duke@435: /* duke@435: * Copyright 1997-2007 Sun Microsystems, Inc. All Rights Reserved. duke@435: * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. duke@435: * duke@435: * This code is free software; you can redistribute it and/or modify it duke@435: * under the terms of the GNU General Public License version 2 only, as duke@435: * published by the Free Software Foundation. duke@435: * duke@435: * This code is distributed in the hope that it will be useful, but WITHOUT duke@435: * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or duke@435: * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License duke@435: * version 2 for more details (a copy is included in the LICENSE file that duke@435: * accompanied this code). duke@435: * duke@435: * You should have received a copy of the GNU General Public License version duke@435: * 2 along with this work; if not, write to the Free Software Foundation, duke@435: * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. duke@435: * duke@435: * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, duke@435: * CA 95054 USA or visit www.sun.com if you need additional information or duke@435: * have any questions. duke@435: * duke@435: */ duke@435: duke@435: // Portions of code courtesy of Clifford Click duke@435: duke@435: // Optimization - Graph Style duke@435: duke@435: duke@435: class AbstractLockNode; duke@435: class AddNode; duke@435: class AddPNode; duke@435: class AliasInfo; duke@435: class AllocateArrayNode; duke@435: class AllocateNode; duke@435: class Block; duke@435: class Block_Array; duke@435: class BoolNode; duke@435: class BoxLockNode; duke@435: class CMoveNode; duke@435: class CallDynamicJavaNode; duke@435: class CallJavaNode; duke@435: class CallLeafNode; duke@435: class CallNode; duke@435: class CallRuntimeNode; duke@435: class CallStaticJavaNode; duke@435: class CatchNode; duke@435: class CatchProjNode; duke@435: class CheckCastPPNode; duke@435: class CmpNode; duke@435: class CodeBuffer; duke@435: class ConstraintCastNode; duke@435: class ConNode; duke@435: class CountedLoopNode; duke@435: class CountedLoopEndNode; duke@435: class FastLockNode; duke@435: class FastUnlockNode; duke@435: class IfNode; duke@435: class InitializeNode; duke@435: class JVMState; duke@435: class JumpNode; duke@435: class JumpProjNode; duke@435: class LoadNode; duke@435: class LoadStoreNode; duke@435: class LockNode; duke@435: class LoopNode; duke@435: class MachCallDynamicJavaNode; duke@435: class MachCallJavaNode; duke@435: class MachCallLeafNode; duke@435: class MachCallNode; duke@435: class MachCallRuntimeNode; duke@435: class MachCallStaticJavaNode; duke@435: class MachIfNode; duke@435: class MachNode; duke@435: class MachNullCheckNode; duke@435: class MachReturnNode; duke@435: class MachSafePointNode; duke@435: class MachSpillCopyNode; duke@435: class MachTempNode; duke@435: class Matcher; duke@435: class MemBarNode; duke@435: class MemNode; duke@435: class MergeMemNode; duke@435: class MulNode; duke@435: class MultiNode; duke@435: class MultiBranchNode; duke@435: class NeverBranchNode; duke@435: class Node; duke@435: class Node_Array; duke@435: class Node_List; duke@435: class Node_Stack; duke@435: class NullCheckNode; duke@435: class OopMap; kvn@468: class ParmNode; duke@435: class PCTableNode; duke@435: class PhaseCCP; duke@435: class PhaseGVN; duke@435: class PhaseIterGVN; duke@435: class PhaseRegAlloc; duke@435: class PhaseTransform; duke@435: class PhaseValues; duke@435: class PhiNode; duke@435: class Pipeline; duke@435: class ProjNode; duke@435: class RegMask; duke@435: class RegionNode; duke@435: class RootNode; duke@435: class SafePointNode; duke@435: class StartNode; duke@435: class State; duke@435: class StoreNode; duke@435: class SubNode; duke@435: class Type; duke@435: class TypeNode; duke@435: class UnlockNode; duke@435: class VectorSet; duke@435: class IfTrueNode; duke@435: class IfFalseNode; duke@435: typedef void (*NFunc)(Node&,void*); duke@435: extern "C" { duke@435: typedef int (*C_sort_func_t)(const void *, const void *); duke@435: } duke@435: duke@435: // The type of all node counts and indexes. duke@435: // It must hold at least 16 bits, but must also be fast to load and store. duke@435: // This type, if less than 32 bits, could limit the number of possible nodes. duke@435: // (To make this type platform-specific, move to globalDefinitions_xxx.hpp.) duke@435: typedef unsigned int node_idx_t; duke@435: duke@435: duke@435: #ifndef OPTO_DU_ITERATOR_ASSERT duke@435: #ifdef ASSERT duke@435: #define OPTO_DU_ITERATOR_ASSERT 1 duke@435: #else duke@435: #define OPTO_DU_ITERATOR_ASSERT 0 duke@435: #endif duke@435: #endif //OPTO_DU_ITERATOR_ASSERT duke@435: duke@435: #if OPTO_DU_ITERATOR_ASSERT duke@435: class DUIterator; duke@435: class DUIterator_Fast; duke@435: class DUIterator_Last; duke@435: #else duke@435: typedef uint DUIterator; duke@435: typedef Node** DUIterator_Fast; duke@435: typedef Node** DUIterator_Last; duke@435: #endif duke@435: duke@435: // Node Sentinel duke@435: #define NodeSentinel (Node*)-1 duke@435: duke@435: // Unknown count frequency duke@435: #define COUNT_UNKNOWN (-1.0f) duke@435: duke@435: //------------------------------Node------------------------------------------- duke@435: // Nodes define actions in the program. They create values, which have types. duke@435: // They are both vertices in a directed graph and program primitives. Nodes duke@435: // are labeled; the label is the "opcode", the primitive function in the lambda duke@435: // calculus sense that gives meaning to the Node. Node inputs are ordered (so duke@435: // that "a-b" is different from "b-a"). The inputs to a Node are the inputs to duke@435: // the Node's function. These inputs also define a Type equation for the Node. duke@435: // Solving these Type equations amounts to doing dataflow analysis. duke@435: // Control and data are uniformly represented in the graph. Finally, Nodes duke@435: // have a unique dense integer index which is used to index into side arrays duke@435: // whenever I have phase-specific information. duke@435: duke@435: class Node { duke@435: // Lots of restrictions on cloning Nodes duke@435: Node(const Node&); // not defined; linker error to use these duke@435: Node &operator=(const Node &rhs); duke@435: duke@435: public: duke@435: friend class Compile; duke@435: #if OPTO_DU_ITERATOR_ASSERT duke@435: friend class DUIterator_Common; duke@435: friend class DUIterator; duke@435: friend class DUIterator_Fast; duke@435: friend class DUIterator_Last; duke@435: #endif duke@435: duke@435: // Because Nodes come and go, I define an Arena of Node structures to pull duke@435: // from. This should allow fast access to node creation & deletion. This duke@435: // field is a local cache of a value defined in some "program fragment" for duke@435: // which these Nodes are just a part of. duke@435: duke@435: // New Operator that takes a Compile pointer, this will eventually duke@435: // be the "new" New operator. duke@435: inline void* operator new( size_t x, Compile* C) { duke@435: Node* n = (Node*)C->node_arena()->Amalloc_D(x); duke@435: #ifdef ASSERT duke@435: n->_in = (Node**)n; // magic cookie for assertion check duke@435: #endif duke@435: n->_out = (Node**)C; duke@435: return (void*)n; duke@435: } duke@435: duke@435: // New Operator that takes a Compile pointer, this will eventually duke@435: // be the "new" New operator. duke@435: inline void* operator new( size_t x, Compile* C, int y) { duke@435: Node* n = (Node*)C->node_arena()->Amalloc_D(x + y*sizeof(void*)); duke@435: n->_in = (Node**)(((char*)n) + x); duke@435: #ifdef ASSERT duke@435: n->_in[y-1] = n; // magic cookie for assertion check duke@435: #endif duke@435: n->_out = (Node**)C; duke@435: return (void*)n; duke@435: } duke@435: duke@435: // Delete is a NOP duke@435: void operator delete( void *ptr ) {} duke@435: // Fancy destructor; eagerly attempt to reclaim Node numberings and storage duke@435: void destruct(); duke@435: duke@435: // Create a new Node. Required is the number is of inputs required for duke@435: // semantic