duke@435: /* jrose@1145: * Copyright 1997-2009 Sun Microsystems, Inc. All Rights Reserved. duke@435: * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. duke@435: * duke@435: * This code is free software; you can redistribute it and/or modify it duke@435: * under the terms of the GNU General Public License version 2 only, as duke@435: * published by the Free Software Foundation. duke@435: * duke@435: * This code is distributed in the hope that it will be useful, but WITHOUT duke@435: * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or duke@435: * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License duke@435: * version 2 for more details (a copy is included in the LICENSE file that duke@435: * accompanied this code). duke@435: * duke@435: * You should have received a copy of the GNU General Public License version duke@435: * 2 along with this work; if not, write to the Free Software Foundation, duke@435: * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. duke@435: * duke@435: * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, duke@435: * CA 95054 USA or visit www.sun.com if you need additional information or duke@435: * have any questions. duke@435: * duke@435: */ duke@435: duke@435: #include "incls/_precompiled.incl" duke@435: #include "incls/_interpreterRuntime.cpp.incl" duke@435: duke@435: class UnlockFlagSaver { duke@435: private: duke@435: JavaThread* _thread; duke@435: bool _do_not_unlock; duke@435: public: duke@435: UnlockFlagSaver(JavaThread* t) { duke@435: _thread = t; duke@435: _do_not_unlock = t->do_not_unlock_if_synchronized(); duke@435: t->set_do_not_unlock_if_synchronized(false); duke@435: } duke@435: ~UnlockFlagSaver() { duke@435: _thread->set_do_not_unlock_if_synchronized(_do_not_unlock); duke@435: } duke@435: }; duke@435: duke@435: //------------------------------------------------------------------------------------------------------------------------ duke@435: // State accessors duke@435: duke@435: void InterpreterRuntime::set_bcp_and_mdp(address bcp, JavaThread *thread) { duke@435: last_frame(thread).interpreter_frame_set_bcp(bcp); duke@435: if (ProfileInterpreter) { duke@435: // ProfileTraps uses MDOs independently of ProfileInterpreter. duke@435: // That is why we must check both ProfileInterpreter and mdo != NULL. duke@435: methodDataOop mdo = last_frame(thread).interpreter_frame_method()->method_data(); duke@435: if (mdo != NULL) { duke@435: NEEDS_CLEANUP; duke@435: last_frame(thread).interpreter_frame_set_mdp(mdo->bci_to_dp(last_frame(thread).interpreter_frame_bci())); duke@435: } duke@435: } duke@435: } duke@435: duke@435: //------------------------------------------------------------------------------------------------------------------------ duke@435: // Constants duke@435: duke@435: duke@435: IRT_ENTRY(void, InterpreterRuntime::ldc(JavaThread* thread, bool wide)) duke@435: // access constant pool duke@435: constantPoolOop pool = method(thread)->constants(); duke@435: int index = wide ? two_byte_index(thread) : one_byte_index(thread); duke@435: constantTag tag = pool->tag_at(index); duke@435: duke@435: if (tag.is_unresolved_klass() || tag.is_klass()) { duke@435: klassOop klass = pool->klass_at(index, CHECK); duke@435: oop java_class = klass->klass_part()->java_mirror(); duke@435: thread->set_vm_result(java_class); duke@435: } else { duke@435: #ifdef ASSERT duke@435: // If we entered this runtime routine, we believed the tag contained duke@435: // an unresolved string, an unresolved class or a resolved class. duke@435: // However, another thread could have resolved the unresolved string duke@435: // or class by the time we go there. duke@435: assert(tag.is_unresolved_string()|| tag.is_string(), "expected string"); duke@435: #endif duke@435: oop s_oop = pool->string_at(index, CHECK); duke@435: thread->set_vm_result(s_oop); duke@435: } duke@435: IRT_END duke@435: duke@435: duke@435: //------------------------------------------------------------------------------------------------------------------------ duke@435: // Allocation duke@435: duke@435: IRT_ENTRY(void, InterpreterRuntime::_new(JavaThread* thread, constantPoolOopDesc* pool, int index)) duke@435: klassOop k_oop = pool->klass_at(index, CHECK); duke@435: instanceKlassHandle klass (THREAD, k_oop); duke@435: duke@435: // Make sure we are not instantiating an abstract klass duke@435: klass->check_valid_for_instantiation(true, CHECK); duke@435: duke@435: // Make sure klass is initialized duke@435: klass->initialize(CHECK); duke@435: duke@435: // At this point the class may not be fully initialized duke@435: // because of recursive initialization. If it is fully duke@435: // initialized & has_finalized is not set, we rewrite duke@435: // it into its fast version (Note: no locking is needed duke@435: // here since this is an atomic byte write and can be duke@435: // done more than once). duke@435: // duke@435: // Note: In case of classes with has_finalized we don't duke@435: // rewrite since that saves us an extra check in duke@435: // the fast version which then would call the duke@435: // slow version anyway (and do a call back into duke@435: // Java). duke@435: // If we have a breakpoint, then we don't rewrite duke@435: // because the _breakpoint bytecode would be lost. duke@435: oop obj = klass->allocate_instance(CHECK); duke@435: thread->set_vm_result(obj); duke@435: IRT_END duke@435: duke@435: duke@435: IRT_ENTRY(void, InterpreterRuntime::newarray(JavaThread* thread, BasicType type, jint size)) duke@435: oop obj = oopFactory::new_typeArray(type, size, CHECK); duke@435: thread->set_vm_result(obj); duke@435: IRT_END duke@435: duke@435: duke@435: IRT_ENTRY(void, InterpreterRuntime::anewarray(JavaThread* thread, constantPoolOopDesc* pool, int index, jint size)) duke@435: // Note: no oopHandle for pool & klass needed since they are not used duke@435: // anymore after new_objArray() and no GC can happen before. duke@435: // (This may have to change if this code changes!) duke@435: klassOop klass = pool->klass_at(index, CHECK); duke@435: objArrayOop obj = oopFactory::new_objArray(klass, size, CHECK); duke@435: thread->set_vm_result(obj); duke@435: IRT_END duke@435: duke@435: duke@435: IRT_ENTRY(void, InterpreterRuntime::multianewarray(JavaThread* thread, jint* first_size_address)) duke@435: // We may want to pass in more arguments - could make this slightly faster duke@435: constantPoolOop constants = method(thread)->constants(); duke@435: int i = two_byte_index(thread); duke@435: klassOop klass = constants->klass_at(i, CHECK); duke@435: int nof_dims = number_of_dimensions(thread); duke@435: assert(oop(klass)->is_klass(), "not a class"); duke@435: assert(nof_dims >= 1, "multianewarray rank must be nonzero"); duke@435: duke@435: // We must create an array of jints to pass to multi_allocate. duke@435: ResourceMark rm(thread); duke@435: const int small_dims = 10; duke@435: jint dim_array[small_dims]; duke@435: jint *dims = &dim_array[0]; duke@435: if (nof_dims > small_dims) { duke@435: dims = (jint*) NEW_RESOURCE_ARRAY(jint, nof_dims); duke@435: } duke@435: for (int index = 0; index < nof_dims; index++) { duke@435: // offset from first_size_address is addressed as local[index] duke@435: int n = Interpreter::local_offset_in_bytes(index)/jintSize; duke@435: dims[index] = first_size_address[n]; duke@435: } duke@435: oop obj = arrayKlass::cast(klass)->multi_allocate(nof_dims, dims, CHECK); duke@435: thread->set_vm_result(obj); duke@435: IRT_END duke@435: duke@435: duke@435: IRT_ENTRY(void, InterpreterRuntime::register_finalizer(JavaThread* thread, oopDesc* obj)) duke@435: assert(obj->is_oop(), "must be a valid oop"); duke@435: assert(obj->klass()->klass_part()->has_finalizer(), "shouldn't be here otherwise"); duke@435: instanceKlass::register_finalizer(instanceOop(obj), CHECK); duke@435: IRT_END duke@435: duke@435: duke@435: // Quicken instance-of and check-cast bytecodes duke@435: IRT_ENTRY(void, InterpreterRuntime::quicken_io_cc(JavaThread* thread)) duke@435: // Force resolving; quicken the bytecode duke@435: int which = two_byte_index(thread); duke@435: constantPoolOop cpool = method(thread)->constants(); duke@435: // We'd expect to assert that we're only here to quicken bytecodes, but in a multithreaded duke@435: // program we might have seen an unquick'd bytecode in the interpreter but have another duke@435: // thread quicken the bytecode before we get here. duke@435: // assert( cpool->tag_at(which).is_unresolved_klass(), "should only come here to quicken bytecodes" ); duke@435: klassOop klass = cpool->klass_at(which, CHECK); duke@435: thread->set_vm_result(klass); duke@435: IRT_END duke@435: duke@435: duke@435: //------------------------------------------------------------------------------------------------------------------------ duke@435: // Exceptions duke@435: duke@435: // Assume the compiler is (or will be) interested in this event. duke@435: // If necessary, create an MDO to hold the information, and record it. duke@435: void InterpreterRuntime::note_trap(JavaThread* thread, int reason, TRAPS) { duke@435: assert(ProfileTraps, "call me only if profiling"); duke@435: methodHandle trap_method(thread, method(thread)); duke@435: if (trap_method.not_null()) { duke@435: methodDataHandle trap_mdo(thread, trap_method->method_data()); duke@435: if (trap_mdo.is_null()) { duke@435: methodOopDesc::build_interpreter_method_data(trap_method, THREAD); duke@435: if (HAS_PENDING_EXCEPTION) { duke@435: assert((PENDING_EXCEPTION->is_a(SystemDictionary::OutOfMemoryError_klass())), "we expect only an OOM error here"); duke@435: CLEAR_PENDING_EXCEPTION; duke@435: } duke@435: trap_mdo = methodDataHandle(thread, trap_method->method_data()); duke@435: // and fall through... duke@435: } duke@435: if (trap_mdo.not_null()) { duke@435: // Update per-method count of trap events. The interpreter duke@435: // is updating the MDO to simulate the effect of compiler traps. duke@435: int trap_bci = trap_method->bci_from(bcp(thread)); duke@435: Deoptimization::update_method_data_from_interpreter(trap_mdo, trap_bci, reason); duke@435: } duke@435: } duke@435: } duke@435: duke@435: static Handle get_preinitialized_exception(klassOop k, TRAPS) { duke@435: // get klass duke@435: instanceKlass* klass = instanceKlass::cast(k); duke@435: assert(klass->is_initialized(), duke@435: "this klass should have been initialized during VM initialization"); duke@435: // create instance - do not call constructor since we may have no duke@435: // (java) stack space left (should assert constructor is empty) duke@435: Handle exception; duke@435: oop exception_oop = klass->allocate_instance(CHECK_(exception)); duke@435: exception = Handle(THREAD, exception_oop); duke@435: if (StackTraceInThrowable) { duke@435: java_lang_Throwable::fill_in_stack_trace(exception); duke@435: } duke@435: return exception; duke@435: } duke@435: duke@435: // Special handling for stack overflow: since we don't have any (java) stack duke@435: // space left we use the pre-allocated & pre-initialized StackOverflowError duke@435: // klass to create an stack overflow error instance. We do not call its duke@435: // constructor for the same reason (it is empty, anyway). duke@435: IRT_ENTRY(void, InterpreterRuntime::throw_StackOverflowError(JavaThread* thread)) duke@435: Handle exception = get_preinitialized_exception( duke@435: SystemDictionary::StackOverflowError_klass(), duke@435: CHECK); duke@435: THROW_HANDLE(exception); duke@435: IRT_END duke@435: duke@435: duke@435: IRT_ENTRY(void, InterpreterRuntime::create_exception(JavaThread* thread, char* name, char* message)) duke@435: // lookup exception klass duke@435: symbolHandle s = oopFactory::new_symbol_handle(name, CHECK); duke@435: if (ProfileTraps) { duke@435: if (s == vmSymbols::java_lang_ArithmeticException()) { duke@435: note_trap(thread, Deoptimization::Reason_div0_check, CHECK); duke@435: } else if (s == vmSymbols::java_lang_NullPointerException()) { duke@435: note_trap(thread, Deoptimization::Reason_null_check, CHECK); duke@435: } duke@435: } duke@435: // create exception duke@435: Handle exception = Exceptions::new_exception(thread, s(), message); duke@435: thread->set_vm_result(exception()); duke@435: IRT_END duke@435: duke@435: duke@435: IRT_ENTRY(void, InterpreterRuntime::create_klass_exception(JavaThread* thread, char* name, oopDesc* obj)) duke@435: ResourceMark rm(thread); duke@435: const char* klass_name = Klass::cast(obj->klass())->external_name(); duke@435: // lookup exception klass duke@435: symbolHandle s = oopFactory::new_symbol_handle(name, CHECK); duke@435: if (ProfileTraps) { duke@435: note_trap(thread, Deoptimization::Reason_class_check, CHECK); duke@435: } duke@435: // create exception, with klass name as detail message duke@435: Handle exception = Exceptions::new_exception(thread, s(), klass_name); duke@435: thread->set_vm_result(exception()); duke@435: IRT_END duke@435: duke@435: duke@435: IRT_ENTRY(void, InterpreterRuntime::throw_ArrayIndexOutOfBoundsException(JavaThread* thread, char* name, jint index)) duke@435: char message[jintAsStringSize]; duke@435: // lookup exception klass duke@435: symbolHandle s = oopFactory::new_symbol_handle(name, CHECK); duke@435: if (ProfileTraps) { duke@435: note_trap(thread, Deoptimization::Reason_range_check, CHECK); duke@435: } duke@435: // create exception duke@435: sprintf(message, "%d", index); duke@435: THROW_MSG(s(), message); duke@435: IRT_END duke@435: duke@435: IRT_ENTRY(void, InterpreterRuntime::throw_ClassCastException( duke@435: JavaThread* thread, oopDesc* obj)) duke@435: duke@435: ResourceMark rm(thread); duke@435: char* message = SharedRuntime::generate_class_cast_message( duke@435: thread, Klass::cast(obj->klass())->external_name()); duke@435: duke@435: if (ProfileTraps) { duke@435: note_trap(thread, Deoptimization::Reason_class_check, CHECK); duke@435: } duke@435: duke@435: // create exception duke@435: THROW_MSG(vmSymbols::java_lang_ClassCastException(), message); duke@435: IRT_END duke@435: jrose@1145: // required can be either a MethodType, or a Class (for a single argument) jrose@1145: // actual (if not null) can be either a MethodHandle, or an arbitrary value (for a single argument) jrose@1145: IRT_ENTRY(void, InterpreterRuntime::throw_WrongMethodTypeException(JavaThread* thread, jrose@1145: oopDesc* required, jrose@1145: oopDesc* actual)) { jrose@1145: ResourceMark rm(thread); jrose@1145: char* message = SharedRuntime::generate_wrong_method_type_message(thread, required, actual); jrose@1145: jrose@1145: if (ProfileTraps) { jrose@1145: note_trap(thread, Deoptimization::Reason_constraint, CHECK); jrose@1145: } jrose@1145: jrose@1145: // create exception jrose@1145: THROW_MSG(vmSymbols::java_dyn_WrongMethodTypeException(), message); jrose@1145: } jrose@1145: IRT_END jrose@1145: jrose@1145: duke@435: duke@435: // exception_handler_for_exception(...) returns