duke@435: /* kvn@2556: * Copyright (c) 2005, 2011, Oracle and/or its affiliates. All rights reserved. duke@435: * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. duke@435: * duke@435: * This code is free software; you can redistribute it and/or modify it duke@435: * under the terms of the GNU General Public License version 2 only, as duke@435: * published by the Free Software Foundation. duke@435: * duke@435: * This code is distributed in the hope that it will be useful, but WITHOUT duke@435: * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or duke@435: * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License duke@435: * version 2 for more details (a copy is included in the LICENSE file that duke@435: * accompanied this code). duke@435: * duke@435: * You should have received a copy of the GNU General Public License version duke@435: * 2 along with this work; if not, write to the Free Software Foundation, duke@435: * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. duke@435: * trims@1907: * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA trims@1907: * or visit www.oracle.com if you need additional information or have any trims@1907: * questions. duke@435: * duke@435: */ duke@435: stefank@2314: #include "precompiled.hpp" stefank@2314: #include "ci/bcEscapeAnalyzer.hpp" stefank@2314: #include "libadt/vectset.hpp" stefank@2314: #include "memory/allocation.hpp" stefank@2314: #include "opto/c2compiler.hpp" stefank@2314: #include "opto/callnode.hpp" stefank@2314: #include "opto/cfgnode.hpp" stefank@2314: #include "opto/compile.hpp" stefank@2314: #include "opto/escape.hpp" stefank@2314: #include "opto/phaseX.hpp" stefank@2314: #include "opto/rootnode.hpp" duke@435: duke@435: void PointsToNode::add_edge(uint targIdx, PointsToNode::EdgeType et) { duke@435: uint v = (targIdx << EdgeShift) + ((uint) et); duke@435: if (_edges == NULL) { duke@435: Arena *a = Compile::current()->comp_arena(); duke@435: _edges = new(a) GrowableArray(a, INITIAL_EDGE_COUNT, 0, 0); duke@435: } duke@435: _edges->append_if_missing(v); duke@435: } duke@435: duke@435: void PointsToNode::remove_edge(uint targIdx, PointsToNode::EdgeType et) { duke@435: uint v = (targIdx << EdgeShift) + ((uint) et); duke@435: duke@435: _edges->remove(v); duke@435: } duke@435: duke@435: #ifndef PRODUCT kvn@512: static const char *node_type_names[] = { duke@435: "UnknownType", duke@435: "JavaObject", duke@435: "LocalVar", duke@435: "Field" duke@435: }; duke@435: kvn@512: static const char *esc_names[] = { duke@435: "UnknownEscape", kvn@500: "NoEscape", kvn@500: "ArgEscape", kvn@500: "GlobalEscape" duke@435: }; duke@435: kvn@512: static const char *edge_type_suffix[] = { duke@435: "?", // UnknownEdge duke@435: "P", // PointsToEdge duke@435: "D", // DeferredEdge duke@435: "F" // FieldEdge duke@435: }; duke@435: kvn@688: void PointsToNode::dump(bool print_state) const { duke@435: NodeType nt = node_type(); kvn@688: tty->print("%s ", node_type_names[(int) nt]); kvn@688: if (print_state) { kvn@688: EscapeState es = escape_state(); kvn@688: tty->print("%s %s ", esc_names[(int) es], _scalar_replaceable ? "":"NSR"); kvn@688: } kvn@688: tty->print("[["); duke@435: for (uint i = 0; i < edge_count(); i++) { duke@435: tty->print(" %d%s", edge_target(i), edge_type_suffix[(int) edge_type(i)]); duke@435: } duke@435: tty->print("]] "); duke@435: if (_node == NULL) duke@435: tty->print_cr(""); duke@435: else duke@435: _node->dump(); duke@435: } duke@435: #endif duke@435: kvn@1989: ConnectionGraph::ConnectionGraph(Compile * C, PhaseIterGVN *igvn) : kvn@679: _nodes(C->comp_arena(), C->unique(), C->unique(), PointsToNode()), kvn@679: _processed(C->comp_arena()), kvn@2556: pt_ptset(C->comp_arena()), kvn@2556: pt_visited(C->comp_arena()), kvn@2556: pt_worklist(C->comp_arena(), 4, 0, 0), kvn@679: _collecting(true), kvn@2276: _progress(false), kvn@679: _compile(C), kvn@1989: _igvn(igvn), kvn@679: _node_map(C->comp_arena()) { kvn@679: kvn@688: _phantom_object = C->top()->_idx, kvn@688: add_node(C->top(), PointsToNode::JavaObject, PointsToNode::GlobalEscape,true); kvn@688: kvn@688: // Add ConP(#NULL) and ConN(#NULL) nodes. kvn@688: Node* oop_null = igvn->zerocon(T_OBJECT); kvn@688: _oop_null = oop_null->_idx; kvn@688: assert(_oop_null < C->unique(), "should be created already"); kvn@688: add_node(oop_null, PointsToNode::JavaObject, PointsToNode::NoEscape, true); kvn@688: kvn@688: if (UseCompressedOops) { kvn@688: Node* noop_null = igvn->zerocon(T_NARROWOOP); kvn@688: _noop_null = noop_null->_idx; kvn@688: assert(_noop_null < C->unique(), "should be created already"); kvn@688: add_node(noop_null, PointsToNode::JavaObject, PointsToNode::NoEscape, true); kvn@688: } duke@435: } duke@435: duke@435: void ConnectionGraph::add_pointsto_edge(uint from_i, uint to_i) { duke@435: PointsToNode *f = ptnode_adr(from_i); duke@435: PointsToNode *t = ptnode_adr(to_i); duke@435: duke@435: assert(f->node_type() != PointsToNode::UnknownType && t->node_type() != PointsToNode::UnknownType, "node types must be set"); duke@435: assert(f->node_type() == PointsToNode::LocalVar || f->node_type() == PointsToNode::Field, "invalid source of PointsTo edge"); duke@435: assert(t->node_type() == PointsToNode::JavaObject, "invalid destination of PointsTo edge"); kvn@2276: add_edge(f, to_i, PointsToNode::PointsToEdge); duke@435: } duke@435: duke@435: void ConnectionGraph::add_deferred_edge(uint from_i, uint to_i) { duke@435: PointsToNode *f = ptnode_adr(from_i); duke@435: PointsToNode *t = ptnode_adr(to_i); duke@435: duke@435: assert(f->node_type() != PointsToNode::UnknownType && t->node_type() != PointsToNode::UnknownType, "node types must be set"); duke@435: assert(f->node_type() == PointsToNode::LocalVar || f->node_type() == PointsToNode::Field, "invalid source of Deferred edge"); duke@435: assert(t->node_type() == PointsToNode::LocalVar || t->node_type() == PointsToNode::Field, "invalid destination of Deferred edge"); duke@435: // don't add a self-referential edge, this can occur during removal of duke@435: // deferred edges duke@435: if (from_i != to_i) kvn@2276: add_edge(f, to_i, PointsToNode::DeferredEdge); duke@435: } duke@435: kvn@500: int ConnectionGraph::address_offset(Node* adr, PhaseTransform *phase) { kvn@500: const Type *adr_type = phase->type(adr); kvn@500: if (adr->is_AddP() && adr_type->isa_oopptr() == NULL && kvn@500: adr->in(AddPNode::Address)->is_Proj() && kvn@500: adr->in(AddPNode::Address)->in(0)->is_Allocate()) { kvn@500: // We are computing a raw address for a store captured by an Initialize kvn@500: // compute an appropriate address type. AddP cases #3 and #5 (see below). kvn@500: int offs = (int)phase->find_intptr_t_con(adr->in(AddPNode::Offset), Type::OffsetBot); kvn@500: assert(offs != Type::OffsetBot || kvn@500: adr->in(AddPNode::Address)->in(0)->is_AllocateArray(), kvn@500: "offset must be a constant or it is initialization of array"); kvn@500: return offs; kvn@500: } kvn@500: const TypePtr *t_ptr = adr_type->isa_ptr(); duke@435: assert(t_ptr != NULL, "must be a pointer type"); duke@435: return t_ptr->offset(); duke@435: } duke@435: duke@435: void ConnectionGraph::add_field_edge(uint from_i, uint to_i, int offset) { duke@435: PointsToNode *f = ptnode_adr(from_i); duke@435: PointsToNode *t = ptnode_adr(to_i); duke@435: duke@435: assert(f->node_type() != PointsToNode::UnknownType && t->node_type() != PointsToNode::UnknownType, "node types must be set"); duke@435: assert(f->node_type() == PointsToNode::JavaObject, "invalid destination of Field edge"); duke@435: assert(t->node_type() == PointsToNode::Field, "invalid destination of Field edge"); duke@435: assert (t->offset() == -1 || t->offset() == offset, "conflicting field offsets"); duke@435: t->set_offset(offset); duke@435: kvn@2276: add_edge(f, to_i, PointsToNode::FieldEdge); duke@435: } duke@435: duke@435: void ConnectionGraph::set_escape_state(uint ni, PointsToNode::EscapeState es) { duke@435: PointsToNode *npt = ptnode_adr(ni); duke@435: PointsToNode::EscapeState old_es = npt->escape_state(); duke@435: if (es > old_es) duke@435: npt->set_escape_state(es); duke@435: } duke@435: kvn@500: void ConnectionGraph::add_node(Node *n, PointsToNode::NodeType nt, kvn@500: PointsToNode::EscapeState es, bool done) { kvn@500: PointsToNode* ptadr = ptnode_adr(n->_idx); kvn@500: ptadr->_node = n; kvn@500: ptadr->set_node_type(nt); kvn@500: kvn@500: // inline set_escape_state(idx, es); kvn@500: PointsToNode::EscapeState old_es = ptadr->escape_state(); kvn@500: if (es > old_es) kvn@500: ptadr->set_escape_state(es); kvn@500: kvn@500: if (done) kvn@500: _processed.set(n->_idx); kvn@500: } kvn@500: kvn@1989: PointsToNode::EscapeState ConnectionGraph::escape_state(Node *n) { duke@435: uint idx = n->_idx; duke@435: PointsToNode::EscapeState es; duke@435: kvn@500: // If we are still collecting or there were no non-escaping allocations kvn@500: // we don't know the answer yet kvn@679: if (_collecting) duke@435: return PointsToNode::UnknownEscape; duke@435: duke@435: // if the node was created after the escape computation, return duke@435: // UnknownEscape kvn@679: if (idx >= nodes_size()) duke@435: return PointsToNode::UnknownEscape; duke@435: kvn@679: es = ptnode_adr(idx)->escape_state(); duke@435: duke@435: // if we have already computed a value, return it kvn@895: if (es != PointsToNode::UnknownEscape && kvn@895: ptnode_adr(idx)->node_type() == PointsToNode::JavaObject) duke@435: return es; duke@435: kvn@679: // PointsTo() calls n->uncast() which can return a new ideal node. kvn@679: if (n->uncast()->_idx >= nodes_size()) kvn@679: return PointsToNode::UnknownEscape; kvn@679: kvn@1989: PointsToNode::EscapeState orig_es = es; kvn@1989: duke@435: // compute max escape state of anything this node could point to kvn@2556: for(VectorSetI i(PointsTo(n)); i.test() && es != PointsToNode::GlobalEscape; ++i) { duke@435: uint pt = i.elem; kvn@679: PointsToNode::EscapeState pes = ptnode_adr(pt)->escape_state(); duke@435: if (pes > es) duke@435: es = pes; duke@435: } kvn@1989: if (orig_es != es) { kvn@1989: // cache the computed escape state kvn@1989: assert(es != PointsToNode::UnknownEscape, "should have computed an escape state"); kvn@1989: ptnode_adr(idx)->set_escape_state(es); kvn@1989: } // orig_es could be PointsToNode::UnknownEscape duke@435: return es; duke@435: } duke@435: kvn@2556: VectorSet* ConnectionGraph::PointsTo(Node * n) { kvn@2556: pt_ptset.Reset(); kvn@2556: pt_visited.Reset(); kvn@2556: pt_worklist.clear(); duke@435: kvn@559: #ifdef ASSERT kvn@559: Node *orig_n = n; kvn@559: #endif kvn@559: kvn@500: n = n->uncast(); kvn@679: PointsToNode* npt = ptnode_adr(n->_idx); duke@435: duke@435: // If we have a JavaObject, return just that object kvn@679: if (npt->node_type() == PointsToNode::JavaObject) { kvn@2556: pt_ptset.set(n->_idx); kvn@2556: return &pt_ptset; duke@435: } kvn@559: #ifdef ASSERT kvn@679: if (npt->_node == NULL) { kvn@559: if (orig_n != n) kvn@559: orig_n->dump(); kvn@559: n->dump(); kvn@679: assert(npt->_node != NULL, "unregistered node"); kvn@559: } kvn@559: #endif kvn@2556: pt_worklist.push(n->_idx); kvn@2556: while(pt_worklist.length() > 0) { kvn@2556: int ni = pt_worklist.pop(); kvn@2556: if (pt_visited.test_set(ni)) kvn@679: continue; duke@435: kvn@679: PointsToNode* pn = ptnode_adr(ni); kvn@679: // ensure that all inputs of a Phi have been processed kvn@679: assert(!_collecting || !pn->_node->is_Phi() || _processed.test(ni),""); kvn@679: kvn@679: int edges_processed = 0; kvn@679: uint e_cnt = pn->edge_count(); kvn@679: for (uint e = 0; e < e_cnt; e++) { kvn@679: uint etgt = pn->edge_target(e); kvn@679: PointsToNode::EdgeType et = pn->edge_type(e); kvn@679: if (et == PointsToNode::PointsToEdge) { kvn@2556: pt_ptset.set(etgt); kvn@679: edges_processed++; kvn@679: } else if (et == PointsToNode::DeferredEdge) { kvn@2556: pt_worklist.push(etgt); kvn@679: edges_processed++; kvn@679: } else { kvn@679: assert(false,"neither PointsToEdge or DeferredEdge"); duke@435: } kvn@679: } kvn@679: if (edges_processed == 0) { kvn@679: // no deferred or pointsto edges found. Assume the value was set kvn@679: // outside this method. Add the phantom object to the pointsto set. kvn@2556: pt_ptset.set(_phantom_object); duke@435: } duke@435: } kvn@2556: return &pt_ptset; duke@435: } duke@435: kvn@536: void ConnectionGraph::remove_deferred(uint ni, GrowableArray* deferred_edges, VectorSet* visited) { kvn@536: // This method is most expensive during ConnectionGraph construction. kvn@536: // Reuse vectorSet and an additional growable array for deferred edges. kvn@536: deferred_edges->clear(); kvn@2556: visited->Reset(); duke@435: kvn@679: visited->set(ni); duke@435: PointsToNode *ptn = ptnode_adr(ni); duke@435: kvn@536: // Mark current edges as visited and move deferred edges to separate array. kvn@679: for (uint i = 0; i < ptn->edge_count(); ) { kvn@500: uint t = ptn->edge_target(i); kvn@536: #ifdef ASSERT kvn@536: assert(!visited->test_set(t), "expecting no duplications"); kvn@536: #else kvn@536: visited->set(t); kvn@536: #endif kvn@536: if (ptn->edge_type(i) == PointsToNode::DeferredEdge) { kvn@536: ptn->remove_edge(t, PointsToNode::DeferredEdge); kvn@536: deferred_edges->append(t); kvn@559: } else { kvn@559: i++; kvn@536: } kvn@536: } kvn@536: for (int next = 0; next < deferred_edges->length(); ++next) { kvn@536: uint t = deferred_edges->at(next); kvn@500: PointsToNode *ptt = ptnode_adr(t); kvn@679: uint e_cnt = ptt->edge_count(); kvn@679: for (uint e = 0; e < e_cnt; e++) { kvn@679: uint etgt = ptt->edge_target(e); kvn@679: if (visited->test_set(etgt)) kvn@536: continue; kvn@679: kvn@679: PointsToNode::EdgeType et = ptt->edge_type(e); kvn@679: if (et == PointsToNode::PointsToEdge) { kvn@679: add_pointsto_edge(ni, etgt); kvn@679: if(etgt == _phantom_object) { kvn@679: // Special case - field set outside (globally escaping). kvn@679: ptn->set_escape_state(PointsToNode::GlobalEscape); kvn@679: } kvn@679: } else if (et == PointsToNode::DeferredEdge) { kvn@679: deferred_edges->append(etgt); kvn@679: } else { kvn@679: assert(false,"invalid connection graph"); duke@435: } duke@435: } duke@435: } duke@435: } duke@435: duke@435: duke@435: // Add an edge to node given by "to_i" from any field of adr_i whose offset duke@435: // matches "offset" A deferred edge is added if to_i is a LocalVar, and duke@435: // a pointsto edge is added if it is a JavaObject duke@435: duke@435: void ConnectionGraph::add_edge_from_fields(uint adr_i, uint to_i, int offs) { kvn@679: PointsToNode* an = ptnode_adr(adr_i); kvn@679: PointsToNode* to = ptnode_adr(to_i); kvn@679: bool deferred = (to->node_type() == PointsToNode::LocalVar); duke@435: kvn@679: for (uint fe = 0; fe < an->edge_count(); fe++) { kvn@679: assert(an->edge_type(fe) == PointsToNode::FieldEdge, "expecting a field edge"); kvn@679: int fi = an->edge_target(fe); kvn@679: PointsToNode* pf = ptnode_adr(fi); kvn@679: int po = pf->offset(); duke@435: if (po == offs || po == Type::OffsetBot || offs == Type::OffsetBot) { duke@435: if (deferred) duke@435: add_deferred_edge(fi, to_i); duke@435: else duke@435: add_pointsto_edge(fi, to_i); duke@435: } duke@435: } duke@435: } duke@435: kvn@500: // Add a deferred edge from node given by "from_i" to any field of adr_i kvn@500: // whose offset matches "offset". duke@435: void ConnectionGraph::add_deferred_edge_to_fields(uint from_i, uint adr_i, int offs) { kvn@679: PointsToNode* an = ptnode_adr(adr_i); kvn@679: for (uint fe = 0; fe < an->edge_count(); fe++) { kvn@679: assert(an->edge_type(fe) == PointsToNode::FieldEdge, "expecting a field edge"); kvn@679: int fi = an->edge_target(fe); kvn@679: PointsToNode* pf = ptnode_adr(fi); kvn@679: int po = pf->offset(); kvn@679: if (pf->edge_count() == 0) { duke@435: // we have not seen any stores to this field, assume it was set outside this method duke@435: add_pointsto_edge(fi, _phantom_object); duke@435: } duke@435: if (po == offs || po == Type::OffsetBot || offs == Type::OffsetBot) { duke@435: add_deferred_edge(from_i, fi); duke@435: } duke@435: } duke@435: } duke@435: kvn@500: // Helper functions kvn@500: kvn@500: static Node* get_addp_base(Node *addp) { kvn@500: assert(addp->is_AddP(), "must be AddP"); kvn@500: // kvn@500: // AddP cases for Base and Address inputs: kvn@500: // case #1. Direct object's field reference: kvn@500: // Allocate kvn@500: // | kvn@500: // Proj #5 ( oop result ) kvn@500: // | kvn@500: // CheckCastPP (cast to instance type) kvn@500: // | | kvn@500: // AddP ( base == address ) kvn@500: // kvn@500: // case #2. Indirect object's field reference: kvn@500: // Phi kvn@500: // | kvn@500: // CastPP (cast to instance type) kvn@500: // | | kvn@500: // AddP ( base == address ) kvn@500: // kvn@500: // case #3. Raw object's field reference for Initialize node: kvn@500: // Allocate kvn@500: // | kvn@500: // Proj #5 ( oop result ) kvn@500: // top | kvn@500: // \ | kvn@500: // AddP ( base == top ) kvn@500: // kvn@500: // case #4. Array's element reference: kvn@500: // {CheckCastPP | CastPP} kvn@500: // | | | kvn@500: // | AddP ( array's element offset ) kvn@500: // | | kvn@500: // AddP ( array's offset ) kvn@500: // kvn@500: // case #5. Raw object's field reference for arraycopy stub call: kvn@500: // The inline_native_clone() case when the arraycopy stub is called kvn@500: // after the allocation before Initialize and CheckCastPP nodes. kvn@500: // Allocate kvn@500: // | kvn@500: // Proj #5 ( oop result ) kvn@500: // | | kvn@500: // AddP ( base == address ) kvn@500: // kvn@512: // case #6. Constant Pool, ThreadLocal, CastX2P or kvn@512: // Raw object's field reference: kvn@512: // {ConP, ThreadLocal, CastX2P, raw Load} kvn@500: // top | kvn@500: // \ | kvn@500: // AddP ( base == top ) kvn@500: // kvn@512: // case #7. Klass's field reference. kvn@512: // LoadKlass kvn@512: // | | kvn@512: // AddP ( base == address ) kvn@512: // kvn@599: // case #8. narrow Klass's field reference. kvn@599: // LoadNKlass kvn@599: // | kvn@599: // DecodeN kvn@599: // | | kvn@599: // AddP ( base == address ) kvn@599: // kvn@500: Node *base = addp->in(AddPNode::Base)->uncast(); kvn@500: if (base->is_top()) { // The AddP case #3 and #6. kvn@500: base = addp->in(AddPNode::Address)->uncast(); kvn@1392: while (base->is_AddP()) { kvn@1392: // Case #6 (unsafe access) may have several chained AddP nodes. kvn@1392: assert(base->in(AddPNode::Base)->is_top(), "expected unsafe access address only"); kvn@1392: base = base->in(AddPNode::Address)->uncast(); kvn@1392: } kvn@500: assert(base->Opcode() == Op_ConP || base->Opcode() == Op_ThreadLocal || kvn@603: base->Opcode() == Op_CastX2P || base->is_DecodeN() || kvn@512: (base->is_Mem() && base->bottom_type() == TypeRawPtr::NOTNULL) || kvn@512: (base->is_Proj() && base->in(0)->is_Allocate()), "sanity"); duke@435: } kvn@500: return base; kvn@500: } kvn@500: kvn@500: static Node* find_second_addp(Node* addp, Node* n) { kvn@500: assert(addp->is_AddP() && addp->outcnt() > 0, "Don't process dead nodes"); kvn@500: kvn@500: Node* addp2 = addp->raw_out(0); kvn@500: if (addp->outcnt() == 1 && addp2->is_AddP() && kvn@500: addp2->in(AddPNode::Base) == n && kvn@500: addp2->in(AddPNode::Address) == addp) { kvn@500: kvn@500: assert(addp->in(AddPNode::Base) == n, "expecting the same base"); kvn@500: // kvn@500: // Find array's offset to push it on worklist first and kvn@500: // as result process an array's element offset first (pushed second) kvn@500: // to avoid CastPP for the array's offset. kvn@500: // Otherwise the inserted CastPP (LocalVar) will point to what kvn@500: // the AddP (Field) points to. Which would be wrong since kvn@500: // the algorithm expects the CastPP has the same point as kvn@500: // as AddP's base CheckCastPP (LocalVar). kvn@500: // kvn@500: // ArrayAllocation kvn@500: // | kvn@500: // CheckCastPP kvn@500: // | kvn@500: // memProj (from ArrayAllocation CheckCastPP) kvn@500: // | || kvn@500: // | || Int (element index) kvn@500: // | || | ConI (log(element size)) kvn@500: // | || | / kvn@500: // | || LShift kvn@500: // | || / kvn@500: // | AddP (array's element offset) kvn@500: // | | kvn@500: // | | ConI (array's offset: #12(32-bits) or #24(64-bits)) kvn@500: // | / / kvn@500: // AddP (array's offset) kvn@500: // | kvn@500: // Load/Store (memory operation on array's element) kvn@500: // kvn@500: return addp2; kvn@500: } kvn@500: return NULL; duke@435: } duke@435: duke@435: // duke@435: // Adjust the type and inputs of an AddP which computes the duke@435: // address of a field of an instance duke@435: // kvn@728: bool ConnectionGraph::split_AddP(Node *addp, Node *base, PhaseGVN *igvn) { kvn@500: const TypeOopPtr *base_t = igvn->type(base)->isa_oopptr(); kvn@658: assert(base_t != NULL && base_t->is_known_instance(), "expecting instance oopptr"); duke@435: const TypeOopPtr *t = igvn->type(addp)->isa_oopptr(); kvn@500: if (t == NULL) { kvn@500: // We are computing a raw address for a store captured by an Initialize kvn@728: // compute an appropriate address type (cases #3 and #5). kvn@500: assert(igvn->type(addp) == TypeRawPtr::NOTNULL, "must be raw pointer"); kvn@500: assert(addp->in(AddPNode::Address)->is_Proj(), "base of raw address must be result projection from allocation"); kvn@741: intptr_t offs = (int)igvn->find_intptr_t_con(addp->in(AddPNode::Offset), Type::OffsetBot); kvn@500: assert(offs != Type::OffsetBot, "offset must be a constant"); kvn@500: t = base_t->add_offset(offs)->is_oopptr(); kvn@500: } kvn@658: int inst_id = base_t->instance_id(); kvn@658: assert(!t->is_known_instance() || t->instance_id() == inst_id, duke@435: "old type must be non-instance or match new type"); kvn@728: kvn@728: // The type 't' could be subclass of 'base_t'. kvn@728: // As result t->offset() could be large then base_t's size and it will kvn@728: // cause the failure in add_offset() with narrow oops since TypeOopPtr() kvn@728: // constructor verifies correctness of the offset. kvn@728: // twisti@1040: // It could happened on subclass's branch (from the type profiling kvn@728: // inlining) which was not eliminated during parsing since the exactness kvn@728: // of the allocation type was not propagated to the subclass type check. kvn@728: // kvn@1423: // Or the type 't' could be not related to 'base_t' at all. kvn@1423: // It could happened when CHA type is different from MDO type on a dead path kvn@1423: // (for example, from instanceof check) which is not collapsed during parsing. kvn@1423: // kvn@728: // Do nothing for such AddP node and don't process its users since kvn@728: // this code branch will go away. kvn@728: // kvn@728: if (!t->is_known_instance() && kvn@1423: !base_t->klass()->is_subtype_of(t->klass())) { kvn@728: return false; // bail out kvn@728: } kvn@728: duke@435: const TypeOopPtr *tinst = base_t->add_offset(t->offset())->is_oopptr(); kvn@1497: // Do NOT remove the next line: ensure a new alias index is allocated kvn@1497: // for the instance type. Note: C++ will not remove it since the call kvn@1497: // has side effect. duke@435: int alias_idx = _compile->get_alias_index(tinst); duke@435: igvn->set_type(addp, tinst); duke@435: // record the allocation in the node map kvn@1536: assert(ptnode_adr(addp->_idx)->_node != NULL, "should be registered"); duke@435: set_map(addp->_idx, get_map(base->_idx)); kvn@688: kvn@688: // Set addp's Base and Address to 'base'. kvn@688: Node *abase = addp->in(AddPNode::Base); kvn@688: Node *adr = addp->in(AddPNode::Address); kvn@688: if (adr->is_Proj() && adr->in(0)->is_Allocate() && kvn@688: adr->in(0)->_idx == (uint)inst_id) { kvn@688: // Skip AddP cases #3 and #5. kvn@688: } else { kvn@688: assert(!abase->is_top(), "sanity"); // AddP case #3 kvn@688: if (abase != base) { kvn@688: igvn->hash_delete(addp); kvn@688: addp->set_req(AddPNode::Base, base); kvn@688: if (abase == adr) { kvn@688: addp->set_req(AddPNode::Address, base); kvn@688: } else { kvn@688: // AddP case #4 (adr is array's element offset AddP node) kvn@688: #ifdef ASSERT kvn@688: const TypeOopPtr *atype = igvn->type(adr)->isa_oopptr(); kvn@688: assert(adr->is_AddP() && atype != NULL && kvn@688: atype->instance_id() == inst_id, "array's element offset should be processed first"); kvn@688: #endif kvn@688: } kvn@688: igvn->hash_insert(addp); duke@435: } duke@435: } kvn@500: // Put on IGVN worklist since at least addp's type was changed above. kvn@500: record_for_optimizer(addp); kvn@728: return true; duke@435: } duke@435: duke@435: // duke@435: // Create a new version of orig_phi if necessary. Returns either the newly duke@435: // created phi or an existing phi. Sets create_new to indicate wheter a new duke@435: // phi was created. Cache the last newly created phi in the node map. duke@435: // duke@435: PhiNode *ConnectionGraph::create_split_phi(PhiNode *orig_phi, int alias_idx, GrowableArray &orig_phi_worklist, PhaseGVN *igvn, bool &new_created) { duke@435: Compile *C = _compile; duke@435: new_created = false; duke@435: int phi_alias_idx = C->get_alias_index(orig_phi->adr_type()); duke@435: // nothing to do if orig_phi is bottom memory or matches alias_idx kvn@500: if (phi_alias_idx == alias_idx) { duke@435: return orig_phi; duke@435: } kvn@1286: // Have we recently created a Phi for this alias index? duke@435: PhiNode *result = get_map_phi(orig_phi->_idx); duke@435: if (result != NULL && C->get_alias_index(result->adr_type()) == alias_idx) { duke@435: return result; duke@435: } kvn@1286: // Previous check may fail when the same wide memory Phi was split into Phis kvn@1286: // for different memory slices. Search all Phis for this region. kvn@1286: if (result != NULL) { kvn@1286: Node* region = orig_phi->in(0); kvn@1286: for (DUIterator_Fast imax, i = region->fast_outs(imax); i < imax; i++) { kvn@1286: Node* phi = region->fast_out(i); kvn@1286: if (phi->is_Phi() && kvn@1286: C->get_alias_index(phi->as_Phi()->adr_type()) == alias_idx) { kvn@1286: assert(phi->_idx >= nodes_size(), "only new Phi per instance memory slice"); kvn@1286: return phi->as_Phi(); kvn@1286: } kvn@1286: } kvn@1286: } kvn@473: if ((int)C->unique() + 2*NodeLimitFudgeFactor > MaxNodeLimit) { kvn@473: if (C->do_escape_analysis() == true && !C->failing()) { kvn@473: // Retry compilation without escape analysis. kvn@473: // If this is the first failure, the sentinel string will "stick" kvn@473: // to the Compile object, and the C2Compiler will see it and retry. kvn@473: C->record_failure(C2Compiler::retry_no_escape_analysis()); kvn@473: } kvn@473: return NULL; kvn@473: } duke@435: orig_phi_worklist.append_if_missing(orig_phi); kvn@500: const TypePtr *atype = C->get_adr_type(alias_idx); duke@435: result = PhiNode::make(orig_phi->in(0), NULL, Type::MEMORY, atype); kvn@1286: C->copy_node_notes_to(result, orig_phi); duke@435: igvn->set_type(result, result->bottom_type()); duke@435: record_for_optimizer(result); kvn@1536: kvn@1536: debug_only(Node* pn = ptnode_adr(orig_phi->_idx)->_node;) kvn@1536: assert(pn == NULL || pn == orig_phi, "wrong node"); kvn@1536: set_map(orig_phi->_idx, result); kvn@1536: ptnode_adr(orig_phi->_idx)->_node = orig_phi; kvn@1536: duke@435: new_created = true; duke@435: return result; duke@435: } duke@435: duke@435: // duke@435: // Return a new version of Memory Phi "orig_phi" with the inputs having the duke@435: // specified alias index. duke@435: // duke@435: PhiNode *ConnectionGraph::split_memory_phi(PhiNode *orig_phi, int alias_idx, GrowableArray &orig_phi_worklist, PhaseGVN *igvn) { duke@435: duke@435: assert(alias_idx != Compile::AliasIdxBot, "can't split out bottom memory"); duke@435: Compile *C = _compile; duke@435: bool new_phi_created; kvn@500: PhiNode *result = create_split_phi(orig_phi, alias_idx, orig_phi_worklist, igvn, new_phi_created); duke@435: if (!new_phi_created) { duke@435: return result; duke@435: } duke@435: duke@435: GrowableArray phi_list; duke@435: GrowableArray cur_input; duke@435: duke@435: PhiNode *phi = orig_phi; duke@435: uint idx = 1; duke@435: bool finished = false; duke@435: while(!finished) { duke@435: while (idx < phi->req()) { kvn@500: Node *mem = find_inst_mem(phi->in(idx), alias_idx, orig_phi_worklist, igvn); duke@435: if (mem != NULL && mem->is_Phi()) { kvn@500: PhiNode *newphi = create_split_phi(mem->as_Phi(), alias_idx, orig_phi_worklist, igvn, new_phi_created); duke@435: if (new_phi_created) { duke@435: // found an phi for which we created a new split, push current one on worklist and begin duke@435: // processing new one duke@435: phi_list.push(phi); duke@435: cur_input.push(idx); duke@435: phi = mem->as_Phi(); kvn@500: result = newphi; duke@435: idx = 1; duke@435: continue; duke@435: } else { kvn@500: mem = newphi; duke@435: } duke@435: } kvn@473: if (C->failing()) { kvn@473: return NULL; kvn@473: } duke@435: result->set_req(idx++, mem); duke@435: } duke@435: #ifdef ASSERT duke@435: // verify that the new Phi has an input for each input of the original duke@435: assert( phi->req() == result->req(), "must have same number of inputs."); duke@435: assert( result->in(0) != NULL && result->in(0) == phi->in(0), "regions must match"); kvn@500: #endif kvn@500: // Check if all new phi's inputs have specified alias index. kvn@500: // Otherwise use old phi. duke@435: for (uint i = 1; i < phi->req(); i++) { kvn@500: Node* in = result->in(i); kvn@500: assert((phi->in(i) == NULL) == (in == NULL), "inputs must correspond."); duke@435: } duke@435: // we have finished processing a Phi, see if there are any more to do duke@435: finished = (phi_list.length() == 0 ); duke@435: if (!finished) { duke@435: phi = phi_list.pop(); duke@435: idx = cur_input.pop(); kvn@500: PhiNode *prev_result = get_map_phi(phi->_idx); kvn@500: prev_result->set_req(idx++, result); kvn@500: result = prev_result; duke@435: } duke@435: } duke@435: return result; duke@435: } duke@435: kvn@500: kvn@500: // kvn@500: // The next methods are derived from methods in MemNode. kvn@500: // never@2170: static Node *step_through_mergemem(MergeMemNode *mmem, int alias_idx, const TypeOopPtr *toop) { kvn@500: Node *mem = mmem; never@2170: // TypeOopPtr::NOTNULL+any is an OOP with unknown offset - generally kvn@500: // means an array I have not precisely typed yet. Do not do any kvn@500: // alias stuff with it any time soon. never@2170: if( toop->base() != Type::AnyPtr && never@2170: !(toop->klass() != NULL && never@2170: toop->klass()->is_java_lang_Object() && never@2170: toop->offset() == Type::OffsetBot) ) { kvn@500: mem = mmem->memory_at(alias_idx); kvn@500: // Update input if it is progress over what we have now kvn@500: } kvn@500: return mem; kvn@500: } kvn@500: kvn@500: // kvn@1536: // Move memory users to their memory slices. kvn@1536: // kvn@1536: void ConnectionGraph::move_inst_mem(Node* n, GrowableArray &orig_phis, PhaseGVN *igvn) { kvn@1536: Compile* C = _compile; kvn@1536: kvn@1536: const TypePtr* tp = igvn->type(n->in(MemNode::Address))->isa_ptr(); kvn@1536: assert(tp != NULL, "ptr type"); kvn@1536: int alias_idx = C->get_alias_index(tp); kvn@1536: int general_idx = C->get_general_index(alias_idx); kvn@1536: kvn@1536: // Move users first kvn@1536: for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) { kvn@1536: Node* use = n->fast_out(i); kvn@1536: if (use->is_MergeMem()) { kvn@1536: MergeMemNode* mmem = use->as_MergeMem(); kvn@1536: assert(n == mmem->memory_at(alias_idx), "should be on instance memory slice"); kvn@1536: if (n != mmem->memory_at(general_idx) || alias_idx == general_idx) { kvn@1536: continue; // Nothing to do kvn@1536: } kvn@1536: // Replace previous general reference to mem node. kvn@1536: uint orig_uniq = C->unique(); kvn@1536: Node* m = find_inst_mem(n, general_idx, orig_phis, igvn); kvn@1536: assert(orig_uniq == C->unique(), "no new nodes"); kvn@1536: mmem->set_memory_at(general_idx, m); kvn@1536: --imax; kvn@1536: --i; kvn@1536: } else if (use->is_MemBar()) { kvn@1536: assert(!use->is_Initialize(), "initializing stores should not be moved"); kvn@1536: if (use->req() > MemBarNode::Precedent && kvn@1536: use->in(MemBarNode::Precedent) == n) { kvn@1536: // Don't move related membars. kvn@1536: record_for_optimizer(use); kvn@1536: continue; kvn@1536: } kvn@1536: tp = use->as_MemBar()->adr_type()->isa_ptr(); kvn@1536: if (tp != NULL && C->get_alias_index(tp) == alias_idx || kvn@1536: alias_idx == general_idx) { kvn@1536: continue; // Nothing to do kvn@1536: } kvn@1536: // Move to general memory slice. kvn@1536: uint orig_uniq = C->unique(); kvn@1536: Node* m = find_inst_mem(n, general_idx, orig_phis, igvn); kvn@1536: assert(orig_uniq == C->unique(), "no new nodes"); kvn@1536: igvn->hash_delete(use); kvn@1536: imax -= use->replace_edge(n, m); kvn@1536: igvn->hash_insert(use); kvn@1536: record_for_optimizer(use); kvn@1536: --i; kvn@1536: #ifdef ASSERT kvn@1536: } else if (use->is_Mem()) { kvn@1536: if (use->Opcode() == Op_StoreCM && use->in(MemNode::OopStore) == n) { kvn@1536: // Don't move related cardmark. kvn@1536: continue; kvn@1536: } kvn@1536: // Memory nodes should have new memory input. kvn@1536: tp = igvn->type(use->in(MemNode::Address))->isa_ptr(); kvn@1536: assert(tp != NULL, "ptr type"); kvn@1536: int idx = C->get_alias_index(tp); kvn@1536: assert(get_map(use->_idx) != NULL || idx == alias_idx, kvn@1536: "Following memory nodes should have new memory input or be on the same memory slice"); kvn@1536: } else if (use->is_Phi()) { kvn@1536: // Phi nodes should be split and moved already. kvn@1536: tp = use->as_Phi()->adr_type()->isa_ptr(); kvn@1536: assert(tp != NULL, "ptr type"); kvn@1536: int idx = C->get_alias_index(tp); kvn@1536: assert(idx == alias_idx, "Following Phi nodes should be on the same memory slice"); kvn@1536: } else { kvn@1536: use->dump(); kvn@1536: assert(false, "should not be here"); kvn@1536: #endif kvn@1536: } kvn@1536: } kvn@1536: } kvn@1536: kvn@1536: // kvn@500: // Search memory chain of "mem" to find a MemNode whose address kvn@500: // is the specified alias index. kvn@500: // kvn@500: Node* ConnectionGraph::find_inst_mem(Node *orig_mem, int alias_idx, GrowableArray &orig_phis, PhaseGVN *phase) { kvn@500: if (orig_mem == NULL) kvn@500: return orig_mem; kvn@500: Compile* C = phase->C; never@2170: const TypeOopPtr *toop = C->get_adr_type(alias_idx)->isa_oopptr(); never@2170: bool is_instance = (toop != NULL) && toop->is_known_instance(); kvn@688: Node *start_mem = C->start()->proj_out(TypeFunc::Memory); kvn@500: Node *prev = NULL; kvn@500: Node *result = orig_mem; kvn@500: while (prev != result) { kvn@500: prev = result; kvn@688: if (result == start_mem) twisti@1040: break; // hit one of our sentinels kvn@500: if (result->is_Mem()) { kvn@688: const Type *at = phase->type(result->in(MemNode::Address)); kvn@500: if (at != Type::TOP) { kvn@500: assert (at->isa_ptr() != NULL, "pointer type required."); kvn@500: int idx = C->get_alias_index(at->is_ptr()); kvn@500: if (idx == alias_idx) kvn@500: break; kvn@500: } kvn@688: result = result->in(MemNode::Memory); kvn@500: } kvn@500: if (!is_instance) kvn@500: continue; // don't search further for non-instance types kvn@500: // skip over a call which does not affect this memory slice kvn@500: if (result->is_Proj() && result->as_Proj()->_con == TypeFunc::Memory) { kvn@500: Node *proj_in = result->in(0); never@2170: if (proj_in->is_Allocate() && proj_in->_idx == (uint)toop->instance_id()) { twisti@1040: break; // hit one of our sentinels kvn@688: } else if (proj_in->is_Call()) { kvn@500: CallNode *call = proj_in->as_Call(); never@2170: if (!call->may_modify(toop, phase)) { kvn@500: result = call->in(TypeFunc::Memory); kvn@500: } kvn@500: } else if (proj_in->is_Initialize()) { kvn@500: AllocateNode* alloc = proj_in->as_Initialize()->allocation(); kvn@500: // Stop if this is the initialization for the object instance which kvn@500: // which contains this memory slice, otherwise skip over it. never@2170: if (alloc == NULL || alloc->_idx != (uint)toop->instance_id()) { kvn@500: result = proj_in->in(TypeFunc::Memory); kvn@500: } kvn@500: } else if (proj_in->is_MemBar()) { kvn@500: result = proj_in->in(TypeFunc::Memory); kvn@500: } kvn@500: } else if (result->is_MergeMem()) { kvn@500: MergeMemNode *mmem = result->as_MergeMem(); never@2170: result = step_through_mergemem(mmem, alias_idx, toop); kvn@500: if (result == mmem->base_memory()) { kvn@500: // Didn't find instance memory, search through general slice recursively. kvn@500: result = mmem->memory_at(C->get_general_index(alias_idx)); kvn@500: result = find_inst_mem(result, alias_idx, orig_phis, phase); kvn@500: if (C->failing()) { kvn@500: return NULL; kvn@500: } kvn@500: mmem->set_memory_at(alias_idx, result); kvn@500: } kvn@500: } else if (result->is_Phi() && kvn@500: C->get_alias_index(result->as_Phi()->adr_type()) != alias_idx) { kvn@500: Node *un = result->as_Phi()->unique_input(phase); kvn@500: if (un != NULL) { kvn@1536: orig_phis.append_if_missing(result->as_Phi()); kvn@500: result = un; kvn@500: } else { kvn@500: break; kvn@500: } kvn@1535: } else if (result->is_ClearArray()) { never@2170: if (!ClearArrayNode::step_through(&result, (uint)toop->instance_id(), phase)) { kvn@1535: // Can not bypass initialization of the instance kvn@1535: // we are looking for. kvn@1535: break; kvn@1535: } kvn@1535: // Otherwise skip it (the call updated 'result' value). kvn@1019: } else if (result->Opcode() == Op_SCMemProj) { kvn@1019: assert(result->in(0)->is_LoadStore(), "sanity"); kvn@1019: const Type *at = phase->type(result->in(0)->in(MemNode::Address)); kvn@1019: if (at != Type::TOP) { kvn@1019: assert (at->isa_ptr() != NULL, "pointer type required."); kvn@1019: int idx = C->get_alias_index(at->is_ptr()); kvn@1019: assert(idx != alias_idx, "Object is not scalar replaceable if a LoadStore node access its field"); kvn@1019: break; kvn@1019: } kvn@1019: result = result->in(0)->in(MemNode::Memory); kvn@500: } kvn@500: } kvn@682: if (result->is_Phi()) { kvn@500: PhiNode *mphi = result->as_Phi(); kvn@500: assert(mphi->bottom_type() == Type::MEMORY, "memory phi required"); kvn@500: const TypePtr *t = mphi->adr_type(); kvn@500: if (C->get_alias_index(t) != alias_idx) { kvn@682: // Create a new Phi with the specified alias index type. kvn@500: result = split_memory_phi(mphi, alias_idx, orig_phis, phase); kvn@682: } else if (!is_instance) { kvn@682: // Push all non-instance Phis on the orig_phis worklist to update inputs kvn@682: // during Phase 4 if needed. kvn@682: orig_phis.append_if_missing(mphi); kvn@500: } kvn@500: } kvn@500: // the result is either MemNode, PhiNode, InitializeNode. kvn@500: return result; kvn@500: } kvn@500: duke@435: // duke@435: // Convert the types of unescaped object to instance types where possible, duke@435: // propagate the new type information through the graph, and update memory duke@435: // edges and MergeMem inputs to reflect the new type. duke@435: // duke@435: // We start with allocations (and calls which may be allocations) on alloc_worklist. duke@435: // The processing is done in 4 phases: duke@435: // duke@435: // Phase 1: Process possible allocations from alloc_worklist. Create instance duke@435: // types for the CheckCastPP for allocations where possible. duke@435: // Propagate the the new types through users as follows: duke@435: // casts and Phi: push users on alloc_worklist duke@435: // AddP: cast Base and Address inputs to the instance type duke@435: // push any AddP users on alloc_worklist and push any memnode duke@435: // users onto memnode_worklist. duke@435: // Phase 2: Process MemNode's from memnode_worklist. compute new address type and duke@435: // search the Memory chain for a store with the appropriate type duke@435: // address type. If a Phi is found, create a new version with twisti@1040: // the appropriate memory slices from each of the Phi inputs. duke@435: // For stores, process the users as follows: duke@435: // MemNode: push on memnode_worklist duke@435: // MergeMem: push on mergemem_worklist duke@435: // Phase 3: Process MergeMem nodes from mergemem_worklist. Walk each memory slice duke@435: // moving the first node encountered of each instance type to the duke@435: // the input corresponding to its alias index. duke@435: // appropriate memory slice. duke@435: // Phase 4: Update the inputs of non-instance memory Phis and the Memory input of memnodes. duke@435: // duke@435: // In the following example, the CheckCastPP nodes are the cast of allocation duke@435: // results and the allocation of node 29 is unescaped and eligible to be an duke@435: // instance type. duke@435: // duke@435: // We start with: duke@435: // duke@435: // 7 Parm #memory duke@435: // 10 ConI "12" duke@435: // 19 CheckCastPP "Foo" duke@435: // 20 AddP _ 19 19 10 Foo+12 alias_index=4 duke@435: // 29 CheckCastPP "Foo" duke@435: // 30 AddP _ 29 29 10 Foo+12 alias_index=4 duke@435: // duke@435: // 40 StoreP 25 7 20 ... alias_index=4 duke@435: // 50 StoreP 35 40 30 ... alias_index=4 duke@435: // 60 StoreP 45 50 20 ... alias_index=4 duke@435: // 70 LoadP _ 60 30 ... alias_index=4 duke@435: // 80 Phi 75 50 60 Memory alias_index=4 duke@435: // 90 LoadP _ 80 30 ... alias_index=4 duke@435: // 100 LoadP _ 80 20 ... alias_index=4 duke@435: // duke@435: // duke@435: // Phase 1 creates an instance type for node 29 assigning it an instance id of 24 duke@435: // and creating a new alias index for node 30. This gives: duke@435: // duke@435: // 7 Parm #memory duke@435: // 10 ConI "12" duke@435: // 19 CheckCastPP "Foo" duke@435: // 20 AddP _ 19 19 10 Foo+12 alias_index=4 duke@435: // 29 CheckCastPP "Foo" iid=24 duke@435: // 30 AddP _ 29 29 10 Foo+12 alias_index=6 iid=24 duke@435: // duke@435: // 40 StoreP 25 7 20 ... alias_index=4 duke@435: // 50 StoreP 35 40 30 ... alias_index=6 duke@435: // 60 StoreP 45 50 20 ... alias_index=4 duke@435: // 70 LoadP _ 60 30 ... alias_index=6 duke@435: // 80 Phi 75 50 60 Memory alias_index=4 duke@435: // 90 LoadP _ 80 30 ... alias_index=6 duke@435: // 100 LoadP _ 80 20 ... alias_index=4 duke@435: // duke@435: // In phase 2, new memory inputs are computed for the loads and stores, duke@435: // And a new version of the phi is created. In phase 4, the inputs to duke@435: // node 80 are updated and then the memory nodes are updated with