correctness. duke@435: Node( uint required ); duke@435: duke@435: // Create a new Node with given input edges. duke@435: // This version requires use of the "edge-count" new. duke@435: // E.g. new (C,3) FooNode( C, NULL, left, right ); duke@435: Node( Node *n0 ); duke@435: Node( Node *n0, Node *n1 ); duke@435: Node( Node *n0, Node *n1, Node *n2 ); duke@435: Node( Node *n0, Node *n1, Node *n2, Node *n3 ); duke@435: Node( Node *n0, Node *n1, Node *n2, Node *n3, Node *n4 ); duke@435: Node( Node *n0, Node *n1, Node *n2, Node *n3, Node *n4, Node *n5 ); duke@435: Node( Node *n0, Node *n1, Node *n2, Node *n3, duke@435: Node *n4, Node *n5, Node *n6 ); duke@435: duke@435: // Clone an inherited Node given only the base Node type. duke@435: Node* clone() const; duke@435: duke@435: // Clone a Node, immediately supplying one or two new edges. duke@435: // The first and second arguments, if non-null, replace in(1) and in(2), duke@435: // respectively. duke@435: Node* clone_with_data_edge(Node* in1, Node* in2 = NULL) const { duke@435: Node* nn = clone(); duke@435: if (in1 != NULL) nn->set_req(1, in1); duke@435: if (in2 != NULL) nn->set_req(2, in2); duke@435: return nn; duke@435: } duke@435: duke@435: private: duke@435: // Shared setup for the above constructors. duke@435: // Handles all interactions with Compile::current. duke@435: // Puts initial values in all Node fields except _idx. duke@435: // Returns the initial value for _idx, which cannot duke@435: // be initialized by assignment. duke@435: inline int Init(int req, Compile* C); duke@435: duke@435: //----------------- input edge handling duke@435: protected: duke@435: friend class PhaseCFG; // Access to address of _in array elements duke@435: Node **_in; // Array of use-def references to Nodes duke@435: Node **_out; // Array of def-use references to Nodes duke@435: duke@435: // Input edges are split into two catagories. Required edges are required duke@435: // for semantic correctness; order is important and NULLs are allowed. duke@435: // Precedence edges are used to help determine execution order and are duke@435: // added, e.g., for scheduling purposes. They are unordered and not duke@435: // duplicated; they have no embedded NULLs. Edges from 0 to _cnt-1 duke@435: // are required, from _cnt to _max-1 are precedence edges. duke@435: node_idx_t _cnt; // Total number of required Node inputs. duke@435: duke@435: node_idx_t _max; // Actual length of input array. duke@435: duke@435: // Output edges are an unordered list of def-use edges which exactly duke@435: // correspond to required input edges which point from other nodes duke@435: // to this one. Thus the count of the output edges is the number of duke@435: // users of this node. duke@435: node_idx_t _outcnt; // Total number of Node outputs. duke@435: duke@435: node_idx_t _outmax; // Actual length of output array. duke@435: duke@435: // Grow the actual input array to the next larger power-of-2 bigger than len. duke@435: void grow( uint len ); duke@435: // Grow the output array to the next larger power-of-2 bigger than len. duke@435: void out_grow( uint len ); duke@435: duke@435: public: duke@435: // Each Node is assigned a unique small/dense number. This number is used duke@435: // to index into auxiliary arrays of data and bitvectors. duke@435: // It is declared const to defend against inadvertant assignment, duke@435: // since it is used by clients as a naked field. duke@435: const node_idx_t _idx; duke@435: duke@435: // Get the (read-only) number of input edges duke@435: uint req() const { return _cnt; } duke@435: uint len() const { return _max; } duke@435: // Get the (read-only) number of output edges duke@435: uint outcnt() const { return _outcnt; } duke@435: duke@435: #if OPTO_DU_ITERATOR_ASSERT duke@435: // Iterate over the out-edges of this node. Deletions are illegal. duke@435: inline DUIterator outs() const; duke@435: // Use this when the out array might have changed to suppress asserts. duke@435: inline DUIterator& refresh_out_pos(DUIterator& i) const; duke@435: // Does the node have an out at this position? (Used for iteration.) duke@435: inline bool has_out(DUIterator& i) const; duke@435: inline Node* out(DUIterator& i) const; duke@435: // Iterate over the out-edges of this node. All changes are illegal. duke@435: inline DUIterator_Fast fast_outs(DUIterator_Fast& max) const; duke@435: inline Node* fast_out(DUIterator_Fast& i) const; duke@435: // Iterate over the out-edges of this node, deleting one at a time. duke@435: inline DUIterator_Last last_outs(DUIterator_Last& min) const; duke@435: inline Node* last_out(DUIterator_Last& i) const; duke@435: // The inline bodies of all these methods are after the iterator definitions. duke@435: #else duke@435: // Iterate over the out-edges of this node. Deletions are illegal. duke@435: // This iteration uses integral indexes, to decouple from array reallocations. duke@435: DUIterator outs() const { return 0; } duke@435: // Use this when the out array might have changed to suppress asserts. duke@435: DUIterator refresh_out_pos(DUIterator i) const { return i; } duke@435: duke@435: // Reference to the i'th output Node. Error if out of bounds. duke@435: Node* out(DUIterator i) const { assert(i < _outcnt, "oob"); return _out[i]; } duke@435: // Does the node have an out at this position? (Used for iteration.) duke@435: bool has_out(DUIterator i) const { return i < _outcnt; } duke@435: duke@435: // Iterate over the out-edges of this node. All changes are illegal. duke@435: // This iteration uses a pointer internal to the out array. duke@435: DUIterator_Fast fast_outs(DUIterator_Fast& max) const { duke@435: Node** out = _out; duke@435: // Assign a limit pointer to the reference argument: duke@435: max = out + (ptrdiff_t)_outcnt; duke@435: // Return the base pointer: duke@435: return out; duke@435: } duke@435: Node* fast_out(DUIterator_Fast i) const { return *i; } duke@435: // Iterate over the out-edges of this node, deleting one at a time. duke@435: // This iteration uses a pointer internal to the out array. duke@435: DUIterator_Last last_outs(DUIterator_Last& min) const { duke@435: Node** out = _out; duke@435: // Assign a limit pointer to the reference argument: duke@435: min = out; duke@435: // Return the pointer to the start of the iteration: duke@435: return out + (ptrdiff_t)_outcnt - 1; duke@435: } duke@435: Node* last_out(DUIterator_Last i) const { return *i; } duke@435: #endif duke@435: duke@435: // Reference to the i'th input Node. Error if out of bounds. duke@435: Node* in(uint i) const { assert(i < _max,"oob"); return _in[i]; } duke@435: // Reference to the i'th output Node. Error if out of bounds. duke@435: // Use this accessor sparingly. We are going trying to use iterators instead. duke@435: Node* raw_out(uint i) const { assert(i < _outcnt,"oob"); return _out[i]; } duke@435: // Return the unique out edge. duke@435: Node* unique_out() const { assert(_outcnt==1,"not unique"); return _out[0]; } duke@435: // Delete out edge at position 'i' by moving last out edge to position 'i' duke@435: void raw_del_out(uint i) { duke@435: assert(i < _outcnt,"oob"); duke@435: assert(_outcnt > 0,"oob"); duke@435: #if OPTO_DU_ITERATOR_ASSERT duke@435: // Record that a change happened here. duke@435: debug_only(_last_del = _out[i]; ++_del_tick); duke@435: #endif duke@435: _out[i] = _out[--_outcnt]; duke@435: // Smash the old edge so it can't be used accidentally. duke@435: debug_only(_out[_outcnt] = (Node *)(uintptr_t)0xdeadbeef); duke@435: } duke@435: duke@435: #ifdef ASSERT duke@435: bool is_dead() const; duke@435: #define is_not_dead(n) ((n) == NULL || !VerifyIterativeGVN || !