenClosure { ysr@777: private: ysr@777: G1CollectedHeap* _g1h; tonyp@1455: bool _use_prev_marking; ysr@777: bool _failures; ysr@777: public: tonyp@1246: // use_prev_marking == true -> use "prev" marking information, tonyp@1246: // use_prev_marking == false -> use "next" marking information tonyp@1246: VerifyRootsClosure(bool use_prev_marking) : ysr@1280: _g1h(G1CollectedHeap::heap()), tonyp@1455: _use_prev_marking(use_prev_marking), tonyp@1455: _failures(false) { } ysr@777: ysr@777: bool failures() { return _failures; } ysr@777: ysr@1280: template void do_oop_nv(T* p) { ysr@1280: T heap_oop = oopDesc::load_heap_oop(p); ysr@1280: if (!oopDesc::is_null(heap_oop)) { ysr@1280: oop obj = oopDesc::decode_heap_oop_not_null(heap_oop); tonyp@1246: if (_g1h->is_obj_dead_cond(obj, _use_prev_marking)) { ysr@777: gclog_or_tty->print_cr("Root location "PTR_FORMAT" " tonyp@1455: "points to dead obj "PTR_FORMAT, p, (void*) obj); ysr@777: obj->print_on(gclog_or_tty); ysr@777: _failures = true; ysr@777: } ysr@777: } ysr@777: } ysr@1280: ysr@1280: void do_oop(oop* p) { do_oop_nv(p); } ysr@1280: void do_oop(narrowOop* p) { do_oop_nv(p); } ysr@777: }; ysr@777: tonyp@825: // This is the task used for parallel heap verification. tonyp@825: tonyp@825: class G1ParVerifyTask: public AbstractGangTask { tonyp@825: private: tonyp@825: G1CollectedHeap* _g1h; tonyp@825: bool _allow_dirty; tonyp@1246: bool _use_prev_marking; tonyp@1455: bool _failures; tonyp@825: tonyp@825: public: tonyp@1246: // use_prev_marking == true -> use "prev" marking information, tonyp@1246: // use_prev_marking == false -> use "next" marking information tonyp@1246: G1ParVerifyTask(G1CollectedHeap* g1h, bool allow_dirty, tonyp@1246: bool use_prev_marking) : tonyp@825: AbstractGangTask("Parallel verify task"), ysr@1280: _g1h(g1h), ysr@1280: _allow_dirty(allow_dirty), tonyp@1455: _use_prev_marking(use_prev_marking), tonyp@1455: _failures(false) { } tonyp@1455: tonyp@1455: bool failures() { tonyp@1455: return _failures; tonyp@1455: } tonyp@825: tonyp@825: void work(int worker_i) { iveresov@1072: HandleMark hm; tonyp@1246: VerifyRegionClosure blk(_allow_dirty, true, _use_prev_marking); tonyp@825: _g1h->heap_region_par_iterate_chunked(&blk, worker_i, tonyp@825: HeapRegion::ParVerifyClaimValue); tonyp@1455: if (blk.failures()) { tonyp@1455: _failures = true; tonyp@1455: } tonyp@825: } tonyp@825: }; tonyp@825: ysr@777: void G1CollectedHeap::verify(bool allow_dirty, bool silent) { tonyp@1246: verify(allow_dirty, silent, /* use_prev_marking */ true); tonyp@1246: } tonyp@1246: tonyp@1246: void G1CollectedHeap::verify(bool allow_dirty, tonyp@1246: bool silent, tonyp@1246: bool use_prev_marking) { ysr@777: if (SafepointSynchronize::is_at_safepoint() || ! UseTLAB) { ysr@777: if (!silent) { gclog_or_tty->print("roots "); } tonyp@1246: VerifyRootsClosure rootsCl(use_prev_marking); jrose@1424: CodeBlobToOopClosure blobsCl(&rootsCl, /*do_marking=*/ false); jrose@1424: process_strong_roots(true, // activate StrongRootsScope jrose@1424: false, ysr@777: SharedHeap::SO_AllClasses, ysr@777: &rootsCl, jrose@1424: &blobsCl, ysr@777: &rootsCl); tonyp@1455: bool failures = rootsCl.failures(); ysr@777: rem_set()->invalidate(perm_gen()->used_region(), false); ysr@777: if (!silent) { gclog_or_tty->print("heapRegions "); } tonyp@825: if (GCParallelVerificationEnabled && ParallelGCThreads > 1) { tonyp@825: assert(check_heap_region_claim_values(HeapRegion::InitialClaimValue), tonyp@825: "sanity check"); tonyp@825: tonyp@1246: G1ParVerifyTask task(this, allow_dirty, use_prev_marking); tonyp@825: int n_workers = workers()->total_workers(); tonyp@825: set_par_threads(n_workers); tonyp@825: workers()->run_task(&task); tonyp@825: set_par_threads(0); tonyp@1455: if (task.failures()) { tonyp@1455: failures = true; tonyp@1455: } tonyp@825: tonyp@825: assert(check_heap_region_claim_values(HeapRegion::ParVerifyClaimValue), tonyp@825: "sanity check"); tonyp@825: tonyp@825: reset_heap_region_claim_values(); tonyp@825: tonyp@825: assert(check_heap_region_claim_values(HeapRegion::InitialClaimValue), tonyp@825: "sanity check"); tonyp@825: } else { tonyp@1246: VerifyRegionClosure blk(allow_dirty, false, use_prev_marking); tonyp@825: _hrs->iterate(&blk); tonyp@1455: if (blk.failures()) { tonyp@1455: failures = true; tonyp@1455: } tonyp@825: } ysr@777: if (!silent) gclog_or_tty->print("remset "); ysr@777: rem_set()->verify(); tonyp@1455: tonyp@1455: if (failures) { tonyp@1455: gclog_or_tty->print_cr("Heap:"); tonyp@1455: print_on(gclog_or_tty, true /* extended */); tonyp@1455: gclog_or_tty->print_cr(""); jcoomes@1902: #ifndef PRODUCT tonyp@1479: if (VerifyDuringGC && G1VerifyDuringGCPrintReachable) { tonyp@1823: concurrent_mark()->print_reachable("at-verification-failure", tonyp@1823: use_prev_marking, false /* all */); tonyp@1455: } jcoomes@1902: #endif tonyp@1455: gclog_or_tty->flush(); tonyp@1455: } tonyp@1455: guarantee(!failures, "there should not have been any failures"); ysr@777: } else { ysr@777: if (!silent) gclog_or_tty->print("(SKIPPING roots, heapRegions, remset) "); ysr@777: } ysr@777: } ysr@777: ysr@777: class PrintRegionClosure: public HeapRegionClosure { ysr@777: outputStream* _st; ysr@777: public: ysr@777: PrintRegionClosure(outputStream* st) : _st(st) {} ysr@777: bool doHeapRegion(HeapRegion* r) { ysr@777: r->print_on(_st); ysr@777: return false; ysr@777: } ysr@777: }; ysr@777: tonyp@1273: void G1CollectedHeap::print() const { print_on(tty); } ysr@777: ysr@777: void G1CollectedHeap::print_on(outputStream* st) const { tonyp@1273: print_on(st, PrintHeapAtGCExtended); tonyp@1273: } tonyp@1273: tonyp@1273: void G1CollectedHeap::print_on(outputStream* st, bool extended) const { tonyp@1273: st->print(" %-20s", "garbage-first heap"); tonyp@1273: st->print(" total " SIZE_FORMAT "K, used " SIZE_FORMAT "K", tonyp@1281: capacity()/K, used_unlocked()/K); tonyp@1273: st->print(" [" INTPTR_FORMAT ", " INTPTR_FORMAT ", " INTPTR_FORMAT ")", tonyp@1273: _g1_storage.low_boundary(), tonyp@1273: _g1_storage.high(), tonyp@1273: _g1_storage.high_boundary()); tonyp@1273: st->cr(); tonyp@1273: st->print(" region size " SIZE_FORMAT "K, ", tonyp@1273: HeapRegion::GrainBytes/K); tonyp@1273: size_t young_regions = _young_list->length(); tonyp@1273: st->print(SIZE_FORMAT " young (" SIZE_FORMAT "K), ", tonyp@1273: young_regions, young_regions * HeapRegion::GrainBytes / K); tonyp@1273: size_t survivor_regions = g1_policy()->recorded_survivor_regions(); tonyp@1273: st->print(SIZE_FORMAT " survivors (" SIZE_FORMAT "K)", tonyp@1273: survivor_regions, survivor_regions * HeapRegion::GrainBytes / K); tonyp@1273: st->cr(); tonyp@1273: perm()->as_gen()->print_on(st); tonyp@1273: if (extended) { tonyp@1455: st->cr(); tonyp@1273: print_on_extended(st); tonyp@1273: } tonyp@1273: } tonyp@1273: tonyp@1273: void G1CollectedHeap::print_on_extended(outputStream* st) const { ysr@777: PrintRegionClosure blk(st); ysr@777: _hrs->iterate(&blk); ysr@777: } ysr@777: ysr@777: void G1CollectedHeap::print_gc_threads_on(outputStream* st) const { ysr@777: if (ParallelGCThreads > 0) { tonyp@1454: workers()->print_worker_threads_on(st); tonyp@1454: } tonyp@1454: tonyp@1454: _cmThread->print_on(st); ysr@777: st->cr(); tonyp@1454: tonyp@1454: _cm->print_worker_threads_on(st); tonyp@1454: tonyp@1454: _cg1r->print_worker_threads_on(st); tonyp@1454: ysr@777: _czft->print_on(st); ysr@777: st->cr(); ysr@777: } ysr@777: ysr@777: void G1CollectedHeap::gc_threads_do(ThreadClosure* tc) const { ysr@777: if (ParallelGCThreads > 0) { ysr@777: workers()->threads_do(tc); ysr@777: } ysr@777: tc->do_thread(_cmThread); iveresov@1229: _cg1r->threads_do(tc); ysr@777: tc->do_thread(_czft); ysr@777: } ysr@777: ysr@777: void G1CollectedHeap::print_tracing_info() const { ysr@777: // We'll overload this to mean "trace GC pause statistics." ysr@777: if (TraceGen0Time || TraceGen1Time) { ysr@777: // The "G1CollectorPolicy" is keeping track of these stats, so delegate ysr@777: // to that. ysr@777: g1_policy()->print_tracing_info(); ysr@777: } johnc@1186: if (G1SummarizeRSetStats) { ysr@777: g1_rem_set()->print_summary_info(); ysr@777: } tonyp@1717: if (G1SummarizeConcMark) { ysr@777: concurrent_mark()->print_summary_info(); ysr@777: } johnc@1186: if (G1SummarizeZFStats) { ysr@777: ConcurrentZFThread::print_summary_info(); ysr@777: } ysr@777: g1_policy()->print_yg_surv_rate_info(); ysr@777: ysr@777: SpecializationStats::print(); ysr@777: } ysr@777: ysr@777: ysr@777: int G1CollectedHeap::addr_to_arena_id(void* addr) const { ysr@777: HeapRegion* hr = heap_region_containing(addr); ysr@777: if (hr == NULL) { ysr@777: return 0; ysr@777: } else { ysr@777: return 1; ysr@777: } ysr@777: } ysr@777: ysr@777: G1CollectedHeap* G1CollectedHeap::heap() { ysr@777: assert(_sh->kind() == CollectedHeap::G1CollectedHeap, ysr@777: "not a garbage-first heap"); ysr@777: return _g1h; ysr@777: } ysr@777: ysr@777: void G1CollectedHeap::gc_prologue(bool full /* Ignored */) { ysr@1680: // always_do_update_barrier = false; ysr@777: assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer"); ysr@777: // Call allocation profiler ysr@777: AllocationProfiler::iterate_since_last_gc(); ysr@777: // Fill TLAB's and such ysr@777: ensure_parsability(true); ysr@777: } ysr@777: ysr@777: void G1CollectedHeap::gc_epilogue(bool full /* Ignored */) { ysr@777: // FIXME: what is this about? ysr@777: // I'm ignoring the "fill_newgen()" call if "alloc_event_enabled" ysr@777: // is set. ysr@777: COMPILER2_PRESENT(assert(DerivedPointerTable::is_empty(), ysr@777: "derived pointer present")); ysr@1680: // always_do_update_barrier = true; ysr@777: } ysr@777: ysr@777: void G1CollectedHeap::do_collection_pause() { tonyp@2011: assert(Heap_lock->owned_by_self(), "we assume we'reholding the Heap_lock"); tonyp@2011: ysr@777: // Read the GC count while holding the Heap_lock ysr@777: // we need to do this _before_ wait_for_cleanup_complete(), to ysr@777: // ensure that we do not give up the heap lock and potentially ysr@777: // pick up the wrong count tonyp@2011: unsigned int gc_count_before = SharedHeap::heap()->total_collections(); ysr@777: ysr@777: // Don't want to do a GC pause while cleanup is being completed! ysr@777: wait_for_cleanup_complete(); ysr@777: ysr@777: g1_policy()->record_stop_world_start(); ysr@777: { ysr@777: MutexUnlocker mu(Heap_lock); // give up heap lock, execute gets it back tonyp@2011: VM_G1IncCollectionPause op(gc_count_before, tonyp@2011: false, /* should_initiate_conc_mark */ tonyp@2011: g1_policy()->max_pause_time_ms(), tonyp@2011: GCCause::_g1_inc_collection_pause); ysr@777: VMThread::execute(&op); ysr@777: } ysr@777: } ysr@777: ysr@777: void ysr@777: G1CollectedHeap::doConcurrentMark() { ysr@1280: MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag); ysr@1280: if (!_cmThread->in_progress()) { ysr@1280: _cmThread->set_started(); ysr@1280: CGC_lock->notify(); ysr@777: } ysr@777: } ysr@777: ysr@777: class VerifyMarkedObjsClosure: public ObjectClosure { ysr@777: G1CollectedHeap* _g1h; ysr@777: public: ysr@777: VerifyMarkedObjsClosure(G1CollectedHeap* g1h) : _g1h(g1h) {} ysr@777: void do_object(oop obj) { ysr@777: assert(obj->mark()->is_marked() ? !_g1h->is_obj_dead(obj) : true, ysr@777: "markandsweep mark should agree with concurrent deadness"); ysr@777: } ysr@777: }; ysr@777: ysr@777: void ysr@777: G1CollectedHeap::checkConcurrentMark() { ysr@777: VerifyMarkedObjsClosure verifycl(this); ysr@777: // MutexLockerEx x(getMarkBitMapLock(), ysr@777: // Mutex::_no_safepoint_check_flag); iveresov@1113: object_iterate(&verifycl, false); ysr@777: } ysr@777: ysr@777: void G1CollectedHeap::do_sync_mark() { ysr@777: _cm->checkpointRootsInitial(); ysr@777: _cm->markFromRoots(); ysr@777: _cm->checkpointRootsFinal(false); ysr@777: } ysr@777: ysr@777: // ysr@777: ysr@777: double G1CollectedHeap::predict_region_elapsed_time_ms(HeapRegion *hr, ysr@777: bool young) { ysr@777: return _g1_policy->predict_region_elapsed_time_ms(hr, young); ysr@777: } ysr@777: ysr@777: void G1CollectedHeap::check_if_region_is_too_expensive(double ysr@777: predicted_time_ms) { ysr@777: _g1_policy->check_if_region_is_too_expensive(predicted_time_ms); ysr@777: } ysr@777: ysr@777: size_t G1CollectedHeap::pending_card_num() { ysr@777: size_t extra_cards = 0; ysr@777: JavaThread *curr = Threads::first(); ysr@777: while (curr != NULL) { ysr@777: DirtyCardQueue& dcq = curr->dirty_card_queue(); ysr@777: extra_cards += dcq.size(); ysr@777: curr = curr->next(); ysr@777: } ysr@777: DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set(); ysr@777: size_t buffer_size = dcqs.buffer_size(); ysr@777: size_t buffer_num = dcqs.completed_buffers_num(); ysr@777: return buffer_size * buffer_num + extra_cards; ysr@777: } ysr@777: ysr@777: size_t G1CollectedHeap::max_pending_card_num() { ysr@777: DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set(); ysr@777: size_t buffer_size = dcqs.buffer_size(); ysr@777: size_t buffer_num = dcqs.completed_buffers_num(); ysr@777: int thread_num = Threads::number_of_threads(); ysr@777: return (buffer_num + thread_num) * buffer_size; ysr@777: } ysr@777: ysr@777: size_t G1CollectedHeap::cards_scanned() { ysr@777: HRInto_G1RemSet* g1_rset = (HRInto_G1RemSet*) g1_rem_set(); ysr@777: return g1_rset->cardsScanned(); ysr@777: } ysr@777: ysr@777: void ysr@777: G1CollectedHeap::setup_surviving_young_words() { ysr@777: guarantee( _surviving_young_words == NULL, "pre-condition" ); ysr@777: size_t array_length = g1_policy()->young_cset_length(); ysr@777: _surviving_young_words = NEW_C_HEAP_ARRAY(size_t, array_length); ysr@777: if (_surviving_young_words == NULL) { ysr@777: vm_exit_out_of_memory(sizeof(size_t) * array_length, ysr@777: "Not enough space for young surv words summary."); ysr@777: } ysr@777: memset(_surviving_young_words, 0, array_length * sizeof(size_t)); ysr@1280: #ifdef ASSERT ysr@777: for (size_t i = 0; i < array_length; ++i) { ysr@1280: assert( _surviving_young_words[i] == 0, "memset above" ); ysr@1280: } ysr@1280: #endif // !ASSERT ysr@777: } ysr@777: ysr@777: void ysr@777: G1CollectedHeap::update_surviving_young_words(size_t* surv_young_words) { ysr@777: MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag); ysr@777: size_t array_length = g1_policy()->young_cset_length(); ysr@777: for (size_t i = 0; i < array_length; ++i) ysr@777: _surviving_young_words[i] += surv_young_words[i]; ysr@777: } ysr@777: ysr@777: void ysr@777: G1CollectedHeap::cleanup_surviving_young_words() { ysr@777: guarantee( _surviving_young_words != NULL, "pre-condition" ); ysr@777: FREE_C_HEAP_ARRAY(size_t, _surviving_young_words); ysr@777: _surviving_young_words = NULL; ysr@777: } ysr@777: ysr@777: // ysr@777: iveresov@1696: struct PrepareForRSScanningClosure : public HeapRegionClosure { iveresov@1696: bool doHeapRegion(HeapRegion *r) { iveresov@1696: r->rem_set()->set_iter_claimed(0); iveresov@1696: return false; iveresov@1696: } iveresov@1696: }; iveresov@1696: jcoomes@2064: #if TASKQUEUE_STATS jcoomes@2064: void G1CollectedHeap::print_taskqueue_stats_hdr(outputStream* const st) { jcoomes@2064: st->print_raw_cr("GC Task Stats"); jcoomes@2064: st->print_raw("thr "); TaskQueueStats::print_header(1, st); st->cr(); jcoomes@2064: st->print_raw("--- "); TaskQueueStats::print_header(2, st); st->cr(); jcoomes@2064: } jcoomes@2064: jcoomes@2064: void G1CollectedHeap::print_taskqueue_stats(outputStream* const st) const { jcoomes@2064: print_taskqueue_stats_hdr(st); jcoomes@2064: jcoomes@2064: TaskQueueStats totals; jcoomes@2064: const int n = MAX2(workers()->total_workers(), 1); jcoomes@2064: for (int i = 0; i < n; ++i) { jcoomes@2064: st->print("%3d ", i); task_queue(i)->stats.print(st); st->cr(); jcoomes@2064: totals += task_queue(i)->stats; jcoomes@2064: } jcoomes@2064: st->print_raw("tot "); totals.print(st); st->cr(); jcoomes@2064: jcoomes@2064: DEBUG_ONLY(totals.verify()); jcoomes@2064: } jcoomes@2064: jcoomes@2064: void G1CollectedHeap::reset_taskqueue_stats() { jcoomes@2064: const int n = MAX2(workers()->total_workers(), 1); jcoomes@2064: for (int i = 0; i < n; ++i) { jcoomes@2064: task_queue(i)->stats.reset(); jcoomes@2064: } jcoomes@2064: } jcoomes@2064: #endif // TASKQUEUE_STATS jcoomes@2064: ysr@777: void tonyp@2011: G1CollectedHeap::do_collection_pause_at_safepoint(double target_pause_time_ms) { tonyp@1794: if (GC_locker::check_active_before_gc()) { tonyp@1794: return; // GC is disabled (e.g. JNI GetXXXCritical operation) tonyp@1794: } tonyp@1794: tonyp@1273: if (PrintHeapAtGC) { tonyp@1273: Universe::print_heap_before_gc(); tonyp@1273: } tonyp@1273: tonyp@1273: { tonyp@1524: ResourceMark rm; tonyp@1524: tonyp@1794: // This call will decide whether this pause is an initial-mark tonyp@1794: // pause. If it is, during_initial_mark_pause() will return true tonyp@1794: // for the duration of this pause. tonyp@1794: g1_policy()->decide_on_conc_mark_initiation(); tonyp@1794: tonyp@1273: char verbose_str[128]; tonyp@1273: sprintf(verbose_str, "GC pause "); tonyp@1273: if (g1_policy()->in_young_gc_mode()) { tonyp@1273: if (g1_policy()->full_young_gcs()) tonyp@1273: strcat(verbose_str, "(young)"); tonyp@1273: else tonyp@1273: strcat(verbose_str, "(partial)"); tonyp@1273: } tonyp@2011: if (g1_policy()->during_initial_mark_pause()) { tonyp@1273: strcat(verbose_str, " (initial-mark)"); tonyp@2011: // We are about to start a marking cycle, so we increment the tonyp@2011: // full collection counter. tonyp@2011: increment_total_full_collections(); tonyp@2011: } tonyp@1273: tonyp@1273: // if PrintGCDetails is on, we'll print long statistics information tonyp@1273: // in the collector policy code, so let's not print this as the output tonyp@1273: // is messy if we do. tonyp@1273: gclog_or_tty->date_stamp(PrintGC && PrintGCDateStamps); tonyp@1273: TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty); tonyp@1273: TraceTime t(verbose_str, PrintGC && !PrintGCDetails, true, gclog_or_tty); tonyp@1273: tonyp@1524: TraceMemoryManagerStats tms(false /* fullGC */); tonyp@1524: tonyp@1273: assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint"); tonyp@1273: assert(Thread::current() == VMThread::vm_thread(), "should be in vm thread"); tonyp@1273: guarantee(!is_gc_active(), "collection is not reentrant"); tonyp@1273: assert(regions_accounted_for(), "Region leakage!"); tonyp@1273: tonyp@1273: increment_gc_time_stamp(); tonyp@1273: tonyp@1273: if (g1_policy()->in_young_gc_mode()) { tonyp@1273: assert(check_young_list_well_formed(), tonyp@1273: "young list should be well formed"); tonyp@1273: } tonyp@1273: tonyp@1273: { // Call to jvmpi::post_class_unload_events must occur outside of active GC tonyp@1273: IsGCActiveMark x; tonyp@1273: tonyp@1273: gc_prologue(false); tonyp@1273: increment_total_collections(false /* full gc */); ysr@777: ysr@777: #if G1_REM_SET_LOGGING tonyp@1273: gclog_or_tty->print_cr("\nJust chose CS, heap:"); ysr@777: print(); ysr@777: #endif ysr@777: tonyp@1273: if (VerifyBeforeGC && total_collections() >= VerifyGCStartAt) { tonyp@1273: HandleMark hm; // Discard invalid handles created during verification tonyp@1273: prepare_for_verify(); tonyp@1273: gclog_or_tty->print(" VerifyBeforeGC:"); tonyp@1273: Universe::verify(false); tonyp@1273: } tonyp@1273: tonyp@1273: COMPILER2_PRESENT(DerivedPointerTable::clear()); tonyp@1273: tonyp@1273: // We want to turn off ref discovery, if necessary, and turn it back on ysr@1280: // on again later if we do. XXX Dubious: why is discovery disabled? tonyp@1273: bool was_enabled = ref_processor()->discovery_enabled(); tonyp@1273: if (was_enabled) ref_processor()->disable_discovery(); tonyp@1273: tonyp@1273: // Forget the current alloc region (we might even choose it to be part tonyp@1273: // of the collection set!). tonyp@1273: abandon_cur_alloc_region(); tonyp@1273: tonyp@1273: // The elapsed time induced by the start time below deliberately elides tonyp@1273: // the possible verification above. tonyp@1273: double start_time_sec = os::elapsedTime(); tonyp@1273: size_t start_used_bytes = used(); tonyp@1273: johnc@1829: #if YOUNG_LIST_VERBOSE johnc@1829: gclog_or_tty->print_cr("\nBefore recording pause start.\nYoung_list:"); johnc@1829: _young_list->print(); johnc@1829: g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty); johnc@1829: #endif // YOUNG_LIST_VERBOSE johnc@1829: tonyp@1273: g1_policy()->record_collection_pause_start(start_time_sec, tonyp@1273: start_used_bytes); tonyp@1273: johnc@1829: #if YOUNG_LIST_VERBOSE johnc@1829: gclog_or_tty->print_cr("\nAfter recording pause start.\nYoung_list:"); tonyp@1273: _young_list->print(); johnc@1829: #endif // YOUNG_LIST_VERBOSE ysr@777: tonyp@1794: if (g1_policy()->during_initial_mark_pause()) { tonyp@1273: concurrent_mark()->checkpointRootsInitialPre(); ysr@777: } tonyp@1273: save_marks(); tonyp@1273: tonyp@1273: // We must do this before any possible evacuation that should propagate tonyp@1273: // marks. tonyp@1273: if (mark_in_progress()) { tonyp@1273: double start_time_sec = os::elapsedTime(); tonyp@1273: tonyp@1273: _cm->drainAllSATBBuffers(); tonyp@1273: double finish_mark_ms = (os::elapsedTime() - start_time_sec) * 1000.0; tonyp@1273: g1_policy()->record_satb_drain_time(finish_mark_ms); tonyp@1273: } tonyp@1273: // Record the number of elements currently on the mark stack, so we tonyp@1273: // only iterate over these. (Since evacuation may add to the mark tonyp@1273: // stack, doing more exposes race conditions.) If no mark is in tonyp@1273: // progress, this will be zero. tonyp@1273: _cm->set_oops_do_bound(); tonyp@1273: tonyp@1273: assert(regions_accounted_for(), "Region leakage."); tonyp@1273: tonyp@1273: if (mark_in_progress()) tonyp@1273: concurrent_mark()->newCSet(); tonyp@1273: johnc@1829: #if YOUNG_LIST_VERBOSE johnc@1829: gclog_or_tty->print_cr("\nBefore choosing collection set.\nYoung_list:"); johnc@1829: _young_list->print(); johnc@1829: g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty); johnc@1829: #endif // YOUNG_LIST_VERBOSE johnc@1829: tonyp@2062: g1_policy()->choose_collection_set(target_pause_time_ms); tonyp@1273: tonyp@1273: // Nothing to do if we were unable to choose a collection set. tonyp@1273: #if G1_REM_SET_LOGGING tonyp@2062: gclog_or_tty->print_cr("\nAfter pause, heap:"); tonyp@2062: print(); tonyp@1273: #endif tonyp@2062: PrepareForRSScanningClosure prepare_for_rs_scan; tonyp@2062: collection_set_iterate(&prepare_for_rs_scan); tonyp@2062: tonyp@2062: setup_surviving_young_words(); tonyp@2062: tonyp@2062: // Set up the gc allocation regions. tonyp@2062: get_gc_alloc_regions(); tonyp@2062: tonyp@2062: // Actually do the work... tonyp@2062: evacuate_collection_set(); tonyp@2062: tonyp@2062: free_collection_set(g1_policy()->collection_set()); tonyp@2062: g1_policy()->clear_collection_set(); tonyp@2062: tonyp@2062: cleanup_surviving_young_words(); tonyp@2062: tonyp@2062: // Start a new incremental collection set for the next pause. tonyp@2062: g1_policy()->start_incremental_cset_building(); tonyp@2062: tonyp@2062: // Clear the _cset_fast_test bitmap in anticipation of adding tonyp@2062: // regions to the incremental collection set for the next tonyp@2062: // evacuation pause. tonyp@2062: clear_cset_fast_test(); tonyp@2062: tonyp@2062: if (g1_policy()->in_young_gc_mode()) { tonyp@2062: _young_list->reset_sampled_info(); tonyp@2062: tonyp@2062: // Don't check the whole heap at this point as the tonyp@2062: // GC alloc regions from this pause have been tagged tonyp@2062: // as survivors and moved on to the survivor list. tonyp@2062: // Survivor regions will fail the !is_young() check. tonyp@2062: assert(check_young_list_empty(false /* check_heap */), tonyp@2062: "young list should be empty"); johnc@1829: johnc@1829: #if YOUNG_LIST_VERBOSE tonyp@2062: gclog_or_tty->print_cr("Before recording survivors.\nYoung List:"); tonyp@2062: _young_list->print(); johnc@1829: #endif // YOUNG_LIST_VERBOSE tonyp@1273: tonyp@2062: g1_policy()->record_survivor_regions(_young_list->survivor_length(), tonyp@1273: _young_list->first_survivor_region(), tonyp@1273: _young_list->last_survivor_region()); johnc@1829: tonyp@2062: _young_list->reset_auxilary_lists(); tonyp@1273: } tonyp@1273: tonyp@1273: if (evacuation_failed()) { tonyp@1273: _summary_bytes_used = recalculate_used(); tonyp@1273: } else { tonyp@1273: // The "used" of the the collection set have already been subtracted tonyp@1273: // when they were freed. Add in the bytes evacuated. tonyp@1273: _summary_bytes_used += g1_policy()->bytes_in_to_space(); tonyp@1273: } tonyp@1273: tonyp@1273: if (g1_policy()->in_young_gc_mode() && tonyp@1794: g1_policy()->during_initial_mark_pause()) { tonyp@1273: concurrent_mark()->checkpointRootsInitialPost(); tonyp@1273: set_marking_started(); ysr@1280: // CAUTION: after the doConcurrentMark() call below, ysr@1280: // the concurrent marking thread(s) could be running ysr@1280: // concurrently with us. Make sure that anything after ysr@1280: // this point does not assume that we are the only GC thread ysr@1280: // running. Note: of course, the actual marking work will ysr@1280: // not start until the safepoint itself is released in ysr@1280: // ConcurrentGCThread::safepoint_desynchronize(). tonyp@1273: doConcurrentMark(); tonyp@1273: } tonyp@1273: johnc@1829: #if YOUNG_LIST_VERBOSE johnc@1829: gclog_or_tty->print_cr("\nEnd of the pause.\nYoung_list:"); tonyp@1273: _young_list->print(); johnc@1829: g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty); johnc@1829: #endif // YOUNG_LIST_VERBOSE tonyp@1273: tonyp@1273: double end_time_sec = os::elapsedTime(); tonyp@1273: double pause_time_ms = (end_time_sec - start_time_sec) * MILLIUNITS; tonyp@1273: g1_policy()->record_pause_time_ms(pause_time_ms); tonyp@2062: g1_policy()->record_collection_pause_end(); tonyp@1273: tonyp@1273: assert(regions_accounted_for(), "Region leakage."); tonyp@1273: tonyp@1524: MemoryService::track_memory_usage(); tonyp@1524: tonyp@1273: if (VerifyAfterGC && total_collections() >= VerifyGCStartAt) { tonyp@1273: HandleMark hm; // Discard invalid handles created during verification tonyp@1273: gclog_or_tty->print(" VerifyAfterGC:"); tonyp@1273: prepare_for_verify(); tonyp@1273: Universe::verify(false); tonyp@1273: } tonyp@1273: tonyp@1273: if (was_enabled) ref_processor()->enable_discovery(); tonyp@1273: tonyp@1273: { tonyp@1273: size_t expand_bytes = g1_policy()->expansion_amount(); tonyp@1273: if (expand_bytes > 0) { tonyp@1273: size_t bytes_before = capacity(); tonyp@1273: expand(expand_bytes); tonyp@1273: } tonyp@1273: } tonyp@1273: tonyp@1273: if (mark_in_progress()) { tonyp@1273: concurrent_mark()->update_g1_committed(); tonyp@1273: } tonyp@1273: tonyp@1273: #ifdef TRACESPINNING tonyp@1273: ParallelTaskTerminator::print_termination_counts(); tonyp@1273: #endif tonyp@1273: tonyp@1273: gc_epilogue(false); ysr@777: } ysr@777: tonyp@1273: assert(verify_region_lists(), "Bad region lists."); tonyp@1273: tonyp@1273: if (ExitAfterGCNum > 0 && total_collections() == ExitAfterGCNum) { tonyp@1273: gclog_or_tty->print_cr("Stopping after GC #%d", ExitAfterGCNum); tonyp@1273: print_tracing_info(); tonyp@1273: vm_exit(-1); ysr@777: } tonyp@1273: } tonyp@1273: jcoomes@2064: TASKQUEUE_STATS_ONLY(if (ParallelGCVerbose) print_taskqueue_stats()); jcoomes@2064: TASKQUEUE_STATS_ONLY(reset_taskqueue_stats()); jcoomes@2064: tonyp@1273: if (PrintHeapAtGC) { tonyp@1273: Universe::print_heap_after_gc(); ysr@777: } tonyp@1319: if (G1SummarizeRSetStats && tonyp@1319: (G1SummarizeRSetStatsPeriod > 0) && tonyp@1319: (total_collections() % G1SummarizeRSetStatsPeriod == 0)) { tonyp@1319: g1_rem_set()->print_summary_info(); tonyp@1319: } ysr@777: } ysr@777: apetrusenko@1826: size_t G1CollectedHeap::desired_plab_sz(GCAllocPurpose purpose) apetrusenko@1826: { apetrusenko@1826: size_t gclab_word_size; apetrusenko@1826: switch (purpose) { apetrusenko@1826: case GCAllocForSurvived: apetrusenko@1826: gclab_word_size = YoungPLABSize; apetrusenko@1826: break; apetrusenko@1826: case GCAllocForTenured: apetrusenko@1826: gclab_word_size = OldPLABSize; apetrusenko@1826: break; apetrusenko@1826: default: apetrusenko@1826: assert(false, "unknown GCAllocPurpose"); apetrusenko@1826: gclab_word_size = OldPLABSize; apetrusenko@1826: break; apetrusenko@1826: } apetrusenko@1826: return gclab_word_size; apetrusenko@1826: } apetrusenko@1826: apetrusenko@1826: ysr@777: void G1CollectedHeap::set_gc_alloc_region(int purpose, HeapRegion* r) { ysr@777: assert(purpose >= 0 && purpose < GCAllocPurposeCount, "invalid purpose"); tonyp@1071: // make sure we don't call set_gc_alloc_region() multiple times on tonyp@1071: // the same region tonyp@1071: assert(r == NULL || !r->is_gc_alloc_region(), tonyp@1071: "shouldn't already be a GC alloc region"); johnc@1795: assert(r == NULL || !r->isHumongous(), johnc@1795: "humongous regions shouldn't be used as GC alloc regions"); johnc@1795: ysr@777: HeapWord* original_top = NULL; ysr@777: if (r != NULL) ysr@777: original_top = r->top(); ysr@777: ysr@777: // We will want to record the used space in r as being there before gc. ysr@777: // One we install it as a GC alloc region it's eligible for allocation. ysr@777: // So record it now and use it later. ysr@777: size_t r_used = 0; ysr@777: if (r != NULL) { ysr@777: r_used = r->used(); ysr@777: ysr@777: if (ParallelGCThreads > 0) { ysr@777: // need to take the lock to guard against two threads calling ysr@777: // get_gc_alloc_region concurrently (very unlikely but...) ysr@777: MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag); ysr@777: r->save_marks(); ysr@777: } ysr@777: } ysr@777: HeapRegion* old_alloc_region = _gc_alloc_regions[purpose]; ysr@777: _gc_alloc_regions[purpose] = r; ysr@777: if (old_alloc_region != NULL) { ysr@777: // Replace aliases too. ysr@777: for (int ap = 0; ap < GCAllocPurposeCount; ++ap) { ysr@777: if (_gc_alloc_regions[ap] == old_alloc_region) { ysr@777: _gc_alloc_regions[ap] = r; ysr@777: } ysr@777: } ysr@777: } ysr@777: if (r != NULL) { ysr@777: push_gc_alloc_region(r); ysr@777: if (mark_in_progress() && original_top != r->next_top_at_mark_start()) { ysr@777: // We are using a region as a GC alloc region after it has been used ysr@777: // as a mutator allocation region during the current marking cycle. ysr@777: // The mutator-allocated objects are currently implicitly marked, but ysr@777: // when we move hr->next_top_at_mark_start() forward at the the end ysr@777: // of the GC pause, they won't be. We therefore mark all objects in ysr@777: // the "gap". We do this object-by-object, since marking densely ysr@777: // does not currently work right with marking bitmap iteration. This ysr@777: // means we rely on TLAB filling at the start of pauses, and no ysr@777: // "resuscitation" of filled TLAB's. If we want to do this, we need ysr@777: // to fix the marking bitmap iteration. ysr@777: HeapWord* curhw = r->next_top_at_mark_start(); ysr@777: HeapWord* t = original_top; ysr@777: ysr@777: while (curhw < t) { ysr@777: oop cur = (oop)curhw; ysr@777: // We'll assume parallel for generality. This is rare code. ysr@777: concurrent_mark()->markAndGrayObjectIfNecessary(cur); // can't we just mark them? ysr@777: curhw = curhw + cur->size(); ysr@777: } ysr@777: assert(curhw == t, "Should have parsed correctly."); ysr@777: } ysr@777: if (G1PolicyVerbose > 1) { ysr@777: gclog_or_tty->print("New alloc region ["PTR_FORMAT", "PTR_FORMAT", " PTR_FORMAT") " ysr@777: "for survivors:", r->bottom(), original_top, r->end()); ysr@777: r->print(); ysr@777: } ysr@777: g1_policy()->record_before_bytes(r_used); ysr@777: } ysr@777: } ysr@777: ysr@777: void G1CollectedHeap::push_gc_alloc_region(HeapRegion* hr) { ysr@777: assert(Thread::current()->is_VM_thread() || ysr@777: par_alloc_during_gc_lock()->owned_by_self(), "Precondition"); ysr@777: assert(!hr->is_gc_alloc_region() && !hr->in_collection_set(), ysr@777: "Precondition."); ysr@777: hr->set_is_gc_alloc_region(true); ysr@777: hr->set_next_gc_alloc_region(_gc_alloc_region_list); ysr@777: _gc_alloc_region_list = hr; ysr@777: } ysr@777: ysr@777: #ifdef G1_DEBUG ysr@777: class FindGCAllocRegion: public HeapRegionClosure { ysr@777: public: ysr@777: bool doHeapRegion(HeapRegion* r) { ysr@777: if (r->is_gc_alloc_region()) { ysr@777: gclog_or_tty->print_cr("Region %d ["PTR_FORMAT"...] is still a gc_alloc_region.", ysr@777: r->hrs_index(), r->bottom()); ysr@777: } ysr@777: return false; ysr@777: } ysr@777: }; ysr@777: #endif // G1_DEBUG ysr@777: ysr@777: void G1CollectedHeap::forget_alloc_region_list() { ysr@777: assert(Thread::current()->is_VM_thread(), "Precondition"); ysr@777: while (_gc_alloc_region_list != NULL) { ysr@777: HeapRegion* r = _gc_alloc_region_list; ysr@777: assert(r->is_gc_alloc_region(), "Invariant."); iveresov@1072: // We need HeapRegion::oops_on_card_seq_iterate_careful() to work on iveresov@1072: // newly allocated data in order to be able to apply deferred updates iveresov@1072: // before the GC is done for verification purposes (i.e to allow iveresov@1072: // G1HRRSFlushLogBuffersOnVerify). It's safe thing to do after the iveresov@1072: // collection. iveresov@1072: r->ContiguousSpace::set_saved_mark(); ysr@777: _gc_alloc_region_list = r->next_gc_alloc_region(); ysr@777: r->set_next_gc_alloc_region(NULL); ysr@777: r->set_is_gc_alloc_region(false); apetrusenko@980: if (r->is_survivor()) { apetrusenko@980: if (r->is_empty()) { apetrusenko@980: r->set_not_young(); apetrusenko@980: } else { apetrusenko@980: _young_list->add_survivor_region(r); apetrusenko@980: } apetrusenko@980: } ysr@777: if (r->is_empty()) { ysr@777: ++_free_regions; ysr@777: } ysr@777: } ysr@777: #ifdef G1_DEBUG ysr@777: FindGCAllocRegion fa; ysr@777: heap_region_iterate(&fa); ysr@777: #endif // G1_DEBUG ysr@777: } ysr@777: ysr@777: ysr@777: bool G1CollectedHeap::check_gc_alloc_regions() { ysr@777: // TODO: allocation regions check ysr@777: return true; ysr@777: } ysr@777: ysr@777: void G1CollectedHeap::get_gc_alloc_regions() { tonyp@1071: // First, let's check that the GC alloc region list is empty (it should) tonyp@1071: assert(_gc_alloc_region_list == NULL, "invariant"); tonyp@1071: ysr@777: for (int ap = 0; ap < GCAllocPurposeCount; ++ap) { tonyp@1071: assert(_gc_alloc_regions[ap] == NULL, "invariant"); apetrusenko@1296: assert(_gc_alloc_region_counts[ap] == 0, "invariant"); tonyp@1071: ysr@777: // Create new GC alloc regions. tonyp@1071: HeapRegion* alloc_region = _retained_gc_alloc_regions[ap]; tonyp@1071: _retained_gc_alloc_regions[ap] = NULL; tonyp@1071: tonyp@1071: if (alloc_region != NULL) { tonyp@1071: assert(_retain_gc_alloc_region[ap], "only way to retain a GC region"); tonyp@1071: tonyp@1071: // let's make sure that the GC alloc region is not tagged as such tonyp@1071: // outside a GC operation tonyp@1071: assert(!alloc_region->is_gc_alloc_region(), "sanity"); tonyp@1071: tonyp@1071: if (alloc_region->in_collection_set() || tonyp@1071: alloc_region->top() == alloc_region->end() || johnc@1795: alloc_region->top() == alloc_region->bottom() || johnc@1795: alloc_region->isHumongous()) { johnc@1795: // we will discard the current GC alloc region if johnc@1795: // * it's in the collection set (it can happen!), johnc@1795: // * it's already full (no point in using it), johnc@1795: // * it's empty (this means that it was emptied during johnc@1795: // a cleanup and it should be on the free list now), or johnc@1795: // * it's humongous (this means that it was emptied johnc@1795: // during a cleanup and was added to the free list, but johnc@1795: // has been subseqently used to allocate a humongous johnc@1795: // object that may be less than the region size). tonyp@1071: tonyp@1071: alloc_region = NULL; tonyp@1071: } tonyp@1071: } tonyp@1071: tonyp@1071: if (alloc_region == NULL) { tonyp@1071: // we will get a new GC alloc region ysr@777: alloc_region = newAllocRegionWithExpansion(ap, 0); apetrusenko@1296: } else { apetrusenko@1296: // the region was retained from the last collection apetrusenko@1296: ++_gc_alloc_region_counts[ap]; tonyp@1823: if (G1PrintHeapRegions) { tonyp@1823: gclog_or_tty->print_cr("new alloc region %d:["PTR_FORMAT", "PTR_FORMAT"], " tonyp@1823: "top "PTR_FORMAT, tonyp@1823: alloc_region->hrs_index(), alloc_region->bottom(), alloc_region->end(), alloc_region->top()); tonyp@1823: } ysr@777: } tonyp@1071: ysr@777: if (alloc_region != NULL) { tonyp@1071: assert(_gc_alloc_regions[ap] == NULL, "pre-condition"); ysr@777: set_gc_alloc_region(ap, alloc_region); ysr@777: } tonyp@1071: tonyp@1071: assert(_gc_alloc_regions[ap] == NULL || tonyp@1071: _gc_alloc_regions[ap]->is_gc_alloc_region(), tonyp@1071: "the GC alloc region should be tagged as such"); tonyp@1071: assert(_gc_alloc_regions[ap] == NULL || tonyp@1071: _gc_alloc_regions[ap] == _gc_alloc_region_list, tonyp@1071: "the GC alloc region should be the same as the GC alloc list head"); ysr@777: } ysr@777: // Set alternative regions for allocation purposes that have reached tonyp@1071: // their limit. ysr@777: for (int ap = 0; ap < GCAllocPurposeCount; ++ap) { ysr@777: GCAllocPurpose alt_purpose = g1_policy()->alternative_purpose(ap); ysr@777: if (_gc_alloc_regions[ap] == NULL && alt_purpose != ap) { ysr@777: _gc_alloc_regions[ap] = _gc_alloc_regions[alt_purpose]; ysr@777: } ysr@777: } ysr@777: assert(check_gc_alloc_regions(), "alloc regions messed up"); ysr@777: } ysr@777: tonyp@1071: void G1CollectedHeap::release_gc_alloc_regions(bool totally) { ysr@777: // We keep a separate list of all regions that have been alloc regions in tonyp@1071: // the current collection pause. Forget that now. This method will tonyp@1071: // untag the GC alloc regions and tear down the GC alloc region tonyp@1071: // list. It's desirable that no regions are tagged as GC alloc tonyp@1071: // outside GCs. ysr@777: forget_alloc_region_list(); ysr@777: ysr@777: // The current alloc regions contain objs that have survived ysr@777: // collection. Make them no longer GC alloc regions. ysr@777: for (int ap = 0; ap < GCAllocPurposeCount; ++ap) { ysr@777: HeapRegion* r = _gc_alloc_regions[ap]; tonyp@1071: _retained_gc_alloc_regions[ap] = NULL; apetrusenko@1296: _gc_alloc_region_counts[ap] = 0; tonyp@1071: tonyp@1071: if (r != NULL) { tonyp@1071: // we retain nothing on _gc_alloc_regions between GCs tonyp@1071: set_gc_alloc_region(ap, NULL); tonyp@1071: tonyp@1071: if (r->is_empty()) { tonyp@1071: // we didn't actually allocate anything in it; let's just put tonyp@1071: // it on the free list ysr@777: MutexLockerEx x(ZF_mon, Mutex::_no_safepoint_check_flag); ysr@777: r->set_zero_fill_complete(); ysr@777: put_free_region_on_list_locked(r); tonyp@1071: } else if (_retain_gc_alloc_region[ap] && !totally) { tonyp@1071: // retain it so that we can use it at the beginning of the next GC tonyp@1071: _retained_gc_alloc_regions[ap] = r; ysr@777: } ysr@777: } tonyp@1071: } tonyp@1071: } tonyp@1071: tonyp@1071: #ifndef PRODUCT tonyp@1071: // Useful for debugging tonyp@1071: tonyp@1071: void G1CollectedHeap::print_gc_alloc_regions() { tonyp@1071: gclog_or_tty->print_cr("GC alloc regions"); tonyp@1071: for (int ap = 0; ap < GCAllocPurposeCount; ++ap) { tonyp@1071: HeapRegion* r = _gc_alloc_regions[ap]; tonyp@1071: if (r == NULL) { tonyp@1071: gclog_or_tty->print_cr(" %2d : "PTR_FORMAT, ap, NULL); tonyp@1071: } else { tonyp@1071: gclog_or_tty->print_cr(" %2d : "PTR_FORMAT" "SIZE_FORMAT, tonyp@1071: ap, r->bottom(), r->used()); tonyp@1071: } tonyp@1071: } tonyp@1071: } tonyp@1071: #endif // PRODUCT ysr@777: ysr@777: void G1CollectedHeap::init_for_evac_failure(OopsInHeapRegionClosure* cl) { ysr@777: _drain_in_progress = false; ysr@777: set_evac_failure_closure(cl); ysr@777: _evac_failure_scan_stack = new (ResourceObj::C_HEAP) GrowableArray(40, true); ysr@777: } ysr@777: ysr@777: void G1CollectedHeap::finalize_for_evac_failure() { ysr@777: assert(_evac_failure_scan_stack != NULL && ysr@777: _evac_failure_scan_stack->length() == 0, ysr@777: "Postcondition"); ysr@777: assert(!_drain_in_progress, "Postcondition"); apetrusenko@1480: delete _evac_failure_scan_stack; ysr@777: _evac_failure_scan_stack = NULL; ysr@777: } ysr@777: ysr@777: ysr@777: ysr@777: // *** Sequential G1 Evacuation ysr@777: ysr@777: HeapWord* G1CollectedHeap::allocate_during_gc(GCAllocPurpose purpose, size_t word_size) { ysr@777: HeapRegion* alloc_region = _gc_alloc_regions[purpose]; ysr@777: // let the caller handle alloc failure ysr@777: if (alloc_region == NULL) return NULL; ysr@777: assert(isHumongous(word_size) || !alloc_region->isHumongous(), ysr@777: "Either the object is humongous or the region isn't"); ysr@777: HeapWord* block = alloc_region->allocate(word_size); ysr@777: if (block == NULL) { ysr@777: block = allocate_during_gc_slow(purpose, alloc_region, false, word_size); ysr@777: } ysr@777: return block; ysr@777: } ysr@777: ysr@777: class G1IsAliveClosure: public BoolObjectClosure { ysr@777: G1CollectedHeap* _g1; ysr@777: public: ysr@777: G1IsAliveClosure(G1CollectedHeap* g1) : _g1(g1) {} ysr@777: void do_object(oop p) { assert(false, "Do not call."); } ysr@777: bool do_object_b(oop p) { ysr@777: // It is reachable if it is outside the collection set, or is inside ysr@777: // and forwarded. ysr@777: ysr@777: #ifdef G1_DEBUG ysr@777: gclog_or_tty->print_cr("is alive "PTR_FORMAT" in CS %d forwarded %d overall %d", ysr@777: (void*) p, _g1->obj_in_cs(p), p->is_forwarded(), ysr@777: !_g1->obj_in_cs(p) || p->is_forwarded()); ysr@777: #endif // G1_DEBUG ysr@777: ysr@777: return !_g1->obj_in_cs(p) || p->is_forwarded(); ysr@777: } ysr@777: }; ysr@777: ysr@777: class G1KeepAliveClosure: public OopClosure { ysr@777: G1CollectedHeap* _g1; ysr@777: public: ysr@777: G1KeepAliveClosure(G1CollectedHeap* g1) : _g1(g1) {} ysr@1280: void do_oop(narrowOop* p) { guarantee(false, "Not needed"); } ysr@1280: void do_oop( oop* p) { ysr@777: oop obj = *p; ysr@777: #ifdef G1_DEBUG ysr@777: if (PrintGC && Verbose) { ysr@777: gclog_or_tty->print_cr("keep alive *"PTR_FORMAT" = "PTR_FORMAT" "PTR_FORMAT, ysr@777: p, (void*) obj, (void*) *p); ysr@777: } ysr@777: #endif // G1_DEBUG ysr@777: ysr@777: if (_g1->obj_in_cs(obj)) { ysr@777: assert( obj->is_forwarded(), "invariant" ); ysr@777: *p = obj->forwardee(); ysr@777: #ifdef G1_DEBUG ysr@777: gclog_or_tty->print_cr(" in CSet: moved "PTR_FORMAT" -> "PTR_FORMAT, ysr@777: (void*) obj, (void*) *p); ysr@777: #endif // G1_DEBUG ysr@777: } ysr@777: } ysr@777: }; ysr@777: iveresov@1051: class UpdateRSetDeferred : public OopsInHeapRegionClosure { iveresov@1051: private: iveresov@1051: G1CollectedHeap* _g1; iveresov@1051: DirtyCardQueue *_dcq; iveresov@1051: CardTableModRefBS* _ct_bs; iveresov@1051: iveresov@1051: public: iveresov@1051: UpdateRSetDeferred(G1CollectedHeap* g1, DirtyCardQueue* dcq) : iveresov@1051: _g1(g1), _ct_bs((CardTableModRefBS*)_g1->barrier_set()), _dcq(dcq) {} iveresov@1051: ysr@1280: virtual void do_oop(narrowOop* p) { do_oop_work(p); } ysr@1280: virtual void do_oop( oop* p) { do_oop_work(p); } ysr@1280: template void do_oop_work(T* p) { iveresov@1051: assert(_from->is_in_reserved(p), "paranoia"); ysr@1280: if (!_from->is_in_reserved(oopDesc::load_decode_heap_oop(p)) && ysr@1280: !_from->is_survivor()) { iveresov@1051: size_t card_index = _ct_bs->index_for(p); iveresov@1051: if (_ct_bs->mark_card_deferred(card_index)) { iveresov@1051: _dcq->enqueue((jbyte*)_ct_bs->byte_for_index(card_index)); iveresov@1051: } iveresov@1051: } iveresov@1051: } iveresov@1051: }; iveresov@1051: ysr@777: class RemoveSelfPointerClosure: public ObjectClosure { ysr@777: private: ysr@777: G1CollectedHeap* _g1; ysr@777: ConcurrentMark* _cm; ysr@777: HeapRegion* _hr; ysr@777: size_t _prev_marked_bytes; ysr@777: size_t _next_marked_bytes; iveresov@1051: OopsInHeapRegionClosure *_cl; ysr@777: public: iveresov@1051: RemoveSelfPointerClosure(G1CollectedHeap* g1, OopsInHeapRegionClosure* cl) : iveresov@1051: _g1(g1), _cm(_g1->concurrent_mark()), _prev_marked_bytes(0), iveresov@1051: _next_marked_bytes(0), _cl(cl) {} ysr@777: ysr@777: size_t prev_marked_bytes() { return _prev_marked_bytes; } ysr@777: size_t next_marked_bytes() { return _next_marked_bytes; } ysr@777: iveresov@787: // The original idea here was to coalesce evacuated and dead objects. iveresov@787: // However that caused complications with the block offset table (BOT). iveresov@787: // In particular if there were two TLABs, one of them partially refined. iveresov@787: // |----- TLAB_1--------|----TLAB_2-~~~(partially refined part)~~~| iveresov@787: // The BOT entries of the unrefined part of TLAB_2 point to the start iveresov@787: // of TLAB_2. If the last object of the TLAB_1 and the first object iveresov@787: // of TLAB_2 are coalesced, then the cards of the unrefined part iveresov@787: // would point into middle of the filler object. iveresov@787: // iveresov@787: // The current approach is to not coalesce and leave the BOT contents intact. iveresov@787: void do_object(oop obj) { iveresov@787: if (obj->is_forwarded() && obj->forwardee() == obj) { iveresov@787: // The object failed to move. iveresov@787: assert(!