the duke@435: // values computed in phase 2. This results in: duke@435: // duke@435: // 7 Parm #memory duke@435: // 10 ConI "12" duke@435: // 19 CheckCastPP "Foo" duke@435: // 20 AddP _ 19 19 10 Foo+12 alias_index=4 duke@435: // 29 CheckCastPP "Foo" iid=24 duke@435: // 30 AddP _ 29 29 10 Foo+12 alias_index=6 iid=24 duke@435: // duke@435: // 40 StoreP 25 7 20 ... alias_index=4 duke@435: // 50 StoreP 35 7 30 ... alias_index=6 duke@435: // 60 StoreP 45 40 20 ... alias_index=4 duke@435: // 70 LoadP _ 50 30 ... alias_index=6 duke@435: // 80 Phi 75 40 60 Memory alias_index=4 duke@435: // 120 Phi 75 50 50 Memory alias_index=6 duke@435: // 90 LoadP _ 120 30 ... alias_index=6 duke@435: // 100 LoadP _ 80 20 ... alias_index=4 duke@435: // duke@435: void ConnectionGraph::split_unique_types(GrowableArray &alloc_worklist) { duke@435: GrowableArray memnode_worklist; duke@435: GrowableArray orig_phis; kvn@1536: kvn@2276: PhaseIterGVN *igvn = _igvn; duke@435: uint new_index_start = (uint) _compile->num_alias_types(); kvn@1536: Arena* arena = Thread::current()->resource_area(); kvn@1536: VectorSet visited(arena); duke@435: kvn@500: kvn@500: // Phase 1: Process possible allocations from alloc_worklist. kvn@500: // Create instance types for the CheckCastPP for allocations where possible. kvn@679: // kvn@679: // (Note: don't forget to change the order of the second AddP node on kvn@679: // the alloc_worklist if the order of the worklist processing is changed, kvn@679: // see the comment in find_second_addp().) kvn@679: // duke@435: while (alloc_worklist.length() != 0) { duke@435: Node *n = alloc_worklist.pop(); duke@435: uint ni = n->_idx; kvn@500: const TypeOopPtr* tinst = NULL; duke@435: if (n->is_Call()) { duke@435: CallNode *alloc = n->as_Call(); duke@435: // copy escape information to call node kvn@679: PointsToNode* ptn = ptnode_adr(alloc->_idx); kvn@1989: PointsToNode::EscapeState es = escape_state(alloc); kvn@500: // We have an allocation or call which returns a Java object, kvn@500: // see if it is unescaped. kvn@500: if (es != PointsToNode::NoEscape || !ptn->_scalar_replaceable) duke@435: continue; kvn@1219: kvn@1219: // Find CheckCastPP for the allocate or for the return value of a call kvn@1219: n = alloc->result_cast(); kvn@1219: if (n == NULL) { // No uses except Initialize node kvn@1219: if (alloc->is_Allocate()) { kvn@1219: // Set the scalar_replaceable flag for allocation kvn@1219: // so it could be eliminated if it has no uses. kvn@1219: alloc->as_Allocate()->_is_scalar_replaceable = true; kvn@1219: } kvn@1219: continue; kvn@474: } kvn@1219: if (!n->is_CheckCastPP()) { // not unique CheckCastPP. kvn@1219: assert(!alloc->is_Allocate(), "allocation should have unique type"); kvn@500: continue; kvn@1219: } kvn@1219: kvn@500: // The inline code for Object.clone() casts the allocation result to kvn@682: // java.lang.Object and then to the actual type of the allocated kvn@500: // object. Detect this case and use the second cast. kvn@682: // Also detect j.l.reflect.Array.newInstance(jobject, jint) case when kvn@682: // the allocation result is cast to java.lang.Object and then kvn@682: // to the actual Array type. kvn@500: if (alloc->is_Allocate() && n->as_Type()->type() == TypeInstPtr::NOTNULL kvn@682: && (alloc->is_AllocateArray() || kvn@682: igvn->type(alloc->in(AllocateNode::KlassNode)) != TypeKlassPtr::OBJECT)) { kvn@500: Node *cast2 = NULL; kvn@500: for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) { kvn@500: Node *use = n->fast_out(i); kvn@500: if (use->is_CheckCastPP()) { kvn@500: cast2 = use; kvn@500: break; kvn@500: } kvn@500: } kvn@500: if (cast2 != NULL) { kvn@500: n = cast2; kvn@500: } else { kvn@1219: // Non-scalar replaceable if the allocation type is unknown statically kvn@1219: // (reflection allocation), the object can't be restored during kvn@1219: // deoptimization without precise type. kvn@500: continue; kvn@500: } kvn@500: } kvn@1219: if (alloc->is_Allocate()) { kvn@1219: // Set the scalar_replaceable flag for allocation kvn@1219: // so it could be eliminated. kvn@1219: alloc->as_Allocate()->_is_scalar_replaceable = true; kvn@1219: } kvn@500: set_escape_state(n->_idx, es); kvn@682: // in order for an object to be scalar-replaceable, it must be: kvn@500: // - a direct allocation (not a call returning an object) kvn@500: // - non-escaping kvn@500: // - eligible to be a unique type kvn@500: // - not determined to be ineligible by escape analysis kvn@1536: assert(ptnode_adr(alloc->_idx)->_node != NULL && kvn@1536: ptnode_adr(n->_idx)->_node != NULL, "should be registered"); duke@435: set_map(alloc->_idx, n); duke@435: set_map(n->_idx, alloc); kvn@500: const TypeOopPtr *t = igvn->type(n)->isa_oopptr(); kvn@500: if (t == NULL) duke@435: continue; // not a TypeInstPtr kvn@682: tinst = t->cast_to_exactness(true)->is_oopptr()->cast_to_instance_id(ni); duke@435: igvn->hash_delete(n); duke@435: igvn->set_type(n, tinst); duke@435: n->raise_bottom_type(tinst); duke@435: igvn->hash_insert(n); kvn@500: record_for_optimizer(n); kvn@500: if (alloc->is_Allocate() && ptn->_scalar_replaceable && kvn@500: (t->isa_instptr() || t->isa_aryptr())) { kvn@598: kvn@598: // First, put on the worklist all Field edges from Connection Graph kvn@598: // which is more accurate then putting immediate users from Ideal Graph. kvn@598: for (uint e = 0; e < ptn->edge_count(); e++) { kvn@679: Node *use = ptnode_adr(ptn->edge_target(e))->_node; kvn@598: assert(ptn->edge_type(e) == PointsToNode::FieldEdge && use->is_AddP(), kvn@598: "only AddP nodes are Field edges in CG"); kvn@598: if (use->outcnt() > 0) { // Don't process dead nodes kvn@598: Node* addp2 = find_second_addp(use, use->in(AddPNode::Base)); kvn@598: if (addp2 != NULL) { kvn@598: assert(alloc->is_AllocateArray(),"array allocation was expected"); kvn@598: alloc_worklist.append_if_missing(addp2); kvn@598: } kvn@598: alloc_worklist.append_if_missing(use); kvn@598: } kvn@598: } kvn@598: kvn@500: // An allocation may have an Initialize which has raw stores. Scan kvn@500: // the users of the raw allocation result and push AddP users kvn@500: // on alloc_worklist. kvn@500: Node *raw_result = alloc->proj_out(TypeFunc::Parms); kvn@500: assert (raw_result != NULL, "must have an allocation result"); kvn@500: for (DUIterator_Fast imax, i = raw_result->fast_outs(imax); i < imax; i++) { kvn@500: Node *use = raw_result->fast_out(i); kvn@500: if (use->is_AddP() && use->outcnt() > 0) { // Don't process dead nodes kvn@500: Node* addp2 = find_second_addp(use, raw_result); kvn@500: if (addp2 != NULL) { kvn@500: assert(alloc->is_AllocateArray(),"array allocation was expected"); kvn@500: alloc_worklist.append_if_missing(addp2); kvn@500: } kvn@500: alloc_worklist.append_if_missing(use); kvn@1535: } else if (use->is_MemBar()) { kvn@500: memnode_worklist.append_if_missing(use); kvn@500: } kvn@500: } kvn@500: } duke@435: } else if (n->is_AddP()) { kvn@2556: VectorSet* ptset = PointsTo(get_addp_base(n)); kvn@2556: assert(ptset->Size() == 1, "AddP address is unique"); kvn@2556: uint elem = ptset->getelem(); // Allocation node's index kvn@1535: if (elem == _phantom_object) { kvn@1535: assert(false, "escaped allocation"); kvn@500: continue; // Assume the value was set outside this method. kvn@1535: } kvn@500: Node *base = get_map(elem); // CheckCastPP node kvn@1535: if (!split_AddP(n, base, igvn)) continue; // wrong type from dead path kvn@500: tinst = igvn->type(base)->isa_oopptr(); kvn@500: } else if (n->is_Phi() || kvn@500: n->is_CheckCastPP() || kvn@603: n->is_EncodeP() || kvn@603: n->is_DecodeN() || kvn@500: (n->is_ConstraintCast() && n->Opcode() == Op_CastPP)) { duke@435: if (visited.test_set(n->_idx)) { duke@435: assert(n->is_Phi(), "loops only through Phi's"); duke@435: continue; // already processed duke@435: } kvn@2556: VectorSet* ptset = PointsTo(n); kvn@2556: if (ptset->Size() == 1) { kvn@2556: uint elem = ptset->getelem(); // Allocation node's index kvn@1535: if (elem == _phantom_object) { kvn@1535: assert(false, "escaped allocation"); kvn@500: continue; // Assume the value was set outside this method. kvn@1535: } kvn@500: Node *val = get_map(elem); // CheckCastPP node duke@435: TypeNode *tn = n->as_Type(); kvn@500: tinst = igvn->type(val)->isa_oopptr(); kvn@658: assert(tinst != NULL && tinst->is_known_instance() && kvn@658: (uint)tinst->instance_id() == elem , "instance type expected."); kvn@598: kvn@598: const Type *tn_type = igvn->type(tn); kvn@658: const TypeOopPtr *tn_t; kvn@658: if (tn_type->isa_narrowoop()) { kvn@658: tn_t = tn_type->make_ptr()->isa_oopptr(); kvn@658: } else { kvn@658: tn_t = tn_type->isa_oopptr(); kvn@658: } duke@435: kvn@1535: if (tn_t != NULL && tinst->klass()->is_subtype_of(tn_t->klass())) { kvn@598: if (tn_type->isa_narrowoop()) { kvn@598: tn_type = tinst->make_narrowoop(); kvn@598: } else { kvn@598: tn_type = tinst; kvn@598: } duke@435: igvn->hash_delete(tn); kvn@598: igvn->set_type(tn, tn_type); kvn@598: tn->set_type(tn_type); duke@435: igvn->hash_insert(tn); kvn@500: record_for_optimizer(n); kvn@728: } else { kvn@1535: assert(tn_type == TypePtr::NULL_PTR || kvn@1535: tn_t != NULL && !tinst->klass()->is_subtype_of(tn_t->klass()), kvn@1535: "unexpected type"); kvn@1535: continue; // Skip dead path with different type duke@435: } duke@435: } duke@435: } else { kvn@1535: debug_only(n->dump();) kvn@1535: assert(false, "EA: unexpected node"); duke@435: continue; duke@435: } kvn@1535: // push allocation's users on appropriate worklist duke@435: for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) { duke@435: Node *use = n->fast_out(i); duke@435: if(use->is_Mem() && use->in(MemNode::Address) == n) { kvn@1535: // Load/store to instance's field kvn@500: memnode_worklist.append_if_missing(use); kvn@1535: } else if (use->is_MemBar()) { kvn@500: memnode_worklist.append_if_missing(use); kvn@500: } else if (use->is_AddP() && use->outcnt() > 0) { // No dead nodes kvn@500: Node* addp2 = find_second_addp(use, n); kvn@500: if (addp2 != NULL) { kvn@500: alloc_worklist.append_if_missing(addp2); kvn@500: } kvn@500: alloc_worklist.append_if_missing(use); kvn@500: } else if (use->is_Phi() || kvn@500: use->is_CheckCastPP() || kvn@603: use->is_EncodeP() || kvn@603: use->is_DecodeN() || kvn@500: (use->is_ConstraintCast() && use->Opcode() == Op_CastPP)) { kvn@500: alloc_worklist.append_if_missing(use); kvn@1535: #ifdef ASSERT kvn@1535: } else if (use->is_Mem()) { kvn@1535: assert(use->in(MemNode::Address) != n, "EA: missing allocation reference path"); kvn@1535: } else if (use->is_MergeMem()) { kvn@1535: assert(_mergemem_worklist.contains(use->as_MergeMem()), "EA: missing MergeMem node in the worklist"); kvn@1535: } else if (use->is_SafePoint()) { kvn@1535: // Look for MergeMem nodes for calls which reference unique allocation kvn@1535: // (through CheckCastPP nodes) even for debug info. kvn@1535: Node* m = use->in(TypeFunc::Memory); kvn@1535: if (m->is_MergeMem()) { kvn@1535: assert(_mergemem_worklist.contains(m->as_MergeMem()), "EA: missing MergeMem node in the worklist"); kvn@1535: } kvn@1535: } else { kvn@1535: uint op = use->Opcode(); kvn@1535: if (!(op == Op_CmpP || op == Op_Conv2B || kvn@1535: op == Op_CastP2X || op == Op_StoreCM || kvn@1535: op == Op_FastLock || op == Op_AryEq || op == Op_StrComp || kvn@1535: op == Op_StrEquals || op == Op_StrIndexOf)) { kvn@1535: n->dump(); kvn@1535: use->dump(); kvn@1535: assert(false, "EA: missing allocation reference path"); kvn@1535: } kvn@1535: #endif duke@435: } duke@435: } duke@435: duke@435: } kvn@500: // New alias types were created in split_AddP(). duke@435: uint new_index_end = (uint) _compile->num_alias_types(); duke@435: duke@435: // Phase 2: Process MemNode's from memnode_worklist. compute new address type and duke@435: // compute new values for Memory inputs (the Memory inputs are not duke@435: // actually updated until phase 4.) duke@435: if (memnode_worklist.length() == 0) duke@435: return; // nothing to do duke@435: duke@435: while (memnode_worklist.length() != 0) { duke@435: Node *n = memnode_worklist.pop(); kvn@500: if (visited.test_set(n->_idx)) kvn@500: continue; kvn@1535: if (n->is_Phi() || n->is_ClearArray()) { kvn@1535: // we don't need to do anything, but the users must be pushed kvn@1535: } else if (n->is_MemBar()) { // Initialize, MemBar nodes kvn@1535: // we don't need to do anything, but the users must be pushed kvn@1535: n = n->as_MemBar()->proj_out(TypeFunc::Memory); kvn@500: if (n == NULL) duke@435: continue; duke@435: } else { duke@435: assert(n->is_Mem(), "memory node required."); duke@435: Node *addr = n->in(MemNode::Address); duke@435: const Type *addr_t = igvn->type(addr); duke@435: if (addr_t == Type::TOP) duke@435: continue; duke@435: assert (addr_t->isa_ptr() != NULL, "pointer type required."); duke@435: int alias_idx = _compile->get_alias_index(addr_t->is_ptr()); kvn@500: assert ((uint)alias_idx < new_index_end, "wrong alias index"); kvn@500: Node *mem = find_inst_mem(n->in(MemNode::Memory), alias_idx, orig_phis, igvn); kvn@473: if (_compile->failing()) { kvn@473: return; kvn@473: } kvn@500: if (mem != n->in(MemNode::Memory)) { kvn@1536: // We delay the memory edge update since we need old one in kvn@1536: // MergeMem code below when instances memory slices are separated. kvn@1536: debug_only(Node* pn = ptnode_adr(n->_idx)->_node;) kvn@1536: assert(pn == NULL || pn == n, "wrong node"); duke@435: set_map(n->_idx, mem); kvn@679: ptnode_adr(n->_idx)->_node = n; kvn@500: } duke@435: if (n->is_Load()) { duke@435: continue; // don't push users duke@435: } else if (n->is_LoadStore()) { duke@435: // get the memory projection duke@435: for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) { duke@435: Node *use = n->fast_out(i); duke@435: if (use->Opcode() == Op_SCMemProj) { duke@435: n = use; duke@435: break; duke@435: } duke@435: } duke@435: assert(n->Opcode() == Op_SCMemProj, "memory projection required"); duke@435: } duke@435: } duke@435: // push user on appropriate worklist duke@435: for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) { duke@435: Node *use = n->fast_out(i); kvn@1535: if (use->is_Phi() || use->is_ClearArray()) { kvn@500: memnode_worklist.append_if_missing(use); duke@435: } else if(use->is_Mem() && use->in(MemNode::Memory) == n) { kvn@1535: if (use->Opcode() == Op_StoreCM) // Ignore cardmark stores kvn@1535: continue; kvn@500: memnode_worklist.append_if_missing(use); kvn@1535: } else if (use->is_MemBar()) { kvn@500: memnode_worklist.append_if_missing(use); kvn@1535: #ifdef ASSERT kvn@1535: } else if(use->is_Mem()) { kvn@1535: assert(use->in(MemNode::Memory) != n, "EA: missing memory path"); duke@435: } else if (use->is_MergeMem()) { kvn@1535: assert(_mergemem_worklist.contains(use->as_MergeMem()), "EA: missing MergeMem node in the worklist"); kvn@1535: } else { kvn@1535: uint op = use->Opcode(); kvn@1535: if (!