((n)->is_dead())) duke@435: #endif duke@435: duke@435: // Set a required input edge, also updates corresponding output edge duke@435: void add_req( Node *n ); // Append a NEW required input duke@435: void add_req_batch( Node* n, uint m ); // Append m NEW required inputs (all n). duke@435: void del_req( uint idx ); // Delete required edge & compact duke@435: void ins_req( uint i, Node *n ); // Insert a NEW required input duke@435: void set_req( uint i, Node *n ) { duke@435: assert( is_not_dead(n), "can not use dead node"); duke@435: assert( i < _cnt, "oob"); duke@435: assert( !VerifyHashTableKeys || _hash_lock == 0, duke@435: "remove node from hash table before modifying it"); duke@435: Node** p = &_in[i]; // cache this._in, across the del_out call duke@435: if (*p != NULL) (*p)->del_out((Node *)this); duke@435: (*p) = n; duke@435: if (n != NULL) n->add_out((Node *)this); duke@435: } duke@435: // Light version of set_req() to init inputs after node creation. duke@435: void init_req( uint i, Node *n ) { duke@435: assert( i == 0 && this == n || duke@435: is_not_dead(n), "can not use dead node"); duke@435: assert( i < _cnt, "oob"); duke@435: assert( !VerifyHashTableKeys || _hash_lock == 0, duke@435: "remove node from hash table before modifying it"); duke@435: assert( _in[i] == NULL, "sanity"); duke@435: _in[i] = n; duke@435: if (n != NULL) n->add_out((Node *)this); duke@435: } duke@435: // Find first occurrence of n among my edges: duke@435: int find_edge(Node* n); duke@435: int replace_edge(Node* old, Node* neww); duke@435: // NULL out all inputs to eliminate incoming Def-Use edges. duke@435: // Return the number of edges between 'n' and 'this' duke@435: int disconnect_inputs(Node *n); duke@435: duke@435: // Quickly, return true if and only if I am Compile::current()->top(). duke@435: bool is_top() const { duke@435: assert((this == (Node*) Compile::current()->top()) == (_out == NULL), ""); duke@435: return (_out == NULL); duke@435: } duke@435: // Reaffirm invariants for is_top. (Only from Compile::set_cached_top_node.) duke@435: void setup_is_top(); duke@435: duke@435: // Strip away casting. (It is depth-limited.) duke@435: Node* uncast() const; duke@435: duke@435: private: duke@435: static Node* uncast_helper(const Node* n); duke@435: duke@435: // Add an output edge to the end of the list duke@435: void add_out( Node *n ) { duke@435: if (is_top()) return; duke@435: if( _outcnt == _outmax ) out_grow(_outcnt); duke@435: _out[_outcnt++] = n; duke@435: } duke@435: // Delete an output edge duke@435: void del_out( Node *n ) { duke@435: if (is_top()) return; duke@435: Node** outp = &_out[_outcnt]; duke@435: // Find and remove n duke@435: do { duke@435: assert(outp > _out, "Missing Def-Use edge"); duke@435: } while (*--outp != n); duke@435: *outp = _out[--_outcnt]; duke@435: // Smash the old edge so it can't be used accidentally. duke@435: debug_only(_out[_outcnt] = (Node *)(uintptr_t)0xdeadbeef); duke@435: // Record that a change happened here. duke@435: #if OPTO_DU_ITERATOR_ASSERT duke@435: debug_only(_last_del = n; ++_del_tick); duke@435: #endif duke@435: } duke@435: duke@435: public: duke@435: // Globally replace this node by a given new node, updating all uses. duke@435: void replace_by(Node* new_node); duke@435: void set_req_X( uint i, Node *n, PhaseIterGVN *igvn ); duke@435: // Find the one non-null required input. RegionNode only duke@435: Node *nonnull_req() const; duke@435: // Add or remove precedence edges duke@435: void add_prec( Node *n ); duke@435: void rm_prec( uint i ); duke@435: void set_prec( uint i, Node *n ) { duke@435: assert( is_not_dead(n), "can not use dead node"); duke@435: assert( i >= _cnt, "not a precedence edge"); duke@435: if (_in[i] != NULL) _in[i]->del_out((Node *)this); duke@435: _in[i] = n; duke@435: if (n != NULL) n->add_out((Node *)this); duke@435: } duke@435: // Set this node's index, used by cisc_version to replace current node duke@435: void set_idx(uint new_idx) { duke@435: const node_idx_t* ref = &_idx; duke@435: *(node_idx_t*)ref = new_idx; duke@435: } duke@435: // Swap input edge order. (Edge indexes i1 and i2 are usually 1 and 2.) duke@435: void swap_edges(uint i1, uint i2) { duke@435: debug_only(uint check_hash = (VerifyHashTableKeys && _hash_lock) ? hash() : NO_HASH); duke@435: // Def-Use info is unchanged duke@435: Node* n1 = in(i1); duke@435: Node* n2 = in(i2); duke@435: _in[i1] = n2; duke@435: _in[i2] = n1; duke@435: // If this node is in the hash table, make sure it doesn't need a rehash. duke@435: assert(check_hash == NO_HASH || check_hash == hash(), "edge swap must preserve hash code"); duke@435: } duke@435: duke@435: // Iterators over input Nodes for a Node X are written as: duke@435: // for( i = 0; i < X.req(); i++ ) ... X[i] ... duke@435: // NOTE: Required edges can contain embedded NULL pointers. duke@435: duke@435: //----------------- Other Node Properties duke@435: duke@435: // Generate class id for some ideal nodes to avoid virtual query duke@435: // methods is_(). duke@435: // Class id is the set of bits corresponded to the node class and all its duke@435: // super classes so that queries for super classes are also valid. duke@435: // Subclasses of the same super class have different assigned bit duke@435: // (the third parameter in the macro DEFINE_CLASS_ID). duke@435: // Classes with deeper hierarchy are declared first. duke@435: // Classes with the same hierarchy depth are sorted by usage frequency. duke@435: // duke@435: // The query method masks the bits to cut off bits of subclasses duke@435: // and then compare the result with the class id duke@435: // (see the macro DEFINE_CLASS_QUERY below). duke@435: // duke@435: // Class_MachCall=30, ClassMask_MachCall=31 duke@435: // 12 8 4 0 duke@435: // 0 0 0 0 0 0 0 0 1 1 1 1 0 duke@435: // | | | | duke@435: // | | | Bit_Mach=2 duke@435: // | | Bit_MachReturn=4 duke@435: // | Bit_MachSafePoint=8 duke@435: // Bit_MachCall=16 duke@435: // duke@435: // Class_CountedLoop=56, ClassMask_CountedLoop=63 duke@435: // 12 8 4 0 duke@435: // 0 0 0 0 0 0 0 1 1 1 0 0 0 duke@435: // | | | duke@435: // | | Bit_Region=8 duke@435: // | Bit_Loop=16 duke@435: // Bit_CountedLoop=32 duke@435: duke@435: #define DEFINE_CLASS_ID(cl, supcl, subn) \ duke@435: Bit_##cl = (Class_##supcl == 0) ? 1 << subn : (Bit_##supcl) << (1 + subn) , \ duke@435: Class_##cl = Class_##supcl + Bit_##cl , \ duke@435: ClassMask_##cl = ((Bit_##cl << 1) - 1) , duke@435: duke@435: // This enum is used only for C2 ideal and mach nodes with is_() methods duke@435: // so that it's values fits into 16 bits. duke@435: enum NodeClasses { duke@435: Bit_Node = 0x0000, duke@435: Class_Node = 0x0000, duke@435: ClassMask_Node = 0xFFFF, duke@435: duke@435: DEFINE_CLASS_ID(Multi, Node, 0) duke@435: DEFINE_CLASS_ID(SafePoint, Multi, 0) duke@435: DEFINE_CLASS_ID(Call, SafePoint, 0) duke@435: DEFINE_CLASS_ID(CallJava, Call, 0) duke@435: DEFINE_CLASS_ID(CallStaticJava, CallJava, 0) duke@435: DEFINE_CLASS_ID(CallDynamicJava, CallJava, 1) duke@435: DEFINE_CLASS_ID(CallRuntime, Call, 1) duke@435: DEFINE_CLASS_ID(CallLeaf, CallRuntime, 0) duke@435: DEFINE_CLASS_ID(Allocate, Call, 2) duke@435: DEFINE_CLASS_ID(AllocateArray, Allocate, 0) duke@435: DEFINE_CLASS_ID(AbstractLock, Call, 3) duke@435: DEFINE_CLASS_ID(Lock, AbstractLock, 0) duke@435: DEFINE_CLASS_ID(Unlock, AbstractLock, 1) duke@435: DEFINE_CLASS_ID(MultiBranch, Multi, 1) duke@435: DEFINE_CLASS_ID(PCTable, MultiBranch, 0) duke@435: DEFINE_CLASS_ID(Catch, PCTable, 0) duke@435: DEFINE_CLASS_ID(Jump, PCTable, 1) duke@435: DEFINE_CLASS_ID(If, MultiBranch, 1) duke@435: DEFINE_CLASS_ID(CountedLoopEnd, If, 0) duke@435: DEFINE_CLASS_ID(NeverBranch, MultiBranch, 2) duke@435: DEFINE_CLASS_ID(Start, Multi, 2) duke@435: DEFINE_CLASS_ID(MemBar, Multi, 3) duke@435: DEFINE_CLASS_ID(Initialize, MemBar, 0) duke@435: duke@435: DEFINE_CLASS_ID(Mach, Node, 1) duke@435: DEFINE_CLASS_ID(MachReturn, Mach, 0) duke@435: DEFINE_CLASS_ID(MachSafePoint, MachReturn, 0) duke@435: DEFINE_CLASS_ID(MachCall, MachSafePoint, 0) duke@435: DEFINE_CLASS_ID(MachCallJava, MachCall, 0) duke@435: DEFINE_CLASS_ID(MachCallStaticJava, MachCallJava, 0) duke@435: DEFINE_CLASS_ID(MachCallDynamicJava, MachCallJava, 1) duke@435: DEFINE_CLASS_ID(MachCallRuntime, MachCall, 1) duke@435: DEFINE_CLASS_ID(MachCallLeaf, MachCallRuntime, 0) duke@435: DEFINE_CLASS_ID(MachSpillCopy, Mach, 1) duke@435: DEFINE_CLASS_ID(MachNullCheck, Mach, 2) duke@435: DEFINE_CLASS_ID(MachIf, Mach, 3) duke@435: DEFINE_CLASS_ID(MachTemp, Mach, 4) duke@435: duke@435: DEFINE_CLASS_ID(Proj, Node, 