duke@435: /* rbackman@3709: * Copyright (c) 1998, 2012, Oracle and/or its affiliates. All rights reserved. duke@435: * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. duke@435: * duke@435: * This code is free software; you can redistribute it and/or modify it duke@435: * under the terms of the GNU General Public License version 2 only, as duke@435: * published by the Free Software Foundation. duke@435: * duke@435: * This code is distributed in the hope that it will be useful, but WITHOUT duke@435: * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or duke@435: * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License duke@435: * version 2 for more details (a copy is included in the LICENSE file that duke@435: * accompanied this code). duke@435: * duke@435: * You should have received a copy of the GNU General Public License version duke@435: * 2 along with this work; if not, write to the Free Software Foundation, duke@435: * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. duke@435: * trims@1907: * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA trims@1907: * or visit www.oracle.com if you need additional information or have any trims@1907: * questions. duke@435: * duke@435: */ duke@435: stefank@2314: #include "precompiled.hpp" stefank@2314: #include "classfile/systemDictionary.hpp" stefank@2314: #include "classfile/vmSymbols.hpp" stefank@2314: #include "code/compiledIC.hpp" stefank@2314: #include "code/icBuffer.hpp" stefank@2314: #include "code/nmethod.hpp" stefank@2314: #include "code/pcDesc.hpp" stefank@2314: #include "code/scopeDesc.hpp" stefank@2314: #include "code/vtableStubs.hpp" stefank@2314: #include "compiler/compileBroker.hpp" stefank@2314: #include "compiler/compilerOracle.hpp" stefank@2314: #include "compiler/oopMap.hpp" stefank@2314: #include "gc_implementation/g1/g1SATBCardTableModRefBS.hpp" stefank@2314: #include "gc_implementation/g1/heapRegion.hpp" stefank@2314: #include "gc_interface/collectedHeap.hpp" stefank@2314: #include "interpreter/bytecode.hpp" stefank@2314: #include "interpreter/interpreter.hpp" stefank@2314: #include "interpreter/linkResolver.hpp" stefank@2314: #include "memory/barrierSet.hpp" stefank@2314: #include "memory/gcLocker.inline.hpp" stefank@2314: #include "memory/oopFactory.hpp" stefank@2314: #include "oops/objArrayKlass.hpp" stefank@2314: #include "oops/oop.inline.hpp" stefank@2314: #include "opto/addnode.hpp" stefank@2314: #include "opto/callnode.hpp" stefank@2314: #include "opto/cfgnode.hpp" stefank@2314: #include "opto/connode.hpp" stefank@2314: #include "opto/graphKit.hpp" stefank@2314: #include "opto/machnode.hpp" stefank@2314: #include "opto/matcher.hpp" stefank@2314: #include "opto/memnode.hpp" stefank@2314: #include "opto/mulnode.hpp" stefank@2314: #include "opto/runtime.hpp" stefank@2314: #include "opto/subnode.hpp" stefank@2314: #include "runtime/fprofiler.hpp" stefank@2314: #include "runtime/handles.inline.hpp" stefank@2314: #include "runtime/interfaceSupport.hpp" stefank@2314: #include "runtime/javaCalls.hpp" stefank@2314: #include "runtime/sharedRuntime.hpp" stefank@2314: #include "runtime/signature.hpp" stefank@2314: #include "runtime/threadCritical.hpp" stefank@2314: #include "runtime/vframe.hpp" stefank@2314: #include "runtime/vframeArray.hpp" stefank@2314: #include "runtime/vframe_hp.hpp" stefank@2314: #include "utilities/copy.hpp" stefank@2314: #include "utilities/preserveException.hpp" stefank@2314: #ifdef TARGET_ARCH_MODEL_x86_32 stefank@2314: # include "adfiles/ad_x86_32.hpp" stefank@2314: #endif stefank@2314: #ifdef TARGET_ARCH_MODEL_x86_64 stefank@2314: # include "adfiles/ad_x86_64.hpp" stefank@2314: #endif stefank@2314: #ifdef TARGET_ARCH_MODEL_sparc stefank@2314: # include "adfiles/ad_sparc.hpp" stefank@2314: #endif stefank@2314: #ifdef TARGET_ARCH_MODEL_zero stefank@2314: # include "adfiles/ad_zero.hpp" stefank@2314: #endif bobv@2508: #ifdef TARGET_ARCH_MODEL_arm bobv@2508: # include "adfiles/ad_arm.hpp" bobv@2508: #endif bobv@2508: #ifdef TARGET_ARCH_MODEL_ppc bobv@2508: # include "adfiles/ad_ppc.hpp" bobv@2508: #endif duke@435: duke@435: duke@435: // For debugging purposes: duke@435: // To force FullGCALot inside a runtime function, add the following two lines duke@435: // duke@435: // Universe::release_fullgc_alot_dummy(); duke@435: // MarkSweep::invoke(0, "Debugging"); duke@435: // duke@435: // At command line specify the parameters: -XX:+FullGCALot -XX:FullGCALotStart=100000000 duke@435: duke@435: duke@435: duke@435: duke@435: // Compiled code entry points duke@435: address OptoRuntime::_new_instance_Java = NULL; duke@435: address OptoRuntime::_new_array_Java = NULL; kvn@3157: address OptoRuntime::_new_array_nozero_Java = NULL; duke@435: address OptoRuntime::_multianewarray2_Java = NULL; duke@435: address OptoRuntime::_multianewarray3_Java = NULL; duke@435: address OptoRuntime::_multianewarray4_Java = NULL; duke@435: address OptoRuntime::_multianewarray5_Java = NULL; iveresov@3002: address OptoRuntime::_multianewarrayN_Java = NULL; ysr@777: address OptoRuntime::_g1_wb_pre_Java = NULL; ysr@777: address OptoRuntime::_g1_wb_post_Java = NULL; duke@435: address OptoRuntime::_vtable_must_compile_Java = NULL; duke@435: address OptoRuntime::_complete_monitor_locking_Java = NULL; duke@435: address OptoRuntime::_rethrow_Java = NULL; duke@435: duke@435: address OptoRuntime::_slow_arraycopy_Java = NULL; duke@435: address OptoRuntime::_register_finalizer_Java = NULL; duke@435: duke@435: # ifdef ENABLE_ZAP_DEAD_LOCALS duke@435: address OptoRuntime::_zap_dead_Java_locals_Java = NULL; duke@435: address OptoRuntime::_zap_dead_native_locals_Java = NULL; duke@435: # endif duke@435: never@2950: ExceptionBlob* OptoRuntime::_exception_blob; duke@435: duke@435: // This should be called in an assertion at the start of OptoRuntime routines duke@435: // which are entered from compiled code (all of them) duke@435: #ifndef PRODUCT duke@435: static bool check_compiled_frame(JavaThread* thread) { duke@435: assert(thread->last_frame().is_runtime_frame(), "cannot call runtime directly from compiled code"); duke@435: #ifdef ASSERT duke@435: RegisterMap map(thread, false); duke@435: frame caller = thread->last_frame().sender(&map); duke@435: assert(caller.is_compiled_frame(), "not being called from compiled like code"); duke@435: #endif /* ASSERT */ duke@435: return true; duke@435: } duke@435: #endif duke@435: duke@435: duke@435: #define gen(env, var, type_func_gen, c_func, fancy_jump, pass_tls, save_arg_regs, return_pc) \ duke@435: var = generate_stub(env, type_func_gen, CAST_FROM_FN_PTR(address, c_func), #var, fancy_jump, pass_tls, save_arg_regs, return_pc) duke@435: duke@435: void OptoRuntime::generate(ciEnv* env) { duke@435: duke@435: generate_exception_blob(); duke@435: duke@435: // Note: tls: Means fetching the return oop out of the thread-local storage duke@435: // duke@435: // variable/name type-function-gen , runtime method ,fncy_jp, tls,save_args,retpc duke@435: // ------------------------------------------------------------------------------------------------------------------------------- duke@435: gen(env, _new_instance_Java , new_instance_Type , new_instance_C , 0 , true , false, false); duke@435: gen(env, _new_array_Java , new_array_Type , new_array_C , 0 , true , false, false); kvn@3157: gen(env, _new_array_nozero_Java , new_array_Type , new_array_nozero_C , 0 , true , false, false); duke@435: gen(env, _multianewarray2_Java , multianewarray2_Type , multianewarray2_C , 0 , true , false, false); duke@435: gen(env, _multianewarray3_Java , multianewarray3_Type , multianewarray3_C , 0 , true , false, false); duke@435: gen(env, _multianewarray4_Java , multianewarray4_Type , multianewarray4_C , 0 , true , false, false); duke@435: gen(env, _multianewarray5_Java , multianewarray5_Type , multianewarray5_C , 0 , true , false, false); iveresov@3002: gen(env, _multianewarrayN_Java , multianewarrayN_Type , multianewarrayN_C , 0 , true , false, false); ysr@777: gen(env, _g1_wb_pre_Java , g1_wb_pre_Type , SharedRuntime::g1_wb_pre , 0 , false, false, false); ysr@777: gen(env, _g1_wb_post_Java , g1_wb_post_Type , SharedRuntime::g1_wb_post , 0 , false, false, false); duke@435: gen(env, _complete_monitor_locking_Java , complete_monitor_enter_Type , SharedRuntime::complete_monitor_locking_C , 0 , false, false, false); duke@435: gen(env, _rethrow_Java , rethrow_Type , rethrow_C , 2 , true , false, true ); duke@435: duke@435: gen(env, _slow_arraycopy_Java , slow_arraycopy_Type , SharedRuntime::slow_arraycopy_C , 0 , false, false, false); duke@435: gen(env, _register_finalizer_Java , register_finalizer_Type , register_finalizer , 0 , false, false, false); duke@435: duke@435: # ifdef ENABLE_ZAP_DEAD_LOCALS duke@435: gen(env, _zap_dead_Java_locals_Java , zap_dead_locals_Type , zap_dead_Java_locals_C , 0 , false, true , false ); duke@435: gen(env, _zap_dead_native_locals_Java , zap_dead_locals_Type , zap_dead_native_locals_C , 0 , false, true , false ); duke@435: # endif duke@435: duke@435: } duke@435: duke@435: #undef gen duke@435: duke@435: duke@435: // Helper method to do generation of RunTimeStub's duke@435: address OptoRuntime::generate_stub( ciEnv* env, duke@435: TypeFunc_generator gen, address C_function, duke@435: const char *name, int is_fancy_jump, duke@435: bool pass_tls, duke@435: bool save_argument_registers, duke@435: bool return_pc ) { duke@435: ResourceMark rm; duke@435: Compile C( env, gen, C_function, name, is_fancy_jump, pass_tls, save_argument_registers, return_pc ); duke@435: return C.stub_entry_point(); duke@435: } duke@435: duke@435: const char* OptoRuntime::stub_name(address entry) { duke@435: #ifndef PRODUCT duke@435: CodeBlob* cb = CodeCache::find_blob(entry); duke@435: RuntimeStub* rs =(RuntimeStub *)cb; duke@435: assert(rs != NULL && rs->is_runtime_stub(), "not a runtime stub"); duke@435: return rs->name(); duke@435: #else duke@435: // Fast implementation for product mode (maybe it should be inlined too) duke@435: return "runtime stub"; duke@435: #endif duke@435: } duke@435: duke@435: duke@435: //============================================================================= duke@435: // Opto compiler runtime routines duke@435: //============================================================================= duke@435: duke@435: duke@435: //=============================allocation====================================== duke@435: // We failed the fast-path allocation. Now we need to do a scavenge or GC duke@435: // and try allocation again. duke@435: ysr@1601: void OptoRuntime::new_store_pre_barrier(JavaThread* thread) { duke@435: // After any safepoint, just before going back to compiled code, ysr@1462: // we inform the GC that we will be doing initializing writes to ysr@1462: // this object in the future without emitting card-marks, so ysr@1462: // GC may take any compensating steps. ysr@1462: // NOTE: Keep this code consistent with GraphKit::store_barrier. duke@435: duke@435: oop new_obj = thread->vm_result(); duke@435: if (new_obj == NULL) return; duke@435: duke@435: assert(Universe::heap()->can_elide_tlab_store_barriers(), duke@435: "compiler must check this first"); ysr@1462: // GC may decide to give back a safer copy of new_obj. ysr@1601: new_obj = Universe::heap()->new_store_pre_barrier(thread, new_obj); duke@435: thread->set_vm_result(new_obj); duke@435: } duke@435: duke@435: // object allocation duke@435: JRT_BLOCK_ENTRY(void, OptoRuntime::new_instance_C(klassOopDesc* klass, JavaThread* thread)) duke@435: JRT_BLOCK; duke@435: #ifndef PRODUCT duke@435: SharedRuntime::_new_instance_ctr++; // new instance requires GC duke@435: #endif duke@435: assert(check_compiled_frame(thread), "incorrect caller"); duke@435: duke@435: // These checks are cheap to make and support reflective allocation. duke@435: int lh = Klass::cast(klass)->layout_helper(); duke@435: if (Klass::layout_helper_needs_slow_path(lh) duke@435: || !instanceKlass::cast(klass)->is_initialized()) { duke@435: KlassHandle kh(THREAD, klass); duke@435: kh->check_valid_for_instantiation(false, THREAD); duke@435: if (!HAS_PENDING_EXCEPTION) { duke@435: instanceKlass::cast(kh())->initialize(THREAD); duke@435: } duke@435: if (!HAS_PENDING_EXCEPTION) { duke@435: klass = kh(); duke@435: } else { duke@435: klass = NULL; duke@435: } duke@435: } duke@435: duke@435: if (klass != NULL) { duke@435: // Scavenge and allocate an instance. duke@435: oop result = instanceKlass::cast(klass)->allocate_instance(THREAD); duke@435: thread->set_vm_result(result); duke@435: duke@435: // Pass oops back through thread local storage. Our apparent type to Java duke@435: // is that we return an oop, but we can block on exit from this routine and duke@435: // a GC can trash the oop in C's return register. The generated stub will duke@435: // fetch the oop from TLS after any possible GC. duke@435: } duke@435: duke@435: deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION); duke@435: JRT_BLOCK_END; duke@435: duke@435: if (GraphKit::use_ReduceInitialCardMarks()) { ysr@1462: // inform GC that we won't do card marks for initializing writes. ysr@1601: new_store_pre_barrier(thread); duke@435: } duke@435: JRT_END duke@435: duke@435: duke@435: // array allocation duke@435: JRT_BLOCK_ENTRY(void, OptoRuntime::new_array_C(klassOopDesc* array_type, int len, JavaThread *thread)) duke@435: JRT_BLOCK; duke@435: #ifndef PRODUCT duke@435: SharedRuntime::_new_array_ctr++; // new array requires GC duke@435: #endif duke@435: assert(check_compiled_frame(thread), "incorrect caller"); duke@435: duke@435: // Scavenge and allocate an instance. duke@435: oop result; duke@435: duke@435: if (Klass::cast(array_type)->oop_is_typeArray()) { duke@435: // The oopFactory likes to work with the element type. duke@435: // (We could bypass the oopFactory, since it doesn't add much value.) duke@435: BasicType elem_type = typeArrayKlass::cast(array_type)->element_type(); duke@435: result = oopFactory::new_typeArray(elem_type, len, THREAD); duke@435: } else { duke@435: // Although the oopFactory likes to work with the elem_type, duke@435: // the compiler prefers the array_type, since it must already have duke@435: // that latter value in hand for the fast path. duke@435: klassOopDesc* elem_type = objArrayKlass::cast(array_type)->element_klass(); duke@435: result = oopFactory::new_objArray(elem_type, len, THREAD); duke@435: } duke@435: duke@435: // Pass oops back through thread local storage. Our apparent type to Java duke@435: // is that we return an oop, but we can block on exit from this routine and duke@435: // a GC can trash the oop in C's return register. The generated stub will duke@435: // fetch the oop from TLS after any possible GC. duke@435: deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION); duke@435: thread->set_vm_result(result); duke@435: JRT_BLOCK_END; duke@435: duke@435: if (GraphKit::use_ReduceInitialCardMarks()) { ysr@1462: // inform GC that we won't do card marks for initializing writes. ysr@1601: new_store_pre_barrier(thread); duke@435: } duke@435: JRT_END duke@435: kvn@3157: // array allocation without zeroing kvn@3157: JRT_BLOCK_ENTRY(void, OptoRuntime::new_array_nozero_C(klassOopDesc* array_type, int len, JavaThread *thread)) kvn@3157: JRT_BLOCK; kvn@3157: #ifndef PRODUCT kvn@3157: SharedRuntime::_new_array_ctr++; // new array requires GC kvn@3157: #endif kvn@3157: assert(check_compiled_frame(thread), "incorrect caller"); kvn@3157: kvn@3157: // Scavenge and allocate an instance. kvn@3157: oop result; kvn@3157: kvn@3157: assert(Klass::cast(array_type)->oop_is_typeArray(), "should be called only for type array"); kvn@3157: // The oopFactory likes to work with the element type. kvn@3157: BasicType elem_type = typeArrayKlass::cast(array_type)->element_type(); kvn@3157: result = oopFactory::new_typeArray_nozero(elem_type, len, THREAD); kvn@3157: kvn@3157: // Pass oops back through