(op == Op_StoreCM || kvn@1535: (op == Op_CallLeaf && use->as_CallLeaf()->_name != NULL && kvn@1535: strcmp(use->as_CallLeaf()->_name, "g1_wb_pre") == 0) || kvn@1535: op == Op_AryEq || op == Op_StrComp || kvn@1535: op == Op_StrEquals || op == Op_StrIndexOf)) { kvn@1535: n->dump(); kvn@1535: use->dump(); kvn@1535: assert(false, "EA: missing memory path"); kvn@1535: } kvn@1535: #endif duke@435: } duke@435: } duke@435: } duke@435: kvn@500: // Phase 3: Process MergeMem nodes from mergemem_worklist. kvn@1535: // Walk each memory slice moving the first node encountered of each kvn@500: // instance type to the the input corresponding to its alias index. kvn@1535: uint length = _mergemem_worklist.length(); kvn@1535: for( uint next = 0; next < length; ++next ) { kvn@1535: MergeMemNode* nmm = _mergemem_worklist.at(next); kvn@1535: assert(!visited.test_set(nmm->_idx), "should not be visited before"); duke@435: // Note: we don't want to use MergeMemStream here because we only want to kvn@1535: // scan inputs which exist at the start, not ones we add during processing. kvn@1535: // Note 2: MergeMem may already contains instance memory slices added kvn@1535: // during find_inst_mem() call when memory nodes were processed above. kvn@1535: igvn->hash_delete(nmm); duke@435: uint nslices = nmm->req(); duke@435: for (uint i = Compile::AliasIdxRaw+1; i < nslices; i++) { kvn@500: Node* mem = nmm->in(i); kvn@500: Node* cur = NULL; duke@435: if (mem == NULL || mem->is_top()) duke@435: continue; kvn@1536: // First, update mergemem by moving memory nodes to corresponding slices kvn@1536: // if their type became more precise since this mergemem was created. duke@435: while (mem->is_Mem()) { duke@435: const Type *at = igvn->type(mem->in(MemNode::Address)); duke@435: if (at != Type::TOP) { duke@435: assert (at->isa_ptr() != NULL, "pointer type required."); duke@435: uint idx = (uint)_compile->get_alias_index(at->is_ptr()); duke@435: if (idx == i) { duke@435: if (cur == NULL) duke@435: cur = mem; duke@435: } else { duke@435: if (idx >= nmm->req() || nmm->is_empty_memory(nmm->in(idx))) { duke@435: nmm->set_memory_at(idx, mem); duke@435: } duke@435: } duke@435: } duke@435: mem = mem->in(MemNode::Memory); duke@435: } duke@435: nmm->set_memory_at(i, (cur != NULL) ? cur : mem); kvn@500: // Find any instance of the current type if we haven't encountered kvn@1536: // already a memory slice of the instance along the memory chain. kvn@500: for (uint ni = new_index_start; ni < new_index_end; ni++) { kvn@500: if((uint)_compile->get_general_index(ni) == i) { kvn@500: Node *m = (ni >= nmm->req()) ? nmm->empty_memory() : nmm->in(ni); kvn@500: if (nmm->is_empty_memory(m)) { kvn@500: Node* result = find_inst_mem(mem, ni, orig_phis, igvn); kvn@500: if (_compile->failing()) { kvn@500: return; kvn@500: } kvn@500: nmm->set_memory_at(ni, result); kvn@500: } kvn@500: } kvn@500: } kvn@500: } kvn@500: // Find the rest of instances values kvn@500: for (uint ni = new_index_start; ni < new_index_end; ni++) { kvn@1536: const TypeOopPtr *tinst = _compile->get_adr_type(ni)->isa_oopptr(); kvn@500: Node* result = step_through_mergemem(nmm, ni, tinst); kvn@500: if (result == nmm->base_memory()) { kvn@500: // Didn't find instance memory, search through general slice recursively. kvn@1536: result = nmm->memory_at(_compile->get_general_index(ni)); kvn@500: result = find_inst_mem(result, ni, orig_phis, igvn); kvn@500: if (_compile->failing()) { kvn@500: return; kvn@500: } kvn@500: nmm->set_memory_at(ni, result); kvn@500: } kvn@500: } kvn@500: igvn->hash_insert(nmm); kvn@500: record_for_optimizer(nmm); duke@435: } duke@435: kvn@500: // Phase 4: Update the inputs of non-instance memory Phis and kvn@500: // the Memory input of memnodes duke@435: // First update the inputs of any non-instance Phi's from duke@435: // which we split out an instance Phi. Note we don't have duke@435: // to recursively process Phi's encounted on the input memory duke@435: // chains as is done in split_memory_phi() since they will duke@435: // also be processed here. kvn@682: for (int j = 0; j < orig_phis.length(); j++) { kvn@682: PhiNode *phi = orig_phis.at(j); duke@435: int alias_idx = _compile->get_alias_index(phi->adr_type()); duke@435: igvn->hash_delete(phi); duke@435: for (uint i = 1; i < phi->req(); i++) { duke@435: Node *mem = phi->in(i); kvn@500: Node *new_mem = find_inst_mem(mem, alias_idx, orig_phis, igvn); kvn@500: if (_compile->failing()) { kvn@500: return; kvn@500: } duke@435: if (mem != new_mem) { duke@435: phi->set_req(i, new_mem); duke@435: } duke@435: } duke@435: igvn->hash_insert(phi); duke@435: record_for_optimizer(phi); duke@435: } duke@435: duke@435: // Update the memory inputs of MemNodes with the value we computed kvn@1536: // in Phase 2 and move stores memory users to corresponding memory slices. kvn@1536: #ifdef ASSERT kvn@2556: visited.Reset(); kvn@1536: Node_Stack old_mems(arena, _compile->unique() >> 2); kvn@1536: #endif kvn@679: for (uint i = 0; i < nodes_size(); i++) { duke@435: Node *nmem = get_map(i); duke@435: if (nmem != NULL) { kvn@679: Node *n = ptnode_adr(i)->_node; kvn@1536: assert(n != NULL, "sanity"); kvn@1536: if (n->is_Mem()) { kvn@1536: #ifdef ASSERT kvn@1536: Node* old_mem = n->in(MemNode::Memory); kvn@1536: if (!visited.test_set(old_mem->_idx)) { kvn@1536: old_mems.push(old_mem, old_mem->outcnt()); kvn@1536: } kvn@1536: #endif kvn@1536: assert(n->in(MemNode::Memory) != nmem, "sanity"); kvn@1536: if (!n->is_Load()) { kvn@1536: // Move memory users of a store first. kvn@1536: move_inst_mem(n, orig_phis, igvn); kvn@1536: } kvn@1536: // Now update memory input duke@435: igvn->hash_delete(n); duke@435: n->set_req(MemNode::Memory, nmem); duke@435: igvn->hash_insert(n); duke@435: record_for_optimizer(n); kvn@1536: } else { kvn@1536: assert(n->is_Allocate() || n->is_CheckCastPP() || kvn@1536: n->is_AddP() || n->is_Phi(), "unknown node used for set_map()"); duke@435: } duke@435: } duke@435: } kvn@1536: #ifdef ASSERT kvn@1536: // Verify that memory was split correctly kvn@1536: while (old_mems.is_nonempty()) { kvn@1536: Node* old_mem = old_mems.node(); kvn@1536: uint old_cnt = old_mems.index(); kvn@1536: old_mems.pop(); kvn@1536: assert(old_cnt = old_mem->outcnt(), "old mem could be lost"); kvn@1536: } kvn@1536: #endif duke@435: } duke@435: kvn@679: bool ConnectionGraph::has_candidates(Compile *C) { kvn@679: // EA brings benefits only when the code has allocations and/or locks which kvn@679: // are represented by ideal Macro nodes. kvn@679: int cnt = C->macro_count(); kvn@679: for( int i=0; i < cnt; i++ ) { kvn@679: Node *n = C->macro_node(i); kvn@679: if ( n->is_Allocate() ) kvn@679: return true; kvn@679: if( n->is_Lock() ) { kvn@679: Node* obj = n->as_Lock()->obj_node()->uncast(); kvn@679: if( !(obj->is_Parm() || obj->is_Con()) ) kvn@679: return true; kvn@679: } kvn@679: } kvn@679: return false; kvn@679: } kvn@679: kvn@1989: void ConnectionGraph::do_analysis(Compile *C, PhaseIterGVN *igvn) { kvn@1989: // Add ConP#NULL and ConN#NULL nodes before ConnectionGraph construction kvn@1989: // to create space for them in ConnectionGraph::_nodes[]. kvn@1989: Node* oop_null = igvn->zerocon(T_OBJECT); kvn@1989: Node* noop_null = igvn->zerocon(T_NARROWOOP); kvn@1989: kvn@1989: ConnectionGraph* congraph = new(C->comp_arena()) ConnectionGraph(C, igvn); kvn@1989: // Perform escape analysis kvn@1989: if (congraph->compute_escape()) { kvn@1989: // There are non escaping objects. kvn@1989: C->set_congraph(congraph); kvn@1989: } kvn@1989: kvn@1989: // Cleanup. kvn@1989: if (oop_null->outcnt() == 0) kvn@1989: igvn->hash_delete(oop_null); kvn@1989: if (noop_null->outcnt() == 0) kvn@1989: igvn->hash_delete(noop_null); kvn@1989: } kvn@1989: kvn@679: bool ConnectionGraph::compute_escape() { kvn@679: Compile* C = _compile; duke@435: kvn@598: // 1. Populate Connection Graph (CG) with Ideal nodes. duke@435: kvn@500: Unique_Node_List worklist_init; kvn@679: worklist_init.map(C->unique(), NULL); // preallocate space kvn@500: kvn@500: // Initialize worklist kvn@679: if (C->root() != NULL) { kvn@679: worklist_init.push(C->root()); kvn@500: } kvn@500: kvn@500: GrowableArray cg_worklist; kvn@1989: PhaseGVN* igvn = _igvn; kvn@500: bool has_allocations = false; kvn@500: kvn@500: // Push all useful nodes onto CG list and set their type. kvn@500: for( uint next = 0; next < worklist_init.size(); ++next ) { kvn@500: Node* n = worklist_init.at(next); kvn@500: record_for_escape_analysis(n, igvn); kvn@679: // Only allocations and java static calls results are checked kvn@679: // for an escape status. See process_call_result() below. kvn@679: if (n->is_Allocate() || n->is_CallStaticJava() && kvn@679: ptnode_adr(n->_idx)->node_type() == PointsToNode::JavaObject) { kvn@500: has_allocations = true; kvn@500: } kvn@1535: if(n->is_AddP()) { kvn@2276: // Collect address nodes. Use them during stage 3 below kvn@2276: // to build initial connection graph field edges. kvn@2276: cg_worklist.append(n->_idx); kvn@1535: } else if (n->is_MergeMem()) { kvn@1535: // Collect all MergeMem nodes to add memory slices for kvn@1535: // scalar replaceable objects in split_unique_types(). kvn@1535: _mergemem_worklist.append(n->as_MergeMem()); kvn@1535: } kvn@500: for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) { kvn@500: Node* m = n->fast_out(i); // Get user kvn@500: worklist_init.push(m); kvn@500: } kvn@500: } kvn@500: kvn@679: if (!has_allocations) { kvn@500: _collecting = false; kvn@679: return false; // Nothing to do. kvn@500: } kvn@500: kvn@500: // 2. First pass to create simple CG edges (doesn't require to walk CG). kvn@679: uint delayed_size = _delayed_worklist.size(); kvn@679: for( uint next = 0; next < delayed_size; ++next ) { kvn@500: Node* n = _delayed_worklist.at(next); kvn@500: build_connection_graph(n, igvn); kvn@500: } kvn@500: kvn@2276: // 3. Pass to create initial fields edges (JavaObject -F-> AddP) kvn@2276: // to reduce number of iterations during stage 4 below. kvn@679: uint cg_length = cg_worklist.length(); kvn@679: for( uint next = 0; next < cg_length; ++next ) { kvn@500: int ni = cg_worklist.at(next); kvn@2276: Node* n = ptnode_adr(ni)->_node; kvn@2276: Node* base = get_addp_base(n); kvn@2276: if (base->is_Proj()) kvn@2276: base = base->in(0); kvn@2276: PointsToNode::NodeType nt = ptnode_adr(base->_idx)->node_type(); kvn@2276: if (nt == PointsToNode::JavaObject) { kvn@2276: build_connection_graph(n, igvn); kvn@2276: } kvn@500: } kvn@500: kvn@500: cg_worklist.clear(); kvn@500: cg_worklist.append(_phantom_object); kvn@2276: GrowableArray worklist; kvn@500: kvn@500: // 4. Build Connection Graph which need kvn@500: // to walk the connection graph. kvn@2276: _progress = false; kvn@679: for (uint ni = 0; ni < nodes_size(); ni++) { kvn@679: PointsToNode* ptn = ptnode_adr(ni); kvn@500: Node *n = ptn->_node; kvn@500: if (n != NULL) { // Call, AddP, LoadP, StoreP kvn@500: build_connection_graph(n, igvn); kvn@500: if (ptn->node_type() != PointsToNode::UnknownType) kvn@500: cg_worklist.append(n->_idx); // Collect CG nodes kvn@2276: if (!_processed.test(n->_idx)) kvn@2276: worklist.append(n->_idx); // Collect C/A/L/S nodes kvn@500: } duke@435: } duke@435: kvn@2276: // After IGVN user nodes may have smaller _idx than kvn@2276: // their inputs so they will be processed first in kvn@2276: // previous loop. Because of that not all Graph kvn@2276: // edges will be created. Walk over interesting kvn@2276: // nodes again until no new edges are created. kvn@2276: // kvn@2276: // Normally only 1-3 passes needed to build kvn@2276: // Connection Graph depending on graph complexity. kvn@2409: // Observed 8 passes in jvm2008 compiler.compiler. kvn@2409: // Set limit to 20 to catch situation when something kvn@2276: // did go wrong and recompile the method without EA. kvn@2276: kvn@2409: #define CG_BUILD_ITER_LIMIT 20 kvn@2276: kvn@2276: uint length = worklist.length(); kvn@2276: int iterations = 0; kvn@2276: while(_progress && (iterations++ < CG_BUILD_ITER_LIMIT)) { kvn@2276: _progress = false; kvn@2276: for( uint next = 0; next < length; ++next ) { kvn@2276: int ni = worklist.at(next); kvn@2276: PointsToNode* ptn = ptnode_adr(ni); kvn@2276: Node* n = ptn->_node; kvn@2276: assert(n != NULL, "should be known node"); kvn@2276: build_connection_graph(n, igvn); kvn@2276: } kvn@2276: } kvn@2276: if (iterations >= CG_BUILD_ITER_LIMIT) { kvn@2276: assert(iterations < CG_BUILD_ITER_LIMIT, kvn@2276: err_msg("infinite EA connection graph build with %d nodes and worklist size %d", kvn@2276: nodes_size(), length)); kvn@2276: // Possible infinite build_connection_graph loop, kvn@2276: // retry compilation without escape analysis. kvn@2276: C->record_failure(C2Compiler::retry_no_escape_analysis()); kvn@2276: _collecting = false; kvn@2276: return false; kvn@2276: } kvn@2276: #undef CG_BUILD_ITER_LIMIT kvn@2276: kvn@1535: Arena* arena = Thread::current()->resource_area(); kvn@1535: VectorSet visited(arena); kvn@2276: worklist.clear(); duke@435: kvn@1535: // 5. Remove deferred edges from the graph and adjust kvn@1535: // escape state of nonescaping objects. kvn@679: cg_length = cg_worklist.length(); kvn@679: for( uint next = 0; next < cg_length; ++next ) { kvn@500: int ni = cg_worklist.at(next); kvn@679: PointsToNode* ptn = ptnode_adr(ni); duke@435: PointsToNode::NodeType nt = ptn->node_type(); duke@435: if (nt == PointsToNode::LocalVar || nt == PointsToNode::Field) { kvn@2276: remove_deferred(ni, &worklist, &visited); kvn@679: Node *n = ptn->_node; duke@435: if (n->is_AddP()) { kvn@1535: // Search for objects which are not scalar replaceable kvn@1535: // and adjust their escape state. kvn@2556: adjust_escape_state(ni, igvn); duke@435: } duke@435: } duke@435: } kvn@500: kvn@679: // 6. Propagate escape states. kvn@2276: worklist.clear(); kvn@679: bool has_non_escaping_obj = false; kvn@679: duke@435: // push all GlobalEscape nodes on the worklist kvn@679: for( uint next = 0; next < cg_length; ++next ) { kvn@500: int nk = cg_worklist.at(next); kvn@679: if (ptnode_adr(nk)->escape_state() == PointsToNode::GlobalEscape) kvn@679: worklist.push(nk); duke@435: } kvn@679: // mark all nodes reachable from GlobalEscape nodes duke@435: while(worklist.length() > 0) { kvn@679: PointsToNode* ptn = ptnode_adr(worklist.pop()); kvn@679: uint e_cnt = ptn->edge_count(); kvn@679: for (uint ei = 0; ei < e_cnt; ei++) { kvn@679: uint npi = ptn->edge_target(ei); duke@435: PointsToNode *np = ptnode_adr(npi); kvn@500: if (np->escape_state() < PointsToNode::GlobalEscape) { duke@435: np->set_escape_state(PointsToNode::GlobalEscape); kvn@679: worklist.push(npi); duke@435: } duke@435: } duke@435: } duke@435: duke@435: // push all ArgEscape nodes on the worklist kvn@679: for( uint next = 0; next < cg_length; ++next ) { kvn@500: int nk = cg_worklist.at(next); kvn@679: if (ptnode_adr(nk)->escape_state() == PointsToNode::ArgEscape) duke@435: worklist.push(nk); duke@435: } kvn@679: // mark all nodes reachable from ArgEscape nodes duke@435: while(worklist.length() > 0) { kvn@679: PointsToNode* ptn = ptnode_adr(worklist.pop()); kvn@679: if (ptn->node_type() == PointsToNode::JavaObject) kvn@679: has_non_escaping_obj = true; // Non GlobalEscape kvn@679: uint e_cnt = ptn->edge_count(); kvn@679: for (uint ei = 0; ei < e_cnt; ei++) { kvn@679: uint npi = ptn->edge_target(ei); duke@435: PointsToNode *np = ptnode_adr(npi); kvn@500: if (np->escape_state() < PointsToNode::ArgEscape) { duke@435: np->set_escape_state(PointsToNode::ArgEscape); kvn@679: worklist.push(npi); duke@435: } duke@435: } duke@435: } kvn@500: kvn@679: GrowableArray alloc_worklist; kvn@679: kvn@500: // push all NoEscape nodes on the worklist kvn@679: for( uint next = 0; next < cg_length; ++next ) { kvn@500: int nk = cg_worklist.at(next); kvn@679: if (ptnode_adr(nk)->escape_state() == PointsToNode::NoEscape) kvn@500: worklist.push(nk); kvn@500: } kvn@679: // mark all nodes reachable from NoEscape nodes kvn@500: while(worklist.length() > 0) { kvn@679: PointsToNode* ptn = ptnode_adr(worklist.pop()); kvn@679: if (ptn->node_type() == PointsToNode::JavaObject) kvn@679: has_non_escaping_obj = true; // Non GlobalEscape kvn@679: Node* n = ptn->_node; kvn@679: if (n->is_Allocate() && ptn->_scalar_replaceable ) { twisti@1040: // Push scalar replaceable allocations on alloc_worklist kvn@679: // for processing in split_unique_types(). kvn@679: alloc_worklist.append(n); kvn@679: } kvn@679: uint e_cnt = ptn->edge_count(); kvn@679: for (uint ei = 0; ei < e_cnt; ei++) { kvn@679: uint npi = ptn->edge_target(ei); kvn@500: PointsToNode *np = ptnode_adr(npi); kvn@500: if (np->escape_state() < PointsToNode::NoEscape) { kvn@500: np->set_escape_state(PointsToNode::NoEscape); kvn@679: worklist.push(npi); kvn@500: } kvn@500: } kvn@500: } kvn@500: duke@435: _collecting = false; kvn@679: assert(C->unique() == nodes_size(), "there should be no new ideal nodes during ConnectionGraph build"); duke@435: kvn@1989: #ifndef PRODUCT kvn@1989: if (PrintEscapeAnalysis) { kvn@1989: dump(); // Dump ConnectionGraph kvn@1989: } kvn@1989: #endif kvn@1989: kvn@679: bool has_scalar_replaceable_candidates = alloc_worklist.length() > 0; kvn@679: if ( has_scalar_replaceable_candidates && kvn@679: C->AliasLevel() >= 3 && EliminateAllocations ) { kvn@473: kvn@679: // Now use the escape information to create unique types for kvn@679: // scalar replaceable objects. kvn@679: split_unique_types(alloc_worklist); duke@435: kvn@679: if (C->failing()) return false; duke@435: kvn@679: C->print_method("After Escape Analysis", 2); duke@435: kvn@500: #ifdef ASSERT kvn@679: } else if (Verbose && (PrintEscapeAnalysis || PrintEliminateAllocations)) { kvn@500: tty->print("=== No allocations eliminated for "); kvn@679: C->method()->print_short_name(); kvn@500: if(!EliminateAllocations) { kvn@500: tty->print(" since EliminateAllocations is off ==="); kvn@679: } else if(!has_scalar_replaceable_candidates) { kvn@679: tty->print(" since there are no scalar replaceable candidates ==="); kvn@679: } else if(C->AliasLevel() < 3) { kvn@500: tty->print(" since AliasLevel < 3 ==="); duke@435: } kvn@500: tty->cr(); kvn@500: #endif duke@435: } kvn@679: return has_non_escaping_obj; duke@435: } duke@435: kvn@2556: // Adjust escape state after Connection Graph is built. kvn@2556: void ConnectionGraph::adjust_escape_state(int nidx, PhaseTransform* phase) { kvn@1535: PointsToNode* ptn = ptnode_adr(nidx); kvn@1535: Node* n = ptn->_node; kvn@1535: assert(n->is_AddP(), "Should be called for AddP nodes only"); kvn@1535: // Search for objects which are not scalar replaceable. kvn@1535: // Mark their escape state as ArgEscape to propagate the state kvn@1535: // to referenced objects. kvn@1535: // Note: currently there are no difference in compiler optimizations kvn@1535: // for ArgEscape objects and NoEscape objects which are not kvn@1535: // scalar replaceable. kvn@1535: kvn@1535: Compile* C = _compile; kvn@1535: kvn@1535: int offset = ptn->offset(); kvn@1535: Node* base = get_addp_base(n); kvn@2556: VectorSet* ptset = PointsTo(base); kvn@2556: int ptset_size = ptset->Size(); kvn@1535: kvn@1535: // Check if a oop field's initializing value is recorded and add kvn@1535: // a corresponding NULL field's value if it is not recorded. kvn@1535: // Connection Graph does not record a default initialization by NULL kvn@1535: // captured by Initialize node. kvn@1535: // kvn@1535: // Note: it will disable scalar replacement in some cases: kvn@1535: // kvn@1535: // Point p[] = new Point[1]; kvn@1535: // p[0] = new Point(); // Will be not scalar replaced kvn@1535: // kvn@1535: // but it will save us from incorrect optimizations in next cases: kvn@1535: // kvn@1535: // Point p[] = new Point[1]; kvn@1535: // if ( x ) p[0] = new Point(); // Will be not scalar replaced kvn@1535: // kvn@1535: // Do a simple control flow analysis to distinguish above cases. kvn@1535: // kvn@1535: if (offset != Type::OffsetBot && ptset_size == 1) { kvn@2556: uint elem = ptset->getelem(); // Allocation node's index kvn@1535: // It does not matter if it is not Allocation node since kvn@1535: // only non-escaping allocations are scalar replaced. kvn@1535: if (ptnode_adr(elem)->_node->is_Allocate() && kvn@1535: ptnode_adr(elem)->escape_state() == PointsToNode::NoEscape) { kvn@1535: AllocateNode* alloc = ptnode_adr(elem)->_node->as_Allocate(); kvn@1535: InitializeNode* ini = alloc->initialization(); kvn@1535: kvn@1535: // Check only oop fields. kvn@1535: const Type* adr_type = n->as_AddP()->bottom_type(); kvn@1535: BasicType basic_field_type = T_INT; kvn@1535: if (adr_type->isa_instptr()) { kvn@1535: ciField* field = C->alias_type(adr_type->isa_instptr())->field(); kvn@1535: if (field != NULL) { kvn@1535: basic_field_type = field->layout_type(); kvn@1535: } else { kvn@1535: // Ignore non field load (for example, klass load) kvn@1535: } kvn@1535: } else if (adr_type->isa_aryptr()) { kvn@1535: const Type* elemtype = adr_type->isa_aryptr()->elem(); kvn@1535: basic_field_type = elemtype->array_element_basic_type(); kvn@1535: } else { kvn@1535: // Raw pointers are used for initializing stores so skip it. kvn@1535: assert(adr_type->isa_rawptr() && base->is_Proj() && kvn@1535: (base->in(0) == alloc),"unexpected pointer type"); kvn@1535: } kvn@1535: if (basic_field_type == T_OBJECT || kvn@1535: basic_field_type == T_NARROWOOP || kvn@1535: basic_field_type == T_ARRAY) { kvn@1535: Node* value = NULL; kvn@1535: if (ini != NULL) { kvn@1535: BasicType ft = UseCompressedOops ? T_NARROWOOP : T_OBJECT; kvn@1535: Node* store = ini->find_captured_store(offset, type2aelembytes(ft), phase); kvn@1535: if (store != NULL && store->is_Store()) { kvn@1535: value = store->in(MemNode::ValueIn); kvn@1535: } else if (ptn->edge_count() > 0) { // Are there oop stores? kvn@1535: // Check for a store which follows allocation without branches. kvn@1535: // For example, a volatile field store is not collected kvn@1535: // by Initialize node. TODO: it would be nice to use idom() here. kvn@1535: for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) { kvn@1535: store = n->fast_out(i); kvn@1535: if (store->is_Store() && store->in(0) != NULL) { kvn@1535: Node* ctrl = store->in(0); kvn@1535: while(!(ctrl == ini || ctrl == alloc || ctrl == NULL || kvn@1535: ctrl == C->root() || ctrl == C->top() || ctrl->is_Region() || kvn@1535: ctrl->is_IfTrue() || ctrl->is_IfFalse())) { kvn@1535: ctrl = ctrl->in(0); kvn@1535: } kvn@1535: if (ctrl == ini || ctrl == alloc) { kvn@1535: value = store->in(MemNode::ValueIn); kvn@1535: break; kvn@1535: } kvn@1535: } kvn@1535: } kvn@1535: } kvn@1535: } kvn@1535: if (value == NULL || value != ptnode_adr(value->_idx)->_node) { kvn@1535: // A field's initializing value was not recorded. Add NULL. kvn@1535: uint null_idx = UseCompressedOops ? _noop_null : _oop_null; kvn@1535: add_pointsto_edge(nidx, null_idx); kvn@1535: } kvn@1535: } kvn@1535: } kvn@1535: } kvn@1535: kvn@1535: // An object is not scalar replaceable if the field which may point kvn@1535: // to it has unknown offset (unknown element of an array of objects). kvn@1535: // kvn@1535: if (offset == Type::OffsetBot) { kvn@1535: uint e_cnt = ptn->edge_count(); kvn@1535: for (uint ei = 0; ei < e_cnt; ei++) { kvn@1535: uint npi = ptn->edge_target(ei); kvn@1535: set_escape_state(npi, PointsToNode::ArgEscape); kvn@1535: ptnode_adr(npi)->_scalar_replaceable = false; kvn@1535: } kvn@1535: } kvn@1535: kvn@1535: // Currently an object is not scalar replaceable if a LoadStore node kvn@1535: // access its field since the field value is unknown after it. kvn@1535: // kvn@1535: bool has_LoadStore = false; kvn@1535: for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) { kvn@1535: Node *use = n->fast_out(i); kvn@1535: if (use->is_LoadStore()) { kvn@1535: has_LoadStore = true; kvn@1535: break; kvn@1535: } kvn@1535: } kvn@1535: // An object is not scalar replaceable if the address points kvn@1535: // to unknown field (unknown element for arrays, offset is OffsetBot). kvn@1535: // kvn@1535: // Or the address may point to more then one object. This may produce kvn@1535: // the false positive result (set scalar_replaceable to false) kvn@1535: // since the flow-insensitive escape analysis can't separate kvn@1535: // the case when stores overwrite the field's value from the case kvn@1535: // when stores happened on different control branches. kvn@1535: // kvn@1535: if (ptset_size > 1 || ptset_size != 0 && kvn@1535: (has_LoadStore || offset == Type::OffsetBot)) { kvn@2556: for( VectorSetI j(ptset); j.test(); ++j ) { kvn@1535: set_escape_state(j.elem, PointsToNode::ArgEscape); kvn@1535: ptnode_adr(j.elem)->_scalar_replaceable = false; kvn@1535: } kvn@1535: } kvn@1535: } kvn@1535: duke@435: void ConnectionGraph::process_call_arguments(CallNode *call, PhaseTransform *phase) { duke@435: duke@435: switch (call->Opcode()) { kvn@500: #ifdef ASSERT duke@435: case Op_Allocate: duke@435: case Op_AllocateArray: duke@435: case Op_Lock: duke@435: case Op_Unlock: kvn@500: assert(false, "should be done already"); duke@435: break; kvn@500: #endif kvn@1535: case Op_CallLeaf: kvn@500: case Op_CallLeafNoFP: kvn@500: { kvn@500: // Stub calls, objects do not escape but they are not scale replaceable. kvn@500: // Adjust escape state for outgoing arguments. kvn@500: const TypeTuple * d = call->tf()->domain(); kvn@500: for (uint i = TypeFunc::Parms; i < d->cnt(); i++) { kvn@500: const Type* at = d->field_at(i); kvn@500: Node *arg = call->in(i)->uncast(); kvn@500: const Type *aat = phase->type(arg); kvn@1535: if (!arg->is_top() && at->isa_ptr() && aat->isa_ptr() && kvn@1535: ptnode_adr(arg->_idx)->escape_state() < PointsToNode::ArgEscape) { kvn@1535: kvn@500: assert(aat == Type::TOP || aat == TypePtr::NULL_PTR || kvn@500: aat->isa_ptr() != NULL, "expecting an Ptr"); kvn@1535: #ifdef ASSERT kvn@1535: if (!(call->Opcode() == Op_CallLeafNoFP && kvn@1535: call->as_CallLeaf()->_name != NULL && kvn@1535: (strstr(call->as_CallLeaf()->_name, "arraycopy") != 0) || kvn@1535: call->as_CallLeaf()->_name != NULL && kvn@1535: (strcmp(call->as_CallLeaf()->_name, "g1_wb_pre") == 0 || kvn@1535: strcmp(call->as_CallLeaf()->_name, "g1_wb_post") == 0 )) kvn@1535: ) { kvn@1535: call->dump(); kvn@1535: assert(false, "EA: unexpected CallLeaf"); kvn@1535: } kvn@1535: #endif kvn@500: set_escape_state(arg->_idx, PointsToNode::ArgEscape); kvn@500: if (arg->is_AddP()) { kvn@500: // kvn@500: // The inline_native_clone() case when the arraycopy stub is called kvn@500: // after the allocation before Initialize and CheckCastPP nodes. kvn@500: // kvn@500: // Set AddP's base (Allocate) as not scalar replaceable since kvn@500: // pointer to the base (with offset) is passed as argument. kvn@500: // kvn@500: arg = get_addp_base(arg); kvn@500: } kvn@2556: for( VectorSetI j(PointsTo(arg)); j.test(); ++j ) { kvn@500: uint pt = j.elem; kvn@500: set_escape_state(pt, PointsToNode::ArgEscape); kvn@500: } kvn@500: } kvn@500: } kvn@500: break; kvn@500: } duke@435: duke@435: case Op_CallStaticJava: duke@435: // For a static call, we know exactly what method is being called. duke@435: // Use bytecode estimator to record the call's escape affects duke@435: { duke@435: ciMethod *meth = call->as_CallJava()->method(); kvn@500: BCEscapeAnalyzer *call_analyzer = (meth !