2) duke@435: DEFINE_CLASS_ID(CatchProj, Proj, 0) duke@435: DEFINE_CLASS_ID(JumpProj, Proj, 1) duke@435: DEFINE_CLASS_ID(IfTrue, Proj, 2) duke@435: DEFINE_CLASS_ID(IfFalse, Proj, 3) kvn@468: DEFINE_CLASS_ID(Parm, Proj, 4) duke@435: duke@435: DEFINE_CLASS_ID(Region, Node, 3) duke@435: DEFINE_CLASS_ID(Loop, Region, 0) duke@435: DEFINE_CLASS_ID(Root, Loop, 0) duke@435: DEFINE_CLASS_ID(CountedLoop, Loop, 1) duke@435: duke@435: DEFINE_CLASS_ID(Sub, Node, 4) duke@435: DEFINE_CLASS_ID(Cmp, Sub, 0) duke@435: DEFINE_CLASS_ID(FastLock, Cmp, 0) duke@435: DEFINE_CLASS_ID(FastUnlock, Cmp, 1) duke@435: duke@435: DEFINE_CLASS_ID(Type, Node, 5) duke@435: DEFINE_CLASS_ID(Phi, Type, 0) duke@435: DEFINE_CLASS_ID(ConstraintCast, Type, 1) duke@435: DEFINE_CLASS_ID(CheckCastPP, Type, 2) duke@435: DEFINE_CLASS_ID(CMove, Type, 3) duke@435: duke@435: DEFINE_CLASS_ID(Mem, Node, 6) duke@435: DEFINE_CLASS_ID(Load, Mem, 0) duke@435: DEFINE_CLASS_ID(Store, Mem, 1) duke@435: DEFINE_CLASS_ID(LoadStore, Mem, 2) duke@435: duke@435: DEFINE_CLASS_ID(MergeMem, Node, 7) duke@435: DEFINE_CLASS_ID(Bool, Node, 8) duke@435: DEFINE_CLASS_ID(AddP, Node, 9) duke@435: DEFINE_CLASS_ID(BoxLock, Node, 10) duke@435: DEFINE_CLASS_ID(Add, Node, 11) duke@435: DEFINE_CLASS_ID(Mul, Node, 12) duke@435: duke@435: _max_classes = ClassMask_Mul duke@435: }; duke@435: #undef DEFINE_CLASS_ID duke@435: duke@435: // Flags are sorted by usage frequency. duke@435: enum NodeFlags { duke@435: Flag_is_Copy = 0x01, // should be first bit to avoid shift duke@435: Flag_is_Call = Flag_is_Copy << 1, duke@435: Flag_rematerialize = Flag_is_Call << 1, duke@435: Flag_needs_anti_dependence_check = Flag_rematerialize << 1, duke@435: Flag_is_macro = Flag_needs_anti_dependence_check << 1, duke@435: Flag_is_Con = Flag_is_macro << 1, duke@435: Flag_is_cisc_alternate = Flag_is_Con << 1, duke@435: Flag_is_Branch = Flag_is_cisc_alternate << 1, duke@435: Flag_is_block_start = Flag_is_Branch << 1, duke@435: Flag_is_Goto = Flag_is_block_start << 1, duke@435: Flag_is_dead_loop_safe = Flag_is_Goto << 1, duke@435: Flag_may_be_short_branch = Flag_is_dead_loop_safe << 1, duke@435: Flag_is_safepoint_node = Flag_may_be_short_branch << 1, duke@435: Flag_is_pc_relative = Flag_is_safepoint_node << 1, duke@435: Flag_is_Vector = Flag_is_pc_relative << 1, duke@435: _max_flags = (Flag_is_Vector << 1) - 1 // allow flags combination duke@435: }; duke@435: duke@435: private: duke@435: jushort _class_id; duke@435: jushort _flags; duke@435: duke@435: protected: duke@435: // These methods should be called from constructors only. duke@435: void init_class_id(jushort c) { duke@435: assert(c <= _max_classes, "invalid node class"); duke@435: _class_id = c; // cast out const duke@435: } duke@435: void init_flags(jushort fl) { duke@435: assert(fl <= _max_flags, "invalid node flag"); duke@435: _flags |= fl; duke@435: } duke@435: void clear_flag(jushort fl) { duke@435: assert(fl <= _max_flags, "invalid node flag"); duke@435: _flags &= ~fl; duke@435: } duke@435: duke@435: public: duke@435: const jushort class_id() const { return _class_id; } duke@435: duke@435: const jushort flags() const { return _flags; } duke@435: duke@435: // Return a dense integer opcode number duke@435: virtual int Opcode() const; duke@435: duke@435: // Virtual inherited Node size duke@435: virtual uint size_of() const; duke@435: duke@435: // Other interesting Node properties duke@435: duke@435: // Special case: is_Call() returns true for both CallNode and MachCallNode. duke@435: bool is_Call() const { duke@435: return (_flags & Flag_is_Call) != 0; duke@435: } duke@435: duke@435: CallNode *as_Call() const { // Only for CallNode (not for MachCallNode) duke@435: assert((_class_id & ClassMask_Call) == Class_Call, "invalid node class"); duke@435: return (CallNode*)this; duke@435: } duke@435: duke@435: #define DEFINE_CLASS_QUERY(type) \ duke@435: bool is_##type() const { \ duke@435: return ((_class_id & ClassMask_##type) == Class_##type); \ duke@435: } \ duke@435: type##Node *as_##type() const { \ duke@435: assert(is_##type(), "invalid node class"); \ duke@435: return (type##Node*)this; \ duke@435: } duke@435: duke@435: DEFINE_CLASS_QUERY(AbstractLock) duke@435: DEFINE_CLASS_QUERY(Add) duke@435: DEFINE_CLASS_QUERY(AddP) duke@435: DEFINE_CLASS_QUERY(Allocate) duke@435: DEFINE_CLASS_QUERY(AllocateArray) duke@435: DEFINE_CLASS_QUERY(Bool) duke@435: DEFINE_CLASS_QUERY(BoxLock) duke@435: DEFINE_CLASS_QUERY(CallDynamicJava) duke@435: DEFINE_CLASS_QUERY(CallJava) duke@435: DEFINE_CLASS_QUERY(CallLeaf) duke@435: DEFINE_CLASS_QUERY(CallRuntime) duke@435: DEFINE_CLASS_QUERY(CallStaticJava) duke@435: DEFINE_CLASS_QUERY(Catch) duke@435: DEFINE_CLASS_QUERY(CatchProj) duke@435: DEFINE_CLASS_QUERY(CheckCastPP) duke@435: DEFINE_CLASS_QUERY(ConstraintCast) duke@435: DEFINE_CLASS_QUERY(CMove) duke@435: DEFINE_CLASS_QUERY(Cmp) duke@435: DEFINE_CLASS_QUERY(CountedLoop) duke@435: DEFINE_CLASS_QUERY(CountedLoopEnd) duke@435: DEFINE_CLASS_QUERY(FastLock) duke@435: DEFINE_CLASS_QUERY(FastUnlock) duke@435: DEFINE_CLASS_QUERY(If) duke@435: DEFINE_CLASS_QUERY(IfFalse) duke@435: DEFINE_CLASS_QUERY(IfTrue) duke@435: DEFINE_CLASS_QUERY(Initialize) duke@435: DEFINE_CLASS_QUERY(Jump) duke@435: DEFINE_CLASS_QUERY(JumpProj) duke@435: DEFINE_CLASS_QUERY(Load) duke@435: DEFINE_CLASS_QUERY(LoadStore) duke@435: DEFINE_CLASS_QUERY(Lock) duke@435: DEFINE_CLASS_QUERY(Loop) duke@435: DEFINE_CLASS_QUERY(Mach) duke@435: DEFINE_CLASS_QUERY(MachCall) duke@435: DEFINE_CLASS_QUERY(MachCallDynamicJava) duke@435: DEFINE_CLASS_QUERY(MachCallJava) duke@435: DEFINE_CLASS_QUERY(MachCallLeaf) duke@435: DEFINE_CLASS_QUERY(MachCallRuntime) duke@435: DEFINE_CLASS_QUERY(MachCallStaticJava) duke@435: DEFINE_CLASS_QUERY(MachIf) duke@435: DEFINE_CLASS_QUERY(MachNullCheck) duke@435: DEFINE_CLASS_QUERY(MachReturn) duke@435: DEFINE_CLASS_QUERY(MachSafePoint) duke@435: DEFINE_CLASS_QUERY(MachSpillCopy) duke@435: DEFINE_CLASS_QUERY(MachTemp) duke@435: DEFINE_CLASS_QUERY(Mem) duke@435: DEFINE_CLASS_QUERY(MemBar) duke@435: DEFINE_CLASS_QUERY(MergeMem) duke@435: DEFINE_CLASS_QUERY(Mul) duke@435: DEFINE_CLASS_QUERY(Multi) duke@435: DEFINE_CLASS_QUERY(MultiBranch) kvn@468: DEFINE_CLASS_QUERY(Parm) duke@435: DEFINE_CLASS_QUERY(PCTable) duke@435: DEFINE_CLASS_QUERY(Phi) duke@435: DEFINE_CLASS_QUERY(Proj) duke@435: DEFINE_CLASS_QUERY(Region) duke@435: DEFINE_CLASS_QUERY(Root) duke@435: DEFINE_CLASS_QUERY(SafePoint) duke@435: DEFINE_CLASS_QUERY(Start) duke@435: DEFINE_CLASS_QUERY(Store) duke@435: DEFINE_CLASS_QUERY(Sub) duke@435: DEFINE_CLASS_QUERY(Type) duke@435: DEFINE_CLASS_QUERY(Unlock) duke@435: duke@435: #undef DEFINE_CLASS_QUERY duke@435: duke@435: // duplicate of is_MachSpillCopy() duke@435: bool is_SpillCopy () const { duke@435: return ((_class_id & ClassMask_MachSpillCopy) == Class_MachSpillCopy); duke@435: } duke@435: duke@435: bool is_Con () const { return (_flags & Flag_is_Con) != 0; } duke@435: bool is_Goto() const { return (_flags & Flag_is_Goto) != 0; } duke@435: // The data node which is safe to leave in dead loop during IGVN optimization. duke@435: bool is_dead_loop_safe() const { duke@435: return is_Phi() || is_Proj() || duke@435: (_flags & (Flag_is_dead_loop_safe | Flag_is_Con)) != 0; duke@435: } duke@435: duke@435: // is_Copy() returns copied edge index (0 or 1) duke@435: uint is_Copy() const { return (_flags & Flag_is_Copy); } duke@435: duke@435: virtual bool is_CFG() const { return false; } duke@435: duke@435: // If this node is control-dependent on a test, can it be duke@435: // rerouted to a dominating equivalent test? This is usually duke@435: // true of non-CFG nodes, but can be false for operations which duke@435: // depend for their correct sequencing on more than one test. duke@435: // (In that case, hoisting to a dominating test may silently duke@435: // skip some other important test.) duke@435: virtual bool depends_only_on_test() const { assert(!is_CFG(), ""); return true; }; duke@435: duke@435: // defined for MachNodes that match 'If' | 'Goto' | 'CountedLoopEnd' duke@435: bool is_Branch() const { return (_flags & Flag_is_Branch) != 