the continuation address, duke@435: // the exception oop (via TLS) and sets the bci/bcp for the continuation. duke@435: // The exception oop is returned to make sure it is preserved over GC (it duke@435: // is only on the stack if the exception was thrown explicitly via athrow). duke@435: // During this operation, the expression stack contains the values for the duke@435: // bci where the exception happened. If the exception was propagated back duke@435: // from a call, the expression stack contains the values for the bci at the duke@435: // invoke w/o arguments (i.e., as if one were inside the call). duke@435: IRT_ENTRY(address, InterpreterRuntime::exception_handler_for_exception(JavaThread* thread, oopDesc* exception)) duke@435: duke@435: Handle h_exception(thread, exception); duke@435: methodHandle h_method (thread, method(thread)); duke@435: constantPoolHandle h_constants(thread, h_method->constants()); duke@435: typeArrayHandle h_extable (thread, h_method->exception_table()); duke@435: bool should_repeat; duke@435: int handler_bci; duke@435: int current_bci = bcp(thread) - h_method->code_base(); duke@435: duke@435: // Need to do this check first since when _do_not_unlock_if_synchronized duke@435: // is set, we don't want to trigger any classloading which may make calls duke@435: // into java, or surprisingly find a matching exception handler for bci 0 duke@435: // since at this moment the method hasn't been "officially" entered yet. duke@435: if (thread->do_not_unlock_if_synchronized()) { duke@435: ResourceMark rm; duke@435: assert(current_bci == 0, "bci isn't zero for do_not_unlock_if_synchronized"); duke@435: thread->set_vm_result(exception); duke@435: #ifdef CC_INTERP duke@435: return (address) -1; duke@435: #else duke@435: return Interpreter::remove_activation_entry(); duke@435: #endif duke@435: } duke@435: duke@435: do { duke@435: should_repeat = false; duke@435: duke@435: // assertions duke@435: #ifdef ASSERT duke@435: assert(h_exception.not_null(), "NULL exceptions should be handled by athrow"); duke@435: assert(h_exception->is_oop(), "just checking"); duke@435: // Check that exception is a subclass of Throwable, otherwise we have a VerifyError never@1577: if (!(h_exception->is_a(SystemDictionary::Throwable_klass()))) { duke@435: if (ExitVMOnVerifyError) vm_exit(-1); duke@435: ShouldNotReachHere(); duke@435: } duke@435: #endif duke@435: duke@435: // tracing duke@435: if (TraceExceptions) { duke@435: ttyLocker ttyl; duke@435: ResourceMark rm(thread); duke@435: tty->print_cr("Exception <%s> (" INTPTR_FORMAT ")", h_exception->print_value_string(), (address)h_exception()); duke@435: tty->print_cr(" thrown in interpreter method <%s>", h_method->print_value_string()); duke@435: tty->print_cr(" at bci %d for thread " INTPTR_FORMAT, current_bci, thread); duke@435: } duke@435: // Don't go paging in something which won't be used. duke@435: // else if (h_extable->length() == 0) { duke@435: // // disabled for now - interpreter is not using shortcut yet duke@435: // // (shortcut is not to call runtime if we have no exception handlers) duke@435: // // warning("performance bug: should not call runtime if method has no exception handlers"); duke@435: // } duke@435: // for AbortVMOnException flag duke@435: NOT_PRODUCT(Exceptions::debug_check_abort(h_exception)); duke@435: duke@435: // exception handler lookup duke@435: KlassHandle h_klass(THREAD, h_exception->klass()); duke@435: handler_bci = h_method->fast_exception_handler_bci_for(h_klass, current_bci, THREAD); duke@435: if (HAS_PENDING_EXCEPTION) { duke@435: // We threw an exception while trying to find the exception handler. duke@435: // Transfer the new exception to the exception handle which will duke@435: // be set into thread local storage, and do another lookup for an duke@435: // exception handler for this exception, this time starting at the duke@435: // BCI of the exception handler which caused the exception to be duke@435: // thrown (bug 4307310). duke@435: h_exception = Handle(THREAD, PENDING_EXCEPTION); duke@435: CLEAR_PENDING_EXCEPTION; duke@435: if (handler_bci >= 0) { duke@435: current_bci = handler_bci; duke@435: should_repeat = true; duke@435: } duke@435: } duke@435: } while (should_repeat == true); duke@435: duke@435: // notify JVMTI of an exception throw; JVMTI will detect if this is a first duke@435: // time throw or a stack unwinding throw and accordingly notify the debugger duke@435: if (JvmtiExport::can_post_exceptions()) { duke@435: JvmtiExport::post_exception_throw(thread, h_method(), bcp(thread), h_exception()); duke@435: } duke@435: duke@435: #ifdef CC_INTERP duke@435: address continuation = (address)(intptr_t) handler_bci; duke@435: #else duke@435: address continuation = NULL; duke@435: #endif duke@435: address handler_pc = NULL; duke@435: if (handler_bci < 0 || !thread->reguard_stack((address) &continuation)) { duke@435: // Forward exception to callee (leaving bci/bcp untouched) because (a) no duke@435: // handler in this method, or (b) after a stack overflow there is not yet duke@435: // enough stack space available to reprotect the stack. duke@435: #ifndef CC_INTERP duke@435: continuation = Interpreter::remove_activation_entry(); duke@435: #endif duke@435: // Count this for compilation purposes duke@435: h_method->interpreter_throwout_increment(); duke@435: } else { duke@435: // handler in this method => change bci/bcp to handler bci/bcp and continue there duke@435: handler_pc = h_method->code_base() + handler_bci; duke@435: #ifndef CC_INTERP duke@435: set_bcp_and_mdp(handler_pc, thread); duke@435: continuation = Interpreter::dispatch_table(vtos)[*handler_pc]; duke@435: #endif duke@435: } duke@435: // notify debugger of an exception catch duke@435: // (this is good for exceptions caught in native methods as well) duke@435: if (JvmtiExport::can_post_exceptions()) { duke@435: JvmtiExport::notice_unwind_due_to_exception(thread, h_method(), handler_pc, h_exception(), (handler_pc != NULL)); duke@435: } duke@435: duke@435: thread->set_vm_result(h_exception()); duke@435: return continuation; duke@435: IRT_END duke@435: duke@435: duke@435: IRT_ENTRY(void, InterpreterRuntime::throw_pending_exception(JavaThread* thread)) duke@435: assert(thread->has_pending_exception(), "must only ne called if there's an exception pending"); duke@435: // nothing to do - eventually we should remove this code entirely (see comments @ call sites) duke@435: IRT_END duke@435: duke@435: duke@435: IRT_ENTRY(void, InterpreterRuntime::throw_AbstractMethodError(JavaThread* thread)) duke@435: THROW(vmSymbols::java_lang_AbstractMethodError()); duke@435: IRT_END duke@435: duke@435: duke@435: IRT_ENTRY(void, InterpreterRuntime::throw_IncompatibleClassChangeError(JavaThread* thread)) duke@435: THROW(vmSymbols::java_lang_IncompatibleClassChangeError()); duke@435: IRT_END duke@435: duke@435: duke@435: //------------------------------------------------------------------------------------------------------------------------ duke@435: // Fields duke@435: // duke@435: duke@435: IRT_ENTRY(void, InterpreterRuntime::resolve_get_put(JavaThread* thread, Bytecodes::Code bytecode)) duke@435: // resolve field duke@435: FieldAccessInfo info; duke@435: constantPoolHandle pool(thread, method(thread)->constants()); duke@435: bool is_static = (bytecode == Bytecodes::_getstatic || bytecode == Bytecodes::_putstatic); duke@435: duke@435: { duke@435: JvmtiHideSingleStepping