=NULL) ? meth->get_bcea() : NULL; kvn@500: // fall-through if not a Java method or no analyzer information kvn@500: if (call_analyzer != NULL) { duke@435: const TypeTuple * d = call->tf()->domain(); kvn@500: bool copy_dependencies = false; duke@435: for (uint i = TypeFunc::Parms; i < d->cnt(); i++) { duke@435: const Type* at = d->field_at(i); duke@435: int k = i - TypeFunc::Parms; kvn@1535: Node *arg = call->in(i)->uncast(); duke@435: kvn@1535: if (at->isa_oopptr() != NULL && kvn@1571: ptnode_adr(arg->_idx)->escape_state() < PointsToNode::GlobalEscape) { duke@435: kvn@500: bool global_escapes = false; kvn@500: bool fields_escapes = false; kvn@500: if (!call_analyzer->is_arg_stack(k)) { duke@435: // The argument global escapes, mark everything it could point to kvn@500: set_escape_state(arg->_idx, PointsToNode::GlobalEscape); kvn@500: global_escapes = true; kvn@500: } else { kvn@500: if (!call_analyzer->is_arg_local(k)) { kvn@500: // The argument itself doesn't escape, but any fields might kvn@500: fields_escapes = true; kvn@500: } kvn@500: set_escape_state(arg->_idx, PointsToNode::ArgEscape); kvn@500: copy_dependencies = true; kvn@500: } duke@435: kvn@2556: for( VectorSetI j(PointsTo(arg)); j.test(); ++j ) { kvn@500: uint pt = j.elem; kvn@500: if (global_escapes) { kvn@500: //The argument global escapes, mark everything it could point to duke@435: set_escape_state(pt, PointsToNode::GlobalEscape); kvn@500: } else { kvn@500: if (fields_escapes) { kvn@500: // The argument itself doesn't escape, but any fields might kvn@500: add_edge_from_fields(pt, _phantom_object, Type::OffsetBot); kvn@500: } kvn@500: set_escape_state(pt, PointsToNode::ArgEscape); duke@435: } duke@435: } duke@435: } duke@435: } kvn@500: if (copy_dependencies) kvn@679: call_analyzer->copy_dependencies(_compile->dependencies()); duke@435: break; duke@435: } duke@435: } duke@435: duke@435: default: kvn@500: // Fall-through here if not a Java method or no analyzer information kvn@500: // or some other type of call, assume the worst case: all arguments duke@435: // globally escape. duke@435: { duke@435: // adjust escape state for outgoing arguments duke@435: const TypeTuple * d = call->tf()->domain(); duke@435: for (uint i = TypeFunc::Parms; i < d->cnt(); i++) { duke@435: const Type* at = d->field_at(i); duke@435: if (at->isa_oopptr() != NULL) { kvn@500: Node *arg = call->in(i)->uncast(); kvn@500: set_escape_state(arg->_idx, PointsToNode::GlobalEscape); kvn@2556: for( VectorSetI j(PointsTo(arg)); j.test(); ++j ) { duke@435: uint pt = j.elem; duke@435: set_escape_state(pt, PointsToNode::GlobalEscape); duke@435: } duke@435: } duke@435: } duke@435: } duke@435: } duke@435: } duke@435: void ConnectionGraph::process_call_result(ProjNode *resproj, PhaseTransform *phase) { kvn@679: CallNode *call = resproj->in(0)->as_Call(); kvn@679: uint call_idx = call->_idx; kvn@679: uint resproj_idx = resproj->_idx; duke@435: duke@435: switch (call->Opcode()) { duke@435: case Op_Allocate: duke@435: { duke@435: Node *k = call->in(AllocateNode::KlassNode); kvn@1894: const TypeKlassPtr *kt = k->bottom_type()->isa_klassptr(); duke@435: assert(kt != NULL, "TypeKlassPtr required."); duke@435: ciKlass* cik = kt->klass(); duke@435: kvn@500: PointsToNode::EscapeState es; kvn@500: uint edge_to; kvn@1894: if (cik->is_subclass_of(_compile->env()->Thread_klass()) || kvn@1894: !cik->is_instance_klass() || // StressReflectiveCode kvn@1894: cik->as_instance_klass()->has_finalizer()) { kvn@500: es = PointsToNode::GlobalEscape; kvn@500: edge_to = _phantom_object; // Could not be worse duke@435: } else { kvn@500: es = PointsToNode::NoEscape; kvn@679: edge_to = call_idx; duke@435: } kvn@679: set_escape_state(call_idx, es); kvn@679: add_pointsto_edge(resproj_idx, edge_to); kvn@679: _processed.set(resproj_idx); duke@435: break; duke@435: } duke@435: duke@435: case Op_AllocateArray: duke@435: { kvn@1894: kvn@1894: Node *k = call->in(AllocateNode::KlassNode); kvn@1894: const TypeKlassPtr *kt = k->bottom_type()->isa_klassptr(); kvn@1894: assert(kt != NULL, "TypeKlassPtr required."); kvn@1894: ciKlass* cik = kt->klass(); kvn@1894: kvn@1894: PointsToNode::EscapeState es; kvn@1894: uint edge_to; kvn@1894: if (!cik->is_array_klass()) { // StressReflectiveCode kvn@1894: es = PointsToNode::GlobalEscape; kvn@1894: edge_to = _phantom_object; kvn@1894: } else { kvn@1894: es = PointsToNode::NoEscape; kvn@1894: edge_to = call_idx; kvn@1894: int length = call->in(AllocateNode::ALength)->find_int_con(-1); kvn@1894: if (length < 0 || length > EliminateAllocationArraySizeLimit) { kvn@1894: // Not scalar replaceable if the length is not constant or too big. kvn@1894: ptnode_adr(call_idx)->_scalar_replaceable = false; kvn@1894: } kvn@500: } kvn@1894: set_escape_state(call_idx, es); kvn@1894: add_pointsto_edge(resproj_idx, edge_to); kvn@679: _processed.set(resproj_idx); duke@435: break; duke@435: } duke@435: duke@435: case Op_CallStaticJava: duke@435: // For a static call, we know exactly what method is being called. duke@435: // Use bytecode estimator to record whether the call's return value escapes duke@435: { kvn@500: bool done = true; duke@435: const TypeTuple *r = call->tf()->range(); duke@435: const Type* ret_type = NULL; duke@435: duke@435: if (r->cnt() > TypeFunc::Parms) duke@435: ret_type = r->field_at(TypeFunc::Parms); duke@435: duke@435: // Note: we use isa_ptr() instead of isa_oopptr() here because the duke@435: // _multianewarray functions return a TypeRawPtr. kvn@500: if (ret_type == NULL || ret_type->isa_ptr() == NULL) { kvn@679: _processed.set(resproj_idx); duke@435: break; // doesn't return a pointer type kvn@500: } duke@435: ciMethod *meth = call->as_CallJava()->method(); kvn@500: const TypeTuple * d = call->tf()->domain(); duke@435: if (meth == NULL) { duke@435: // not a Java method, assume global escape kvn@679: set_escape_state(call_idx, PointsToNode::GlobalEscape); kvn@679: add_pointsto_edge(resproj_idx, _phantom_object); duke@435: } else { kvn@500: BCEscapeAnalyzer *call_analyzer = meth->get_bcea(); kvn@500: bool copy_dependencies = false; duke@435: kvn@500: if (call_analyzer->is_return_allocated()) { kvn@500: // Returns a newly allocated unescaped object, simply kvn@500: // update dependency information. kvn@500: // Mark it as NoEscape so that objects referenced by kvn@500: // it's fields will be marked as NoEscape at least. kvn@679: set_escape_state(call_idx, PointsToNode::NoEscape); kvn@679: add_pointsto_edge(resproj_idx, call_idx); kvn@500: copy_dependencies = true; kvn@679: } else if (call_analyzer->is_return_local()) { duke@435: // determine whether any arguments are returned kvn@679: set_escape_state(call_idx, PointsToNode::NoEscape); kvn@742: bool ret_arg = false; duke@435: for (uint i = TypeFunc::Parms; i < d->cnt(); i++) { duke@435: const Type* at = d->field_at(i); duke@435: duke@435: if (at->isa_oopptr() != NULL) { kvn@500: Node *arg = call->in(i)->uncast(); duke@435: kvn@500: if (call_analyzer->is_arg_returned(i - TypeFunc::Parms)) { kvn@742: ret_arg = true; kvn@679: PointsToNode *arg_esp = ptnode_adr(arg->_idx); kvn@500: if (arg_esp->node_type() == PointsToNode::UnknownType) kvn@500: done = false; kvn@500: else if (arg_esp->node_type() == PointsToNode::JavaObject) kvn@679: add_pointsto_edge(resproj_idx, arg->_idx); duke@435: else kvn@679: add_deferred_edge(resproj_idx, arg->_idx); duke@435: arg_esp->_hidden_alias = true; duke@435: } duke@435: } duke@435: } kvn@742: if (done && !ret_arg) { kvn@742: // Returns unknown object. kvn@742: set_escape_state(call_idx, PointsToNode::GlobalEscape); kvn@742: add_pointsto_edge(resproj_idx, _phantom_object); kvn@742: } kvn@500: copy_dependencies = true; duke@435: } else { kvn@679: set_escape_state(call_idx, PointsToNode::GlobalEscape); kvn@679: add_pointsto_edge(resproj_idx, _phantom_object); kvn@500: for (uint i = TypeFunc::Parms; i < d->cnt(); i++) { kvn@500: const Type* at = d->field_at(i); kvn@500: if (at->isa_oopptr() != NULL) { kvn@500: Node *arg = call->in(i)->uncast(); kvn@679: PointsToNode *arg_esp = ptnode_adr(arg->_idx); kvn@500: arg_esp->_hidden_alias = true; kvn@500: } kvn@500: } duke@435: } kvn@500: if (copy_dependencies) kvn@679: call_analyzer->copy_dependencies(_compile->dependencies()); duke@435: } kvn@500: if (done) kvn@679: _processed.set(resproj_idx); duke@435: break; duke@435: } duke@435: duke@435: default: duke@435: // Some other type of call, assume the worst case that the duke@435: // returned value, if any, globally escapes. duke@435: { duke@435: const TypeTuple *r = call->tf()->range(); duke@435: if (r->cnt() > TypeFunc::Parms) { duke@435: const Type* ret_type = r->field_at(TypeFunc::Parms); duke@435: duke@435: // Note: we use isa_ptr() instead of isa_oopptr() here because the duke@435: // _multianewarray functions return a TypeRawPtr. duke@435: if (ret_type->isa_ptr() != NULL) { kvn@679: set_escape_state(call_idx, PointsToNode::GlobalEscape); kvn@679: add_pointsto_edge(resproj_idx, _phantom_object); duke@435: } duke@435: } kvn@679: _processed.set(resproj_idx); duke@435: } duke@435: } duke@435: } duke@435: kvn@500: // Populate Connection Graph with Ideal nodes and create simple kvn@500: // connection graph edges (do not need to check the node_type of inputs kvn@500: // or to call PointsTo() to walk the connection graph). kvn@500: void ConnectionGraph::record_for_escape_analysis(Node *n, PhaseTransform *phase) { kvn@500: if (_processed.test(n->_idx)) kvn@500: return; // No need to redefine node's state. kvn@500: kvn@500: if (n->is_Call()) { kvn@500: // Arguments to allocation and locking don't escape. kvn@500: if (n->is_Allocate()) { kvn@500: add_node(n, PointsToNode::JavaObject, PointsToNode::UnknownEscape, true); kvn@500: record_for_optimizer(n); kvn@500: } else if (n->is_Lock() || n->is_Unlock()) { kvn@500: // Put Lock and Unlock nodes on IGVN worklist to process them during kvn@500: // the first IGVN optimization when escape information is still available. kvn@500: record_for_optimizer(n); kvn@500: _processed.set(n->_idx); kvn@500: } else { kvn@1535: // Don't mark as processed since call's arguments have to be processed. kvn@500: PointsToNode::NodeType nt = PointsToNode::UnknownType; kvn@1535: PointsToNode::EscapeState es = PointsToNode::UnknownEscape; kvn@500: kvn@500: // Check if a call returns an object. kvn@500: const TypeTuple *r = n->as_Call()->tf()->range(); kvn@1535: if (r->cnt() > TypeFunc::Parms && kvn@1535: r->field_at(TypeFunc::Parms)->isa_ptr() && kvn@500: n->as_Call()->proj_out(TypeFunc::Parms) != NULL) { kvn@1535: nt = PointsToNode::JavaObject; kvn@1535: if (!n->is_CallStaticJava()) { kvn@1535: // Since the called mathod is statically unknown assume kvn@1535: // the worst case that the returned value globally escapes. kvn@1535: es = PointsToNode::GlobalEscape; kvn@500: } duke@435: } kvn@1535: add_node(n, nt, es, false); duke@435: } kvn@500: return; duke@435: } kvn@500: kvn@500: // Using isa_ptr() instead of isa_oopptr() for LoadP and Phi because kvn@500: // ThreadLocal has RawPrt type. kvn@500: switch (n->Opcode()) { kvn@500: case Op_AddP: kvn@500: { kvn@500: add_node(n, PointsToNode::Field, PointsToNode::UnknownEscape, false); kvn@500: break; kvn@500: } kvn@500: case Op_CastX2P: kvn@500: { // "Unsafe" memory access. kvn@500: add_node(n, PointsToNode::JavaObject, PointsToNode::GlobalEscape, true); kvn@500: break; kvn@500: } kvn@500: case Op_CastPP: kvn@500: case Op_CheckCastPP: kvn@559: case Op_EncodeP: kvn@559: case Op_DecodeN: kvn@500: { kvn@500: add_node(n, PointsToNode::LocalVar, PointsToNode::UnknownEscape, false); kvn@500: int ti = n->in(1)->_idx; kvn@679: PointsToNode::NodeType nt = ptnode_adr(ti)->node_type(); kvn@500: if (nt == PointsToNode::UnknownType) { kvn@500: _delayed_worklist.push(n); // Process it later. kvn@500: break; kvn@500: } else if (nt == PointsToNode::JavaObject) { kvn@500: add_pointsto_edge(n->_idx, ti); kvn@500: } else { kvn@500: add_deferred_edge(n->_idx, ti); kvn@500: } kvn@500: _processed.set(n->_idx); kvn@500: break; kvn@500: } kvn@500: case Op_ConP: kvn@500: { kvn@500: // assume all pointer constants globally escape except for null kvn@500: PointsToNode::EscapeState es; kvn@500: if (phase->type(n) == TypePtr::NULL_PTR) kvn@500: es = PointsToNode::NoEscape; kvn@500: else kvn@500: es = PointsToNode::GlobalEscape; kvn@500: kvn@500: add_node(n, PointsToNode::JavaObject, es, true); kvn@500: break; kvn@500: } coleenp@548: case Op_ConN: coleenp@548: { coleenp@548: // assume all narrow oop constants globally escape except for null coleenp@548: PointsToNode::EscapeState es; coleenp@548: if (phase->type(n) == TypeNarrowOop::NULL_PTR) coleenp@548: es = PointsToNode::NoEscape; coleenp@548: else coleenp@548: es = PointsToNode::GlobalEscape; coleenp@548: coleenp@548: add_node(n, PointsToNode::JavaObject, es, true); coleenp@548: break; coleenp@548: } kvn@559: case Op_CreateEx: kvn@559: { kvn@559: // assume that all exception objects globally escape kvn@559: add_node(n, PointsToNode::JavaObject, PointsToNode::GlobalEscape, true); kvn@559: break; kvn@559: } kvn@500: case Op_LoadKlass: kvn@599: case Op_LoadNKlass: kvn@500: { kvn@500: add_node(n, PointsToNode::JavaObject, PointsToNode::GlobalEscape, true); kvn@500: break; kvn@500: } kvn@500: case Op_LoadP: coleenp@548: case Op_LoadN: kvn@500: { kvn@500: const Type *t = phase->type(n); kvn@688: if (t->make_ptr() == NULL) { kvn@500: _processed.set(n->_idx); kvn@500: return; kvn@500: } kvn@500: add_node(n, PointsToNode::LocalVar, PointsToNode::UnknownEscape, false); kvn@500: break; kvn@500: } kvn@500: case Op_Parm: kvn@500: { kvn@500: _processed.set(n->_idx); // No need to redefine it state. kvn@500: uint con = n->as_Proj()->_con; kvn@500: if (con < TypeFunc::Parms) kvn@500: return; kvn@500: const Type *t = n->in(0)->as_Start()->_domain->field_at(con); kvn@500: if (t->isa_ptr() == NULL) kvn@500: return; kvn@500: // We have to assume all input parameters globally escape kvn@500: // (Note: passing 'false' since _processed is already set). kvn@500: add_node(n, PointsToNode::JavaObject, PointsToNode::GlobalEscape, false); kvn@500: break; kvn@500: } kvn@500: case Op_Phi: kvn@500: { kvn@688: const Type *t = n->as_Phi()->type(); kvn@688: if (t->make_ptr() == NULL) { kvn@688: // nothing to do if not an oop or narrow oop kvn@500: _processed.set(n->_idx); kvn@500: return; kvn@500: } kvn@500: add_node(n, PointsToNode::LocalVar, PointsToNode::UnknownEscape, false); kvn@500: uint i; kvn@500: for (i = 1; i < n->req() ; i++) { kvn@500: Node* in = n->in(i); kvn@500: if (in == NULL) kvn@500: continue; // ignore NULL kvn@500: in = in->uncast(); kvn@500: if (in->is_top() || in == n) kvn@500: continue; // ignore top or inputs which go back this node kvn@500: int ti = in->_idx; kvn@679: PointsToNode::NodeType nt = ptnode_adr(ti)->node_type(); kvn@500: if (nt == PointsToNode::UnknownType) { kvn@500: break; kvn@500: } else if (nt == PointsToNode::JavaObject) { kvn@500: add_pointsto_edge(n->_idx, ti); kvn@500: } else { kvn@500: add_deferred_edge(n->_idx, ti); kvn@500: } kvn@500: } kvn@500: if (i >= n->req()) kvn@500: _processed.set(n->_idx); kvn@500: else kvn@500: _delayed_worklist.push(n); kvn@500: break; kvn@500: } kvn@500: case Op_Proj: kvn@500: { kvn@1535: // we are only interested in the oop result projection from a call kvn@500: if (n->as_Proj()->_con == TypeFunc::Parms && n->in(0)->is_Call() ) { kvn@1535: const TypeTuple *r = n->in(0)->as_Call()->tf()->range(); kvn@1535: assert(r->cnt() > TypeFunc::Parms, "sanity"); kvn@1535: if (r->field_at(TypeFunc::Parms)->isa_ptr() != NULL) { kvn@1535: add_node(n, PointsToNode::LocalVar, PointsToNode::UnknownEscape, false); kvn@1535: int ti = n->in(0)->_idx; kvn@1535: // The call may not be registered yet (since not all its inputs are registered) kvn@1535: // if this is the projection from backbranch edge of Phi. kvn@1535: if (ptnode_adr(ti)->node_type() != PointsToNode::UnknownType) { kvn@1535: process_call_result(n->as_Proj(), phase); kvn@1535: } kvn@1535: if (!