_g1->is_obj_dead(obj), "We should not be preserving dead objs."); iveresov@787: _cm->markPrev(obj); iveresov@787: assert(_cm->isPrevMarked(obj), "Should be marked!"); iveresov@787: _prev_marked_bytes += (obj->size() * HeapWordSize); iveresov@787: if (_g1->mark_in_progress() && !_g1->is_obj_ill(obj)) { iveresov@787: _cm->markAndGrayObjectIfNecessary(obj); iveresov@787: } iveresov@787: obj->set_mark(markOopDesc::prototype()); iveresov@787: // While we were processing RSet buffers during the iveresov@787: // collection, we actually didn't scan any cards on the iveresov@787: // collection set, since we didn't want to update remebered iveresov@787: // sets with entries that point into the collection set, given iveresov@787: // that live objects fromthe collection set are about to move iveresov@787: // and such entries will be stale very soon. This change also iveresov@787: // dealt with a reliability issue which involved scanning a iveresov@787: // card in the collection set and coming across an array that iveresov@787: // was being chunked and looking malformed. The problem is iveresov@787: // that, if evacuation fails, we might have remembered set iveresov@787: // entries missing given that we skipped cards on the iveresov@787: // collection set. So, we'll recreate such entries now. iveresov@1051: obj->oop_iterate(_cl); iveresov@787: assert(_cm->isPrevMarked(obj), "Should be marked!"); iveresov@787: } else { iveresov@787: // The object has been either evacuated or is dead. Fill it with a iveresov@787: // dummy object. iveresov@787: MemRegion mr((HeapWord*)obj, obj->size()); jcoomes@916: CollectedHeap::fill_with_object(mr); ysr@777: _cm->clearRangeBothMaps(mr); ysr@777: } ysr@777: } ysr@777: }; ysr@777: ysr@777: void G1CollectedHeap::remove_self_forwarding_pointers() { johnc@2060: UpdateRSetImmediate immediate_update(_g1h->g1_rem_set()); iveresov@1051: DirtyCardQueue dcq(&_g1h->dirty_card_queue_set()); iveresov@1051: UpdateRSetDeferred deferred_update(_g1h, &dcq); iveresov@1051: OopsInHeapRegionClosure *cl; iveresov@1051: if (G1DeferredRSUpdate) { iveresov@1051: cl = &deferred_update; iveresov@1051: } else { iveresov@1051: cl = &immediate_update; iveresov@1051: } ysr@777: HeapRegion* cur = g1_policy()->collection_set(); ysr@777: while (cur != NULL) { ysr@777: assert(g1_policy()->assertMarkedBytesDataOK(), "Should be!"); ysr@777: iveresov@1051: RemoveSelfPointerClosure rspc(_g1h, cl); ysr@777: if (cur->evacuation_failed()) { ysr@777: assert(cur->in_collection_set(), "bad CS"); iveresov@1051: cl->set_region(cur); ysr@777: cur->object_iterate(&rspc); ysr@777: ysr@777: // A number of manipulations to make the TAMS be the current top, ysr@777: // and the marked bytes be the ones observed in the iteration. ysr@777: if (_g1h->concurrent_mark()->at_least_one_mark_complete()) { ysr@777: // The comments below are the postconditions achieved by the ysr@777: // calls. Note especially the last such condition, which says that ysr@777: // the count of marked bytes has been properly restored. ysr@777: cur->note_start_of_marking(false); ysr@777: // _next_top_at_mark_start == top, _next_marked_bytes == 0 ysr@777: cur->add_to_marked_bytes(rspc.prev_marked_bytes()); ysr@777: // _next_marked_bytes == prev_marked_bytes. ysr@777: cur->note_end_of_marking(); ysr@777: // _prev_top_at_mark_start == top(), ysr@777: // _prev_marked_bytes == prev_marked_bytes ysr@777: } ysr@777: // If there is no mark in progress, we modified the _next variables ysr@777: // above needlessly, but harmlessly. ysr@777: if (_g1h->mark_in_progress()) { ysr@777: cur->note_start_of_marking(false); ysr@777: // _next_top_at_mark_start == top, _next_marked_bytes == 0 ysr@777: // _next_marked_bytes == next_marked_bytes. ysr@777: } ysr@777: ysr@777: // Now make sure the region has the right index in the sorted array. ysr@777: g1_policy()->note_change_in_marked_bytes(cur); ysr@777: } ysr@777: cur = cur->next_in_collection_set(); ysr@777: } ysr@777: assert(g1_policy()->assertMarkedBytesDataOK(), "Should be!"); ysr@777: ysr@777: // Now restore saved marks, if any. ysr@777: if (_objs_with_preserved_marks != NULL) { ysr@777: assert(_preserved_marks_of_objs != NULL, "Both or none."); ysr@777: assert(_objs_with_preserved_marks->length() == ysr@777: _preserved_marks_of_objs->length(), "Both or none."); ysr@777: guarantee(_objs_with_preserved_marks->length() == ysr@777: _preserved_marks_of_objs->length(), "Both or none."); ysr@777: for (int i = 0; i < _objs_with_preserved_marks->length(); i++) { ysr@777: oop obj = _objs_with_preserved_marks->at(i); ysr@777: markOop m = _preserved_marks_of_objs->at(i); ysr@777: obj->set_mark(m); ysr@777: } ysr@777: // Delete the preserved marks growable arrays (allocated on the C heap). ysr@777: delete _objs_with_preserved_marks; ysr@777: delete _preserved_marks_of_objs; ysr@777: _objs_with_preserved_marks = NULL; ysr@777: _preserved_marks_of_objs = NULL; ysr@777: } ysr@777: } ysr@777: ysr@777: void G1CollectedHeap::push_on_evac_failure_scan_stack(oop obj) { ysr@777: _evac_failure_scan_stack->push(obj); ysr@777: } ysr@777: ysr@777: void G1CollectedHeap::drain_evac_failure_scan_stack() { ysr@777: assert(_evac_failure_scan_stack != NULL, "precondition"); ysr@777: ysr@777: while (_evac_failure_scan_stack->length() > 0) { ysr@777: oop obj = _evac_failure_scan_stack->pop(); ysr@777: _evac_failure_closure->set_region(heap_region_containing(obj)); ysr@777: obj->oop_iterate_backwards(_evac_failure_closure); ysr@777: } ysr@777: } ysr@777: ysr@777: void G1CollectedHeap::handle_evacuation_failure(oop old) { ysr@777: markOop m = old->mark(); ysr@777: // forward to self ysr@777: assert(!old->is_forwarded(), "precondition"); ysr@777: ysr@777: old->forward_to(old); ysr@777: handle_evacuation_failure_common(old, m); ysr@777: } ysr@777: ysr@777: oop ysr@777: G1CollectedHeap::handle_evacuation_failure_par(OopsInHeapRegionClosure* cl, ysr@777: oop old) { ysr@777: markOop m = old->mark(); ysr@777: oop forward_ptr = old->forward_to_atomic(old); ysr@777: if (forward_ptr == NULL) { ysr@777: // Forward-to-self succeeded. ysr@777: if (_evac_failure_closure != cl) { ysr@777: MutexLockerEx x(EvacFailureStack_lock, Mutex::_no_safepoint_check_flag); ysr@777: assert(!_drain_in_progress, ysr@777: "Should only be true while someone holds the lock."); ysr@777: // Set the global evac-failure closure to the current thread's. ysr@777: assert(_evac_failure_closure == NULL, "Or locking has failed."); ysr@777: set_evac_failure_closure(cl); ysr@777: // Now do the common part. ysr@777: handle_evacuation_failure_common(old, m); ysr@777: // Reset to NULL. ysr@777: set_evac_failure_closure(NULL); ysr@777: } else { ysr@777: // The lock is already held, and this is recursive. ysr@777: assert(_drain_in_progress, "This should only be the recursive case."); ysr@777: handle_evacuation_failure_common(old, m); ysr@777: } ysr@777: return old; ysr@777: } else { ysr@777: // Someone else had a place to copy it. ysr@777: return forward_ptr; ysr@777: } ysr@777: } ysr@777: ysr@777: void G1CollectedHeap::handle_evacuation_failure_common(oop old, markOop m) { ysr@777: set_evacuation_failed(true); ysr@777: ysr@777: preserve_mark_if_necessary(old, m); ysr@777: ysr@777: HeapRegion* r = heap_region_containing(old); ysr@777: if (!r->evacuation_failed()) { ysr@777: r->set_evacuation_failed(true); tonyp@1717: if (G1PrintHeapRegions) { ysr@777: gclog_or_tty->print("evacuation failed in heap region "PTR_FORMAT" " ysr@777: "["PTR_FORMAT","PTR_FORMAT")\n", ysr@777: r, r->bottom(), r->end()); ysr@777: } ysr@777: } ysr@777: ysr@777: push_on_evac_failure_scan_stack(old); ysr@777: ysr@777: if (!_drain_in_progress) { ysr@777: // prevent recursion in copy_to_survivor_space() ysr@777: _drain_in_progress = true; ysr@777: drain_evac_failure_scan_stack(); ysr@777: _drain_in_progress = false; ysr@777: } ysr@777: } ysr@777: ysr@777: void G1CollectedHeap::preserve_mark_if_necessary(oop obj, markOop m) { ysr@777: if (m != markOopDesc::prototype()) { ysr@777: if (_objs_with_preserved_marks == NULL) { ysr@777: assert(_preserved_marks_of_objs == NULL, "Both or none."); ysr@777: _objs_with_preserved_marks = ysr@777: new (ResourceObj::C_HEAP) GrowableArray(40, true); ysr@777: _preserved_marks_of_objs = ysr@777: new (ResourceObj::C_HEAP) GrowableArray(40, true); ysr@777: } ysr@777: _objs_with_preserved_marks->push(obj); ysr@777: _preserved_marks_of_objs->push(m); ysr@777: } ysr@777: } ysr@777: ysr@777: // *** Parallel G1 Evacuation ysr@777: ysr@777: HeapWord* G1CollectedHeap::par_allocate_during_gc(GCAllocPurpose purpose, ysr@777: size_t word_size) { ysr@777: HeapRegion* alloc_region = _gc_alloc_regions[purpose]; ysr@777: // let the caller handle alloc failure ysr@777: if (alloc_region == NULL) return NULL; ysr@777: ysr@777: HeapWord* block = alloc_region->par_allocate(word_size); ysr@777: if (block == NULL) { ysr@777: MutexLockerEx x(par_alloc_during_gc_lock(), ysr@777: Mutex::_no_safepoint_check_flag); ysr@777: block = allocate_during_gc_slow(purpose, alloc_region, true, word_size); ysr@777: } ysr@777: return block; ysr@777: } ysr@777: apetrusenko@980: void G1CollectedHeap::retire_alloc_region(HeapRegion* alloc_region, apetrusenko@980: bool par) { apetrusenko@980: // Another thread might have obtained alloc_region for the given apetrusenko@980: // purpose, and might be attempting to allocate in it, and might apetrusenko@980: // succeed. Therefore, we can't do the "finalization" stuff on the apetrusenko@980: // region below until we're sure the last allocation has happened. apetrusenko@980: // We ensure this by allocating the remaining space with a garbage apetrusenko@980: // object. apetrusenko@980: if (par) par_allocate_remaining_space(alloc_region); apetrusenko@980: // Now we can do the post-GC stuff on the region. apetrusenko@980: alloc_region->note_end_of_copying(); apetrusenko@980: g1_policy()->record_after_bytes(alloc_region->used()); apetrusenko@980: } apetrusenko@980: ysr@777: HeapWord* ysr@777: G1CollectedHeap::allocate_during_gc_slow(GCAllocPurpose purpose, ysr@777: HeapRegion* alloc_region, ysr@777: bool par, ysr@777: size_t word_size) { ysr@777: HeapWord* block = NULL; ysr@777: // In the parallel case, a previous thread to obtain the lock may have ysr@777: // already assigned a new gc_alloc_region. ysr@777: if (alloc_region != _gc_alloc_regions[purpose]) { ysr@777: assert(par, "But should only happen in parallel case."); ysr@777: alloc_region = _gc_alloc_regions[purpose]; ysr@777: if (alloc_region == NULL) return NULL; ysr@777: block = alloc_region->par_allocate(word_size); ysr@777: if (block != NULL) return block; ysr@777: // Otherwise, continue; this new region is empty, too. ysr@777: } ysr@777: assert(alloc_region != NULL, "We better have an allocation region"); apetrusenko@980: retire_alloc_region(alloc_region, par); ysr@777: ysr@777: if (_gc_alloc_region_counts[purpose] >= g1_policy()->max_regions(purpose)) { ysr@777: // Cannot allocate more regions for the given purpose. ysr@777: GCAllocPurpose alt_purpose = g1_policy()->alternative_purpose(purpose); ysr@777: // Is there an alternative? ysr@777: if (purpose != alt_purpose) { ysr@777: HeapRegion* alt_region = _gc_alloc_regions[alt_purpose]; ysr@777: // Has not the alternative region been aliased? apetrusenko@980: if (alloc_region != alt_region && alt_region != NULL) { ysr@777: // Try to allocate in the alternative region. ysr@777: if (par) { ysr@777: block = alt_region->par_allocate(word_size); ysr@777: } else { ysr@777: block = alt_region->allocate(word_size); ysr@777: } ysr@777: // Make an alias. ysr@777: _gc_alloc_regions[purpose] = _gc_alloc_regions[alt_purpose]; apetrusenko@980: if (block != NULL) { apetrusenko@980: return block; apetrusenko@980: } apetrusenko@980: retire_alloc_region(alt_region, par); ysr@777: } ysr@777: // Both the allocation region and the alternative one are full ysr@777: // and aliased, replace them with a new allocation region. ysr@777: purpose = alt_purpose; ysr@777: } else { ysr@777: set_gc_alloc_region(purpose, NULL); ysr@777: return NULL; ysr@777: } ysr@777: } ysr@777: ysr@777: // Now allocate a new region for allocation. ysr@777: alloc_region = newAllocRegionWithExpansion(purpose, word_size, false /*zero_filled*/); ysr@777: ysr@777: // let the caller handle alloc failure ysr@777: if (alloc_region != NULL) { ysr@777: ysr@777: assert(check_gc_alloc_regions(), "alloc regions messed up"); ysr@777: assert(alloc_region->saved_mark_at_top(), ysr@777: "Mark should have been saved already."); ysr@777: // We used to assert that the region was zero-filled here, but no ysr@777: // longer. ysr@777: ysr@777: // This must be done last: once it's installed, other regions may ysr@777: // allocate in it (without holding the lock.) ysr@777: set_gc_alloc_region(purpose, alloc_region); ysr@777: ysr@777: if (par) { ysr@777: block = alloc_region->par_allocate(word_size); ysr@777: } else { ysr@777: block = alloc_region->allocate(word_size); ysr@777: } ysr@777: // Caller handles alloc failure. ysr@777: } else { ysr@777: // This sets other apis using the same old alloc region to NULL, also. ysr@777: set_gc_alloc_region(purpose, NULL); ysr@777: } ysr@777: return block; // May be NULL. ysr@777: } ysr@777: ysr@777: void G1CollectedHeap::par_allocate_remaining_space(HeapRegion* r) { ysr@777: HeapWord* block = NULL; ysr@777: size_t free_words; ysr@777: do { ysr@777: free_words = r->free()/HeapWordSize; ysr@777: // If there's too little space, no one can allocate, so we're done. kvn@1926: if (free_words < CollectedHeap::min_fill_size()) return; ysr@777: // Otherwise, try to claim it. ysr@777: block = r->par_allocate(free_words); ysr@777: } while (block == NULL); jcoomes@916: fill_with_object(block, free_words); ysr@777: } ysr@777: ysr@777: #ifndef PRODUCT ysr@777: bool GCLabBitMapClosure::do_bit(size_t offset) { ysr@777: HeapWord* addr = _bitmap->offsetToHeapWord(offset); ysr@777: guarantee(_cm->isMarked(oop(addr)), "it should be!"); ysr@777: return true; ysr@777: } ysr@777: #endif // PRODUCT ysr@777: ysr@1280: G1ParScanThreadState::G1ParScanThreadState(G1CollectedHeap* g1h, int queue_num) ysr@1280: : _g1h(g1h), ysr@1280: _refs(g1h->task_queue(queue_num)), ysr@1280: _dcq(&g1h->dirty_card_queue_set()), ysr@1280: _ct_bs((CardTableModRefBS*)_g1h->barrier_set()), ysr@1280: _g1_rem(g1h->g1_rem_set()), ysr@1280: _hash_seed(17), _queue_num(queue_num), ysr@1280: _term_attempts(0), apetrusenko@1826: _surviving_alloc_buffer(g1h->desired_plab_sz(GCAllocForSurvived)), apetrusenko@1826: _tenured_alloc_buffer(g1h->desired_plab_sz(GCAllocForTenured)), ysr@1280: _age_table(false), ysr@1280: _strong_roots_time(0), _term_time(0), ysr@1280: _alloc_buffer_waste(0), _undo_waste(0) ysr@1280: { ysr@1280: // we allocate G1YoungSurvRateNumRegions plus one entries, since ysr@1280: // we "sacrifice" entry 0 to keep track of surviving bytes for ysr@1280: // non-young regions (where the age is -1) ysr@1280: // We also add a few elements at the beginning and at the end in ysr@1280: // an attempt to eliminate cache contention ysr@1280: size_t real_length = 1 + _g1h->g1_policy()->young_cset_length(); ysr@1280: size_t array_length = PADDING_ELEM_NUM + ysr@1280: real_length + ysr@1280: PADDING_ELEM_NUM; ysr@1280: _surviving_young_words_base = NEW_C_HEAP_ARRAY(size_t, array_length); ysr@1280: if (_surviving_young_words_base == NULL) ysr@1280: vm_exit_out_of_memory(array_length * sizeof(size_t), ysr@1280: "Not enough space for young surv histo."); ysr@1280: _surviving_young_words = _surviving_young_words_base + PADDING_ELEM_NUM; ysr@1280: memset(_surviving_young_words, 0, real_length * sizeof(size_t)); ysr@1280: apetrusenko@1826: _alloc_buffers[GCAllocForSurvived] = &_surviving_alloc_buffer; apetrusenko@1826: _alloc_buffers[GCAllocForTenured] = &_tenured_alloc_buffer; apetrusenko@1826: ysr@1280: _start = os::elapsedTime(); ysr@1280: } ysr@777: jcoomes@2064: void jcoomes@2064: G1ParScanThreadState::print_termination_stats_hdr(outputStream* const st) jcoomes@2064: { jcoomes@2064: st->print_raw_cr("GC Termination Stats"); jcoomes@2064: st->print_raw_cr(" elapsed --strong roots-- -------termination-------" jcoomes@2064: " ------waste (KiB)------"); jcoomes@2064: st->print_raw_cr("thr ms ms % ms % attempts" jcoomes@2064: " total alloc undo"); jcoomes@2064: st->print_raw_cr("--- --------- --------- ------ --------- ------ --------" jcoomes@2064: " ------- ------- -------"); jcoomes@2064: } jcoomes@2064: jcoomes@2064: void jcoomes@2064: G1ParScanThreadState::print_termination_stats(int i, jcoomes@2064: outputStream* const st) const jcoomes@2064: { jcoomes@2064: const double elapsed_ms = elapsed_time() * 1000.0; jcoomes@2064: const double s_roots_ms = strong_roots_time() * 1000.0; jcoomes@2064: const double term_ms = term_time() * 1000.0; jcoomes@2064: st->print_cr("%3d %9.2f %9.2f %6.2f " jcoomes@2064: "%9.2f %6.2f " SIZE_FORMAT_W(8) " " jcoomes@2064: SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7), jcoomes@2064: i, elapsed_ms, s_roots_ms, s_roots_ms * 100 / elapsed_ms, jcoomes@2064: term_ms, term_ms * 100 / elapsed_ms, term_attempts(), jcoomes@2064: (alloc_buffer_waste() + undo_waste()) * HeapWordSize / K, jcoomes@2064: alloc_buffer_waste() * HeapWordSize / K, jcoomes@2064: undo_waste() * HeapWordSize / K); jcoomes@2064: } jcoomes@2064: ysr@777: G1ParClosureSuper::G1ParClosureSuper(G1CollectedHeap* g1, G1ParScanThreadState* par_scan_state) : ysr@777: _g1(g1), _g1_rem(_g1->g1_rem_set()), _cm(_g1->concurrent_mark()), ysr@777: _par_scan_state(par_scan_state) { } ysr@777: ysr@1280: template void G1ParCopyHelper::mark_forwardee(T* p) { ysr@777: // This is called _after_ do_oop_work has been called, hence after ysr@777: // the object has been relocated to its new location and *p points ysr@777: // to its new location. ysr@777: ysr@1280: T heap_oop = oopDesc::load_heap_oop(p); ysr@1280: if (!oopDesc::is_null(heap_oop)) { ysr@1280: oop obj = oopDesc::decode_heap_oop(heap_oop); ysr@1280: assert((_g1->evacuation_failed()) || (!_g1->obj_in_cs(obj)), ysr@777: "shouldn't still be in the CSet if evacuation didn't fail."); ysr@1280: HeapWord* addr = (HeapWord*)obj; ysr@777: if (_g1->is_in_g1_reserved(addr)) ysr@777: _cm->grayRoot(oop(addr)); ysr@777: } ysr@777: } ysr@777: ysr@777: oop G1ParCopyHelper::copy_to_survivor_space(oop old) { ysr@777: size_t word_sz = old->size(); ysr@777: HeapRegion* from_region = _g1->heap_region_containing_raw(old); ysr@777: // +1 to make the -1 indexes valid... ysr@777: int young_index = from_region->young_index_in_cset()+1; ysr@777: assert( (from_region->is_young() && young_index > 0) || ysr@777: (!from_region->is_young() && young_index == 0), "invariant" ); ysr@777: G1CollectorPolicy* g1p = _g1->g1_policy(); ysr@777: markOop m = old->mark(); apetrusenko@980: int age = m->has_displaced_mark_helper() ? m->displaced_mark_helper()->age() apetrusenko@980: : m->age(); apetrusenko@980: GCAllocPurpose alloc_purpose = g1p->evacuation_destination(from_region, age, ysr@777: word_sz); ysr@777: HeapWord* obj_ptr = _par_scan_state->allocate(alloc_purpose, word_sz); ysr@777: oop obj = oop(obj_ptr); ysr@777: ysr@777: if (obj_ptr == NULL) { ysr@777: // This will either forward-to-self, or detect that someone else has ysr@777: // installed a forwarding pointer. ysr@777: OopsInHeapRegionClosure* cl = _par_scan_state->evac_failure_closure(); ysr@777: return _g1->handle_evacuation_failure_par(cl, old); ysr@777: } ysr@777: tonyp@961: // We're going to allocate linearly, so might as well prefetch ahead. tonyp@961: Prefetch::write(obj_ptr, PrefetchCopyIntervalInBytes); tonyp@961: ysr@777: oop forward_ptr = old->forward_to_atomic(obj); ysr@777: if (forward_ptr == NULL) { ysr@777: Copy::aligned_disjoint_words((HeapWord*) old, obj_ptr, word_sz); tonyp@961: if (g1p->track_object_age(alloc_purpose)) { tonyp@961: // We could simply do obj->incr_age(). However, this causes a tonyp@961: // performance issue. obj->incr_age() will first check whether tonyp@961: // the object has a displaced mark by checking its mark word; tonyp@961: // getting the mark word from the new location of the object tonyp@961: // stalls. So, given that we already have the mark word and we tonyp@961: // are about to install it anyway, it's better to increase the tonyp@961: // age on the mark word, when the object does not have a tonyp@961: // displaced mark word. We're not expecting many objects to have tonyp@961: // a displaced marked word, so that case is not optimized tonyp@961: // further (it could be...) and we simply call obj->incr_age(). tonyp@961: tonyp@961: if (m->has_displaced_mark_helper()) { tonyp@961: // in this case, we have to install the mark word first, tonyp@961: // otherwise obj looks to be forwarded (the old mark word, tonyp@961: // which contains the forward pointer, was copied) tonyp@961: obj->set_mark(m); tonyp@961: obj->incr_age(); tonyp@961: } else { tonyp@961: m = m->incr_age(); apetrusenko@980: obj->set_mark(m); tonyp@961: } apetrusenko@980: _par_scan_state->age_table()->add(obj, word_sz); apetrusenko@980: } else { apetrusenko@980: obj->set_mark(m); tonyp@961: } tonyp@961: ysr@777: // preserve "next" mark bit ysr@777: if (_g1->mark_in_progress() && !_g1->is_obj_ill(old)) { ysr@777: if (!use_local_bitmaps || ysr@777: !_par_scan_state->alloc_buffer(alloc_purpose)->mark(obj_ptr)) { ysr@777: // if we couldn't mark it on the local bitmap (this happens when ysr@777: // the object was not allocated in the GCLab), we have to bite ysr@777: // the bullet and do the standard parallel mark ysr@777: _cm->markAndGrayObjectIfNecessary(obj); ysr@777: } ysr@777: #if 1 ysr@777: if (_g1->isMarkedNext(old)) { ysr@777: _cm->nextMarkBitMap()->parClear((HeapWord*)old); ysr@777: } ysr@777: #endif ysr@777: } ysr@777: ysr@777: size_t* surv_young_words = _par_scan_state->surviving_young_words(); ysr@777: surv_young_words[young_index] += word_sz; ysr@777: ysr@777: if (obj->is_objArray() && arrayOop(obj)->length() >= ParGCArrayScanChunk) { ysr@777: arrayOop(old)->set_length(0); ysr@1280: oop* old_p = set_partial_array_mask(old); ysr@1280: _par_scan_state->push_on_queue(old_p); ysr@777: } else { tonyp@961: // No point in using the slower heap_region_containing() method, tonyp@961: // given that we know obj is in the heap. tonyp@961: _scanner->set_region(_g1->heap_region_containing_raw(obj)); ysr@777: obj->oop_iterate_backwards(_scanner); ysr@777: } ysr@777: } else { ysr@777: _par_scan_state->undo_allocation(alloc_purpose, obj_ptr, word_sz); ysr@777: obj = forward_ptr; ysr@777: } ysr@777: return obj; ysr@777: } ysr@777: iveresov@1696: template ysr@1280: template iveresov@1696: void G1ParCopyClosure ysr@1280: ::do_oop_work(T* p) { ysr@1280: oop obj = oopDesc::load_decode_heap_oop(p); ysr@777: assert(barrier != G1BarrierRS || obj != NULL, ysr@777: "Precondition: G1BarrierRS implies obj is nonNull"); ysr@777: tonyp@961: // here the null check is implicit in the cset_fast_test() test iveresov@1696: if (_g1->in_cset_fast_test(obj)) { ysr@777: #if G1_REM_SET_LOGGING tonyp@961: gclog_or_tty->print_cr("Loc "PTR_FORMAT" contains pointer "PTR_FORMAT" " tonyp@961: "into CS.", p, (void*) obj); ysr@777: #endif tonyp@961: if (obj->is_forwarded()) { ysr@1280: oopDesc::encode_store_heap_oop(p, obj->forwardee()); tonyp@961: } else { ysr@1280: oop copy_oop = copy_to_survivor_space(obj); ysr@1280: oopDesc::encode_store_heap_oop(p, copy_oop); ysr@777: } tonyp@961: // When scanning the RS, we only care about objs in CS. tonyp@961: if (barrier == G1BarrierRS) { iveresov@1051: _par_scan_state->update_rs(_from, p, _par_scan_state->queue_num()); ysr@777: } tonyp@961: } tonyp@961: tonyp@961: if (barrier == G1BarrierEvac && obj != NULL) { iveresov@1051: _par_scan_state->update_rs(_from, p, _par_scan_state->queue_num()); tonyp@961: } tonyp@961: tonyp@961: if (do_gen_barrier && obj != NULL) { tonyp@961: par_do_barrier(p); tonyp@961: } tonyp@961: } tonyp@961: iveresov@1696: template void G1ParCopyClosure::do_oop_work(oop* p); iveresov@1696: template void G1ParCopyClosure::do_oop_work(narrowOop* p); ysr@1280: ysr@1280: template void G1ParScanPartialArrayClosure::do_oop_nv(T* p) { tonyp@961: assert(has_partial_array_mask(p), "invariant"); tonyp@961: oop old = clear_partial_array_mask(p); ysr@777: assert(old->is_objArray(), "must be obj array"); ysr@777: assert(old->is_forwarded(), "must be forwarded"); ysr@777: assert(Universe::heap()->is_in_reserved(old), "must be in heap."); ysr@777: ysr@777: objArrayOop obj = objArrayOop(old->forwardee()); ysr@777: assert((void*)old != (void*)old->forwardee(), "self forwarding here?"); ysr@777: // Process ParGCArrayScanChunk elements now ysr@777: // and push the remainder back onto queue ysr@777: int start = arrayOop(old)->length(); ysr@777: int end = obj->length(); ysr@777: int remainder = end - start; ysr@777: assert(start <= end, "just checking"); ysr@777: if (remainder > 2 * ParGCArrayScanChunk) { ysr@777: // Test above combines last partial chunk with a full chunk ysr@777: end = start + ParGCArrayScanChunk; ysr@777: arrayOop(old)->set_length(end); ysr@777: // Push remainder. ysr@1280: oop* old_p = set_partial_array_mask(old); ysr@1280: assert(arrayOop(old)->length() < obj->length(), "Empty push?"); ysr@1280: _par_scan_state->push_on_queue(old_p); ysr@777: } else { ysr@777: // Restore length so that the heap remains parsable in ysr@777: // case of evacuation failure. ysr@777: arrayOop(old)->set_length(end); ysr@777: } ysr@1280: _scanner.set_region(_g1->heap_region_containing_raw(obj)); ysr@777: // process our set of indices (include header in first chunk) ysr@1280: obj->oop_iterate_range(&_scanner, start, end); ysr@777: } ysr@777: ysr@777: class G1ParEvacuateFollowersClosure : public VoidClosure { ysr@777: protected: ysr@777: G1CollectedHeap* _g1h; ysr@777: G1ParScanThreadState* _par_scan_state; ysr@777: RefToScanQueueSet* _queues; ysr@777: ParallelTaskTerminator* _terminator; ysr@777: ysr@777: G1ParScanThreadState* par_scan_state() { return _par_scan_state; } ysr@777: RefToScanQueueSet* queues() { return _queues; } ysr@777: ParallelTaskTerminator* terminator() { return _terminator; } ysr@777: ysr@777: public: ysr@777: G1ParEvacuateFollowersClosure(G1CollectedHeap* g1h, ysr@777: G1ParScanThreadState* par_scan_state, ysr@777: RefToScanQueueSet* queues, ysr@777: ParallelTaskTerminator* terminator) ysr@777: : _g1h(g1h), _par_scan_state(par_scan_state), ysr@777: _queues(queues), _terminator(terminator) {} ysr@777: ysr@777: void do_void() { ysr@777: G1ParScanThreadState* pss = par_scan_state(); ysr@777: while (true) { ysr@777: pss->trim_queue(); ysr@1280: ysr@1280: StarTask stolen_task; ysr@1280: if (queues()->steal(pss->queue_num(), pss->hash_seed(), stolen_task)) { tonyp@961: // slightly paranoid tests; I'm trying to catch potential tonyp@961: // problems before we go into push_on_queue to know where the tonyp@961: // problem is coming from ysr@1280: assert((oop*)stolen_task != NULL, "Error"); ysr@1280: if (stolen_task.is_narrow()) { ysr@1280: assert(UseCompressedOops, "Error"); ysr@1280: narrowOop* p = (narrowOop*) stolen_task; ysr@1280: assert(has_partial_array_mask(p) || iveresov@1696: _g1h->is_in_g1_reserved(oopDesc::load_decode_heap_oop(p)), "Error"); ysr@1280: pss->push_on_queue(p); ysr@1280: } else { ysr@1280: oop* p = (oop*) stolen_task; iveresov@1696: assert(has_partial_array_mask(p) || _g1h->is_in_g1_reserved(*p), "Error"); ysr@1280: pss->push_on_queue(p); ysr@1280: } ysr@777: continue; ysr@777: } ysr@777: pss->start_term_time(); ysr@777: if (terminator()->offer_termination()) break; ysr@777: pss->end_term_time(); ysr@777: } ysr@777: pss->end_term_time(); ysr@777: pss->retire_alloc_buffers(); ysr@777: } ysr@777: }; ysr@777: ysr@777: class G1ParTask : public AbstractGangTask { ysr@777: protected: ysr@777: G1CollectedHeap* _g1h; ysr@777: RefToScanQueueSet *_queues; ysr@777: ParallelTaskTerminator _terminator; ysr@1280: int _n_workers; ysr@777: ysr@777: Mutex _stats_lock; ysr@777: Mutex* stats_lock() { return &_stats_lock; } ysr@777: ysr@777: size_t getNCards() { ysr@777: return (_g1h->capacity() + G1BlockOffsetSharedArray::N_bytes - 1) ysr@777: / G1BlockOffsetSharedArray::N_bytes; ysr@777: } ysr@777: ysr@777: public: ysr@777: G1ParTask(G1CollectedHeap* g1h, int workers, RefToScanQueueSet *task_queues) ysr@777: : AbstractGangTask("G1 collection"), ysr@777: _g1h(g1h), ysr@777: _queues(task_queues), ysr@777: _terminator(workers, _queues), ysr@1280: _stats_lock(Mutex::leaf, "parallel G1 stats lock", true), ysr@1280: _n_workers(workers) ysr@777: {} ysr@777: ysr@777: RefToScanQueueSet* queues() { return _queues; } ysr@777: ysr@777: RefToScanQueue *work_queue(int i) { ysr@777: return queues()->queue(i); ysr@777: } ysr@777: ysr@777: void work(int i) { ysr@1280: if (i >= _n_workers) return; // no work needed this round tonyp@1966: tonyp@1966: double start_time_ms = os::elapsedTime() * 1000.0; tonyp@1966: _g1h->g1_policy()->record_gc_worker_start_time(i, start_time_ms); tonyp@1966: ysr@777: ResourceMark rm; ysr@777: HandleMark hm; ysr@777: tonyp@961: G1ParScanThreadState pss(_g1h, i); tonyp@961: G1ParScanHeapEvacClosure scan_evac_cl(_g1h, &pss); tonyp@961: G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss); tonyp@961: G1ParScanPartialArrayClosure partial_scan_cl(_g1h, &pss); ysr@777: ysr@777: pss.set_evac_closure(&scan_evac_cl); ysr@777: pss.set_evac_failure_closure(&evac_failure_cl); ysr@777: pss.set_partial_scan_closure(&partial_scan_cl); ysr@777: ysr@777: G1ParScanExtRootClosure only_scan_root_cl(_g1h, &pss); ysr@777: G1ParScanPermClosure only_scan_perm_cl(_g1h, &pss); ysr@777: G1ParScanHeapRSClosure only_scan_heap_rs_cl(_g1h, &pss); iveresov@1696: G1ParPushHeapRSClosure push_heap_rs_cl(_g1h, &pss); iveresov@1051: ysr@777: G1ParScanAndMarkExtRootClosure scan_mark_root_cl(_g1h, &pss); ysr@777: G1ParScanAndMarkPermClosure scan_mark_perm_cl(_g1h, &pss); ysr@777: G1ParScanAndMarkHeapRSClosure scan_mark_heap_rs_cl(_g1h, &pss); ysr@777: ysr@777: OopsInHeapRegionClosure *scan_root_cl; ysr@777: OopsInHeapRegionClosure *scan_perm_cl; ysr@777: tonyp@1794: if (_g1h->g1_policy()->during_initial_mark_pause()) { ysr@777: scan_root_cl = &scan_mark_root_cl; ysr@777: scan_perm_cl = &scan_mark_perm_cl; ysr@777: } else { ysr@777: scan_root_cl = &only_scan_root_cl; ysr@777: scan_perm_cl = &only_scan_perm_cl; ysr@777: } ysr@777: ysr@777: pss.start_strong_roots(); ysr@777: _g1h->g1_process_strong_roots(/* not collecting perm */ false, ysr@777: SharedHeap::SO_AllClasses, ysr@777: scan_root_cl, iveresov@1696: &push_heap_rs_cl, ysr@777: scan_perm_cl, ysr@777: i); ysr@777: pss.end_strong_roots(); ysr@777: { ysr@777: double start = os::elapsedTime(); ysr@777: G1ParEvacuateFollowersClosure evac(_g1h, &pss, _queues, &_terminator); ysr@777: evac.do_void(); ysr@777: double elapsed_ms = (os::elapsedTime()-start)*1000.0; ysr@777: double term_ms = pss.term_time()*1000.0; ysr@777: _g1h->g1_policy()->record_obj_copy_time(i, elapsed_ms-term_ms); tonyp@1966: _g1h->g1_policy()->record_termination(i, term_ms, pss.term_attempts()); ysr@777: } tonyp@1717: _g1h->g1_policy()->record_thread_age_table(pss.age_table()); ysr@777: _g1h->update_surviving_young_words(pss.surviving_young_words()+1); ysr@777: ysr@777: // Clean up any par-expanded rem sets. ysr@777: HeapRegionRemSet::par_cleanup(); ysr@777: ysr@777: if (ParallelGCVerbose) { jcoomes@2064: MutexLocker x(stats_lock()); jcoomes@2064: pss.print_termination_stats(i); ysr@777: } ysr@777: ysr@777: assert(pss.refs_to_scan() == 0, "Task queue should be empty"); ysr@777: assert(pss.overflowed_refs_to_scan() == 0, "Overflow queue should be empty"); tonyp@1966: double end_time_ms = os::elapsedTime() * 1000.0; tonyp@1966: _g1h->g1_policy()->record_gc_worker_end_time(i, end_time_ms); ysr@777: } ysr@777: }; ysr@777: ysr@777: // *** Common G1 Evacuation Stuff ysr@777: ysr@777: void ysr@777: G1CollectedHeap:: ysr@777: g1_process_strong_roots(bool collecting_perm_gen, ysr@777: SharedHeap::ScanningOption so, ysr@777: OopClosure* scan_non_heap_roots, ysr@777: OopsInHeapRegionClosure* scan_rs, ysr@777: OopsInGenClosure* scan_perm, ysr@777: int worker_i) { ysr@777: // First scan the strong roots, including the perm gen. ysr@777: double ext_roots_start = os::elapsedTime(); ysr@777: double closure_app_time_sec = 0.0; ysr@777: ysr@777: BufferingOopClosure buf_scan_non_heap_roots(scan_non_heap_roots); ysr@777: BufferingOopsInGenClosure buf_scan_perm(scan_perm); ysr@777: buf_scan_perm.set_generation(perm_gen()); ysr@777: jrose@1424: // Walk the code cache w/o buffering, because StarTask cannot handle jrose@1424: // unaligned oop locations. jrose@1424: CodeBlobToOopClosure eager_scan_code_roots(scan_non_heap_roots, /*do_marking=*/ true); jrose@1424: jrose@1424: process_strong_roots(false, // no scoping; this is parallel code jrose@1424: collecting_perm_gen, so, ysr@777: &buf_scan_non_heap_roots, jrose@1424: &eager_scan_code_roots, ysr@777: &buf_scan_perm); johnc@1829: ysr@777: // Finish up any enqueued closure apps. ysr@777: buf_scan_non_heap_roots.done(); ysr@777: buf_scan_perm.done(); ysr@777: double ext_roots_end = os::elapsedTime(); ysr@777: g1_policy()->reset_obj_copy_time(worker_i); ysr@777: double obj_copy_time_sec = ysr@777: buf_scan_non_heap_roots.closure_app_seconds() + ysr@777: buf_scan_perm.closure_app_seconds(); ysr@777: g1_policy()->record_obj_copy_time(worker_i, obj_copy_time_sec * 1000.0); ysr@777: double ext_root_time_ms = ysr@777: ((ext_roots_end - ext_roots_start) - obj_copy_time_sec) * 1000.0; ysr@777: g1_policy()->record_ext_root_scan_time(worker_i, ext_root_time_ms); ysr@777: ysr@777: // Scan strong roots in mark stack. ysr@777: if (!_process_strong_tasks->is_task_claimed(G1H_PS_mark_stack_oops_do)) { ysr@777: concurrent_mark()->oops_do(scan_non_heap_roots); ysr@777: } ysr@777: double mark_stack_scan_ms = (os::elapsedTime() - ext_roots_end) * 1000.0; ysr@777: g1_policy()->record_mark_stack_scan_time(worker_i, mark_stack_scan_ms); ysr@777: ysr@777: // XXX What should this be doing in the parallel case? ysr@777: g1_policy()->record_collection_pause_end_CH_strong_roots(); ysr@777: // Now scan the complement of the collection set. ysr@777: if (scan_rs != NULL) { ysr@777: g1_rem_set()->oops_into_collection_set_do(scan_rs, worker_i); ysr@777: } ysr@777: // Finish with the ref_processor roots. ysr@777: if (!_process_strong_tasks->is_task_claimed(G1H_PS_refProcessor_oops_do)) { ysr@777: ref_processor()->oops_do(scan_non_heap_roots); ysr@777: } ysr@777: g1_policy()->record_collection_pause_end_G1_strong_roots(); ysr@777: _process_strong_tasks->all_tasks_completed(); ysr@777: } ysr@777: ysr@777: void ysr@777: G1CollectedHeap::g1_process_weak_roots(OopClosure* root_closure, ysr@777: OopClosure* non_root_closure) { jrose@1424: CodeBlobToOopClosure roots_in_blobs(root_closure, /*do_marking=*/ false); jrose@1424: SharedHeap::process_weak_roots(root_closure, &roots_in_blobs, non_root_closure); ysr@777: } ysr@777: ysr@777: ysr@777: class SaveMarksClosure: public HeapRegionClosure { ysr@777: public: ysr@777: bool doHeapRegion(HeapRegion* r) { ysr@777: r->save_marks(); ysr@777: return false; ysr@777: } ysr@777: }; ysr@777: ysr@777: void G1CollectedHeap::save_marks() { ysr@777: if (ParallelGCThreads == 0) { ysr@777: SaveMarksClosure sm; ysr@777: heap_region_iterate(&sm); ysr@777: } ysr@777: // We do this even in the parallel case ysr@777: perm_gen()->save_marks(); ysr@777: } ysr@777: ysr@777: void G1CollectedHeap::evacuate_collection_set() { ysr@777: set_evacuation_failed(false); ysr@777: ysr@777: g1_rem_set()->prepare_for_oops_into_collection_set_do(); ysr@777: concurrent_g1_refine()->set_use_cache(false); johnc@1324: concurrent_g1_refine()->clear_hot_cache_claimed_index(); johnc@1324: ysr@777: int n_workers = (ParallelGCThreads > 0 ? workers()->total_workers() : 1); ysr@777: set_par_threads(n_workers); ysr@777: G1ParTask g1_par_task(this, n_workers, _task_queues); ysr@777: ysr@777: init_for_evac_failure(NULL); ysr@777: ysr@777: rem_set()->prepare_for_younger_refs_iterate(true); iveresov@1051: iveresov@1051: assert(dirty_card_queue_set().completed_buffers_num() == 0, "Should be empty"); ysr@777: double start_par = os::elapsedTime(); ysr@777: if (ParallelGCThreads > 0) { ysr@777: // The individual threads will set their evac-failure closures. jrose@1424: StrongRootsScope srs(this); jcoomes@2064: if (ParallelGCVerbose) G1ParScanThreadState::print_termination_stats_hdr(); ysr@777: workers()->run_task(&g1_par_task); ysr@777: } else { jrose@1424: StrongRootsScope srs(this); ysr@777: g1_par_task.work(0); ysr@777: } ysr@777: ysr@777: double par_time = (os::elapsedTime() - start_par) * 1000.0; ysr@777: g1_policy()->record_par_time(par_time); ysr@777: set_par_threads(0); ysr@777: // Is this the right thing to do here? We don't save marks ysr@777: // on individual heap regions when we allocate from ysr@777: // them in parallel, so this seems like the correct place for this. apetrusenko@980: retire_all_alloc_regions(); ysr@777: { ysr@777: G1IsAliveClosure is_alive(this); ysr@777: G1KeepAliveClosure keep_alive(this); ysr@777: JNIHandles::weak_oops_do(&is_alive, &keep_alive); ysr@777: } apetrusenko@1375: release_gc_alloc_regions(false /* totally */); ysr@777: g1_rem_set()->cleanup_after_oops_into_collection_set_do(); iveresov@1051: johnc@1324: concurrent_g1_refine()->clear_hot_cache(); ysr@777: concurrent_g1_refine()->set_use_cache(true); ysr@777: ysr@777: finalize_for_evac_failure(); ysr@777: ysr@777: // Must do this before removing self-forwarding pointers, which clears ysr@777: // the per-region evac-failure flags. ysr@777: concurrent_mark()->complete_marking_in_collection_set(); ysr@777: ysr@777: if (evacuation_failed()) { ysr@777: remove_self_forwarding_pointers(); ysr@777: if (PrintGCDetails) { ysr@777: gclog_or_tty->print(" (evacuation failed)"); ysr@777: } else if (PrintGC) { ysr@777: gclog_or_tty->print("--"); ysr@777: } ysr@777: } ysr@777: iveresov@1051: if (G1DeferredRSUpdate) { iveresov@1051: RedirtyLoggedCardTableEntryFastClosure redirty; iveresov@1051: dirty_card_queue_set().set_closure(&redirty); iveresov@1051: dirty_card_queue_set().apply_closure_to_all_completed_buffers(); iveresov@1546: iveresov@1546: DirtyCardQueueSet& dcq = JavaThread::dirty_card_queue_set(); iveresov@1546: dcq.merge_bufferlists(&dirty_card_queue_set()); iveresov@1051: assert(dirty_card_queue_set().completed_buffers_num() == 0, "All should be consumed"); iveresov@1051: } ysr@777: COMPILER2_PRESENT(DerivedPointerTable::update_pointers()); ysr@777: } ysr@777: ysr@777: void G1CollectedHeap::free_region(HeapRegion* hr) { ysr@777: size_t pre_used = 0; ysr@777: size_t cleared_h_regions = 0; ysr@777: size_t freed_regions = 0; ysr@777: UncleanRegionList local_list; ysr@777: ysr@777: HeapWord* start = hr->bottom(); ysr@777: HeapWord* end = hr->prev_top_at_mark_start(); ysr@777: size_t used_bytes = hr->used(); ysr@777: size_t live_bytes = hr->max_live_bytes(); ysr@777: if (used_bytes > 0) { ysr@777: guarantee( live_bytes <= used_bytes, "invariant" ); ysr@777: } else { ysr@777: guarantee( live_bytes == 0, "invariant" ); ysr@777: } ysr@777: ysr@777: size_t garbage_bytes = used_bytes - live_bytes; ysr@777: if (garbage_bytes > 0) ysr@777: g1_policy()->decrease_known_garbage_bytes(garbage_bytes); ysr@777: ysr@777: free_region_work(hr, pre_used, cleared_h_regions, freed_regions, ysr@777: &local_list); ysr@777: finish_free_region_work(pre_used, cleared_h_regions, freed_regions, ysr@777: &local_list); ysr@777: } ysr@777: ysr@777: void ysr@777: G1CollectedHeap::free_region_work(HeapRegion* hr, ysr@777: size_t& pre_used, ysr@777: size_t& cleared_h_regions, ysr@777: size_t& freed_regions, ysr@777: UncleanRegionList* list, ysr@777: bool par) { ysr@777: pre_used += hr->used(); ysr@777: if (hr->isHumongous()) { ysr@777: assert(hr->startsHumongous(), ysr@777: "Only the start of a humongous region should be freed."); ysr@777: int ind = _hrs->find(hr); ysr@777: assert(ind != -1, "Should have an index."); ysr@777: // Clear the start region. ysr@777: hr->hr_clear(par, true /*clear_space*/); ysr@777: list->insert_before_head(hr); ysr@777: cleared_h_regions++; ysr@777: freed_regions++; ysr@777: // Clear any continued regions. ysr@777: ind++; ysr@777: while ((size_t)ind < n_regions()) { ysr@777: HeapRegion* hrc = _hrs->at(ind); ysr@777: if (!hrc->continuesHumongous()) break; ysr@777: // Otherwise, does continue the H region. ysr@777: assert(hrc->humongous_start_region() == hr, "Huh?"); ysr@777: hrc->hr_clear(par, true /*clear_space*/); ysr@777: cleared_h_regions++; ysr@777: freed_regions++; ysr@777: list->insert_before_head(hrc); ysr@777: ind++; ysr@777: } ysr@777: } else { ysr@777: hr->hr_clear(par, true /*clear_space*/); ysr@777: list->insert_before_head(hr); ysr@777: freed_regions++; ysr@777: // If we're using clear2, this should not be enabled. ysr@777: // assert(!hr->in_cohort(), "Can't be both free and in a cohort."); ysr@777: } ysr@777: } ysr@777: ysr@777: void G1CollectedHeap::finish_free_region_work(size_t pre_used, ysr@777: size_t cleared_h_regions, ysr@777: size_t freed_regions, ysr@777: UncleanRegionList* list) { ysr@777: if (list != NULL && list->sz() > 0) { ysr@777: prepend_region_list_on_unclean_list(list); ysr@777: } ysr@777: // Acquire a lock, if we're parallel, to update possibly-shared ysr@777: // variables. ysr@777: Mutex* lock = (n_par_threads() > 0) ? ParGCRareEvent_lock : NULL; ysr@777: { ysr@777: MutexLockerEx x(lock, Mutex::_no_safepoint_check_flag); ysr@777: _summary_bytes_used -= pre_used; ysr@777: _num_humongous_regions -= (int) cleared_h_regions; ysr@777: _free_regions += freed_regions; ysr@777: } ysr@777: } ysr@777: ysr@777: ysr@777: void G1CollectedHeap::dirtyCardsForYoungRegions(CardTableModRefBS* ct_bs, HeapRegion* list) { ysr@777: while (list != NULL) { ysr@777: guarantee( list->is_young(), "invariant" ); ysr@777: ysr@777: HeapWord* bottom = list->bottom(); ysr@777: HeapWord* end = list->end(); ysr@777: MemRegion mr(bottom, end); ysr@777: ct_bs->dirty(mr); ysr@777: ysr@777: list = list->get_next_young_region(); ysr@777: } ysr@777: } ysr@777: apetrusenko@1231: apetrusenko@1231: class G1ParCleanupCTTask : public AbstractGangTask { apetrusenko@1231: CardTableModRefBS* _ct_bs; apetrusenko@1231: G1CollectedHeap* _g1h; apetrusenko@1375: HeapRegion* volatile _su_head; apetrusenko@1231: public: apetrusenko@1231: G1ParCleanupCTTask(CardTableModRefBS* ct_bs, apetrusenko@1375: G1CollectedHeap* g1h, apetrusenko@1375: HeapRegion* survivor_list) : apetrusenko@1231: AbstractGangTask("G1 Par Cleanup CT Task"), apetrusenko@1231: _ct_bs(ct_bs), apetrusenko@1375: _g1h(g1h), apetrusenko@1375: _su_head(survivor_list) apetrusenko@1231: { } apetrusenko@1231: apetrusenko@1231: void work(int i) { apetrusenko@1231: HeapRegion* r; apetrusenko@1231: while (r = _g1h->pop_dirty_cards_region()) { apetrusenko@1231: clear_cards(r); apetrusenko@1231: } johnc@1829: // Redirty the cards of the survivor regions. apetrusenko@1375: dirty_list(&this->_su_head); apetrusenko@1375: } apetrusenko@1375: apetrusenko@1231: void clear_cards(HeapRegion* r) { johnc@1829: // Cards for Survivor regions will be dirtied later. johnc@1829: if (!r->is_survivor()) { apetrusenko@1231: _ct_bs->clear(MemRegion(r->bottom(), r->end())); apetrusenko@1231: } apetrusenko@1231: } apetrusenko@1375: apetrusenko@1375: void dirty_list(HeapRegion* volatile * head_ptr) { apetrusenko@1375: HeapRegion* head; apetrusenko@1375: do { apetrusenko@1375: // Pop region off the list. apetrusenko@1375: head = *head_ptr; apetrusenko@1375: if (head != NULL) { apetrusenko@1375: HeapRegion* r = (HeapRegion*) apetrusenko@1375: Atomic::cmpxchg_ptr(head->get_next_young_region(), head_ptr, head); apetrusenko@1375: if (r == head) { apetrusenko@1375: assert(!r->isHumongous(), "Humongous regions shouldn't be on survivor list"); apetrusenko@1375: _ct_bs->dirty(MemRegion(r->bottom(), r->end())); apetrusenko@1375: } apetrusenko@1375: } apetrusenko@1375: } while (*head_ptr != NULL); apetrusenko@1375: } apetrusenko@1231: }; apetrusenko@1231: apetrusenko@1231: apetrusenko@1375: #ifndef PRODUCT apetrusenko@1375: class G1VerifyCardTableCleanup: public HeapRegionClosure { apetrusenko@1375: CardTableModRefBS* _ct_bs; apetrusenko@1375: public: apetrusenko@1375: G1VerifyCardTableCleanup(CardTableModRefBS* ct_bs) apetrusenko@1375: : _ct_bs(ct_bs) apetrusenko@1375: { } apetrusenko@1375: virtual bool doHeapRegion(HeapRegion* r) apetrusenko@1375: { apetrusenko@1375: MemRegion mr(r->bottom(), r->end()); johnc@1829: if (r->is_survivor()) { apetrusenko@1375: _ct_bs->verify_dirty_region(mr); apetrusenko@1375: } else { apetrusenko@1375: _ct_bs->verify_clean_region(mr); apetrusenko@1375: } apetrusenko@1375: return false; apetrusenko@1375: } apetrusenko@1375: }; apetrusenko@1375: #endif apetrusenko@1375: ysr@777: void G1CollectedHeap::cleanUpCardTable() { ysr@777: CardTableModRefBS* ct_bs = (CardTableModRefBS*) (barrier_set()); ysr@777: double start = os::elapsedTime(); ysr@777: apetrusenko@1231: // Iterate over the dirty cards region list. apetrusenko@1375: G1ParCleanupCTTask cleanup_task(ct_bs, this, apetrusenko@1375: _young_list->first_survivor_region()); johnc@1829: apetrusenko@1231: if (ParallelGCThreads > 0) { apetrusenko@1231: set_par_threads(workers()->total_workers()); apetrusenko@1231: workers()->run_task(&cleanup_task); apetrusenko@1231: set_par_threads(0); apetrusenko@1231: } else { apetrusenko@1231: while (_dirty_cards_region_list) { apetrusenko@1231: HeapRegion* r = _dirty_cards_region_list; apetrusenko@1231: cleanup_task.clear_cards(r); apetrusenko@1231: _dirty_cards_region_list = r->get_next_dirty_cards_region(); apetrusenko@1231: if (_dirty_cards_region_list == r) { apetrusenko@1231: // The last region. apetrusenko@1231: _dirty_cards_region_list = NULL; apetrusenko@1231: } apetrusenko@1231: r->set_next_dirty_cards_region(NULL); apetrusenko@1231: } johnc@1829: // now, redirty the cards of the survivor regions apetrusenko@1375: // (it seemed faster to do it this way, instead of iterating over apetrusenko@1375: // all regions and then clearing / dirtying as appropriate) apetrusenko@1375: dirtyCardsForYoungRegions(ct_bs, _young_list->first_survivor_region()); apetrusenko@1375: } johnc@1829: ysr@777: double elapsed = os::elapsedTime() - start; ysr@777: g1_policy()->record_clear_ct_time( elapsed * 1000.0); apetrusenko@1375: #ifndef PRODUCT apetrusenko@1375: if (G1VerifyCTCleanup || VerifyAfterGC) { apetrusenko@1375: G1VerifyCardTableCleanup cleanup_verifier(ct_bs); apetrusenko@1375: heap_region_iterate(&cleanup_verifier); apetrusenko@1375: } apetrusenko@1375: #endif ysr@777: } ysr@777: ysr@777: void G1CollectedHeap::do_collection_pause_if_appropriate(size_t word_size) { ysr@777: if (g1_policy()->should_do_collection_pause(word_size)) { ysr@777: do_collection_pause(); ysr@777: } ysr@777: } ysr@777: ysr@777: void G1CollectedHeap::free_collection_set(HeapRegion* cs_head) { ysr@777: double young_time_ms = 0.0; ysr@777: double non_young_time_ms = 0.0; ysr@777: johnc@1829: // Since the collection set is a superset of the the young list, johnc@1829: // all we need to do to clear the young list is clear its johnc@1829: // head and length, and unlink any young regions in the code below johnc@1829: _young_list->clear(); johnc@1829: ysr@777: G1CollectorPolicy* policy = g1_policy(); ysr@777: ysr@777: double start_sec = os::elapsedTime(); ysr@777: bool non_young = true; ysr@777: ysr@777: HeapRegion* cur = cs_head; ysr@777: int age_bound = -1; ysr@777: size_t rs_lengths = 0; ysr@777: ysr@777: while (cur != NULL) { ysr@777: if (non_young) { ysr@777: if (cur->is_young()) { ysr@777: double end_sec = os::elapsedTime(); ysr@777: double elapsed_ms = (end_sec - start_sec) * 1000.0; ysr@777: non_young_time_ms += elapsed_ms; ysr@777: ysr@777: start_sec = os::elapsedTime(); ysr@777: non_young = false; ysr@777: } ysr@777: } else { ysr@777: if (!cur->is_on_free_list()) { ysr@777: double end_sec = os::elapsedTime(); ysr@777: double elapsed_ms = (end_sec - start_sec) * 1000.0; ysr@777: young_time_ms += elapsed_ms; ysr@777: ysr@777: start_sec = os::elapsedTime(); ysr@777: non_young = true; ysr@777: } ysr@777: } ysr@777: ysr@777: rs_lengths += cur->rem_set()->occupied(); ysr@777: ysr@777: HeapRegion* next = cur->next_in_collection_set(); ysr@777: assert(cur->in_collection_set(), "bad CS"); ysr@777: cur->set_next_in_collection_set(NULL); ysr@777: cur->set_in_collection_set(false); ysr@777: ysr@777: if (cur->is_young()) { ysr@777: int index = cur->young_index_in_cset(); ysr@777: guarantee( index != -1, "invariant" ); ysr@777: guarantee( (size_t)index < policy->young_cset_length(), "invariant" ); ysr@777: size_t words_survived = _surviving_young_words[index]; ysr@777: cur->record_surv_words_in_group(words_survived); johnc@1829: johnc@1829: // At this point the we have 'popped' cur from the collection set johnc@1829: // (linked via next_in_collection_set()) but it is still in the johnc@1829: // young list (linked via next_young_region()). Clear the johnc@1829: // _next_young_region field. johnc@1829: cur->set_next_young_region(NULL); ysr@777: } else { ysr@777: int index = cur->young_index_in_cset(); ysr@777: guarantee( index == -1, "invariant" ); ysr@777: } ysr@777: ysr@777: assert( (cur->is_young() && cur->young_index_in_cset() > -1) || ysr@777: (!cur->is_young() && cur->young_index_in_cset() == -1), ysr@777: "invariant" ); ysr@777: ysr@777: if (!cur->evacuation_failed()) { ysr@777: // And the region is empty. ysr@777: assert(!cur->is_empty(), ysr@777: "Should not have empty regions in a CS."); ysr@777: free_region(cur); ysr@777: } else { ysr@777: cur->uninstall_surv_rate_group(); ysr@777: if (cur->is_young()) ysr@777: cur->set_young_index_in_cset(-1); ysr@777: cur->set_not_young(); ysr@777: cur->set_evacuation_failed(false); ysr@777: } ysr@777: cur = next; ysr@777: } ysr@777: ysr@777: policy->record_max_rs_lengths(rs_lengths); ysr@777: policy->cset_regions_freed(); ysr@777: ysr@777: double end_sec = os::elapsedTime(); ysr@777: double elapsed_ms = (end_sec - start_sec) * 1000.0; ysr@777: if (non_young) ysr@777: non_young_time_ms += elapsed_ms; ysr@777: else ysr@777: young_time_ms += elapsed_ms; ysr@777: ysr@777: policy->record_young_free_cset_time_ms(young_time_ms); ysr@777: policy->record_non_young_free_cset_time_ms(non_young_time_ms); ysr@777: } ysr@777: johnc@1829: // This routine is similar to the above but does not record johnc@1829: // any policy statistics or update free lists; we are abandoning johnc@1829: // the current incremental collection set in preparation of a johnc@1829: // full collection. After the full GC we will start to build up johnc@1829: // the incremental collection set again. johnc@1829: // This is only called when we're doing a full collection johnc@1829: // and is immediately followed by the tearing down of the young list. johnc@1829: johnc@1829: void G1CollectedHeap::abandon_collection_set(HeapRegion* cs_head) { johnc@1829: HeapRegion* cur = cs_head; johnc@1829: johnc@1829: while (cur != NULL) { johnc@1829: HeapRegion* next = cur->next_in_collection_set(); johnc@1829: assert(cur->in_collection_set(), "bad CS"); johnc@1829: cur->set_next_in_collection_set(NULL); johnc@1829: cur->set_in_collection_set(false); johnc@1829: cur->set_young_index_in_cset(-1); johnc@1829: cur = next; johnc@1829: } johnc@1829: } johnc@1829: ysr@777: HeapRegion* ysr@777: G1CollectedHeap::alloc_region_from_unclean_list_locked(bool zero_filled) { ysr@777: assert(ZF_mon->owned_by_self(), "Precondition"); ysr@777: HeapRegion* res = pop_unclean_region_list_locked(); ysr@777: if (res != NULL) { ysr@777: assert(!res->continuesHumongous() && ysr@777: res->zero_fill_state() != HeapRegion::Allocated, ysr@777: "Only free regions on unclean list."); ysr@777: if (zero_filled) { ysr@777: res->ensure_zero_filled_locked(); ysr@777: res->set_zero_fill_allocated(); ysr@777: } ysr@777: } ysr@777: return res; ysr@777: } ysr@777: ysr@777: HeapRegion* G1CollectedHeap::alloc_region_from_unclean_list(bool zero_filled) { ysr@777: MutexLockerEx zx(ZF_mon, Mutex::_no_safepoint_check_flag); ysr@777: return alloc_region_from_unclean_list_locked(zero_filled); ysr@777: } ysr@777: ysr@777: void G1CollectedHeap::put_region_on_unclean_list(HeapRegion* r) { ysr@777: MutexLockerEx x(ZF_mon, Mutex::_no_safepoint_check_flag); ysr@777: put_region_on_unclean_list_locked(r); ysr@777: if (should_zf()) ZF_mon->notify_all(); // Wake up ZF thread. ysr@777: } ysr@777: ysr@777: void G1CollectedHeap::set_unclean_regions_coming(bool b) { ysr@777: MutexLockerEx x(Cleanup_mon); ysr@777: set_unclean_regions_coming_locked(b); ysr@777: } ysr@777: ysr@777: void G1CollectedHeap::set_unclean_regions_coming_locked(bool b) { ysr@777: assert(Cleanup_mon->owned_by_self(), "Precondition"); ysr@777: _unclean_regions_coming = b; ysr@777: // Wake up mutator threads that might be waiting for completeCleanup to ysr@777: // finish. ysr@777: if (!b) Cleanup_mon->notify_all(); ysr@777: } ysr@777: ysr@777: void G1CollectedHeap::wait_for_cleanup_complete() { ysr@777: MutexLockerEx x(Cleanup_mon); ysr@777: wait_for_cleanup_complete_locked(); ysr@777: } ysr@777: ysr@777: void G1CollectedHeap::wait_for_cleanup_complete_locked() { ysr@777: assert(Cleanup_mon->owned_by_self(), "precondition"); ysr@777: while (_unclean_regions_coming) { ysr@777: Cleanup_mon->wait(); ysr@777: } ysr@777: } ysr@777: ysr@777: void ysr@777: G1CollectedHeap::put_region_on_unclean_list_locked(HeapRegion* r) { ysr@777: assert(ZF_mon->owned_by_self(), "precondition."); apetrusenko@1900: #ifdef ASSERT apetrusenko@1900: if (r->is_gc_alloc_region()) { apetrusenko@1900: ResourceMark rm; apetrusenko@1900: stringStream region_str; apetrusenko@1900: print_on(®ion_str); apetrusenko@1900: assert(!r->is_gc_alloc_region(), err_msg("Unexpected GC allocation region: %s", apetrusenko@1900: region_str.as_string())); apetrusenko@1900: } apetrusenko@1900: #endif ysr@777: _unclean_region_list.insert_before_head(r); ysr@777: } ysr@777: ysr@777: void ysr@777: G1CollectedHeap::prepend_region_list_on_unclean_list(UncleanRegionList* list) { ysr@777: MutexLockerEx x(ZF_mon, Mutex::_no_safepoint_check_flag); ysr@777: prepend_region_list_on_unclean_list_locked(list); ysr@777: if (should_zf()) ZF_mon->notify_all(); // Wake up ZF thread. ysr@777: } ysr@777: ysr@777: void ysr@777: G1CollectedHeap:: ysr@777: prepend_region_list_on_unclean_list_locked(UncleanRegionList* list) { ysr@777: assert(ZF_mon->owned_by_self(), "precondition."); ysr@777: _unclean_region_list.prepend_list(list); ysr@777: } ysr@777: ysr@777: HeapRegion* G1CollectedHeap::pop_unclean_region_list_locked() { ysr@777: assert(ZF_mon->owned_by_self(), "precondition."); ysr@777: HeapRegion* res = _unclean_region_list.pop(); ysr@777: if (res != NULL) { ysr@777: // Inform ZF thread that there's a new unclean head. ysr@777: if (_unclean_region_list.hd() != NULL && should_zf()) ysr@777: ZF_mon->notify_all(); ysr@777: } ysr@777: return res; ysr@777: } ysr@777: ysr@777: HeapRegion* G1CollectedHeap::peek_unclean_region_list_locked() { ysr@777: assert(ZF_mon->owned_by_self(), "precondition."); ysr@777: return _unclean_region_list.hd(); ysr@777: } ysr@777: ysr@777: ysr@777: bool G1CollectedHeap::move_cleaned_region_to_free_list_locked() { ysr@777: assert(ZF_mon->owned_by_self(), "Precondition"); ysr@777: HeapRegion* r = peek_unclean_region_list_locked(); ysr@777: if (r != NULL && r->zero_fill_state() == HeapRegion::ZeroFilled) { ysr@777: // Result of below must be equal to "r", since we hold the lock. ysr@777: (void)pop_unclean_region_list_locked(); ysr@777: put_free_region_on_list_locked(r); ysr@777: return true; ysr@777: } else { ysr@777: return false; ysr@777: } ysr@777: } ysr@777: ysr@777: bool G1CollectedHeap::move_cleaned_region_to_free_list() { ysr@777: MutexLockerEx x(ZF_mon, Mutex::_no_safepoint_check_flag); ysr@777: return move_cleaned_region_to_free_list_locked(); ysr@777: } ysr@777: ysr@777: ysr@777: void G1CollectedHeap::put_free_region_on_list_locked(HeapRegion* r) { ysr@777: assert(ZF_mon->owned_by_self(), "precondition."); ysr@777: assert(_free_region_list_size == free_region_list_length(), "Inv"); ysr@777: assert(r->zero_fill_state() == HeapRegion::ZeroFilled, ysr@777: "Regions on free list must be zero filled"); ysr@777: assert(!r->isHumongous(), "Must not be humongous."); ysr@777: assert(r->is_empty(), "Better be empty"); ysr@777: assert(!r->is_on_free_list(), ysr@777: "Better not already be on free list"); ysr@777: assert(!r->is_on_unclean_list(), ysr@777: "Better not already be on unclean list"); ysr@777: r->set_on_free_list(true); ysr@777: r->set_next_on_free_list(_free_region_list); ysr@777: _free_region_list = r; ysr@777: _free_region_list_size++; ysr@777: assert(_free_region_list_size == free_region_list_length(), "Inv"); ysr@777: } ysr@777: ysr@777: void G1CollectedHeap::put_free_region_on_list(HeapRegion* r) { ysr@777: MutexLockerEx x(ZF_mon, Mutex::_no_safepoint_check_flag); ysr@777: put_free_region_on_list_locked(r); ysr@777: } ysr@777: ysr@777: HeapRegion* G1CollectedHeap::pop_free_region_list_locked() { ysr@777: assert(ZF_mon->owned_by_self(), "precondition."); ysr@777: assert(_free_region_list_size == free_region_list_length(), "Inv"); ysr@777: HeapRegion* res = _free_region_list; ysr@777: if (res != NULL) { ysr@777: _free_region_list = res->next_from_free_list(); ysr@777: _free_region_list_size--; ysr@777: res->set_on_free_list(false); ysr@777: res->set_next_on_free_list(NULL); ysr@777: assert(_free_region_list_size == free_region_list_length(), "Inv"); ysr@777: } ysr@777: return res; ysr@777: } ysr@777: ysr@777: ysr@777: HeapRegion* G1CollectedHeap::alloc_free_region_from_lists(bool zero_filled) { ysr@777: // By self, or on behalf of self. ysr@777: assert(Heap_lock->is_locked(), "Precondition"); ysr@777: HeapRegion* res = NULL; ysr@777: bool first = true; ysr@777: while (res == NULL) { ysr@777: if (zero_filled || !first) { ysr@777: MutexLockerEx x(ZF_mon, Mutex::_no_safepoint_check_flag); ysr@777: res = pop_free_region_list_locked(); ysr@777: if (res != NULL) { ysr@777: assert(!res->zero_fill_is_allocated(), ysr@777: "No allocated regions on free list."); ysr@777: res->set_zero_fill_allocated(); ysr@777: } else if (!first) { ysr@777: break; // We tried both, time to return NULL. ysr@777: } ysr@777: } ysr@777: ysr@777: if (res == NULL) { ysr@777: res = alloc_region_from_unclean_list(zero_filled); ysr@777: } ysr@777: assert(res == NULL || ysr@777: !zero_filled || ysr@777: res->zero_fill_is_allocated(), ysr@777: "We must have allocated the region we're returning"); ysr@777: first = false; ysr@777: } ysr@777: return res; ysr@777: } ysr@777: ysr@777: void G1CollectedHeap::remove_allocated_regions_from_lists() { ysr@777: MutexLockerEx x(ZF_mon, Mutex::_no_safepoint_check_flag); ysr@777: { ysr@777: HeapRegion* prev = NULL; ysr@777: HeapRegion* cur = _unclean_region_list.hd(); ysr@777: while (cur != NULL) { ysr@777: HeapRegion* next = cur->next_from_unclean_list(); ysr@777: if (cur->zero_fill_is_allocated()) { ysr@777: // Remove from the list. ysr@777: if (prev == NULL) { ysr@777: (void)_unclean_region_list.pop(); ysr@777: } else { ysr@777: _unclean_region_list.delete_after(prev); ysr@777: } ysr@777: cur->set_on_unclean_list(false); ysr@777: cur->set_next_on_unclean_list(NULL); ysr@777: } else { ysr@777: prev = cur; ysr@777: } ysr@777: cur = next; ysr@777: } ysr@777: assert(_unclean_region_list.sz() == unclean_region_list_length(), ysr@777: "Inv"); ysr@777: } ysr@777: ysr@777: { ysr@777: HeapRegion* prev = NULL; ysr@777: HeapRegion* cur = _free_region_list; ysr@777: while (cur != NULL) { ysr@777: HeapRegion* next = cur->next_from_free_list(); ysr@777: if (cur->zero_fill_is_allocated()) { ysr@777: // Remove from the list. ysr@777: if (prev == NULL) { ysr@777: _free_region_list = cur->next_from_free_list(); ysr@777: } else { ysr@777: prev->set_next_on_free_list(cur->next_from_free_list()); ysr@777: } ysr@777: cur->set_on_free_list(false); ysr@777: cur->set_next_on_free_list(NULL); ysr@777: _free_region_list_size--; ysr@777: } else { ysr@777: prev = cur; ysr@777: } ysr@777: cur = next; ysr@777: } ysr@777: assert(_free_region_list_size == free_region_list_length(), "Inv"); ysr@777: } ysr@777: } ysr@777: ysr@777: bool G1CollectedHeap::verify_region_lists() { ysr@777: MutexLockerEx x(ZF_mon, Mutex::_no_safepoint_check_flag); ysr@777: return verify_region_lists_locked(); ysr@777: } ysr@777: ysr@777: bool G1CollectedHeap::verify_region_lists_locked() { ysr@777: HeapRegion* unclean = _unclean_region_list.hd(); ysr@777: while (unclean != NULL) { ysr@777: guarantee(unclean->is_on_unclean_list(), "Well, it is!"); ysr@777: guarantee(!unclean->is_on_free_list(), "Well, it shouldn't be!"); ysr@777: guarantee(unclean->zero_fill_state() != HeapRegion::Allocated, ysr@777: "Everything else is possible."); ysr@777: unclean = unclean->next_from_unclean_list(); ysr@777: } ysr@777: guarantee(_unclean_region_list.sz() == unclean_region_list_length(), "Inv"); ysr@777: ysr@777: HeapRegion* free_r = _free_region_list; ysr@777: while (free_r != NULL) { ysr@777: assert(free_r->is_on_free_list(), "Well, it is!"); ysr@777: assert(!free_r->is_on_unclean_list(), "Well, it shouldn't be!"); ysr@777: switch (free_r->zero_fill_state()) { ysr@777: case HeapRegion::NotZeroFilled: ysr@777: case HeapRegion::ZeroFilling: ysr@777: guarantee(false, "Should not be on free list."); ysr@777: break; ysr@777: default: ysr@777: // Everything else is possible. ysr@777: break; ysr@777: } ysr@777: free_r = free_r->next_from_free_list(); ysr@777: } ysr@777: guarantee(_free_region_list_size == free_region_list_length(), "Inv"); ysr@777: // If we didn't do an assertion... ysr@777: return true; ysr@777: } ysr@777: ysr@777: size_t G1CollectedHeap::free_region_list_length() { ysr@777: assert(ZF_mon->owned_by_self(), "precondition."); ysr@777: size_t len = 0; ysr@777: HeapRegion* cur = _free_region_list; ysr@777: while (cur != NULL) { ysr@777: len++; ysr@777: cur = cur->next_from_free_list(); ysr@777: } ysr@777: return len; ysr@777: } ysr@777: ysr@777: size_t G1CollectedHeap::unclean_region_list_length() { ysr@777: assert(ZF_mon->owned_by_self(), "precondition."); ysr@777: return _unclean_region_list.length(); ysr@777: } ysr@777: ysr@777: size_t G1CollectedHeap::n_regions() { ysr@777: return _hrs->length(); ysr@777: } ysr@777: ysr@777: size_t G1CollectedHeap::max_regions() { ysr@777: return ysr@777: (size_t)align_size_up(g1_reserved_obj_bytes(), HeapRegion::GrainBytes) / ysr@777: HeapRegion::GrainBytes; ysr@777: } ysr@777: ysr@777: size_t G1CollectedHeap::free_regions() { ysr@777: /* Possibly-expensive assert. ysr@777: assert(_free_regions == count_free_regions(), ysr@777: "_free_regions is off."); ysr@777: */ ysr@777: return _free_regions; ysr@777: } ysr@777: ysr@777: bool G1CollectedHeap::should_zf() { ysr@777: return _free_region_list_size < (size_t) G1ConcZFMaxRegions; ysr@777: } ysr@777: ysr@777: class RegionCounter: public HeapRegionClosure { ysr@777: size_t _n; ysr@777: public: ysr@777: RegionCounter() : _n(0) {} ysr@777: bool doHeapRegion(HeapRegion* r) { apetrusenko@1112: if (r->is_empty()) { ysr@777: assert(!r->isHumongous(), "H regions should not be empty."); ysr@777: _n++; ysr@777: } ysr@777: return false; ysr@777: } ysr@777: int res() { return (int) _n; } ysr@777: }; ysr@777: ysr@777: size_t G1CollectedHeap::count_free_regions() { ysr@777: RegionCounter rc; ysr@777: heap_region_iterate(&rc); ysr@777: size_t n = rc.res(); ysr@777: if (_cur_alloc_region != NULL && _cur_alloc_region->is_empty()) ysr@777: n--; ysr@777: return n; ysr@777: } ysr@777: ysr@777: size_t G1CollectedHeap::count_free_regions_list() { ysr@777: size_t n = 0; ysr@777: size_t o = 0; ysr@777: ZF_mon->lock_without_safepoint_check(); ysr@777: HeapRegion* cur = _free_region_list; ysr@777: while (cur != NULL) { ysr@777: cur = cur->next_from_free_list(); ysr@777: n++; ysr@777: } ysr@777: size_t m = unclean_region_list_length(); ysr@777: ZF_mon->unlock(); ysr@777: return n + m; ysr@777: } ysr@777: ysr@777: bool G1CollectedHeap::should_set_young_locked() { ysr@777: assert(heap_lock_held_for_gc(), ysr@777: "the heap lock should already be held by or for this thread"); ysr@777: return (g1_policy()->in_young_gc_mode() && ysr@777: g1_policy()->should_add_next_region_to_young_list()); ysr@777: } ysr@777: ysr@777: void G1CollectedHeap::set_region_short_lived_locked(HeapRegion* hr) { ysr@777: assert(heap_lock_held_for_gc(), ysr@777: "the heap lock should already be held by or for this thread"); ysr@777: _young_list->push_region(hr); ysr@777: g1_policy()->set_region_short_lived(hr); ysr@777: } ysr@777: ysr@777: class NoYoungRegionsClosure: public HeapRegionClosure { ysr@777: private: ysr@777: bool _success; ysr@777: public: ysr@777: NoYoungRegionsClosure() : _success(true) { } ysr@777: bool doHeapRegion(HeapRegion* r) { ysr@777: if (r->is_young()) { ysr@777: gclog_or_tty->print_cr("Region ["PTR_FORMAT", "PTR_FORMAT") tagged as young", ysr@777: r->bottom(), r->end()); ysr@777: _success = false; ysr@777: } ysr@777: return false; ysr@777: } ysr@777: bool success() { return _success; } ysr@777: }; ysr@777: johnc@1829: bool G1CollectedHeap::check_young_list_empty(bool check_heap, bool check_sample) { johnc@1829: bool ret = _young_list->check_list_empty(check_sample); johnc@1829: johnc@1829: if (check_heap) { ysr@777: NoYoungRegionsClosure closure; ysr@777: heap_region_iterate(&closure); ysr@777: ret = ret && closure.success(); ysr@777: } ysr@777: ysr@777: return ret; ysr@777: } ysr@777: ysr@777: void G1CollectedHeap::empty_young_list() { ysr@777: assert(heap_lock_held_for_gc(), ysr@777: "the heap lock should already be held by or for this thread"); ysr@777: assert(g1_policy()->in_young_gc_mode(), "should be in young GC mode"); ysr@777: ysr@777: _young_list->empty_list(); ysr@777: } ysr@777: ysr@777: bool G1CollectedHeap::all_alloc_regions_no_allocs_since_save_marks() { ysr@777: bool no_allocs = true; ysr@777: for (int ap = 0; ap < GCAllocPurposeCount && no_allocs; ++ap) { ysr@777: HeapRegion* r = _gc_alloc_regions[ap]; ysr@777: no_allocs = r == NULL || r->saved_mark_at_top(); ysr@777: } ysr@777: return no_allocs; ysr@777: } ysr@777: apetrusenko@980: void G1CollectedHeap::retire_all_alloc_regions() { ysr@777: for (int ap = 0; ap < GCAllocPurposeCount; ++ap) { ysr@777: HeapRegion* r = _gc_alloc_regions[ap]; ysr@777: if (r != NULL) { ysr@777: // Check for aliases. ysr@777: bool has_processed_alias = false; ysr@777: for (int i = 0; i < ap; ++i) { ysr@777: if (_gc_alloc_regions[i] == r) { ysr@777: has_processed_alias = true; ysr@777: break; ysr@777: } ysr@777: } ysr@777: if (!has_processed_alias) { apetrusenko@980: retire_alloc_region(r, false /* par */); ysr@777: } ysr@777: } ysr@777: } ysr@777: } ysr@777: ysr@777: ysr@777: // Done at the start of full GC. ysr@777: void G1CollectedHeap::tear_down_region_lists() { ysr@777: MutexLockerEx x(ZF_mon, Mutex::_no_safepoint_check_flag); ysr@777: while (pop_unclean_region_list_locked() != NULL) ; ysr@777: assert(_unclean_region_list.hd() == NULL && _unclean_region_list.sz() == 0, jcoomes@1844: "Postconditions of loop."); ysr@777: while (pop_free_region_list_locked() != NULL) ; ysr@777: assert(_free_region_list == NULL, "Postcondition of loop."); ysr@777: if (_free_region_list_size != 0) { ysr@777: gclog_or_tty->print_cr("Size is %d.", _free_region_list_size); tonyp@1273: print_on(gclog_or_tty, true /* extended */); ysr@777: } ysr@777: assert(_free_region_list_size == 0, "Postconditions of loop."); ysr@777: } ysr@777: ysr@777: ysr@777: class RegionResetter: public HeapRegionClosure { ysr@777: G1CollectedHeap* _g1; ysr@777: int _n; ysr@777: public: ysr@777: RegionResetter() : _g1(G1CollectedHeap::heap()), _n(0) {} ysr@777: bool doHeapRegion(HeapRegion* r) { ysr@777: if (r->continuesHumongous()) return false; ysr@777: if (r->top() > r->bottom()) { ysr@777: if (r->top() < r->end()) { ysr@777: Copy::fill_to_words(r->top(), ysr@777: pointer_delta(r->end(), r->top())); ysr@777: } ysr@777: r->set_zero_fill_allocated(); ysr@777: } else { ysr@777: assert(r->is_empty(), "tautology"); apetrusenko@1112: _n++; apetrusenko@1112: switch (r->zero_fill_state()) { ysr@777: case HeapRegion::NotZeroFilled: ysr@777: case HeapRegion::ZeroFilling: ysr@777: _g1->put_region_on_unclean_list_locked(r); ysr@777: break; ysr@777: case HeapRegion::Allocated: ysr@777: r->set_zero_fill_complete(); ysr@777: // no break; go on to put on free list. ysr@777: case HeapRegion::ZeroFilled: ysr@777: _g1->put_free_region_on_list_locked(r); ysr@777: break; ysr@777: } ysr@777: } ysr@777: return false; ysr@777: } ysr@777: ysr@777: int getFreeRegionCount() {return _n;} ysr@777: }; ysr@777: ysr@777: // Done at the end of full GC. ysr@777: void G1CollectedHeap::rebuild_region_lists() { ysr@777: MutexLockerEx x(ZF_mon, Mutex::_no_safepoint_check_flag); ysr@777: // This needs to go at the end of the full GC. ysr@777: RegionResetter rs; ysr@777: heap_region_iterate(&rs); ysr@777: _free_regions = rs.getFreeRegionCount(); ysr@777: // Tell the ZF thread it may have work to do. ysr@777: if (should_zf()) ZF_mon->notify_all(); ysr@777: } ysr@777: ysr@777: class UsedRegionsNeedZeroFillSetter: public HeapRegionClosure { ysr@777: G1CollectedHeap* _g1; ysr@777: int _n; ysr@777: public: ysr@777: UsedRegionsNeedZeroFillSetter() : _g1(G1CollectedHeap::heap()), _n(0) {} ysr@777: bool doHeapRegion(HeapRegion* r) { ysr@777: if (r->continuesHumongous()) return false; ysr@777: if (r->top() > r->bottom()) { ysr@777: // There are assertions in "set_zero_fill_needed()" below that ysr@777: // require top() == bottom(), so this is technically illegal. ysr@777: // We'll skirt the law here, by making that true temporarily. ysr@777: DEBUG_ONLY(HeapWord* save_top = r->top(); ysr@777: r->set_top(r->bottom())); ysr@777: r->set_zero_fill_needed(); ysr@777: DEBUG_ONLY(r->set_top(save_top)); ysr@777: } ysr@777: return false; ysr@777: } ysr@777: }; ysr@777: ysr@777: // Done at the start of full GC. ysr@777: void G1CollectedHeap::set_used_regions_to_need_zero_fill() { ysr@777: MutexLockerEx x(ZF_mon, Mutex::_no_safepoint_check_flag); ysr@777: // This needs to go at the end of the full GC. ysr@777: UsedRegionsNeedZeroFillSetter rs; ysr@777: heap_region_iterate(&rs); ysr@777: } ysr@777: ysr@777: void G1CollectedHeap::set_refine_cte_cl_concurrency(bool concurrent) { ysr@777: _refine_cte_cl->set_concurrent(concurrent); ysr@777: } ysr@777: ysr@777: #ifndef PRODUCT ysr@777: ysr@777: class PrintHeapRegionClosure: public HeapRegionClosure { ysr@777: public: ysr@777: bool doHeapRegion(HeapRegion *r) { ysr@777: gclog_or_tty->print("Region: "PTR_FORMAT":", r); ysr@777: if (r != NULL) { ysr@777: if (r->is_on_free_list()) ysr@777: gclog_or_tty->print("Free "); ysr@777: if (r->is_young()) ysr@777: gclog_or_tty->print("Young "); ysr@777: if (r->isHumongous()) ysr@777: gclog_or_tty->print("Is Humongous "); ysr@777: r->print(); ysr@777: } ysr@777: return false; ysr@777: } ysr@777: }; ysr@777: ysr@777: class SortHeapRegionClosure : public HeapRegionClosure { ysr@777: size_t young_regions,free_regions, unclean_regions; ysr@777: size_t hum_regions, count; ysr@777: size_t unaccounted, cur_unclean, cur_alloc; ysr@777: size_t total_free; ysr@777: HeapRegion* cur; ysr@777: public: ysr@777: SortHeapRegionClosure(HeapRegion *_cur) : cur(_cur), young_regions(0), ysr@777: free_regions(0), unclean_regions(0), ysr@777: hum_regions(0), ysr@777: count(0), unaccounted(0), ysr@777: cur_alloc(0), total_free(0) ysr@777: {} ysr@777: bool doHeapRegion(HeapRegion *r) { ysr@777: count++; ysr@777: if (r->is_on_free_list()) free_regions++; ysr@777: else if (r->is_on_unclean_list()) unclean_regions++; ysr@777: else if (r->isHumongous()) hum_regions++; ysr@777: else if (r->is_young()) young_regions++; ysr@777: else if (r == cur) cur_alloc++; ysr@777: else unaccounted++; ysr@777: return false; ysr@777: } ysr@777: void print() { ysr@777: total_free = free_regions + unclean_regions; ysr@777: gclog_or_tty->print("%d regions\n", count); ysr@777: gclog_or_tty->print("%d free: free_list = %d unclean = %d\n", ysr@777: total_free, free_regions, unclean_regions); ysr@777: gclog_or_tty->print("%d humongous %d young\n", ysr@777: hum_regions, young_regions); ysr@777: gclog_or_tty->print("%d cur_alloc\n", cur_alloc); ysr@777: gclog_or_tty->print("UHOH unaccounted = %d\n", unaccounted); ysr@777: } ysr@777: }; ysr@777: ysr@777: void G1CollectedHeap::print_region_counts() { ysr@777: SortHeapRegionClosure sc(_cur_alloc_region); ysr@777: PrintHeapRegionClosure cl; ysr@777: heap_region_iterate(&cl); ysr@777: heap_region_iterate(&sc); ysr@777: sc.print(); ysr@777: print_region_accounting_info(); ysr@777: }; ysr@777: ysr@777: bool G1CollectedHeap::regions_accounted_for() { ysr@777: // TODO: regions accounting for young/survivor/tenured ysr@777: return true; ysr@777: } ysr@777: ysr@777: bool G1CollectedHeap::print_region_accounting_info() { ysr@777: gclog_or_tty->print_cr("Free regions: %d (count: %d count list %d) (clean: %d unclean: %d).", ysr@777: free_regions(), ysr@777: count_free_regions(), count_free_regions_list(), ysr@777: _free_region_list_size, _unclean_region_list.sz()); ysr@777: gclog_or_tty->print_cr("cur_alloc: %d.", ysr@777: (_cur_alloc_region == NULL ? 0 : 1)); ysr@777: gclog_or_tty->print_cr("H regions: %d.", _num_humongous_regions); ysr@777: ysr@777: // TODO: check regions accounting for young/survivor/tenured ysr@777: return true; ysr@777: } ysr@777: ysr@777: bool G1CollectedHeap::is_in_closed_subset(const void* p) const { ysr@777: HeapRegion* hr = heap_region_containing(p); ysr@777: if (hr == NULL) { ysr@777: return is_in_permanent(p); ysr@777: } else { ysr@777: return hr->is_in(p); ysr@777: } ysr@777: } ysr@1376: #endif // !PRODUCT ysr@777: ysr@777: void G1CollectedHeap::g1_unimplemented() { ysr@777: // Unimplemented(); ysr@777: }