jhss(thread); duke@435: LinkResolver::resolve_field(info, pool, two_byte_index(thread), duke@435: bytecode, false, CHECK); duke@435: } // end JvmtiHideSingleStepping duke@435: duke@435: // check if link resolution caused cpCache to be updated duke@435: if (already_resolved(thread)) return; duke@435: duke@435: // compute auxiliary field attributes duke@435: TosState state = as_TosState(info.field_type()); duke@435: duke@435: // We need to delay resolving put instructions on final fields duke@435: // until we actually invoke one. This is required so we throw duke@435: // exceptions at the correct place. If we do not resolve completely duke@435: // in the current pass, leaving the put_code set to zero will duke@435: // cause the next put instruction to reresolve. duke@435: bool is_put = (bytecode == Bytecodes::_putfield || duke@435: bytecode == Bytecodes::_putstatic); duke@435: Bytecodes::Code put_code = (Bytecodes::Code)0; duke@435: duke@435: // We also need to delay resolving getstatic instructions until the duke@435: // class is intitialized. This is required so that access to the static duke@435: // field will call the initialization function every time until the class duke@435: // is completely initialized ala. in 2.17.5 in JVM Specification. duke@435: instanceKlass *klass = instanceKlass::cast(info.klass()->as_klassOop()); duke@435: bool uninitialized_static = ((bytecode == Bytecodes::_getstatic || bytecode == Bytecodes::_putstatic) && duke@435: !klass->is_initialized()); duke@435: Bytecodes::Code get_code = (Bytecodes::Code)0; duke@435: duke@435: duke@435: if (!uninitialized_static) { duke@435: get_code = ((is_static) ? Bytecodes::_getstatic : Bytecodes::_getfield); duke@435: if (is_put || !info.access_flags().is_final()) { duke@435: put_code = ((is_static) ? Bytecodes::_putstatic : Bytecodes::_putfield); duke@435: } duke@435: } duke@435: duke@435: cache_entry(thread)->set_field( duke@435: get_code, duke@435: put_code, duke@435: info.klass(), duke@435: info.field_index(), duke@435: info.field_offset(), duke@435: state, duke@435: info.access_flags().is_final(), duke@435: info.access_flags().is_volatile() duke@435: ); duke@435: IRT_END duke@435: duke@435: duke@435: //------------------------------------------------------------------------------------------------------------------------ duke@435: // Synchronization duke@435: // duke@435: // The interpreter's synchronization code is factored out so that it can duke@435: // be shared by method invocation and synchronized blocks. duke@435: //%note synchronization_3 duke@435: duke@435: static void trace_locking(Handle& h_locking_obj, bool is_locking) { duke@435: ObjectSynchronizer::trace_locking(h_locking_obj, false, true, is_locking); duke@435: } duke@435: duke@435: duke@435: //%note monitor_1 duke@435: IRT_ENTRY_NO_ASYNC(void, InterpreterRuntime::monitorenter(JavaThread* thread, BasicObjectLock* elem)) duke@435: #ifdef ASSERT duke@435: thread->last_frame().interpreter_frame_verify_monitor(elem); duke@435: #endif duke@435: if (PrintBiasedLockingStatistics) { duke@435: Atomic::inc(BiasedLocking::slow_path_entry_count_addr()); duke@435: } duke@435: Handle h_obj(thread, elem->obj()); duke@435: assert(Universe::heap()->is_in_reserved_or_null(h_obj()), duke@435: "must be NULL or an object"); duke@435: if (UseBiasedLocking) { duke@435: // Retry fast entry if bias is revoked to avoid unnecessary inflation duke@435: ObjectSynchronizer::fast_enter(h_obj, elem->lock(), true, CHECK); duke@435: } else { duke@435: ObjectSynchronizer::slow_enter(h_obj, elem->lock(), CHECK); duke@435: } duke@435: assert(Universe::heap()->is_in_reserved_or_null(elem->obj()), duke@435: "must be NULL or an object"); duke@435: #ifdef ASSERT duke@435: thread->last_frame().interpreter_frame_verify_monitor(elem); duke@435: #endif duke@435: IRT_END duke@435: duke@435: duke@435: //%note monitor_1 duke@435: IRT_ENTRY_NO_ASYNC(void, InterpreterRuntime::monitorexit(JavaThread* thread, BasicObjectLock* elem)) duke@435: #ifdef ASSERT duke@435: thread->last_frame().interpreter_frame_verify_monitor(elem); duke@435: #endif duke@435: Handle h_obj(thread, elem->obj()); duke@435: assert(Universe::heap()->is_in_reserved_or_null(h_obj()), duke@435: "must be NULL or an object"); duke@435: if (elem == NULL || h_obj()->is_unlocked()) { duke@435: THROW(vmSymbols::java_lang_IllegalMonitorStateException()); duke@435: } duke@435: ObjectSynchronizer::slow_exit(h_obj(), elem->lock(), thread); duke@435: // Free entry. This must be done here, since a pending exception might be installed on duke@435: // exit. If it is not cleared, the exception handling code will try to unlock the monitor again. duke@435: elem->set_obj(NULL); duke@435: #ifdef ASSERT duke@435: thread->last_frame().interpreter_frame_verify_monitor(elem); duke@435: #endif duke@435: IRT_END duke@435: duke@435: duke@435: IRT_ENTRY(void, InterpreterRuntime::throw_illegal_monitor_state_exception(JavaThread* thread)) duke@435: THROW(vmSymbols::java_lang_IllegalMonitorStateException()); duke@435: IRT_END duke@435: duke@435: duke@435: IRT_ENTRY(void, InterpreterRuntime::new_illegal_monitor_state_exception(JavaThread* thread)) duke@435: // Returns an illegal exception to install into the current thread. The duke@435: // pending_exception flag is cleared so normal exception handling does not duke@435: // trigger. Any current installed exception will be overwritten. This duke@435: // method will be called during an exception unwind. duke@435: duke@435: assert(!HAS_PENDING_EXCEPTION, "no pending exception"); duke@435: Handle exception(thread, thread->vm_result()); duke@435: assert(exception() != NULL, "vm result should be set"); duke@435: thread->set_vm_result(NULL); // clear vm result before continuing (may cause memory leaks and assert failures) never@1577: if (!exception->is_a(SystemDictionary::ThreadDeath_klass())) { duke@435: exception = get_preinitialized_exception( duke@435: SystemDictionary::IllegalMonitorStateException_klass(), duke@435: CATCH); duke@435: } duke@435: thread->set_vm_result(exception()); duke@435: IRT_END duke@435: duke@435: duke@435: //------------------------------------------------------------------------------------------------------------------------ duke@435: // Invokes duke@435: duke@435: IRT_ENTRY(Bytecodes::Code, InterpreterRuntime::get_original_bytecode_at(JavaThread* thread, methodOopDesc* method, address bcp)) duke@435: return method->orig_bytecode_at(method->bci_from(bcp)); duke@435: IRT_END duke@435: duke@435: IRT_ENTRY(void, InterpreterRuntime::set_original_bytecode_at(JavaThread* thread, methodOopDesc* method, address bcp, Bytecodes::Code new_code)) duke@435: method->set_orig_bytecode_at(method->bci_from(bcp), new_code); duke@435: IRT_END duke@435: duke@435: IRT_ENTRY(void, InterpreterRuntime::_breakpoint(JavaThread* thread, methodOopDesc* method, address bcp)) duke@435: JvmtiExport::post_raw_breakpoint(thread, method, bcp); duke@435: IRT_END duke@435: duke@435: IRT_ENTRY(void, InterpreterRuntime::resolve_invoke(JavaThread* thread, Bytecodes::Code bytecode)) duke@435: // extract receiver from the outgoing argument list if necessary duke@435: Handle receiver(thread, NULL); duke@435: if (bytecode == Bytecodes::_invokevirtual || bytecode == Bytecodes::_invokeinterface) { duke@435: ResourceMark rm(thread); duke@435: methodHandle m (thread, method(thread)); duke@435: int bci = m->bci_from(bcp(thread)); duke@435: Bytecode_invoke* call = Bytecode_invoke_at(m, bci); duke@435: symbolHandle signature (thread, call->signature()); duke@435: receiver = Handle(thread, duke@435: thread->last_frame().interpreter_callee_receiver(signature)); duke@435: assert(Universe::heap()->is_in_reserved_or_null(receiver()), duke@435: "sanity check"); duke@435: assert(receiver.is_null() || duke@435: Universe::heap()->is_in_reserved(receiver->klass()), duke@435: "sanity check"); duke@435: } duke@435: duke@435: // resolve method duke@435: CallInfo info; duke@435: constantPoolHandle pool(thread, method(thread)->constants()); duke@435: duke@435: { duke@435: JvmtiHideSingleStepping jhss(thread); duke@435: LinkResolver::resolve_invoke(info, receiver, pool, duke@435: two_byte_index(thread), bytecode, CHECK); duke@435: if (JvmtiExport::can_hotswap_or_post_breakpoint()) { duke@435: int retry_count = 0; duke@435: while (info.resolved_method()->is_old()) { duke@435: // It is very unlikely that method is redefined more than 100 times duke@435: // in the middle of resolve. If it is looping here more than 100 times duke@435: // means then there could be a bug here. duke@435: guarantee((retry_count++ < 100), duke@435: "Could not resolve to latest version of redefined method"); duke@435: // method is redefined in the middle of resolve so re-try. duke@435: LinkResolver::resolve_invoke(info, receiver, pool, duke@435: two_byte_index(thread), bytecode, CHECK); duke@435: } duke@435: } duke@435: } // end JvmtiHideSingleStepping duke@435: duke@435: // check if link resolution caused cpCache to be updated duke@435: if (already_resolved(thread)) return; duke@435: duke@435: if (bytecode == Bytecodes::_invokeinterface) { duke@435: duke@435: if (TraceItables && Verbose) { duke@435: ResourceMark rm(thread); duke@435: tty->print_cr("Resolving: klass: %s to method: %s", info.resolved_klass()->name()->as_C_string(), info.resolved_method()->name()->as_C_string()); duke@435: } duke@435: if (info.resolved_method()->method_holder() == never@1577: SystemDictionary::Object_klass()) { duke@435: // NOTE: THIS IS A FIX FOR A CORNER CASE in the JVM spec duke@435: // (see also cpCacheOop.cpp for details) duke@435: methodHandle rm = info.resolved_method(); duke@435: assert(rm->is_final() || info.has_vtable_index(), duke@435: "should have been set already"); duke@435: cache_entry(thread)->set_method(bytecode, rm, info.vtable_index()); duke@435: } else { duke@435: // Setup itable entry duke@435: int index = klassItable::compute_itable_index(info.resolved_method()()); duke@435: cache_entry(thread)->set_interface_call(info.resolved_method(), index); duke@435: } duke@435: } else { duke@435: cache_entry(thread)->set_method( duke@435: bytecode, duke@435: info.resolved_method(), duke@435: info.vtable_index()); duke@435: } duke@435: IRT_END duke@435: duke@435: jrose@1494: // First time execution: Resolve symbols, create a permanent CallSite object. jrose@1161: IRT_ENTRY(void, InterpreterRuntime::resolve_invokedynamic(JavaThread* thread)) { jrose@1161: ResourceMark rm(thread); jrose@1161: jrose@1161: assert(EnableInvokeDynamic, ""); jrose@1161: jrose@1161: const Bytecodes::Code bytecode = Bytecodes::_invokedynamic; jrose@1161: jrose@1161: methodHandle caller_method(thread, method(thread)); jrose@1161: jrose@1161: // first determine if there is a bootstrap method jrose@1161: { jrose@1161: KlassHandle caller_klass(thread, caller_method->method_holder()); jrose@1161: Handle bootm = SystemDictionary::find_bootstrap_method(caller_klass, KlassHandle(), CHECK); jrose@1161: if (bootm.is_null()) { jrose@1161: // If there is no bootstrap method, throw IncompatibleClassChangeError. jrose@1161: // This is a valid generic error type for resolution (JLS 12.3.3). jrose@1161: char buf[200]; jrose@1161: jio_snprintf(buf, sizeof(buf), "Class %s has not declared a bootstrap method for invokedynamic", jrose@1161: (Klass::cast(caller_klass()))->external_name()); jrose@1161: THROW_MSG(vmSymbols::java_lang_IncompatibleClassChangeError(), buf); jrose@1161: } jrose@1161: } jrose@1161: jrose@1161: constantPoolHandle pool(thread, caller_method->constants()); jrose@1161: pool->set_invokedynamic(); // mark header to flag active call sites jrose@1161: jrose@1494: int site_index = four_byte_index(thread); jrose@1494: // there is a second CPC entries that is of interest; it caches signature info: jrose@1494: int main_index = pool->cache()->secondary_entry_at(site_index)->main_entry_index(); jrose@1161: jrose@1161: // first resolve the signature to a MH.invoke methodOop jrose@1161: if (!pool->cache()->entry_at(main_index)->is_resolved(bytecode)) { jrose@1161: JvmtiHideSingleStepping jhss(thread); jrose@1161: CallInfo info; jrose@1161: LinkResolver::resolve_invoke(info, Handle(), pool, jrose@1494: site_index, bytecode, CHECK); jrose@1161: // The main entry corresponds to a JVM_CONSTANT_NameAndType, and serves jrose@1161: // as a common reference point for all invokedynamic call sites with jrose@1161: // that exact call descriptor. We will link it in the CP cache exactly jrose@1161: // as if it were an invokevirtual of MethodHandle.invoke. jrose@1161: pool->cache()->entry_at(main_index)->set_method( jrose@1161: bytecode, jrose@1161: info.resolved_method(), jrose@1161: info.vtable_index()); jrose@1161: assert(pool->cache()->entry_at(main_index)->is_vfinal(), "f2 must be a methodOop"); jrose@1161: } jrose@1161: jrose@1161: // The method (f2 entry) of the main entry is the MH.invoke for the jrose@1161: // invokedynamic target call signature. jrose@1161: intptr_t f2_value = pool->cache()->entry_at(main_index)->f2(); jrose@1161: methodHandle mh_invdyn(THREAD, (methodOop) f2_value); jrose@1161: assert(mh_invdyn.not_null() && mh_invdyn->is_method() && mh_invdyn->is_method_handle_invoke(), jrose@1161: "correct result from LinkResolver::resolve_invokedynamic"); jrose@1161: jrose@1494: symbolHandle call_site_name(THREAD, pool->name_ref_at(site_index)); jrose@1161: Handle call_site jrose@1161: = SystemDictionary::make_dynamic_call_site(caller_method->method_holder(), jrose@1161: caller_method->method_idnum(), jrose@1161: caller_method->bci_from(bcp(thread)), jrose@1161: call_site_name, jrose@1161: mh_invdyn, jrose@1161: CHECK); jrose@1161: jrose@1161: // In the secondary entry, the f1 field is the call site, and the f2 (index) jrose@1161: // field is some data about the invoke site. jrose@1161: int extra_data = 0; jrose@1494: pool->cache()->secondary_entry_at(site_index)->set_dynamic_call(call_site(), extra_data); jrose@1161: } jrose@1161: IRT_END jrose@1161: jrose@1161: duke@435: //------------------------------------------------------------------------------------------------------------------------ duke@435: // Miscellaneous duke@435: duke@435: duke@435: #ifndef PRODUCT duke@435: static void trace_frequency_counter_overflow(methodHandle m, int branch_bci, int bci, address branch_bcp) { duke@435: if (TraceInvocationCounterOverflow) { duke@435: InvocationCounter* ic = m->invocation_counter(); duke@435: InvocationCounter* bc = m->backedge_counter(); duke@435: ResourceMark rm; duke@435: const char* msg = duke@435: branch_bcp == NULL duke@435: ? "comp-policy cntr ovfl @ %d in entry of " duke@435: : "comp-policy cntr ovfl @ %d in loop of "; duke@435: tty->print(msg, bci); duke@435: m->print_value(); duke@435: tty->cr(); duke@435: ic->print(); duke@435: bc->print(); duke@435: if (ProfileInterpreter) { duke@435: if (branch_bcp != NULL) { duke@435: methodDataOop mdo = m->method_data(); duke@435: if (mdo != NULL) { duke@435: int count = mdo->bci_to_data(branch_bci)->as_JumpData()->taken(); duke@435: tty->print_cr("back branch count = %d", count); duke@435: } duke@435: } duke@435: } duke@435: } duke@435: } duke@435: duke@435: static void trace_osr_request(methodHandle method, nmethod* osr, int bci) { duke@435: if (TraceOnStackReplacement) { duke@435: ResourceMark rm; duke@435: tty->print(osr != NULL ? "Reused OSR entry for " : "Requesting OSR entry for "); duke@435: method->print_short_name(tty); duke@435: tty->print_cr(" at bci %d", bci); duke@435: } duke@435: } duke@435: #endif // !PRODUCT duke@435: ysr@1376: nmethod* InterpreterRuntime::frequency_counter_overflow(JavaThread* thread, address branch_bcp) { ysr@1376: nmethod* nm = frequency_counter_overflow_inner(thread, branch_bcp); ysr@1376: assert(branch_bcp != NULL || nm == NULL, "always returns null for non OSR requests"); ysr@1376: if (branch_bcp != NULL && nm != NULL) { ysr@1376: // This was a successful request for an OSR nmethod. Because ysr@1376: // frequency_counter_overflow_inner ends with a safepoint check, ysr@1376: // nm could have been unloaded so look it up again. It's unsafe ysr@1376: // to examine nm directly since it might have been freed and used ysr@1376: // for something else. ysr@1376: frame fr = thread->last_frame(); ysr@1376: methodOop method = fr.interpreter_frame_method(); ysr@1376: int bci = method->bci_from(fr.interpreter_frame_bcp()); ysr@1376: nm = method->lookup_osr_nmethod_for(bci); ysr@1376: } ysr@1376: return nm; ysr@1376: } ysr@1376: duke@435: IRT_ENTRY(nmethod*, ysr@1376: InterpreterRuntime::frequency_counter_overflow_inner(JavaThread* thread, address branch_bcp)) duke@435: // use UnlockFlagSaver to clear and restore the _do_not_unlock_if_synchronized duke@435: // flag, in case this method triggers classloading which will call into Java. duke@435: UnlockFlagSaver fs(thread); duke@435: duke@435: frame fr = thread->last_frame(); duke@435: assert(fr.is_interpreted_frame(), "must come from interpreter"); duke@435: methodHandle method(thread, fr.interpreter_frame_method()); duke@435: const int branch_bci = branch_bcp != NULL ? method->bci_from(branch_bcp) : 0; duke@435: const int bci = method->bci_from(fr.interpreter_frame_bcp()); duke@435: NOT_PRODUCT(trace_frequency_counter_overflow(method, branch_bci, bci, branch_bcp);) duke@435: duke@435: if (JvmtiExport::can_post_interpreter_events()) { duke@435: if (thread->is_interp_only_mode()) { duke@435: // If certain JVMTI events (e.g. frame pop event) are requested then the duke@435: // thread is forced to remain in interpreted code. This is duke@435: // implemented partly by a check in the run_compiled_code duke@435: // section of the interpreter whether we should skip running duke@435: // compiled code, and partly by skipping OSR compiles for duke@435: // interpreted-only threads. duke@435: if (branch_bcp != NULL) { duke@435: CompilationPolicy::policy()->reset_counter_for_back_branch_event(method); duke@435: return NULL; duke@435: } duke@435: } duke@435: } duke@435: duke@435: if (branch_bcp == NULL) { duke@435: // when code cache is full, compilation gets switched off, UseCompiler duke@435: // is set to false duke@435: if (!method->has_compiled_code() && UseCompiler) { duke@435: CompilationPolicy::policy()->method_invocation_event(method, CHECK_NULL); duke@435: } else { duke@435: // Force counter overflow on method entry, even if no compilation duke@435: // happened. (The method_invocation_event call does this also.) duke@435: CompilationPolicy::policy()->reset_counter_for_invocation_event(method); duke@435: } duke@435: // compilation at an invocation overflow no longer goes and retries test for duke@435: // compiled method. We always run the loser of the race as interpreted. duke@435: // so return NULL duke@435: return NULL; duke@435: } else { duke@435: // counter overflow in a loop => try to do on-stack-replacement duke@435: nmethod* osr_nm = method->lookup_osr_nmethod_for(bci); duke@435: NOT_PRODUCT(trace_osr_request(method, osr_nm, bci);) duke@435: // when code cache is full, we should not compile any more... duke@435: if (osr_nm == NULL && UseCompiler) { duke@435: const int branch_bci = method->bci_from(branch_bcp); duke@435: CompilationPolicy::policy()->method_back_branch_event(method, branch_bci, bci, CHECK_NULL); duke@435: osr_nm = method->lookup_osr_nmethod_for(bci); duke@435: } duke@435: if (osr_nm == NULL) { duke@435: CompilationPolicy::policy()->reset_counter_for_back_branch_event(method); duke@435: return NULL; duke@435: } else { duke@435: // We may need to do on-stack replacement which requires that no duke@435: // monitors in the activation are biased because their duke@435: // BasicObjectLocks will need to migrate during OSR. Force duke@435: // unbiasing of all monitors in the activation now (even though duke@435: // the OSR nmethod might be invalidated) because we don't have a duke@435: // safepoint opportunity later once the migration begins. duke@435: if (UseBiasedLocking) { duke@435: ResourceMark rm; duke@435: GrowableArray* objects_to_revoke = new GrowableArray(); duke@435: for( BasicObjectLock *kptr = fr.interpreter_frame_monitor_end(); duke@435: kptr < fr.interpreter_frame_monitor_begin(); duke@435: kptr = fr.next_monitor_in_interpreter_frame(kptr) ) { duke@435: if( kptr->obj() != NULL ) { duke@435: objects_to_revoke->append(Handle(THREAD, kptr->obj())); duke@435: } duke@435: } duke@435: BiasedLocking::revoke(objects_to_revoke); duke@435: } duke@435: return osr_nm; duke@435: } duke@435: } duke@435: IRT_END duke@435: duke@435: IRT_LEAF(jint, InterpreterRuntime::bcp_to_di(methodOopDesc* method, address cur_bcp)) duke@435: assert(ProfileInterpreter, "must be profiling interpreter"); duke@435: int bci = method->bci_from(cur_bcp); duke@435: methodDataOop mdo = method->method_data(); duke@435: if (mdo == NULL) return 0; duke@435: return mdo->bci_to_di(bci); duke@435: IRT_END duke@435: duke@435: IRT_ENTRY(jint, InterpreterRuntime::profile_method(JavaThread* thread, address cur_bcp)) duke@435: // use UnlockFlagSaver to clear and restore the _do_not_unlock_if_synchronized duke@435: // flag, in case this method triggers classloading which will call into Java. duke@435: UnlockFlagSaver fs(thread); duke@435: duke@435: assert(ProfileInterpreter, "must be profiling interpreter"); duke@435: frame fr = thread->last_frame(); duke@435: assert(fr.is_interpreted_frame(), "must come from interpreter"); duke@435: methodHandle method(thread, fr.interpreter_frame_method()); duke@435: int bci = method->bci_from(cur_bcp); duke@435: methodOopDesc::build_interpreter_method_data(method, THREAD); duke@435: if (HAS_PENDING_EXCEPTION) { duke@435: assert((PENDING_EXCEPTION->is_a(SystemDictionary::OutOfMemoryError_klass())), "we expect only an OOM error here"); duke@435: CLEAR_PENDING_EXCEPTION; duke@435: // and fall through... duke@435: } duke@435: methodDataOop mdo = method->method_data(); duke@435: if (mdo == NULL) return 0; duke@435: return mdo->bci_to_di(bci); duke@435: IRT_END duke@435: duke@435: duke@435: #ifdef ASSERT duke@435: IRT_LEAF(void, InterpreterRuntime::verify_mdp(methodOopDesc* method, address bcp, address mdp)) duke@435: assert(ProfileInterpreter, "must be profiling interpreter"); duke@435: duke@435: methodDataOop mdo = method->method_data(); duke@435: assert(mdo != NULL, "must not be