0; } duke@435: duke@435: // When building basic blocks, I need to have a notion of block beginning duke@435: // Nodes, next block selector Nodes (block enders), and next block duke@435: // projections. These calls need to work on their machine equivalents. The duke@435: // Ideal beginning Nodes are RootNode, RegionNode and StartNode. duke@435: bool is_block_start() const { duke@435: if ( is_Region() ) duke@435: return this == (const Node*)in(0); duke@435: else duke@435: return (_flags & Flag_is_block_start) != 0; duke@435: } duke@435: duke@435: // The Ideal control projection Nodes are IfTrue/IfFalse, JumpProjNode, Root, duke@435: // Goto and Return. This call also returns the block ending Node. duke@435: virtual const Node *is_block_proj() const; duke@435: duke@435: // The node is a "macro" node which needs to be expanded before matching duke@435: bool is_macro() const { return (_flags & Flag_is_macro) != 0; } duke@435: duke@435: // Value is a vector of primitive values duke@435: bool is_Vector() const { return (_flags & Flag_is_Vector) != 0; } duke@435: duke@435: //----------------- Optimization duke@435: duke@435: // Get the worst-case Type output for this Node. duke@435: virtual const class Type *bottom_type() const; duke@435: duke@435: // If we find a better type for a node, try to record it permanently. duke@435: // Return true if this node actually changed. duke@435: // Be sure to do the hash_delete game in the "rehash" variant. duke@435: void raise_bottom_type(const Type* new_type); duke@435: duke@435: // Get the address type with which this node uses and/or defs memory, duke@435: // or NULL if none. The address type is conservatively wide. duke@435: // Returns non-null for calls, membars, loads, stores, etc. duke@435: // Returns TypePtr::BOTTOM if the node touches memory "broadly". duke@435: virtual const class TypePtr *adr_type() const { return NULL; } duke@435: duke@435: // Return an existing node which computes the same function as this node. duke@435: // The optimistic combined algorithm requires this to return a Node which duke@435: // is a small number of steps away (e.g., one of my inputs). duke@435: virtual Node *Identity( PhaseTransform *phase ); duke@435: duke@435: // Return the set of values this Node can take on at runtime. duke@435: virtual const Type *Value( PhaseTransform *phase ) const; duke@435: duke@435: // Return a node which is more "ideal" than the current node. duke@435: // The invariants on this call are subtle. If in doubt, read the duke@435: // treatise in node.cpp above the default implemention AND TEST WITH duke@435: // +VerifyIterativeGVN! duke@435: virtual Node *Ideal(PhaseGVN *phase, bool can_reshape); duke@435: duke@435: // Some nodes have specific Ideal subgraph transformations only if they are duke@435: // unique users of specific nodes. Such nodes should be put on IGVN worklist duke@435: // for the transformations to happen. duke@435: bool has_special_unique_user() const; duke@435: duke@435: protected: duke@435: bool remove_dead_region(PhaseGVN *phase, bool can_reshape); duke@435: public: duke@435: duke@435: // Idealize graph, using DU info. Done after constant propagation duke@435: virtual Node *Ideal_DU_postCCP( PhaseCCP *ccp ); duke@435: duke@435: // See if there is valid pipeline info duke@435: static const Pipeline *pipeline_class(); duke@435: virtual const Pipeline *pipeline() const; duke@435: duke@435: // Compute the latency from the def to this instruction of the ith input node duke@435: uint latency(uint i); duke@435: duke@435: // Hash & compare functions, for pessimistic value numbering duke@435: duke@435: // If the hash function returns the special sentinel value NO_HASH, duke@435: // the node is guaranteed never to compare equal to any other node. duke@435: // If we accidently generate a hash with value NO_HASH the node duke@435: // won't go into the table and we'll lose a little optimization. duke@435: enum { NO_HASH = 0 }; duke@435: virtual uint hash() const; duke@435: virtual uint cmp( const Node &n ) const; duke@435: duke@435: // Operation appears to be iteratively computed (such as an induction variable) duke@435: // It is possible for this operation to return false for a loop-varying duke@435: // value, if it appears (by local graph inspection) to be computed by a simple conditional. duke@435: bool is_iteratively_computed(); duke@435: duke@435: // Determine if a node is Counted loop induction variable. duke@435: // The method is defined in loopnode.cpp. duke@435: const Node* is_loop_iv() const; duke@435: duke@435: // Return a node with opcode "opc" and same inputs as "this" if one can duke@435: // be found; Otherwise return NULL; duke@435: Node* find_similar(int opc); duke@435: duke@435: // Return the unique control out if only one. Null if none or more than one. duke@435: Node* unique_ctrl_out(); duke@435: duke@435: //----------------- Code Generation duke@435: duke@435: // Ideal register class for Matching. Zero means unmatched instruction duke@435: // (these are cloned instead of converted to machine nodes). duke@435: virtual uint ideal_reg() const; duke@435: duke@435: static const uint NotAMachineReg; // must be > max. machine register duke@435: duke@435: // Do we Match on this edge index or not? Generally false for Control duke@435: // and true for everything else. Weird for calls & returns. duke@435: virtual uint match_edge(uint idx) const; duke@435: duke@435: // Register class output is returned in duke@435: virtual const RegMask &out_RegMask() const; duke@435: // Register class input is expected in duke@435: virtual const RegMask &in_RegMask(uint) const; duke@435: // Should we clone rather than spill this instruction? duke@435: bool rematerialize() const; duke@435: duke@435: // Return JVM State Object if this Node carries debug info, or NULL otherwise duke@435: virtual JVMState* jvms() const; duke@435: duke@435: // Print as assembly duke@435: virtual void format( PhaseRegAlloc *, outputStream* st = tty ) const; duke@435: // Emit bytes starting at parameter 'ptr' duke@435: // Bump 'ptr' by the number of output bytes duke@435: virtual void emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const; duke@435: // Size of instruction in bytes duke@435: virtual uint size(PhaseRegAlloc *ra_) const; duke@435: duke@435: // Convenience function to extract an integer constant from a node. duke@435: // If it is not an integer constant (either Con, CastII, or Mach), duke@435: // return value_if_unknown. duke@435: jint find_int_con(jint value_if_unknown) const { duke@435: const TypeInt* t = find_int_type(); duke@435: return (t != NULL && t->is_con()) ? t->get_con() : value_if_unknown; duke@435: } duke@435: // Return the constant, knowing it is an integer constant already duke@435: jint get_int() const { duke@435: const TypeInt* t = find_int_type(); duke@435: guarantee(t != NULL, "must be con"); duke@435: return t->get_con(); duke@435: } duke@435: // Here's where the work is done. Can produce non-constant int types too. duke@435: const TypeInt* find_int_type() const; duke@435: duke@435: // Same thing for long (and intptr_t, via type.hpp): duke@435: jlong get_long() const { duke@435: const TypeLong* t = find_long_type(); duke@435: guarantee(t != NULL, "must be con"); duke@435: return t->get_con(); duke@435: } duke@435: jlong find_long_con(jint value_if_unknown) const { duke@435: const TypeLong* t = find_long_type(); duke@435: return (t != NULL && t->is_con()) ? t->get_con() : value_if_unknown; duke@435: } duke@435: const TypeLong* find_long_type() const; duke@435: duke@435: // These guys are called by code generated by ADLC: duke@435: intptr_t get_ptr() const; duke@435: jdouble getd() const; duke@435: jfloat getf() const; duke@435: duke@435: // Nodes which are pinned into basic blocks duke@435: virtual bool pinned() const { return false; } duke@435: duke@435: // Nodes which use memory without consuming it, hence need antidependences duke@435: // More specifically, needs_anti_dependence_check returns true iff the node duke@435: // (a) does a load, and (b) does not perform a store (except perhaps to a