_processed.test(n->_idx)) { kvn@1535: // The call's result may need to be processed later if the call kvn@1535: // returns it's argument and the argument is not processed yet. kvn@1535: _delayed_worklist.push(n); kvn@1535: } kvn@1535: break; kvn@500: } kvn@500: } kvn@1535: _processed.set(n->_idx); kvn@500: break; kvn@500: } kvn@500: case Op_Return: kvn@500: { kvn@500: if( n->req() > TypeFunc::Parms && kvn@500: phase->type(n->in(TypeFunc::Parms))->isa_oopptr() ) { kvn@500: // Treat Return value as LocalVar with GlobalEscape escape state. kvn@500: add_node(n, PointsToNode::LocalVar, PointsToNode::GlobalEscape, false); kvn@500: int ti = n->in(TypeFunc::Parms)->_idx; kvn@679: PointsToNode::NodeType nt = ptnode_adr(ti)->node_type(); kvn@500: if (nt == PointsToNode::UnknownType) { kvn@500: _delayed_worklist.push(n); // Process it later. kvn@500: break; kvn@500: } else if (nt == PointsToNode::JavaObject) { kvn@500: add_pointsto_edge(n->_idx, ti); kvn@500: } else { kvn@500: add_deferred_edge(n->_idx, ti); kvn@500: } kvn@500: } kvn@500: _processed.set(n->_idx); kvn@500: break; kvn@500: } kvn@500: case Op_StoreP: coleenp@548: case Op_StoreN: kvn@500: { kvn@500: const Type *adr_type = phase->type(n->in(MemNode::Address)); kvn@656: adr_type = adr_type->make_ptr(); kvn@500: if (adr_type->isa_oopptr()) { kvn@500: add_node(n, PointsToNode::UnknownType, PointsToNode::UnknownEscape, false); kvn@500: } else { kvn@500: Node* adr = n->in(MemNode::Address); kvn@500: if (adr->is_AddP() && phase->type(adr) == TypeRawPtr::NOTNULL && kvn@500: adr->in(AddPNode::Address)->is_Proj() && kvn@500: adr->in(AddPNode::Address)->in(0)->is_Allocate()) { kvn@500: add_node(n, PointsToNode::UnknownType, PointsToNode::UnknownEscape, false); kvn@500: // We are computing a raw address for a store captured kvn@500: // by an Initialize compute an appropriate address type. kvn@500: int offs = (int)phase->find_intptr_t_con(adr->in(AddPNode::Offset), Type::OffsetBot); kvn@500: assert(offs != Type::OffsetBot, "offset must be a constant"); kvn@500: } else { kvn@500: _processed.set(n->_idx); kvn@500: return; kvn@500: } kvn@500: } kvn@500: break; kvn@500: } kvn@500: case Op_StorePConditional: kvn@500: case Op_CompareAndSwapP: coleenp@548: case Op_CompareAndSwapN: kvn@500: { kvn@500: const Type *adr_type = phase->type(n->in(MemNode::Address)); kvn@656: adr_type = adr_type->make_ptr(); kvn@500: if (adr_type->isa_oopptr()) { kvn@500: add_node(n, PointsToNode::UnknownType, PointsToNode::UnknownEscape, false); kvn@500: } else { kvn@500: _processed.set(n->_idx); kvn@500: return; kvn@500: } kvn@500: break; kvn@500: } kvn@1535: case Op_AryEq: kvn@1535: case Op_StrComp: kvn@1535: case Op_StrEquals: kvn@1535: case Op_StrIndexOf: kvn@1535: { kvn@1535: // char[] arrays passed to string intrinsics are not scalar replaceable. kvn@1535: add_node(n, PointsToNode::UnknownType, PointsToNode::UnknownEscape, false); kvn@1535: break; kvn@1535: } kvn@500: case Op_ThreadLocal: kvn@500: { kvn@500: add_node(n, PointsToNode::JavaObject, PointsToNode::ArgEscape, true); kvn@500: break; kvn@500: } kvn@500: default: kvn@500: ; kvn@500: // nothing to do kvn@500: } kvn@500: return; duke@435: } duke@435: kvn@500: void ConnectionGraph::build_connection_graph(Node *n, PhaseTransform *phase) { kvn@679: uint n_idx = n->_idx; kvn@1535: assert(ptnode_adr(n_idx)->_node != NULL, "node should be registered"); kvn@679: kvn@500: // Don't set processed bit for AddP, LoadP, StoreP since kvn@500: // they may need more then one pass to process. kvn@2276: // Also don't mark as processed Call nodes since their kvn@2276: // arguments may need more then one pass to process. kvn@679: if (_processed.test(n_idx)) kvn@500: return; // No need to redefine node's state. duke@435: duke@435: if (n->is_Call()) { duke@435: CallNode *call = n->as_Call(); duke@435: process_call_arguments(call, phase); duke@435: return; duke@435: } duke@435: kvn@500: switch (n->Opcode()) { duke@435: case Op_AddP: duke@435: { kvn@500: Node *base = get_addp_base(n); kvn@500: // Create a field edge to this node from everything base could point to. kvn@2556: for( VectorSetI i(PointsTo(base)); i.test(); ++i ) { duke@435: uint pt = i.elem; kvn@679: add_field_edge(pt, n_idx, address_offset(n, phase)); kvn@500: } kvn@500: break; kvn@500: } kvn@500: case Op_CastX2P: kvn@500: { kvn@500: assert(false, "Op_CastX2P"); kvn@500: break; kvn@500: } kvn@500: case Op_CastPP: kvn@500: case Op_CheckCastPP: coleenp@548: case Op_EncodeP: coleenp@548: case Op_DecodeN: kvn@500: { kvn@500: int ti = n->in(1)->_idx; kvn@1535: assert(ptnode_adr(ti)->node_type() != PointsToNode::UnknownType, "all nodes should be registered"); kvn@679: if (ptnode_adr(ti)->node_type() == PointsToNode::JavaObject) { kvn@679: add_pointsto_edge(n_idx, ti); kvn@500: } else { kvn@679: add_deferred_edge(n_idx, ti); kvn@500: } kvn@679: _processed.set(n_idx); kvn@500: break; kvn@500: } kvn@500: case Op_ConP: kvn@500: { kvn@500: assert(false, "Op_ConP"); kvn@500: break; kvn@500: } kvn@598: case Op_ConN: kvn@598: { kvn@598: assert(false, "Op_ConN"); kvn@598: break; kvn@598: } kvn@500: case Op_CreateEx: kvn@500: { kvn@500: assert(false, "Op_CreateEx"); kvn@500: break; kvn@500: } kvn@500: case Op_LoadKlass: kvn@599: case Op_LoadNKlass: kvn@500: { kvn@500: assert(false, "Op_LoadKlass"); kvn@500: break; kvn@500: } kvn@500: case Op_LoadP: kvn@559: case Op_LoadN: kvn@500: { kvn@500: const Type *t = phase->type(n); kvn@500: #ifdef ASSERT kvn@688: if (t->make_ptr() == NULL) kvn@500: assert(false, "Op_LoadP"); kvn@500: #endif kvn@500: kvn@500: Node* adr = n->in(MemNode::Address)->uncast(); kvn@500: Node* adr_base; kvn@500: if (adr->is_AddP()) { kvn@500: adr_base = get_addp_base(adr); kvn@500: } else { kvn@500: adr_base = adr; kvn@500: } kvn@500: kvn@500: // For everything "adr_base" could point to, create a deferred edge from kvn@500: // this node to each field with the same offset. kvn@500: int offset = address_offset(adr, phase); kvn@2556: for( VectorSetI i(PointsTo(adr_base)); i.test(); ++i ) { kvn@500: uint pt = i.elem; kvn@679: add_deferred_edge_to_fields(n_idx, pt, offset); duke@435: } duke@435: break; duke@435: } duke@435: case Op_Parm: duke@435: { kvn@500: assert(false, "Op_Parm"); kvn@500: break; kvn@500: } kvn@500: case Op_Phi: kvn@500: { kvn@500: #ifdef ASSERT kvn@688: const Type *t = n->as_Phi()->type(); kvn@688: if (t->make_ptr() == NULL) kvn@500: assert(false, "Op_Phi"); kvn@500: #endif kvn@500: for (uint i = 1; i < n->req() ; i++) { kvn@500: Node* in = n->in(i); kvn@500: if (in == NULL) kvn@500: continue; // ignore NULL kvn@500: in = in->uncast(); kvn@500: if (in->is_top() || in == n) kvn@500: continue; // ignore top or inputs which go back this node kvn@500: int ti = in->_idx; kvn@742: PointsToNode::NodeType nt = ptnode_adr(ti)->node_type(); kvn@742: assert(nt != PointsToNode::UnknownType, "all nodes should be known"); kvn@742: if (nt == PointsToNode::JavaObject) { kvn@679: add_pointsto_edge(n_idx, ti); kvn@500: } else { kvn@679: add_deferred_edge(n_idx, ti); kvn@500: } duke@435: } kvn@679: _processed.set(n_idx); duke@435: break; duke@435: } kvn@500: case Op_Proj: duke@435: { kvn@1535: // we are only interested in the oop result projection from a call kvn@500: if (n->as_Proj()->_con == TypeFunc::Parms && n->in(0)->is_Call() ) { kvn@1535: assert(ptnode_adr(n->in(0)->_idx)->node_type() != PointsToNode::UnknownType, kvn@1535: "all nodes should be registered"); kvn@1535: const TypeTuple *r = n->in(0)->as_Call()->tf()->range(); kvn@1535: assert(r->cnt() > TypeFunc::Parms, "sanity"); kvn@1535: if (r->field_at(TypeFunc::Parms)->isa_ptr() != NULL) { kvn@1535: process_call_result(n->as_Proj(), phase); kvn@1535: assert(_processed.test(n_idx), "all call results should be processed"); kvn@1535: break; kvn@1535: } kvn@500: } kvn@1535: assert(false, "Op_Proj"); duke@435: break; duke@435: } kvn@500: case Op_Return: duke@435: { kvn@500: #ifdef ASSERT kvn@500: if( n->req() <= TypeFunc::Parms || kvn@500: !phase->type(n->in(TypeFunc::Parms))->isa_oopptr() ) { kvn@500: assert(false, "Op_Return"); kvn@500: } kvn@500: #endif kvn@500: int ti = n->in(TypeFunc::Parms)->_idx; kvn@1535: assert(ptnode_adr(ti)->node_type() != PointsToNode::UnknownType, "node should be registered"); kvn@679: if (ptnode_adr(ti)->node_type() == PointsToNode::JavaObject) { kvn@679: add_pointsto_edge(n_idx, ti); kvn@500: } else { kvn@679: add_deferred_edge(n_idx, ti); kvn@500: } kvn@679: _processed.set(n_idx); duke@435: break; duke@435: } duke@435: case Op_StoreP: kvn@559: case Op_StoreN: duke@435: case Op_StorePConditional: duke@435: case Op_CompareAndSwapP: kvn@559: case Op_CompareAndSwapN: duke@435: { duke@435: Node *adr = n->in(MemNode::Address); kvn@656: const Type *adr_type = phase->type(adr)->make_ptr(); kvn@500: #ifdef ASSERT duke@435: if (!adr_type->isa_oopptr()) kvn@500: assert(phase->type(adr) == TypeRawPtr::NOTNULL, "Op_StoreP"); kvn@500: #endif duke@435: kvn@500: assert(adr->is_AddP(), "expecting an AddP"); kvn@500: Node *adr_base = get_addp_base(adr); kvn@500: Node *val = n->in(MemNode::ValueIn)->uncast(); kvn@500: // For everything "adr_base" could point to, create a deferred edge kvn@500: // to "val" from each field with the same offset. kvn@2556: for( VectorSetI i(PointsTo(adr_base)); i.test(); ++i ) { duke@435: uint pt = i.elem; kvn@500: add_edge_from_fields(pt, val->_idx, address_offset(adr, phase)); duke@435: } duke@435: break; duke@435: } kvn@1535: case Op_AryEq: kvn@1535: case Op_StrComp: kvn@1535: case Op_StrEquals: kvn@1535: case Op_StrIndexOf: kvn@1535: { kvn@1535: // char[] arrays passed to string intrinsic do not escape but kvn@1535: // they are not scalar replaceable. Adjust escape state for them. kvn@1535: // Start from in(2) edge since in(1) is memory edge. kvn@1535: for (uint i = 2; i < n->req(); i++) { kvn@1535: Node* adr = n->in(i)->uncast(); kvn@1535: const Type *at = phase->type(adr); kvn@1535: if (!adr->is_top() && at->isa_ptr()) { kvn@1535: assert(at == Type::TOP || at == TypePtr::NULL_PTR || kvn@1535: at->isa_ptr() != NULL, "expecting an Ptr"); kvn@1535: if (adr->is_AddP()) { kvn@1535: adr = get_addp_base(adr); kvn@1535: } kvn@1535: // Mark as ArgEscape everything "adr" could point to. kvn@1535: set_escape_state(adr->_idx, PointsToNode::ArgEscape); kvn@1535: } kvn@1535: } kvn@1535: _processed.set(n_idx); kvn@1535: break; kvn@1535: } kvn@500: case Op_ThreadLocal: duke@435: { kvn@500: assert(false, "Op_ThreadLocal"); duke@435: break; duke@435: } duke@435: default: kvn@1535: // This method should be called only for EA specific nodes. kvn@1535: ShouldNotReachHere(); duke@435: } duke@435: } duke@435: duke@435: #ifndef PRODUCT duke@435: void ConnectionGraph::dump() { duke@435: bool first = true; duke@435: kvn@679: uint size = nodes_size(); kvn@500: for (uint ni = 0; ni < size; ni++) { kvn@679: PointsToNode *ptn = ptnode_adr(ni); kvn@500: PointsToNode::NodeType ptn_type = ptn->node_type(); kvn@500: kvn@500: if (ptn_type != PointsToNode::JavaObject || ptn->_node == NULL) duke@435: continue; kvn@1989: PointsToNode::EscapeState es = escape_state(ptn->_node); kvn@500: if (ptn->_node->is_Allocate() && (es == PointsToNode::NoEscape || Verbose)) { kvn@500: if (first) { kvn@500: tty->cr(); kvn@500: tty->print("======== Connection graph for "); kvn@679: _compile->method()->print_short_name(); kvn@500: tty->cr(); kvn@500: first = false; kvn@500: } kvn@500: tty->print("%6d ", ni); kvn@500: ptn->dump(); kvn@500: // Print all locals which reference this allocation kvn@500: for (uint li = ni; li < size; li++) { kvn@679: PointsToNode *ptn_loc = ptnode_adr(li); kvn@500: PointsToNode::NodeType ptn_loc_type = ptn_loc->node_type(); kvn@500: if ( ptn_loc_type == PointsToNode::LocalVar && ptn_loc->_node != NULL && kvn@500: ptn_loc->edge_count() == 1 && ptn_loc->edge_target(0) == ni ) { kvn@688: ptnode_adr(li)->dump(false); duke@435: } duke@435: } kvn@500: if (Verbose) { kvn@500: // Print all fields which reference this allocation kvn@500: for (uint i = 0; i < ptn->edge_count(); i++) { kvn@500: uint ei = ptn->edge_target(i); kvn@688: ptnode_adr(ei)->dump(false); kvn@500: } kvn@500: } kvn@500: tty->cr(); duke@435: } duke@435: } duke@435: } duke@435: #endif