null"); duke@435: duke@435: int bci = method->bci_from(bcp); duke@435: duke@435: address mdp2 = mdo->bci_to_dp(bci); duke@435: if (mdp != mdp2) { duke@435: ResourceMark rm; duke@435: ResetNoHandleMark rnm; // In a LEAF entry. duke@435: HandleMark hm; duke@435: tty->print_cr("FAILED verify : actual mdp %p expected mdp %p @ bci %d", mdp, mdp2, bci); duke@435: int current_di = mdo->dp_to_di(mdp); duke@435: int expected_di = mdo->dp_to_di(mdp2); duke@435: tty->print_cr(" actual di %d expected di %d", current_di, expected_di); duke@435: int expected_approx_bci = mdo->data_at(expected_di)->bci(); duke@435: int approx_bci = -1; duke@435: if (current_di >= 0) { duke@435: approx_bci = mdo->data_at(current_di)->bci(); duke@435: } duke@435: tty->print_cr(" actual bci is %d expected bci %d", approx_bci, expected_approx_bci); duke@435: mdo->print_on(tty); duke@435: method->print_codes(); duke@435: } duke@435: assert(mdp == mdp2, "wrong mdp"); duke@435: IRT_END duke@435: #endif // ASSERT duke@435: duke@435: IRT_ENTRY(void, InterpreterRuntime::update_mdp_for_ret(JavaThread* thread, int return_bci)) duke@435: assert(ProfileInterpreter, "must be profiling interpreter"); duke@435: ResourceMark rm(thread); duke@435: HandleMark hm(thread); duke@435: frame fr = thread->last_frame(); duke@435: assert(fr.is_interpreted_frame(), "must come from interpreter"); duke@435: methodDataHandle h_mdo(thread, fr.interpreter_frame_method()->method_data()); duke@435: duke@435: // Grab a lock to ensure atomic access to setting the return bci and duke@435: // the displacement. This can block and GC, invalidating all naked oops. duke@435: MutexLocker ml(RetData_lock); duke@435: duke@435: // ProfileData is essentially a wrapper around a derived oop, so we duke@435: // need to take the lock before making any ProfileData structures. duke@435: ProfileData* data = h_mdo->data_at(h_mdo->dp_to_di(fr.interpreter_frame_mdp())); duke@435: RetData* rdata = data->as_RetData(); duke@435: address new_mdp = rdata->fixup_ret(return_bci, h_mdo); duke@435: fr.interpreter_frame_set_mdp(new_mdp); duke@435: IRT_END duke@435: duke@435: duke@435: IRT_ENTRY(void, InterpreterRuntime::at_safepoint(JavaThread* thread)) duke@435: // We used to need an explict preserve_arguments here for invoke bytecodes. However, duke@435: // stack traversal automatically takes care of preserving arguments for invoke, so duke@435: // this is no longer needed. duke@435: duke@435: // IRT_END does an implicit safepoint check, hence we are guaranteed to block duke@435: // if this is called during a safepoint duke@435: duke@435: if (JvmtiExport::should_post_single_step()) { duke@435: // We are called during regular safepoints and when the VM is duke@435: // single stepping. If any thread is marked for single stepping, duke@435: // then we may have JVMTI work to do. duke@435: JvmtiExport::at_single_stepping_point(thread, method(thread), bcp(thread)); duke@435: } duke@435: IRT_END duke@435: duke@435: IRT_ENTRY(void, InterpreterRuntime::post_field_access(JavaThread *thread, oopDesc* obj, duke@435: ConstantPoolCacheEntry *cp_entry)) duke@435: duke@435: // check the access_flags for the field in the klass duke@435: instanceKlass* ik = instanceKlass::cast((klassOop)cp_entry->f1()); duke@435: typeArrayOop fields = ik->fields(); duke@435: int index = cp_entry->field_index(); duke@435: assert(index < fields->length(), "holders field index is out of range"); duke@435: // bail out if field accesses are not watched duke@435: if ((fields->ushort_at(index) & JVM_ACC_FIELD_ACCESS_WATCHED) == 0) return; duke@435: duke@435: switch(cp_entry->flag_state()) { duke@435: case btos: // fall through duke@435: case ctos: // fall through duke@435: case stos: // fall through duke@435: case itos: // fall through duke@435: case ftos: // fall through duke@435: case ltos: // fall through duke@435: case dtos: // fall through duke@435: case atos: break; duke@435: default: ShouldNotReachHere(); return; duke@435: } duke@435: bool is_static = (obj == NULL); duke@435: HandleMark hm(thread); duke@435: duke@435: Handle h_obj; duke@435: if (!is_static) { duke@435: // non-static field accessors have an object, but we need a handle duke@435: h_obj = Handle(thread, obj); duke@435: } duke@435: instanceKlassHandle h_cp_entry_f1(thread, (klassOop)cp_entry->f1()); duke@435: jfieldID fid = jfieldIDWorkaround::to_jfieldID(h_cp_entry_f1, cp_entry->f2(), is_static); duke@435: JvmtiExport::post_field_access(thread, method(thread), bcp(thread), h_cp_entry_f1, h_obj, fid); duke@435: IRT_END duke@435: duke@435: IRT_ENTRY(void, InterpreterRuntime::post_field_modification(JavaThread *thread, duke@435: oopDesc* obj, ConstantPoolCacheEntry *cp_entry, jvalue *value)) duke@435: duke@435: klassOop k = (klassOop)cp_entry->f1(); duke@435: duke@435: // check the access_flags for the field in the klass duke@435: instanceKlass* ik = instanceKlass::cast(k); duke@435: typeArrayOop fields = ik->fields(); duke@435: int index = cp_entry->field_index(); duke@435: assert(index < fields->length(), "holders field index is out of range"); duke@435: // bail out if field modifications are not watched duke@435: if ((fields->ushort_at(index) & JVM_ACC_FIELD_MODIFICATION_WATCHED) == 0) return; duke@435: duke@435: char sig_type = '\0'; duke@435: duke@435: switch(cp_entry->flag_state()) { duke@435: case btos: sig_type = 'Z'; break; duke@435: case ctos: sig_type = 'C'; break; duke@435: case stos: sig_type = 'S'; break; duke@435: case itos: sig_type = 'I'; break; duke@435: case ftos: sig_type = 'F'; break; duke@435: case atos: sig_type = 'L'; break; duke@435: case ltos: sig_type = 'J'; break; duke@435: case dtos: sig_type = 'D'; break; duke@435: default: ShouldNotReachHere(); return; duke@435: } duke@435: bool is_static = (obj == NULL); duke@435: duke@435: HandleMark hm(thread); duke@435: instanceKlassHandle h_klass(thread, k); duke@435: jfieldID fid = jfieldIDWorkaround::to_jfieldID(h_klass, cp_entry->f2(), is_static); duke@435: jvalue fvalue; duke@435: #ifdef _LP64 duke@435: fvalue = *value; duke@435: #else duke@435: // Long/double values are stored unaligned and also noncontiguously with duke@435: // tagged stacks. We can't just do a simple assignment even in the non- duke@435: // J/D cases because a C++ compiler is allowed to assume that a jvalue is duke@435: // 8-byte aligned, and interpreter stack slots are only 4-byte aligned. duke@435: // We assume that the two halves of longs/doubles are stored in interpreter duke@435: // stack slots in platform-endian order. duke@435: jlong_accessor u; duke@435: jint* newval = (jint*)value; duke@435: u.words[0] = newval[0]; duke@435: u.words[1] = newval[Interpreter::stackElementWords()]; // skip if tag duke@435: fvalue.j = u.long_value; duke@435: #endif // _LP64 duke@435: duke@435: Handle h_obj; duke@435: if (!is_static) { duke@435: // non-static field accessors have an object, but we need a handle duke@435: h_obj = Handle(thread, obj); duke@435: } duke@435: duke@435: JvmtiExport::post_raw_field_modification(thread, method(thread), bcp(thread), h_klass, h_obj, duke@435: fid, sig_type, &fvalue); duke@435: IRT_END duke@435: duke@435: IRT_ENTRY(void, InterpreterRuntime::post_method_entry(JavaThread *thread)) duke@435: JvmtiExport::post_method_entry(thread, InterpreterRuntime::method(thread), InterpreterRuntime::last_frame(thread)); duke@435: IRT_END duke@435: duke@435: duke@435: IRT_ENTRY(void, InterpreterRuntime::post_method_exit(JavaThread *thread)) duke@435: JvmtiExport::post_method_exit(thread, InterpreterRuntime::method(thread), InterpreterRuntime::last_frame(thread)); duke@435: IRT_END duke@435: duke@435: IRT_LEAF(int, InterpreterRuntime::interpreter_contains(address pc)) duke@435: { duke@435: return (Interpreter::contains(pc) ? 