duke@435: // stack slot or some other unaliased location). duke@435: bool needs_anti_dependence_check() const; duke@435: duke@435: // Return which operand this instruction may cisc-spill. In other words, duke@435: // return operand position that can convert from reg to memory access duke@435: virtual int cisc_operand() const { return AdlcVMDeps::Not_cisc_spillable; } duke@435: bool is_cisc_alternate() const { return (_flags & Flag_is_cisc_alternate) != 0; } duke@435: duke@435: //----------------- Graph walking duke@435: public: duke@435: // Walk and apply member functions recursively. duke@435: // Supplied (this) pointer is root. duke@435: void walk(NFunc pre, NFunc post, void *env); duke@435: static void nop(Node &, void*); // Dummy empty function duke@435: static void packregion( Node &n, void* ); duke@435: private: duke@435: void walk_(NFunc pre, NFunc post, void *env, VectorSet &visited); duke@435: duke@435: //----------------- Printing, etc duke@435: public: duke@435: #ifndef PRODUCT duke@435: Node* find(int idx) const; // Search the graph for the given idx. duke@435: Node* find_ctrl(int idx) const; // Search control ancestors for the given idx. duke@435: void dump() const; // Print this node, duke@435: void dump(int depth) const; // Print this node, recursively to depth d duke@435: void dump_ctrl(int depth) const; // Print control nodes, to depth d duke@435: virtual void dump_req() const; // Print required-edge info duke@435: virtual void dump_prec() const; // Print precedence-edge info duke@435: virtual void dump_out() const; // Print the output edge info duke@435: virtual void dump_spec(outputStream *st) const {}; // Print per-node info duke@435: void verify_edges(Unique_Node_List &visited); // Verify bi-directional edges duke@435: void verify() const; // Check Def-Use info for my subgraph duke@435: static void verify_recur(const Node *n, int verify_depth, VectorSet &old_space, VectorSet &new_space); duke@435: duke@435: // This call defines a class-unique string used to identify class instances duke@435: virtual const char *Name() const; duke@435: duke@435: void dump_format(PhaseRegAlloc *ra) const; // debug access to MachNode::format(...) duke@435: // RegMask Print Functions duke@435: void dump_in_regmask(int idx) { in_RegMask(idx).dump(); } duke@435: void dump_out_regmask() { out_RegMask().dump(); } duke@435: static int _in_dump_cnt; duke@435: static bool in_dump() { return _in_dump_cnt > 0; } duke@435: void fast_dump() const { duke@435: tty->print("%4d: %-17s", _idx, Name()); duke@435: for (uint i = 0; i < len(); i++) duke@435: if (in(i)) duke@435: tty->print(" %4d", in(i)->_idx); duke@435: else duke@435: tty->print(" NULL"); duke@435: tty->print("\n"); duke@435: } duke@435: #endif duke@435: #ifdef ASSERT duke@435: void verify_construction(); duke@435: bool verify_jvms(const JVMState* jvms) const; duke@435: int _debug_idx; // Unique value assigned to every node. duke@435: int debug_idx() const { return _debug_idx; } duke@435: void set_debug_idx( int debug_idx ) { _debug_idx = debug_idx; } duke@435: duke@435: Node* _debug_orig; // Original version of this, if any. duke@435: Node* debug_orig() const { return _debug_orig; } duke@435: void set_debug_orig(Node* orig); // _debug_orig = orig duke@435: duke@435: int _hash_lock; // Barrier to modifications of nodes in the hash table duke@435: void enter_hash_lock() { ++_hash_lock; assert(_hash_lock < 99, "in too many hash tables?"); } duke@435: void exit_hash_lock() { --_hash_lock; assert(_hash_lock >= 0, "mispaired hash locks"); } duke@435: duke@435: static void init_NodeProperty(); duke@435: duke@435: #if OPTO_DU_ITERATOR_ASSERT duke@435: const Node* _last_del; // The last deleted node. duke@435: uint _del_tick; // Bumped when a deletion happens.. duke@435: #endif duke@435: #endif duke@435: }; duke@435: duke@435: //----------------------------------------------------------------------------- duke@435: // Iterators over DU info, and associated Node functions. duke@435: duke@435: #if OPTO_DU_ITERATOR_ASSERT duke@435: duke@435: // Common code for assertion checking on DU iterators. duke@435: class DUIterator_Common VALUE_OBJ_CLASS_SPEC { duke@435: #ifdef ASSERT duke@435: protected: duke@435: bool _vdui; // cached value of VerifyDUIterators duke@435: const Node* _node; // the node containing the _out array duke@435: uint _outcnt; // cached node->_outcnt duke@435: uint _del_tick; // cached node->_del_tick duke@435: Node* _last; // last value produced by the iterator duke@435: duke@435: void sample(const Node* node); // used by c'tor to set up for verifies duke@435: void verify(const Node* node, bool at_end_ok = false); duke@435: void verify_resync(); duke@435: void reset(const DUIterator_Common& that); duke@435: duke@435: // The VDUI_ONLY macro protects code conditionalized on VerifyDUIterators duke@435: #define I_VDUI_ONLY(i,x) { if ((i)._vdui) { x; } } duke@435: #else duke@435: #define I_VDUI_ONLY(i,x) { } duke@435: #endif //ASSERT duke@435: }; duke@435: duke@435: #define VDUI_ONLY(x) I_VDUI_ONLY(*this, x) duke@435: duke@435: // Default DU iterator. Allows appends onto the out array. duke@435: // Allows deletion from the out array only at the current point. duke@435: // Usage: duke@435: // for (DUIterator i = x->outs(); x->has_out(i); i++) { duke@435: // Node* y = x->out(i); duke@435: // ... duke@435: // } duke@435: // Compiles in product mode to a unsigned integer index, which indexes duke@435: // onto a repeatedly reloaded base pointer of x->_out. The loop predicate duke@435: // also reloads x->_outcnt. If you delete, you must perform "--i" just duke@435: // before continuing the loop. You must delete only the last-produced duke@435: // edge. You must delete only a single copy of the last-produced edge, duke@435: // or else you must delete all copies at once (the first time the edge duke@435: // is produced by the iterator). duke@435: class DUIterator : public DUIterator_Common { duke@435: friend class Node; duke@435: duke@435: // This is the index which provides the product-mode behavior. duke@435: // Whatever the product-mode version of the system does to the duke@435: // DUI index is done to this index. All other fields in duke@435: // this class are used only for assertion checking. duke@435: uint _idx; duke@435: duke@435: #ifdef ASSERT duke@435: uint _refresh_tick; // Records the refresh activity. duke@435: duke@435: void sample(const Node* node); // Initialize _refresh_tick etc. duke@435: void verify(const Node* node, bool at_end_ok = false); duke@435: void verify_increment(); // Verify an increment operation. duke@435: void verify_resync(); // Verify that we can back up over a deletion. duke@435: void verify_finish(); // Verify that the loop terminated properly. duke@435: void refresh(); // Resample verification info. duke@435: void reset(const DUIterator& that); // Resample after assignment. duke@435: #endif duke@435: duke@435: DUIterator(const Node* node, int dummy_to_avoid_conversion) duke@435: { _idx = 0; debug_only(sample(node)); } duke@435: duke@435: public: duke@435: // initialize to garbage; clear _vdui to disable asserts duke@435: DUIterator() duke@435: { /*initialize to garbage*/ debug_only(_vdui = false); } duke@435: duke@435: void operator++(int dummy_to_specify_postfix_op) duke@435: { _idx++; VDUI_ONLY(verify_increment()); } duke@435: duke@435: void operator--() duke@435: { VDUI_ONLY(verify_resync()); --_idx; } duke@435: duke@435: ~DUIterator() duke@435: { VDUI_ONLY(verify_finish()); } duke@435: duke@435: void operator=(const DUIterator& that) duke@435: { _idx = that._idx; debug_only(reset(that)); } duke@435: }; duke@435: duke@435: DUIterator Node::outs() const duke@435: { return DUIterator(this, 0); } duke@435: DUIterator& Node::refresh_out_pos(DUIterator& i) const duke@435: { I_VDUI_ONLY(i, i.refresh()); return i; } duke@435: bool Node::has_out(DUIterator& i) const duke@435: { I_VDUI_ONLY(i, i.verify(this,true));return i._idx < _outcnt; } duke@435: Node* Node::out(DUIterator& i) const duke@435: { I_VDUI_ONLY(i, i.verify(this)); return debug_only(i._last=) _out[i._idx]; } duke@435: duke@435: duke@435: // Faster DU iterator. Disallows insertions into the out array. duke@435: // Allows deletion from the out array only at the current point. duke@435: // Usage: duke@435: // for (DUIterator_Fast imax, i = x->fast_outs(imax); i < imax; i++) { duke@435: // Node* y = x->fast_out(i); duke@435: // ... duke@435: // } duke@435: // Compiles in product mode to raw Node** pointer arithmetic, with duke@435: // no reloading of pointers from the original node x. If you delete, duke@435: // you must perform "--i; --imax" just before continuing the loop. duke@435: // If you delete multiple copies of the same edge, you must decrement duke@435: // imax, but not i, multiple times: "--i, imax -= num_edges". duke@435: class DUIterator_Fast : public DUIterator_Common { duke@435: friend class Node; duke@435: friend class DUIterator_Last; duke@435: duke@435: // This is the pointer which provides the product-mode behavior. duke@435: // Whatever the product-mode version of the system does to the duke@435: // DUI pointer is done to this pointer. All other fields in duke@435: // this class are used only for assertion checking. duke@435: Node** _outp; duke@435: duke@435: #ifdef ASSERT duke@435: void verify(const Node* node, bool at_end_ok = false); duke@435: void verify_limit(); duke@435: void verify_resync(); duke@435: void verify_relimit(uint n); duke@435: void reset(const DUIterator_Fast& that); duke@435: #endif duke@435: duke@435: // Note: offset must be signed, since -1 is sometimes passed duke@435: DUIterator_Fast(const Node* node, ptrdiff_t offset) duke@435: { _outp = node->_out + offset; debug_only(sample(node)); } duke@435: duke@435: public: duke@435: // initialize to garbage; clear _vdui to disable asserts duke@435: DUIterator_Fast() duke@435: { /*initialize to garbage*/ debug_only(_vdui = false); } duke@435: duke@435: void operator++(int dummy_to_specify_postfix_op) duke@435: { _outp++; VDUI_ONLY(verify(_node, true)); } duke@435: duke@435: void operator--() duke@435: { VDUI_ONLY(verify_resync()); --_outp; } duke@435: duke@435: void operator-=(uint n) // applied to the limit only duke@435: { _outp -= n; VDUI_ONLY(verify_relimit(n)); } duke@435: duke@435: bool operator<(DUIterator_Fast& limit) { duke@435: I_VDUI_ONLY(*this, this->verify(_node, true)); duke@435: I_VDUI_ONLY(limit, limit.verify_limit()); duke@435: return _outp < limit._outp; duke@435: } duke@435: duke@435: void operator=(const DUIterator_Fast& that) duke@435: { _outp = that._outp; debug_only(reset(that)); } duke@435: }; duke@435: duke@435: DUIterator_Fast Node::fast_outs(DUIterator_Fast& imax) const { duke@435: // Assign a limit pointer to the reference argument: duke@435: imax = DUIterator_Fast(this, (ptrdiff_t)_outcnt); duke@435: // Return the base pointer: duke@435: return DUIterator_Fast(this, 0); duke@435: } duke@435: Node* Node::fast_out(DUIterator_Fast& i) const { duke@435: I_VDUI_ONLY(i, i.verify(this)); duke@435: return debug_only(i._last=) *i._outp; duke@435: } duke@435: duke@435: duke@435: // Faster DU iterator. Requires each successive edge to be removed. duke@435: // Does not allow insertion of any edges. duke@435: // Usage: duke@435: // for (DUIterator_Last imin, i = x->last_outs(imin); i >= imin; i -= num_edges) { duke@435: // Node* y = x->last_out(i); duke@435: // ... duke@435: // } duke@435: // Compiles in product mode to raw Node** pointer arithmetic, with duke@435: // no reloading of pointers from the original node x. duke@435: class DUIterator_Last : private DUIterator_Fast { duke@435: friend class Node; duke@435: duke@435: #ifdef ASSERT duke@435: void verify(const Node* node, bool at_end_ok = false); duke@435: void verify_limit(); duke@435: void verify_step(uint num_edges); duke@435: #endif duke@435: duke@435: // Note: offset must be signed, since -1 is sometimes passed duke@435: DUIterator_Last(const Node* node, ptrdiff_t offset) duke@435: : DUIterator_Fast(node, offset) { } duke@435: duke@435: void operator++(int dummy_to_specify_postfix_op) {} // do not use duke@435: void operator<(int) {} // do not use duke@435: duke@435: public: duke@435: DUIterator_Last() { } duke@435: // initialize to garbage duke@435: duke@435: void operator--() duke@435: { _outp--; VDUI_ONLY(verify_step(1)); } duke@435: duke@435: void operator-=(uint n) duke@435: { _outp -= n; VDUI_ONLY(verify_step(n)); } duke@435: duke@435: bool operator>=(DUIterator_Last& limit) { duke@435: I_VDUI_ONLY(*this, this->verify(_node, true)); duke@435: I_VDUI_ONLY(limit, limit.verify_limit()); duke@435: return _outp >= limit._outp; duke@435: } duke@435: duke@435: void operator=(const DUIterator_Last& that) duke@435: { DUIterator_Fast::operator=(that); } duke@435: }; duke@435: duke@435: DUIterator_Last Node::last_outs(DUIterator_Last& imin) const { duke@435: // Assign a limit pointer to the reference argument: duke@435: imin = DUIterator_Last(this, 0); duke@435: // Return the initial pointer: duke@435: return DUIterator_Last(this, (ptrdiff_t)_outcnt - 1); duke@435: } duke@435: Node* Node::last_out(DUIterator_Last& i) const { duke@435: I_VDUI_ONLY(i, i.verify(this)); duke@435: return debug_only(i._last=) *i._outp; duke@435: } duke@435: duke@435: #endif //OPTO_DU_ITERATOR_ASSERT duke@435: duke@435: #undef I_VDUI_ONLY duke@435: #undef VDUI_ONLY duke@435: duke@435: duke@435: //----------------------------------------------------------------------------- duke@435: // Map dense integer indices to Nodes. Uses classic doubling-array trick. duke@435: // Abstractly provides an infinite array of Node*'s, initialized to NULL. duke@435: // Note that the constructor just zeros things, and since I use Arena duke@435: // allocation I do not need a destructor to reclaim storage. duke@435: class Node_Array : public ResourceObj { duke@435: protected: duke@435: Arena *_a; // Arena to allocate in duke@435: uint _max; duke@435: Node **_nodes; duke@435: void grow( uint i ); // Grow array node to fit duke@435: public: duke@435: Node_Array(Arena *a) : _a(a), _max(OptoNodeListSize) { duke@435: _nodes = NEW_ARENA_ARRAY( a, Node *, OptoNodeListSize ); duke@435: for( int i = 0; i < OptoNodeListSize; i++ ) { duke@435: _nodes[i] = NULL; duke@435: } duke@435: } duke@435: duke@435: Node_Array(Node_Array *na) : _a(na->_a), _max(na->_max), _nodes(na->_nodes) {} duke@435: Node *operator[] ( uint i ) const // Lookup, or NULL for not mapped duke@435: { return (i<_max) ? _nodes[i] : (Node*)NULL; } duke@435: Node *at( uint i ) const { assert(i<_max,"oob"); return _nodes[i]; } duke@435: Node **adr() { return _nodes; } duke@435: // Extend the mapping: index i maps to Node *n. duke@435: void map( uint i, Node *n ) { if( i>=_max ) grow(i); _nodes[i] = n; } duke@435: void insert( uint i, Node *n ); duke@435: void remove( uint i ); // Remove, preserving order duke@435: void sort( C_sort_func_t func); duke@435: void reset( Arena *new_a ); // Zap mapping to empty; reclaim storage duke@435: void clear(); // Set all entries to NULL, keep storage duke@435: uint Size() const { return _max; } duke@435: void dump() const; duke@435: }; duke@435: duke@435: class Node_List : public Node_Array { duke@435: uint _cnt; duke@435: public: duke@435: Node_List() : Node_Array(Thread::current()->resource_area()), _cnt(0) {} duke@435: Node_List(Arena *a) : Node_Array(a), _cnt(0) {} duke@435: void insert( uint i, Node *n ) { Node_Array::insert(i,n); _cnt++; } duke@435: void remove( uint i ) { Node_Array::remove(i); _cnt--; } duke@435: void push( Node *b ) { map(_cnt++,b); } duke@435: void yank( Node *n ); // Find and remove duke@435: Node *pop() { return _nodes[--_cnt]; } duke@435: Node *rpop() { Node *b = _nodes[0]; _nodes[0]=_nodes[--_cnt]; return b;} duke@435: void clear() { _cnt = 0; Node_Array::clear(); } // retain storage duke@435: uint size() const { return _cnt; } duke@435: void dump() const; duke@435: }; duke@435: duke@435: //------------------------------Unique_Node_List------------------------------- duke@435: class Unique_Node_List : public Node_List { duke@435: VectorSet _in_worklist; duke@435: uint _clock_index; // Index in list where to pop from next duke@435: public: duke@435: Unique_Node_List() : Node_List(), _in_worklist(Thread::current()->resource_area()), _clock_index(0) {} duke@435: Unique_Node_List(Arena *a) : Node_List(a), _in_worklist(a), _clock_index(0) {} duke@435: duke@435: void remove( Node *n ); duke@435: bool member( Node *n ) { return _in_worklist.test(n->_idx) != 0; } duke@435: VectorSet &member_set(){ return _in_worklist; } duke@435: duke@435: void push( Node *b ) { duke@435: if( !