thread local storage. Our apparent type to Java kvn@3157: // is that we return an oop, but we can block on exit from this routine and kvn@3157: // a GC can trash the oop in C's return register. The generated stub will kvn@3157: // fetch the oop from TLS after any possible GC. kvn@3157: deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION); kvn@3157: thread->set_vm_result(result); kvn@3157: JRT_BLOCK_END; kvn@3157: kvn@3157: if (GraphKit::use_ReduceInitialCardMarks()) { kvn@3157: // inform GC that we won't do card marks for initializing writes. kvn@3157: new_store_pre_barrier(thread); kvn@3157: } kvn@3259: kvn@3259: oop result = thread->vm_result(); kvn@3259: if ((len > 0) && (result != NULL) && kvn@3259: is_deoptimized_caller_frame(thread)) { kvn@3259: // Zero array here if the caller is deoptimized. kvn@3259: int size = ((typeArrayOop)result)->object_size(); kvn@3259: BasicType elem_type = typeArrayKlass::cast(array_type)->element_type(); kvn@3259: const size_t hs = arrayOopDesc::header_size(elem_type); kvn@3259: // Align to next 8 bytes to avoid trashing arrays's length. kvn@3259: const size_t aligned_hs = align_object_offset(hs); kvn@3259: HeapWord* obj = (HeapWord*)result; kvn@3259: if (aligned_hs > hs) { kvn@3259: Copy::zero_to_words(obj+hs, aligned_hs-hs); kvn@3259: } kvn@3259: // Optimized zeroing. kvn@3259: Copy::fill_to_aligned_words(obj+aligned_hs, size-aligned_hs); kvn@3259: } kvn@3259: kvn@3157: JRT_END kvn@3157: duke@435: // Note: multianewarray for one dimension is handled inline by GraphKit::new_array. duke@435: duke@435: // multianewarray for 2 dimensions duke@435: JRT_ENTRY(void, OptoRuntime::multianewarray2_C(klassOopDesc* elem_type, int len1, int len2, JavaThread *thread)) duke@435: #ifndef PRODUCT duke@435: SharedRuntime::_multi2_ctr++; // multianewarray for 1 dimension duke@435: #endif duke@435: assert(check_compiled_frame(thread), "incorrect caller"); duke@435: assert(oop(elem_type)->is_klass(), "not a class"); duke@435: jint dims[2]; duke@435: dims[0] = len1; duke@435: dims[1] = len2; duke@435: oop obj = arrayKlass::cast(elem_type)->multi_allocate(2, dims, THREAD); duke@435: deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION); duke@435: thread->set_vm_result(obj); duke@435: JRT_END duke@435: duke@435: // multianewarray for 3 dimensions duke@435: JRT_ENTRY(void, OptoRuntime::multianewarray3_C(klassOopDesc* elem_type, int len1, int len2, int len3, JavaThread *thread)) duke@435: #ifndef PRODUCT duke@435: SharedRuntime::_multi3_ctr++; // multianewarray for 1 dimension duke@435: #endif duke@435: assert(check_compiled_frame(thread), "incorrect caller"); duke@435: assert(oop(elem_type)->is_klass(), "not a class"); duke@435: jint dims[3]; duke@435: dims[0] = len1; duke@435: dims[1] = len2; duke@435: dims[2] = len3; duke@435: oop obj = arrayKlass::cast(elem_type)->multi_allocate(3, dims, THREAD); duke@435: deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION); duke@435: thread->set_vm_result(obj); duke@435: JRT_END duke@435: duke@435: // multianewarray for 4 dimensions duke@435: JRT_ENTRY(void, OptoRuntime::multianewarray4_C(klassOopDesc* elem_type, int len1, int len2, int len3, int len4, JavaThread *thread)) duke@435: #ifndef PRODUCT duke@435: SharedRuntime::_multi4_ctr++; // multianewarray for 1 dimension duke@435: #endif duke@435: assert(check_compiled_frame(thread), "incorrect caller"); duke@435: assert(oop(elem_type)->is_klass(), "not a class"); duke@435: jint dims[4]; duke@435: dims[0] = len1; duke@435: dims[1] = len2; duke@435: dims[2] = len3; duke@435: dims[3] = len4; duke@435: oop obj = arrayKlass::cast(elem_type)->multi_allocate(4, dims, THREAD); duke@435: deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION); duke@435: thread->set_vm_result(obj); duke@435: JRT_END duke@435: duke@435: // multianewarray for 5 dimensions duke@435: JRT_ENTRY(void, OptoRuntime::multianewarray5_C(klassOopDesc* elem_type, int len1, int len2, int len3, int len4, int len5, JavaThread *thread)) duke@435: #ifndef PRODUCT duke@435: SharedRuntime::_multi5_ctr++; // multianewarray for 1 dimension duke@435: #endif duke@435: assert(check_compiled_frame(thread), "incorrect caller"); duke@435: assert(oop(elem_type)->is_klass(), "not a class"); duke@435: jint dims[5]; duke@435: dims[0] = len1; duke@435: dims[1] = len2; duke@435: dims[2] = len3; duke@435: dims[3] = len4; duke@435: dims[4] = len5; duke@435: oop obj = arrayKlass::cast(elem_type)->multi_allocate(5, dims, THREAD); duke@435: deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION); duke@435: thread->set_vm_result(obj); duke@435: JRT_END duke@435: iveresov@3002: JRT_ENTRY(void, OptoRuntime::multianewarrayN_C(klassOopDesc* elem_type, arrayOopDesc* dims, JavaThread *thread)) iveresov@3002: assert(check_compiled_frame(thread), "incorrect caller"); iveresov@3002: assert(oop(elem_type)->is_klass(), "not a class"); iveresov@3002: assert(oop(dims)->is_typeArray(), "not an array"); iveresov@3002: iveresov@3002: ResourceMark rm; iveresov@3002: jint len = dims->length(); iveresov@3002: assert(len > 0, "Dimensions array should contain data"); iveresov@3002: jint *j_dims = typeArrayOop(dims)->int_at_addr(0); iveresov@3002: jint *c_dims = NEW_RESOURCE_ARRAY(jint, len); iveresov@3002: Copy::conjoint_jints_atomic(j_dims, c_dims, len); iveresov@3002: iveresov@3002: oop obj = arrayKlass::cast(elem_type)->multi_allocate(len, c_dims, THREAD); iveresov@3002: deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION); iveresov@3002: thread->set_vm_result(obj); iveresov@3002: JRT_END iveresov@3002: iveresov@3002: duke@435: const TypeFunc *OptoRuntime::new_instance_Type() { duke@435: // create input type (domain) duke@435: const Type **fields = TypeTuple::fields(1); duke@435: fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Klass to be allocated duke@435: const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields); duke@435: duke@435: // create result type (range) duke@435: fields = TypeTuple::fields(1); duke@435: fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop duke@435: duke@435: const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields); duke@435: duke@435: return TypeFunc::make(domain, range); duke@435: } duke@435: duke@435: duke@435: const TypeFunc *OptoRuntime::athrow_Type() { duke@435: // create input type (domain) duke@435: const Type **fields = TypeTuple::fields(1); duke@435: fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Klass to be allocated duke@435: const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields); duke@435: duke@435: // create result type (range) duke@435: fields = TypeTuple::fields(0); duke@435: duke@435: const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields); duke@435: duke@435: return TypeFunc::make(domain, range); duke@435: } duke@435: duke@435: duke@435: const TypeFunc *OptoRuntime::new_array_Type() { duke@435: // create input type (domain) duke@435: const Type **fields = TypeTuple::fields(2); duke@435: fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // element klass duke@435: fields[TypeFunc::Parms+1] = TypeInt::INT; // array size duke@435: const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields); duke@435: duke@435: // create result type (range) duke@435: fields = TypeTuple::fields(1); duke@435: fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop duke@435: duke@435: const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields); duke@435: duke@435: return TypeFunc::make(domain, range); duke@435: } duke@435: duke@435: const TypeFunc *OptoRuntime::multianewarray_Type(int ndim) { duke@435: // create input type (domain) duke@435: const int nargs = ndim + 1; duke@435: const Type **fields = TypeTuple::fields(nargs); duke@435: fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // element klass duke@435: for( int i = 1; i < nargs; i++ ) duke@435: fields[TypeFunc::Parms + i] = TypeInt::INT; // array size duke@435: const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+nargs, fields); duke@435: duke@435: // create result type (range) duke@435: fields = TypeTuple::fields(1); duke@435: fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop duke@435: const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields); duke@435: duke@435: return TypeFunc::make(domain, range); duke@435: } duke@435: duke@435: const TypeFunc *OptoRuntime::multianewarray2_Type() { duke@435: return multianewarray_Type(2); duke@435: } duke@435: duke@435: const TypeFunc *OptoRuntime::multianewarray3_Type() { duke@435: return multianewarray_Type(3); duke@435: } duke@435: duke@435: const TypeFunc *OptoRuntime::multianewarray4_Type() { duke@435: return multianewarray_Type(4); duke@435: } duke@435: duke@435: const TypeFunc *OptoRuntime::multianewarray5_Type() { duke@435: return multianewarray_Type(5); duke@435: } duke@435: iveresov@3002: const TypeFunc *OptoRuntime::multianewarrayN_Type() { iveresov@3002: // create input type (domain) iveresov@3002: const Type **fields = TypeTuple::fields(2); iveresov@3002: fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // element klass iveresov@3002: fields[TypeFunc::Parms+1] = TypeInstPtr::NOTNULL; // array of dim sizes iveresov@3002: const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields); iveresov@3002: iveresov@3002: // create result type (range) iveresov@3002: fields = TypeTuple::fields(1); iveresov@3002: fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop iveresov@3002: const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields); iveresov@3002: iveresov@3002: return TypeFunc::make(domain, range); iveresov@3002: } iveresov@3002: ysr@777: const TypeFunc *OptoRuntime::g1_wb_pre_Type() { ysr@777: const Type **fields = TypeTuple::fields(2); ysr@777: fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // original field value ysr@777: fields[TypeFunc::Parms+1] = TypeRawPtr::NOTNULL; // thread ysr@777: const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields); ysr@777: ysr@777: // create result type (range) ysr@777: fields = TypeTuple::fields(0); ysr@777: const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields); ysr@777: ysr@777: return TypeFunc::make(domain, range); ysr@777: } ysr@777: ysr@777: const TypeFunc *OptoRuntime::g1_wb_post_Type() { ysr@777: ysr@777: const Type **fields = TypeTuple::fields(2); ysr@777: fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Card addr ysr@777: fields[TypeFunc::Parms+1] = TypeRawPtr::NOTNULL; // thread ysr@777: const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields); ysr@777: ysr@777: // create result type (range) ysr@777: fields = TypeTuple::fields(0); ysr@777: const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields); ysr@777: ysr@777: return TypeFunc::make(domain, range); ysr@777: } ysr@777: duke@435: const TypeFunc *OptoRuntime::uncommon_trap_Type() { duke@435: // create input type (domain) duke@435: const Type **fields = TypeTuple::fields(1); coleenp@2497: // Symbol* name of class to be loaded duke@435: fields[TypeFunc::Parms+0] = TypeInt::INT; duke@435: const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields); duke@435: duke@435: // create result type (range) duke@435: fields = TypeTuple::fields(0); duke@435: const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields); duke@435: duke@435: return TypeFunc::make(domain, range); duke@435: } duke@435: duke@435: # ifdef ENABLE_ZAP_DEAD_LOCALS duke@435: // Type used for stub generation for zap_dead_locals. duke@435: // No inputs or outputs duke@435: const TypeFunc *OptoRuntime::zap_dead_locals_Type() { duke@435: // create input type (domain) duke@435: const Type **fields = TypeTuple::fields(0); duke@435: const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms,fields); duke@435: duke@435: // create result type (range) duke@435: fields = TypeTuple::fields(0); duke@435: const TypeTuple *range = TypeTuple::make(TypeFunc::Parms,fields); duke@435: duke@435: return TypeFunc::make(domain,range); duke@435: } duke@435: # endif duke@435: duke@435: duke@435: //----------------------------------------------------------------------------- duke@435: // Monitor Handling duke@435: const TypeFunc *OptoRuntime::complete_monitor_enter_Type() { duke@435: // create input type (domain) duke@435: const Type **fields = TypeTuple::fields(2); duke@435: fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Object to be Locked duke@435: fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM; // Address of stack location for lock duke@435: const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields); duke@435: duke@435: // create result type (range) duke@435: fields = TypeTuple::fields(0); duke@435: duke@435: const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields); duke@435: duke@435: return TypeFunc::make(domain,range); duke@435: } duke@435: duke@435: duke@435: //----------------------------------------------------------------------------- duke@435: const TypeFunc *OptoRuntime::complete_monitor_exit_Type() { duke@435: // create input type (domain) duke@435: const Type **fields = TypeTuple::fields(2); duke@435: fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Object to be Locked duke@435: fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM; // Address of stack location for lock duke@435: const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields); duke@435: duke@435: // create result type (range) duke@435: fields = TypeTuple::fields(0); duke@435: duke@435: const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields); duke@435: duke@435: return TypeFunc::make(domain,range); duke@435: } duke@435: duke@435: const TypeFunc* OptoRuntime::flush_windows_Type() { duke@435: // create input type (domain) duke@435: const Type** fields = TypeTuple::fields(1); duke@435: fields[TypeFunc::Parms+0] = NULL; // void duke@435: const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms, fields); duke@435: duke@435: // create result type duke@435: fields = TypeTuple::fields(1); duke@435: fields[TypeFunc::Parms+0] = NULL; // void duke@435: const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields); duke@435: duke@435: return TypeFunc::make(domain, range); duke@435: } duke@435: duke@435: const TypeFunc* OptoRuntime::l2f_Type() { duke@435: // create input type (domain) duke@435: const Type **fields = TypeTuple::fields(2); duke@435: fields[TypeFunc::Parms+0] = TypeLong::LONG; duke@435: fields[TypeFunc::Parms+1] = Type::HALF; duke@435: const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields); duke@435: duke@435: // create result type (range) duke@435: fields = TypeTuple::fields(1); duke@435: fields[TypeFunc::Parms+0] = Type::FLOAT; duke@435: const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields); duke@435: duke@435: return TypeFunc::make(domain, range); duke@435: } duke@435: duke@435: const TypeFunc* OptoRuntime::modf_Type() { duke@435: const Type **fields = TypeTuple::fields(2); duke@435: fields[TypeFunc::Parms+0] = Type::FLOAT; duke@435: fields[TypeFunc::Parms+1] = Type::FLOAT; duke@435: const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields); duke@435: duke@435: // create result type (range) duke@435: fields = TypeTuple::fields(1); duke@435: fields[TypeFunc::Parms+0] = Type::FLOAT; duke@435: duke@435: const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields); duke@435: duke@435: return TypeFunc::make(domain, range); duke@435: } duke@435: duke@435: const TypeFunc *OptoRuntime::Math_D_D_Type() { duke@435: // create input type (domain) duke@435: const Type **fields = TypeTuple::fields(2); coleenp@2497: // Symbol* name of class to be loaded duke@435: fields[TypeFunc::Parms+0] = Type::DOUBLE; duke@435: fields[TypeFunc::Parms+1] = Type::HALF; duke@435: const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields); duke@435: duke@435: // create result type (range) duke@435: fields = TypeTuple::fields(2); duke@435: fields[TypeFunc::Parms+0] = Type::DOUBLE; duke@435: fields[TypeFunc::Parms+1] = Type::HALF; duke@435: const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields); duke@435: duke@435: return TypeFunc::make(domain, range); duke@435: } duke@435: duke@435: const TypeFunc* OptoRuntime::Math_DD_D_Type() { duke@435: const Type **fields = TypeTuple::fields(4); duke@435: fields[TypeFunc::Parms+0] = Type::DOUBLE; duke@435: fields[TypeFunc::Parms+1] = Type::HALF; duke@435: fields[TypeFunc::Parms+2] = Type::DOUBLE; duke@435: fields[TypeFunc::Parms+3] = Type::HALF; duke@435: const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+4, fields); duke@435: duke@435: // create result type (range) duke@435: fields = TypeTuple::fields(2); duke@435: fields[TypeFunc::Parms+0] = Type::DOUBLE; duke@435: fields[TypeFunc::Parms+1] = Type::HALF; duke@435: const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields); duke@435: duke@435: return TypeFunc::make(domain, range); duke@435: } duke@435: rbackman@3709: //-------------- currentTimeMillis, currentTimeNanos, etc duke@435: rbackman@3709: const TypeFunc* OptoRuntime::void_long_Type() { duke@435: // create input type (domain) duke@435: const Type **fields = TypeTuple::fields(0); duke@435: const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+0, fields); duke@435: duke@435: // create result type (range) duke@435: fields = TypeTuple::fields(2); duke@435: fields[TypeFunc::Parms+0] = TypeLong::LONG; duke@435: fields[TypeFunc::Parms+1] = Type::HALF; duke@435: const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields); duke@435: duke@435: return TypeFunc::make(domain, range); duke@435: } duke@435: duke@435: // arraycopy stub variations: duke@435: enum ArrayCopyType { duke@435: ac_fast, // void(ptr, ptr, size_t) duke@435: ac_checkcast, // int(ptr, ptr, size_t, size_t, ptr) duke@435: ac_slow, // void(ptr, int, ptr, int, int) duke@435: ac_generic // int(ptr, int, ptr, int, int) duke@435: }; duke@435: duke@435: static const TypeFunc* make_arraycopy_Type(ArrayCopyType act) { duke@435: // create input type (domain) duke@435: int num_args = (act == ac_fast ? 3 : 5); duke@435: int num_size_args = (act == ac_fast ? 1 : act == ac_checkcast ? 2 : 0); duke@435: int argcnt = num_args; duke@435: LP64_ONLY(argcnt += num_size_args); // halfwords for lengths duke@435: const Type** fields = TypeTuple::fields(argcnt); duke@435: int argp = TypeFunc::Parms; duke@435: fields[argp++] = TypePtr::NOTNULL; // src duke@435: if (num_size_args == 0) { duke@435: fields[argp++] = TypeInt::INT; // src_pos duke@435: } duke@435: fields[argp++] = TypePtr::NOTNULL; // dest duke@435: if (num_size_args == 0) { duke@435: fields[argp++] = TypeInt::INT; // dest_pos duke@435: fields[argp++] = TypeInt::INT; // length duke@435: } duke@435: while (num_size_args-- > 0) { duke@435: fields[argp++] = TypeX_X; // size in whatevers (size_t) duke@435: LP64_ONLY(fields[argp++] = Type::HALF); // other half of long length duke@435: } duke@435: if (act == ac_checkcast) { duke@435: fields[argp++] = TypePtr::NOTNULL; // super_klass duke@435: } duke@435: assert(argp == TypeFunc::Parms+argcnt, "correct decoding of act"); duke@435: const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); duke@435: duke@435: // create result type if needed duke@435: int retcnt = (act == ac_checkcast || act == ac_generic ? 1 : 0); duke@435: fields = TypeTuple::fields(1); duke@435: if (retcnt == 0) duke@435: fields[TypeFunc::Parms+0] = NULL; // void duke@435: else duke@435: fields[TypeFunc::Parms+0] = TypeInt::INT; // status result, if needed duke@435: const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+retcnt, fields); duke@435: return TypeFunc::make(domain, range); duke@435: } duke@435: duke@435: const TypeFunc* OptoRuntime::fast_arraycopy_Type() { duke@435: // This signature is simple: Two base pointers and a size_t. duke@435: return make_arraycopy_Type(ac_fast); duke@435: } duke@435: duke@435: const TypeFunc* OptoRuntime::checkcast_arraycopy_Type() { duke@435: // An extension of fast_arraycopy_Type which adds type checking. duke@435: return make_arraycopy_Type(ac_checkcast); duke@435: } duke@435: duke@435: const TypeFunc* OptoRuntime::slow_arraycopy_Type() { duke@435: // This signature is exactly the same as System.arraycopy. duke@435: // There are no intptr_t (int/long) arguments. duke@435: return make_arraycopy_Type(ac_slow); duke@435: } duke@435: duke@435: const TypeFunc* OptoRuntime::generic_arraycopy_Type() { duke@435: // This signature is like System.arraycopy, except that it returns status. duke@435: return make_arraycopy_Type(ac_generic); duke@435: } duke@435: duke@435: never@2118: const TypeFunc* OptoRuntime::array_fill_Type() { never@2199: // create input type (domain): pointer, int, size_t never@2199: const Type** fields = TypeTuple::fields(3 LP64_ONLY( + 1)); never@2199: int argp = TypeFunc::Parms; never@2199: fields[argp++] = TypePtr::NOTNULL; never@2199: fields[argp++] = TypeInt::INT; never@2199: fields[argp++] = TypeX_X; // size in whatevers (size_t) never@2199: LP64_ONLY(fields[argp++] = Type::HALF); // other half of long length never@2199: const TypeTuple *domain = TypeTuple::make(argp, fields); never@2118: never@2118: // create result type never@2118: fields = TypeTuple::fields(1); never@2118: fields[TypeFunc::Parms+0] = NULL; // void never@2118: const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields); never@2118: never@2118: return TypeFunc::make(domain, range); never@2118: } never@2118: duke@435: //------------- Interpreter state access for on stack replacement duke@435: const TypeFunc* OptoRuntime::osr_end_Type() { duke@435: // create input type (domain) duke@435: const Type **fields = TypeTuple::fields(1); duke@435: fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // OSR temp buf duke@435: const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields); duke@435: duke@435: // create result type duke@435: fields = TypeTuple::fields(1); duke@435: // fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // locked oop duke@435: fields[TypeFunc::Parms+0] = NULL; // void duke@435: const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields); duke@435: return TypeFunc::make(domain, range); duke@435: } duke@435: duke@435: //-------------- methodData update helpers duke@435: duke@435: const TypeFunc* OptoRuntime::profile_receiver_type_Type() { duke@435: // create input type (domain) duke@435: const Type **fields = TypeTuple::fields(2); duke@435: fields[TypeFunc::Parms+0] = TypeAryPtr::NOTNULL; // methodData pointer duke@435: fields[TypeFunc::Parms+1] = TypeInstPtr::BOTTOM; // receiver oop duke@435: const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields); duke@435: duke@435: // create result type duke@435: fields = TypeTuple::fields(1); duke@435: fields[TypeFunc::Parms+0] = NULL; // void duke@435: const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields); duke@435: return TypeFunc::make(domain,range); duke@435: } duke@435: duke@435: JRT_LEAF(void, OptoRuntime::profile_receiver_type_C(DataLayout* data, oopDesc* receiver)) duke@435: if (receiver == NULL) return; duke@435: klassOop receiver_klass = receiver->klass(); duke@435: duke@435: intptr_t* mdp = ((intptr_t*)(data)) + DataLayout::header_size_in_cells(); duke@435: int empty_row = -1; // free row, if any is encountered duke@435: duke@435: // ReceiverTypeData* vc = new ReceiverTypeData(mdp); duke@435: for (uint row = 0; row < ReceiverTypeData::row_limit(); row++) { duke@435: // if (vc->receiver(row) == receiver_klass) duke@435: int receiver_off = ReceiverTypeData::receiver_cell_index(row); duke@435: intptr_t row_recv = *(mdp + receiver_off); duke@435: if (row_recv == (intptr_t) receiver_klass) { duke@435: // vc->set_receiver_count(row, vc->receiver_count(row) + DataLayout::counter_increment); duke@435: int count_off = ReceiverTypeData::receiver_count_cell_index(row); duke@435: *(mdp + count_off) += DataLayout::counter_increment; duke@435: return; duke@435: } else if (row_recv == 0) { duke@435: // else if (vc->receiver(row) == NULL) duke@435: empty_row = (int) row; duke@435: } duke@435: } duke@435: duke@435: if (empty_row != -1) { duke@435: int receiver_off = ReceiverTypeData::receiver_cell_index(empty_row); duke@435: // vc->set_receiver(empty_row, receiver_klass); duke@435: *(mdp + receiver_off) = (intptr_t) receiver_klass; duke@435: // vc->set_receiver_count(empty_row, DataLayout::counter_increment); duke@435: int count_off = ReceiverTypeData::receiver_count_cell_index(empty_row); duke@435: *(mdp + count_off) = DataLayout::counter_increment; kvn@1641: } else { kvn@1641: // Receiver did not match any saved receiver and there is no empty row for it. kvn@1686: // Increment total counter to indicate polymorphic case. kvn@1641: intptr_t* count_p = (intptr_t*)(((byte*)(data)) + in_bytes(CounterData::count_offset())); kvn@1641: *count_p += DataLayout::counter_increment; duke@435: } duke@435: JRT_END duke@435: duke@435: //----------------------------------------------------------------------------- duke@435: // implicit exception support. duke@435: duke@435: static void report_null_exception_in_code_cache(address exception_pc) { duke@435: ResourceMark rm; duke@435: CodeBlob* n = CodeCache::find_blob(exception_pc); duke@435: if (n != NULL) { duke@435: tty->print_cr("#"); duke@435: tty->print_cr("# HotSpot Runtime Error, null exception in generated code"); duke@435: tty->print_cr("#"); duke@435: tty->print_cr("# pc where exception happened = " INTPTR_FORMAT, exception_pc); duke@435: duke@435: if (n->is_nmethod()) { duke@435: methodOop method = ((nmethod*)n)->method(); duke@435: tty->print_cr("# Method where it happened %s.%s ", Klass::cast(method->method_holder())->name()->as_C_string(), method->name()->as_C_string()); duke@435: tty->print_cr("#"); kamg@3853: if (ShowMessageBoxOnError && UpdateHotSpotCompilerFileOnError && kamg@3853: CompilerOracle::has_command_file()) { duke@435: const char* title = "HotSpot Runtime Error"; duke@435: const char* question = "Do you want to exclude compilation of this method in future runs?"; duke@435: if (os::message_box(title, question)) { duke@435: CompilerOracle::append_comment_to_file(""); duke@435: CompilerOracle::append_comment_to_file("Null exception in compiled code resulted in the following exclude"); duke@435: CompilerOracle::append_comment_to_file(""); duke@435: CompilerOracle::append_exclude_to_file(method); duke@435: tty->print_cr("#"); duke@435: tty->print_cr("# %s has been updated to exclude the specified method", CompileCommandFile); duke@435: tty->print_cr("#"); duke@435: } duke@435: } duke@435: fatal("Implicit null exception happened in compiled method"); duke@435: } else { duke@435: n->print(); duke@435: fatal("Implicit null exception happened in generated stub"); duke@435: } duke@435: } duke@435: fatal("Implicit null exception at wrong place"); duke@435: } duke@435: duke@435: duke@435: //------------------------------------------------------------------------------------- duke@435: // register policy duke@435: duke@435: bool OptoRuntime::is_callee_saved_register(MachRegisterNumbers reg) { duke@435: assert(reg >= 0 && reg < _last_Mach_Reg, "must be a machine register"); duke@435: switch (register_save_policy[reg]) { duke@435: case 'C': return false; //SOC duke@435: case 'E': return true ; //SOE duke@435: case 'N': return false; //NS duke@435: case 'A': return false; //AS duke@435: } duke@435: ShouldNotReachHere(); duke@435: return false; duke@435: } duke@435: duke@435: //----------------------------------------------------------------------- duke@435: // Exceptions duke@435: // duke@435: duke@435: static void trace_exception(oop exception_oop, address exception_pc, const char* msg) PRODUCT_RETURN; duke@435: duke@435: // The method is an entry that is always called by a C++ method not duke@435: // directly from compiled code. Compiled code will call the C++ method following. duke@435: // We can't allow async exception to be installed during exception processing. duke@435: JRT_ENTRY_NO_ASYNC(address, OptoRuntime::handle_exception_C_helper(JavaThread* thread, nmethod* &nm)) duke@435: duke@435: // Do not confuse exception_oop with pending_exception. The exception_oop duke@435: // is only used to pass arguments into the method. Not for general duke@435: // exception handling. DO NOT CHANGE IT to use pending_exception, since duke@435: // the runtime stubs checks this on exit. duke@435: assert(thread->exception_oop() != NULL, "exception oop is found"); duke@435: address handler_address = NULL; duke@435: duke@435: Handle exception(thread, thread->exception_oop()); duke@435: duke@435: if (TraceExceptions) { duke@435: trace_exception(exception(), thread->exception_pc(), ""); duke@435: } duke@435: // for AbortVMOnException flag duke@435: NOT_PRODUCT(Exceptions::debug_check_abort(exception)); duke@435: duke@435: #ifdef ASSERT never@1577: if (!(exception->is_a(SystemDictionary::Throwable_klass()))) { duke@435: // should throw an exception here duke@435: ShouldNotReachHere(); duke@435: } duke@435: #endif duke@435: duke@435: duke@435: // new exception handling: this method is entered only from adapters duke@435: // exceptions from compiled java methods are handled in compiled code duke@435: // using rethrow node duke@435: duke@435: address pc = thread->exception_pc(); duke@435: nm = CodeCache::find_nmethod(pc); duke@435: assert(nm != NULL, "No NMethod found"); duke@435: if (nm->is_native_method()) { duke@435: fatal("Native mathod should not have path to exception handling"); duke@435: } else { duke@435: // we are switching to old paradigm: search for exception handler in caller_frame duke@435: // instead in exception handler of caller_frame.sender() duke@435: dcubed@1648: if (JvmtiExport::can_post_on_exceptions()) { duke@435: // "Full-speed catching" is not necessary here, duke@435: // since we're notifying the VM on every catch. duke@435: // Force deoptimization and the rest of the lookup duke@435: // will be fine. duke@435: deoptimize_caller_frame(thread, true); duke@435: } duke@435: duke@435: // Check the stack guard pages. If enabled, look for handler in this frame; duke@435: // otherwise, forcibly unwind the frame. duke@435: // duke@435: // 4826555: use default current sp for reguard_stack instead of &nm: it's more accurate. duke@435: bool force_unwind = !thread->reguard_stack(); duke@435: bool deopting = false; duke@435: if (nm->is_deopt_pc(pc)) { duke@435: deopting = true; duke@435: RegisterMap map(thread, false); duke@435: frame deoptee = thread->last_frame().sender(&map); duke@435: assert(deoptee.is_deoptimized_frame(), "must be deopted"); duke@435: // Adjust the pc back to the original throwing pc duke@435: pc = deoptee.pc(); duke@435: } duke@435: duke@435: // If we are forcing an unwind because of stack overflow then deopt is duke@435: // irrelevant sice we are throwing the frame away anyway. duke@435: duke@435: if (deopting && !force_unwind) { duke@435: handler_address = SharedRuntime::deopt_blob()->unpack_with_exception(); duke@435: } else { duke@435: duke@435: handler_address = duke@435: force_unwind ? NULL : nm->handler_for_exception_and_pc(exception, pc); duke@435: duke@435: if (handler_address == NULL) { kvn@3194: Handle original_exception(thread, exception()); duke@435: handler_address = SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, force_unwind, true); duke@435: assert (handler_address != NULL, "must have compiled handler"); kvn@3194: // Update the exception cache only when the unwind was not forced kvn@3194: // and there didn't happen another exception during the computation of the kvn@3194: // compiled exception handler. kvn@3194: if (!force_unwind && original_exception() == exception()) { duke@435: nm->add_handler_for_exception_and_pc(exception,pc,handler_address); duke@435: } duke@435: } else { duke@435: assert(handler_address == SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, force_unwind, true), "Must