1 : 0); duke@435: } duke@435: IRT_END duke@435: duke@435: duke@435: // Implementation of SignatureHandlerLibrary duke@435: duke@435: address SignatureHandlerLibrary::set_handler_blob() { duke@435: BufferBlob* handler_blob = BufferBlob::create("native signature handlers", blob_size); duke@435: if (handler_blob == NULL) { duke@435: return NULL; duke@435: } duke@435: address handler = handler_blob->instructions_begin(); duke@435: _handler_blob = handler_blob; duke@435: _handler = handler; duke@435: return handler; duke@435: } duke@435: duke@435: void SignatureHandlerLibrary::initialize() { duke@435: if (_fingerprints != NULL) { duke@435: return; duke@435: } duke@435: if (set_handler_blob() == NULL) { duke@435: vm_exit_out_of_memory(blob_size, "native signature handlers"); duke@435: } duke@435: duke@435: BufferBlob* bb = BufferBlob::create("Signature Handler Temp Buffer", duke@435: SignatureHandlerLibrary::buffer_size); duke@435: _buffer = bb->instructions_begin(); duke@435: duke@435: _fingerprints = new(ResourceObj::C_HEAP)GrowableArray(32, true); duke@435: _handlers = new(ResourceObj::C_HEAP)GrowableArray
(32, true); duke@435: } duke@435: duke@435: address SignatureHandlerLibrary::set_handler(CodeBuffer* buffer) { duke@435: address handler = _handler; duke@435: int code_size = buffer->pure_code_size(); duke@435: if (handler + code_size > _handler_blob->instructions_end()) { duke@435: // get a new handler blob duke@435: handler = set_handler_blob(); duke@435: } duke@435: if (handler != NULL) { duke@435: memcpy(handler, buffer->code_begin(), code_size); duke@435: pd_set_handler(handler); duke@435: ICache::invalidate_range(handler, code_size); duke@435: _handler = handler + code_size; duke@435: } duke@435: return handler; duke@435: } duke@435: duke@435: void SignatureHandlerLibrary::add(methodHandle method) { duke@435: if (method->signature_handler() == NULL) { duke@435: // use slow signature handler if we can't do better duke@435: int handler_index = -1; duke@435: // check if we can use customized (fast) signature handler duke@435: if (UseFastSignatureHandlers && method->size_of_parameters() <= Fingerprinter::max_size_of_parameters) { duke@435: // use customized signature handler duke@435: MutexLocker mu(SignatureHandlerLibrary_lock); duke@435: // make sure data structure is initialized duke@435: initialize(); duke@435: // lookup method signature's fingerprint duke@435: uint64_t fingerprint = Fingerprinter(method).fingerprint(); duke@435: handler_index = _fingerprints->find(fingerprint); duke@435: // create handler if necessary duke@435: if (handler_index < 0) { duke@435: ResourceMark rm; duke@435: ptrdiff_t align_offset = (address) duke@435: round_to((intptr_t)_buffer, CodeEntryAlignment) - (address)_buffer; duke@435: CodeBuffer buffer((address)(_buffer + align_offset), duke@435: SignatureHandlerLibrary::buffer_size - align_offset); duke@435: InterpreterRuntime::SignatureHandlerGenerator(method, &buffer).generate(fingerprint); duke@435: // copy into code heap duke@435: address handler = set_handler(&buffer); duke@435: if (handler == NULL) { duke@435: // use slow signature handler duke@435: } else { duke@435: // debugging suppport duke@435: if (PrintSignatureHandlers) { duke@435: tty->cr(); duke@435: tty->print_cr("argument handler #%d for: %s %s (fingerprint = " UINT64_FORMAT ", %d bytes generated)", duke@435: _handlers->length(), duke@435: (method->is_static() ? "static" : "receiver"), duke@435: method->name_and_sig_as_C_string(), duke@435: fingerprint, duke@435: buffer.code_size()); duke@435: Disassembler::decode(handler, handler + buffer.code_size()); duke@435: #ifndef PRODUCT duke@435: tty->print_cr(" --- associated result handler ---"); duke@435: address rh_begin = Interpreter::result_handler(method()->result_type()); duke@435: address rh_end = rh_begin; duke@435: while (*(int*)rh_end != 0) { duke@435: rh_end += sizeof(int); duke@435: } duke@435: Disassembler::decode(rh_begin, rh_end); duke@435: #endif duke@435: } duke@435: // add handler to library duke@435: _fingerprints->append(fingerprint); duke@435: _handlers->append(handler); duke@435: // set handler index duke@435: assert(_fingerprints->length() == _handlers->length(), "sanity check"); duke@435: handler_index = _fingerprints->length() - 1; duke@435: } duke@435: } duke@435: } else { duke@435: CHECK_UNHANDLED_OOPS_ONLY(Thread::current()->clear_unhandled_oops()); duke@435: } duke@435: if (handler_index < 0) { duke@435: // use generic signature handler duke@435: method->set_signature_handler(Interpreter::slow_signature_handler()); duke@435: } else { duke@435: // set handler duke@435: method->set_signature_handler(_handlers->at(handler_index)); duke@435: } duke@435: } duke@435: assert(method->signature_handler() == Interpreter::slow_signature_handler() || duke@435: _handlers->find(method->signature_handler()) == _fingerprints->find(Fingerprinter(method).fingerprint()), duke@435: "sanity check"); duke@435: } duke@435: duke@435: duke@435: BufferBlob* SignatureHandlerLibrary::_handler_blob = NULL; duke@435: address SignatureHandlerLibrary::_handler = NULL; duke@435: GrowableArray* SignatureHandlerLibrary::_fingerprints = NULL; duke@435: GrowableArray
* SignatureHandlerLibrary::_handlers = NULL; duke@435: address SignatureHandlerLibrary::_buffer = NULL; duke@435: duke@435: duke@435: IRT_ENTRY(void, InterpreterRuntime::prepare_native_call(JavaThread* thread, methodOopDesc* method)) duke@435: methodHandle m(thread, method); duke@435: assert(m->is_native(), "sanity check"); duke@435: // lookup native function entry point if it doesn't exist duke@435: bool in_base_library; duke@435: if (!m->has_native_function()) { duke@435: NativeLookup::lookup(m, in_base_library, CHECK); duke@435: } duke@435: // make sure signature handler is installed duke@435: SignatureHandlerLibrary::add(m); duke@435: // The interpreter entry point checks the signature handler first, duke@435: // before trying to fetch the native entry point and klass mirror. duke@435: // We must set the signature handler last, so that multiple processors duke@435: // preparing the same method will be sure to see non-null entry & mirror. duke@435: IRT_END duke@435: duke@435: #if defined(IA32) || defined(AMD64) duke@435: IRT_LEAF(void, InterpreterRuntime::popframe_move_outgoing_args(JavaThread* thread, void* src_address, void* dest_address)) duke@435: if (src_address == dest_address) { duke@435: return; duke@435: } duke@435: ResetNoHandleMark rnm; // In a LEAF entry. duke@435: HandleMark hm; duke@435: ResourceMark rm; duke@435: frame fr = thread->last_frame(); duke@435: assert(fr.is_interpreted_frame(), ""); duke@435: jint bci = fr.interpreter_frame_bci(); duke@435: methodHandle mh(thread, fr.interpreter_frame_method()); duke@435: Bytecode_invoke* invoke = Bytecode_invoke_at(mh, bci); duke@435: ArgumentSizeComputer asc(invoke->signature()); twisti@1573: int size_of_arguments = (asc.size() + (invoke->has_receiver() ? 1 : 0)); // receiver duke@435: Copy::conjoint_bytes(src_address, dest_address, duke@435: size_of_arguments * Interpreter::stackElementSize()); duke@435: IRT_END duke@435: #endif