_in_worklist.test_set(b->_idx) ) duke@435: Node_List::push(b); duke@435: } duke@435: Node *pop() { duke@435: if( _clock_index >= size() ) _clock_index = 0; duke@435: Node *b = at(_clock_index); duke@435: map( _clock_index++, Node_List::pop()); duke@435: _in_worklist >>= b->_idx; duke@435: return b; duke@435: } duke@435: Node *remove( uint i ) { duke@435: Node *b = Node_List::at(i); duke@435: _in_worklist >>= b->_idx; duke@435: map(i,Node_List::pop()); duke@435: return b; duke@435: } duke@435: void yank( Node *n ) { _in_worklist >>= n->_idx; Node_List::yank(n); } duke@435: void clear() { duke@435: _in_worklist.Clear(); // Discards storage but grows automatically duke@435: Node_List::clear(); duke@435: _clock_index = 0; duke@435: } duke@435: duke@435: // Used after parsing to remove useless nodes before Iterative GVN duke@435: void remove_useless_nodes(VectorSet &useful); duke@435: duke@435: #ifndef PRODUCT duke@435: void print_set() const { _in_worklist.print(); } duke@435: #endif duke@435: }; duke@435: duke@435: // Inline definition of Compile::record_for_igvn must be deferred to this point. duke@435: inline void Compile::record_for_igvn(Node* n) { duke@435: _for_igvn->push(n); duke@435: record_for_escape_analysis(n); duke@435: } duke@435: duke@435: //------------------------------Node_Stack------------------------------------- duke@435: class Node_Stack { duke@435: protected: duke@435: struct INode { duke@435: Node *node; // Processed node duke@435: uint indx; // Index of next node's child duke@435: }; duke@435: INode *_inode_top; // tos, stack grows up duke@435: INode *_inode_max; // End of _inodes == _inodes + _max duke@435: INode *_inodes; // Array storage for the stack duke@435: Arena *_a; // Arena to allocate in duke@435: void grow(); duke@435: public: duke@435: Node_Stack(int size) { duke@435: size_t max = (size > OptoNodeListSize) ? size : OptoNodeListSize; duke@435: _a = Thread::current()->resource_area(); duke@435: _inodes = NEW_ARENA_ARRAY( _a, INode, max ); duke@435: _inode_max = _inodes + max; duke@435: _inode_top = _inodes - 1; // stack is empty duke@435: } duke@435: duke@435: Node_Stack(Arena *a, int size) : _a(a) { duke@435: size_t max = (size > OptoNodeListSize) ? size : OptoNodeListSize; duke@435: _inodes = NEW_ARENA_ARRAY( _a, INode, max ); duke@435: _inode_max = _inodes + max; duke@435: _inode_top = _inodes - 1; // stack is empty duke@435: } duke@435: duke@435: void pop() { duke@435: assert(_inode_top >= _inodes, "node stack underflow"); duke@435: --_inode_top; duke@435: } duke@435: void push(Node *n, uint i) { duke@435: ++_inode_top; duke@435: if (_inode_top >= _inode_max) grow(); duke@435: INode *top = _inode_top; // optimization duke@435: top->node = n; duke@435: top->indx = i; duke@435: } duke@435: Node *node() const { duke@435: return _inode_top->node; duke@435: } duke@435: Node* node_at(uint i) const { duke@435: assert(_inodes + i <= _inode_top, "in range"); duke@435: return _inodes[i].node; duke@435: } duke@435: uint index() const { duke@435: return _inode_top->indx; duke@435: } duke@435: void set_node(Node *n) { duke@435: _inode_top->node = n; duke@435: } duke@435: void set_index(uint i) { duke@435: _inode_top->indx = i; duke@435: } duke@435: uint size_max() const { return (uint)pointer_delta(_inode_max, _inodes, sizeof(INode)); } // Max size duke@435: uint size() const { return (uint)pointer_delta(_inode_top, _inodes, sizeof(INode)) + 1; } // Current size duke@435: bool is_nonempty() const { return (_inode_top >= _inodes); } duke@435: bool is_empty() const { return (_inode_top < _inodes); } duke@435: void clear() { _inode_top = _inodes - 1; } // retain storage duke@435: }; duke@435: duke@435: duke@435: //-----------------------------Node_Notes-------------------------------------- duke@435: // Debugging or profiling annotations loosely and sparsely associated duke@435: // with some nodes. See Compile::node_notes_at for the accessor. duke@435: class Node_Notes VALUE_OBJ_CLASS_SPEC { duke@435: JVMState* _jvms; duke@435: duke@435: public: duke@435: Node_Notes(JVMState* jvms = NULL) { duke@435: _jvms = jvms; duke@435: } duke@435: duke@435: JVMState* jvms() { return _jvms; } duke@435: void set_jvms(JVMState* x) { _jvms = x; } duke@435: duke@435: // True if there is nothing here. duke@435: bool is_clear() { duke@435: return (_jvms == NULL); duke@435: } duke@435: duke@435: // Make there be nothing here. duke@435: void clear() { duke@435: _jvms = NULL; duke@435: } duke@435: duke@435: // Make a new, clean node notes. duke@435: static Node_Notes* make(Compile* C) { duke@435: Node_Notes* nn = NEW_ARENA_ARRAY(C->comp_arena(), Node_Notes, 1); duke@435: nn->clear(); duke@435: return nn; duke@435: } duke@435: duke@435: Node_Notes* clone(Compile* C) { duke@435: Node_Notes* nn = NEW_ARENA_ARRAY(C->comp_arena(), Node_Notes, 1); duke@435: (*nn) = (*this); duke@435: return nn; duke@435: } duke@435: duke@435: // Absorb any information from source. duke@435: bool update_from(Node_Notes* source) { duke@435: bool changed = false; duke@435: if (source != NULL) { duke@435: if (source->jvms() != NULL) { duke@435: set_jvms(source->jvms()); duke@435: changed = true; duke@435: } duke@435: } duke@435: return changed; duke@435: } duke@435: }; duke@435: duke@435: // Inlined accessors for Compile::node_nodes that require the preceding class: duke@435: inline Node_Notes* duke@435: Compile::locate_node_notes(GrowableArray* arr, duke@435: int idx, bool can_grow) { duke@435: assert(idx >= 0, "oob"); duke@435: int block_idx = (idx >> _log2_node_notes_block_size); duke@435: int grow_by = (block_idx - (arr == NULL? 0: arr->length())); duke@435: if (grow_by >= 0) { duke@435: if (!can_grow) return NULL; duke@435: grow_node_notes(arr, grow_by + 1); duke@435: } duke@435: // (Every element of arr is a sub-array of length _node_notes_block_size.) duke@435: return arr->at(block_idx) + (idx & (_node_notes_block_size-1)); duke@435: } duke@435: duke@435: inline bool duke@435: Compile::set_node_notes_at(int idx, Node_Notes* value) { duke@435: if (value == NULL || value->is_clear()) duke@435: return false; // nothing to write => write nothing duke@435: Node_Notes* loc = locate_node_notes(_node_note_array, idx, true); duke@435: assert(loc != NULL, ""); duke@435: return loc->update_from(value); duke@435: } duke@435: duke@435: duke@435: //------------------------------TypeNode--------------------------------------- duke@435: // Node with a Type constant. duke@435: class TypeNode : public Node { duke@435: protected: duke@435: virtual uint hash() const; // Check the type duke@435: virtual uint cmp( const Node &n ) const; duke@435: virtual uint size_of() const; // Size is bigger duke@435: const Type* const _type; duke@435: public: duke@435: void set_type(const Type* t) { duke@435: assert(t != NULL, "sanity"); duke@435: debug_only(uint check_hash = (VerifyHashTableKeys && _hash_lock) ? hash() : NO_HASH); duke@435: *(const Type**)&_type = t; // cast away const-ness duke@435: // If this node is in the hash table, make sure it doesn't need a rehash. duke@435: assert(check_hash == NO_HASH || check_hash == hash(), "type change must preserve hash code"); duke@435: } duke@435: const Type* type() const { assert(_type != NULL, "sanity"); return _type; }; duke@435: TypeNode( const Type *t, uint required ) : Node(required), _type(t) { duke@435: init_class_id(Class_Type); duke@435: } duke@435: virtual const Type *Value( PhaseTransform *phase ) const; duke@435: virtual const Type *bottom_type() const; duke@435: virtual uint ideal_reg() const; duke@435: #ifndef PRODUCT duke@435: virtual void dump_spec(outputStream *st) const; duke@435: #endif duke@435: };