be the same"); duke@435: } duke@435: } duke@435: duke@435: thread->set_exception_pc(pc); duke@435: thread->set_exception_handler_pc(handler_address); twisti@1570: twisti@1730: // Check if the exception PC is a MethodHandle call site. twisti@1803: thread->set_is_method_handle_return(nm->is_method_handle_return(pc)); duke@435: } duke@435: duke@435: // Restore correct return pc. Was saved above. duke@435: thread->set_exception_oop(exception()); duke@435: return handler_address; duke@435: duke@435: JRT_END duke@435: duke@435: // We are entering here from exception_blob duke@435: // If there is a compiled exception handler in this method, we will continue there; duke@435: // otherwise we will unwind the stack and continue at the caller of top frame method duke@435: // Note we enter without the usual JRT wrapper. We will call a helper routine that duke@435: // will do the normal VM entry. We do it this way so that we can see if the nmethod duke@435: // we looked up the handler for has been deoptimized in the meantime. If it has been duke@435: // we must not use the handler and instread return the deopt blob. duke@435: address OptoRuntime::handle_exception_C(JavaThread* thread) { duke@435: // duke@435: // We are in Java not VM and in debug mode we have a NoHandleMark duke@435: // duke@435: #ifndef PRODUCT duke@435: SharedRuntime::_find_handler_ctr++; // find exception handler duke@435: #endif duke@435: debug_only(NoHandleMark __hm;) duke@435: nmethod* nm = NULL; duke@435: address handler_address = NULL; duke@435: { duke@435: // Enter the VM duke@435: duke@435: ResetNoHandleMark rnhm; duke@435: handler_address = handle_exception_C_helper(thread, nm); duke@435: } duke@435: duke@435: // Back in java: Use no oops, DON'T safepoint duke@435: duke@435: // Now check to see if the handler we are returning is in a now duke@435: // deoptimized frame duke@435: duke@435: if (nm != NULL) { duke@435: RegisterMap map(thread, false); duke@435: frame caller = thread->last_frame().sender(&map); duke@435: #ifdef ASSERT duke@435: assert(caller.is_compiled_frame(), "must be"); duke@435: #endif // ASSERT duke@435: if (caller.is_deoptimized_frame()) { duke@435: handler_address = SharedRuntime::deopt_blob()->unpack_with_exception(); duke@435: } duke@435: } duke@435: return handler_address; duke@435: } duke@435: duke@435: //------------------------------rethrow---------------------------------------- duke@435: // We get here after compiled code has executed a 'RethrowNode'. The callee duke@435: // is either throwing or rethrowing an exception. The callee-save registers duke@435: // have been restored, synchronized objects have been unlocked and the callee duke@435: // stack frame has been removed. The return address was passed in. duke@435: // Exception oop is passed as the 1st argument. This routine is then called duke@435: // from the stub. On exit, we know where to jump in the caller's code. duke@435: // After this C code exits, the stub will pop his frame and end in a jump duke@435: // (instead of a return). We enter the caller's default handler. duke@435: // duke@435: // This must be JRT_LEAF: duke@435: // - caller will not change its state as we cannot block on exit, duke@435: // therefore raw_exception_handler_for_return_address is all it takes duke@435: // to handle deoptimized blobs duke@435: // duke@435: // However, there needs to be a safepoint check in the middle! So compiled duke@435: // safepoints are completely watertight. duke@435: // duke@435: // Thus, it cannot be a leaf since it contains the No_GC_Verifier. duke@435: // duke@435: // *THIS IS NOT RECOMMENDED PROGRAMMING STYLE* duke@435: // duke@435: address OptoRuntime::rethrow_C(oopDesc* exception, JavaThread* thread, address ret_pc) { duke@435: #ifndef PRODUCT duke@435: SharedRuntime::_rethrow_ctr++; // count rethrows duke@435: #endif duke@435: assert (exception != NULL, "should have thrown a NULLPointerException"); duke@435: #ifdef ASSERT never@1577: if (!(exception->is_a(SystemDictionary::Throwable_klass()))) { duke@435: // should throw an exception here duke@435: ShouldNotReachHere(); duke@435: } duke@435: #endif duke@435: duke@435: thread->set_vm_result(exception); duke@435: // Frame not compiled (handles deoptimization blob) twisti@1730: return SharedRuntime::raw_exception_handler_for_return_address(thread, ret_pc); duke@435: } duke@435: duke@435: duke@435: const TypeFunc *OptoRuntime::rethrow_Type() { duke@435: // create input type (domain) duke@435: const Type **fields = TypeTuple::fields(1); duke@435: fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Exception oop duke@435: const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1,fields); duke@435: duke@435: // create result type (range) duke@435: fields = TypeTuple::fields(1); duke@435: fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Exception oop duke@435: const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields); duke@435: duke@435: return TypeFunc::make(domain, range); duke@435: } duke@435: duke@435: duke@435: void OptoRuntime::deoptimize_caller_frame(JavaThread *thread, bool doit) { duke@435: // Deoptimize frame duke@435: if (doit) { duke@435: // Called from within the owner thread, so no need for safepoint duke@435: RegisterMap reg_map(thread); duke@435: frame stub_frame = thread->last_frame(); duke@435: assert(stub_frame.is_runtime_frame() || exception_blob()->contains(stub_frame.pc()), "sanity check"); duke@435: frame caller_frame = stub_frame.sender(®_map); duke@435: twisti@3244: // Deoptimize the caller frame. dcubed@1648: Deoptimization::deoptimize_frame(thread, caller_frame.id()); duke@435: } duke@435: } duke@435: duke@435: kvn@3259: bool OptoRuntime::is_deoptimized_caller_frame(JavaThread *thread) { kvn@3259: // Called from within the owner thread, so no need for safepoint kvn@3259: RegisterMap reg_map(thread); kvn@3259: frame stub_frame = thread->last_frame(); kvn@3259: assert(stub_frame.is_runtime_frame() || exception_blob()->contains(stub_frame.pc()), "sanity check"); kvn@3259: frame caller_frame = stub_frame.sender(®_map); kvn@3259: return caller_frame.is_deoptimized_frame(); kvn@3259: } kvn@3259: kvn@3259: duke@435: const TypeFunc *OptoRuntime::register_finalizer_Type() { duke@435: // create input type (domain) duke@435: const Type **fields = TypeTuple::fields(1); duke@435: fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // oop; Receiver duke@435: // // The JavaThread* is passed to each routine as the last argument duke@435: // fields[TypeFunc::Parms+1] = TypeRawPtr::NOTNULL; // JavaThread *; Executing thread duke@435: const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1,fields); duke@435: duke@435: // create result type (range) duke@435: fields = TypeTuple::fields(0); duke@435: duke@435: const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields); duke@435: duke@435: return TypeFunc::make(domain,range); duke@435: } duke@435: duke@435: duke@435: //----------------------------------------------------------------------------- duke@435: // Dtrace support. entry and exit probes have the same signature duke@435: const TypeFunc *OptoRuntime::dtrace_method_entry_exit_Type() { duke@435: // create input type (domain) duke@435: const Type **fields = TypeTuple::fields(2); duke@435: fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // Thread-local storage duke@435: fields[TypeFunc::Parms+1] = TypeInstPtr::NOTNULL; // methodOop; Method we are entering duke@435: const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields); duke@435: duke@435: // create result type (range) duke@435: fields = TypeTuple::fields(0); duke@435: duke@435: const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields); duke@435: duke@435: return TypeFunc::make(domain,range); duke@435: } duke@435: duke@435: const TypeFunc *OptoRuntime::dtrace_object_alloc_Type() { duke@435: // create input type (domain) duke@435: const Type **fields = TypeTuple::fields(2); duke@435: fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // Thread-local storage duke@435: fields[TypeFunc::Parms+1] = TypeInstPtr::NOTNULL; // oop; newly allocated object duke@435: duke@435: const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields); duke@435: duke@435: // create result type (range) duke@435: fields = TypeTuple::fields(0); duke@435: duke@435: const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields); duke@435: duke@435: return TypeFunc::make(domain,range); duke@435: } duke@435: duke@435: duke@435: JRT_ENTRY_NO_ASYNC(void, OptoRuntime::register_finalizer(oopDesc* obj, JavaThread* thread)) duke@435: assert(obj->is_oop(), "must be a valid oop"); duke@435: assert(obj->klass()->klass_part()->has_finalizer(), "shouldn't be here otherwise"); duke@435: instanceKlass::register_finalizer(instanceOop(obj), CHECK); duke@435: JRT_END duke@435: duke@435: //----------------------------------------------------------------------------- duke@435: duke@435: NamedCounter * volatile OptoRuntime::_named_counters = NULL; duke@435: duke@435: // duke@435: // dump the collected NamedCounters. duke@435: // duke@435: void OptoRuntime::print_named_counters() { duke@435: int total_lock_count = 0; duke@435: int eliminated_lock_count = 0; duke@435: duke@435: NamedCounter* c = _named_counters; duke@435: while (c) { duke@435: if (c->tag() == NamedCounter::LockCounter || c->tag() == NamedCounter::EliminatedLockCounter) { duke@435: int count = c->count(); duke@435: if (count > 0) { duke@435: bool eliminated = c->tag() == NamedCounter::EliminatedLockCounter; duke@435: if (Verbose) { duke@435: tty->print_cr("%d %s%s", count, c->name(), eliminated ? " (eliminated)" : ""); duke@435: } duke@435: total_lock_count += count; duke@435: if (eliminated) { duke@435: eliminated_lock_count += count; duke@435: } duke@435: } duke@435: } else if (c->tag() == NamedCounter::BiasedLockingCounter) { duke@435: BiasedLockingCounters* blc = ((BiasedLockingNamedCounter*)c)->counters(); duke@435: if (blc->nonzero()) { duke@435: tty->print_cr("%s", c->name()); duke@435: blc->print_on(tty); duke@435: } duke@435: } duke@435: c = c->next(); duke@435: } duke@435: if (total_lock_count > 0) { duke@435: tty->print_cr("dynamic locks: %d", total_lock_count); duke@435: if (eliminated_lock_count) { duke@435: tty->print_cr("eliminated locks: %d (%d%%)", eliminated_lock_count, duke@435: (int)(eliminated_lock_count * 100.0 / total_lock_count)); duke@435: } duke@435: } duke@435: } duke@435: duke@435: // duke@435: // Allocate a new NamedCounter. The JVMState is used to generate the duke@435: // name which consists of method@line for the inlining tree. duke@435: // duke@435: duke@435: NamedCounter* OptoRuntime::new_named_counter(JVMState* youngest_jvms, NamedCounter::CounterTag tag) { duke@435: int max_depth = youngest_jvms->depth(); duke@435: duke@435: // Visit scopes from youngest to oldest. duke@435: bool first = true; duke@435: stringStream st; duke@435: for (int depth = max_depth; depth >= 1; depth--) { duke@435: JVMState* jvms = youngest_jvms->of_depth(depth); duke@435: ciMethod* m = jvms->has_method() ? jvms->method() : NULL; duke@435: if (!first) { duke@435: st.print(" "); duke@435: } else { duke@435: first = false; duke@435: } duke@435: int bci = jvms->bci(); duke@435: if (bci < 0) bci = 0; duke@435: st.print("%s.%s@%d", m->holder()->name()->as_utf8(), m->name()->as_utf8(), bci); duke@435: // To print linenumbers instead of bci use: m->line_number_from_bci(bci) duke@435: } duke@435: NamedCounter* c; duke@435: if (tag == NamedCounter::BiasedLockingCounter) { duke@435: c = new BiasedLockingNamedCounter(strdup(st.as_string())); duke@435: } else { duke@435: c = new NamedCounter(strdup(st.as_string()), tag); duke@435: } duke@435: duke@435: // atomically add the new counter to the head of the list. We only duke@435: // add counters so this is safe. duke@435: NamedCounter* head; duke@435: do { duke@435: head = _named_counters; duke@435: c->set_next(head); duke@435: } while (Atomic::cmpxchg_ptr(c, &_named_counters, head) != head); duke@435: return c; duke@435: } duke@435: duke@435: //----------------------------------------------------------------------------- duke@435: // Non-product code duke@435: #ifndef PRODUCT duke@435: duke@435: int trace_exception_counter = 0; duke@435: static void trace_exception(oop exception_oop, address exception_pc, const char* msg) { duke@435: ttyLocker ttyl; duke@435: trace_exception_counter++; duke@435: tty->print("%d [Exception (%s): ", trace_exception_counter, msg); duke@435: exception_oop->print_value(); duke@435: tty->print(" in "); duke@435: CodeBlob* blob = CodeCache::find_blob(exception_pc); duke@435: if (blob->is_nmethod()) { duke@435: ((nmethod*)blob)->method()->print_value(); duke@435: } else if (blob->is_runtime_stub()) { duke@435: tty->print(""); duke@435: } else { duke@435: tty->print(""); duke@435: } duke@435: tty->print(" at " INTPTR_FORMAT, exception_pc); duke@435: tty->print_cr("]"); duke@435: } duke@435: duke@435: #endif // PRODUCT duke@435: duke@435: duke@435: # ifdef ENABLE_ZAP_DEAD_LOCALS duke@435: // Called from call sites in compiled code with oop maps (actually safepoints) duke@435: // Zaps dead locals in first java frame. duke@435: // Is entry because may need to lock to generate oop maps duke@435: // Currently, only used for compiler frames, but someday may be used duke@435: // for interpreter frames, too. duke@435: duke@435: int OptoRuntime::ZapDeadCompiledLocals_count = 0; duke@435: duke@435: // avoid pointers to member funcs with these helpers duke@435: static bool is_java_frame( frame* f) { return f->is_java_frame(); } duke@435: static bool is_native_frame(frame* f) { return f->is_native_frame(); } duke@435: duke@435: duke@435: void OptoRuntime::zap_dead_java_or_native_locals(JavaThread* thread, duke@435: bool (*is_this_the_right_frame_to_zap)(frame*)) { duke@435: assert(JavaThread::current() == thread, "is this needed?"); duke@435: duke@435: if ( !ZapDeadCompiledLocals ) return; duke@435: duke@435: bool skip = false; duke@435: duke@435: if ( ZapDeadCompiledLocalsFirst == 0 ) ; // nothing special duke@435: else if ( ZapDeadCompiledLocalsFirst > ZapDeadCompiledLocals_count ) skip = true; duke@435: else if ( ZapDeadCompiledLocalsFirst == ZapDeadCompiledLocals_count ) duke@435: warning("starting zapping after skipping"); duke@435: duke@435: if ( ZapDeadCompiledLocalsLast == -1 ) ; // nothing special duke@435: else if ( ZapDeadCompiledLocalsLast < ZapDeadCompiledLocals_count ) skip = true; duke@435: else if ( ZapDeadCompiledLocalsLast == ZapDeadCompiledLocals_count ) duke@435: warning("about to zap last zap"); duke@435: duke@435: ++ZapDeadCompiledLocals_count; // counts skipped zaps, too duke@435: duke@435: if ( skip ) return; duke@435: duke@435: // find java frame and zap it duke@435: duke@435: for (StackFrameStream sfs(thread); !sfs.is_done(); sfs.next()) { duke@435: if (is_this_the_right_frame_to_zap(sfs.current()) ) { duke@435: sfs.current()->zap_dead_locals(thread, sfs.register_map()); duke@435: return; duke@435: } duke@435: } duke@435: warning("no frame found to zap in zap_dead_Java_locals_C"); duke@435: } duke@435: duke@435: JRT_LEAF(void, OptoRuntime::zap_dead_Java_locals_C(JavaThread* thread)) duke@435: zap_dead_java_or_native_locals(thread, is_java_frame); duke@435: JRT_END duke@435: duke@435: // The following does not work because for one thing, the duke@435: // thread state is wrong; it expects java, but it is native. twisti@1040: // Also, the invariants in a native stub are different and duke@435: // I'm not sure it is safe to have a MachCalRuntimeDirectNode duke@435: // in there. duke@435: // So for now, we do not zap in native stubs. duke@435: duke@435: JRT_LEAF(void, OptoRuntime::zap_dead_native_locals_C(JavaThread* thread)) duke@435: zap_dead_java_or_native_locals(thread, is_native_frame); duke@435: JRT_END duke@435: duke@435: # endif