duke@435: /* tschatzl@5701: * Copyright (c) 2000, 2013, Oracle and/or its affiliates. All rights reserved. duke@435: * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. duke@435: * duke@435: * This code is free software; you can redistribute it and/or modify it duke@435: * under the terms of the GNU General Public License version 2 only, as duke@435: * published by the Free Software Foundation. duke@435: * duke@435: * This code is distributed in the hope that it will be useful, but WITHOUT duke@435: * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or duke@435: * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License duke@435: * version 2 for more details (a copy is included in the LICENSE file that duke@435: * accompanied this code). duke@435: * duke@435: * You should have received a copy of the GNU General Public License version duke@435: * 2 along with this work; if not, write to the Free Software Foundation, duke@435: * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. duke@435: * trims@1907: * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA trims@1907: * or visit www.oracle.com if you need additional information or have any trims@1907: * questions. duke@435: * duke@435: */ duke@435: stefank@2314: #ifndef SHARE_VM_MEMORY_GENCOLLECTEDHEAP_HPP stefank@2314: #define SHARE_VM_MEMORY_GENCOLLECTEDHEAP_HPP stefank@2314: stefank@2314: #include "gc_implementation/shared/adaptiveSizePolicy.hpp" stefank@2314: #include "memory/collectorPolicy.hpp" stefank@2314: #include "memory/generation.hpp" stefank@2314: #include "memory/sharedHeap.hpp" stefank@2314: duke@435: class SubTasksDone; duke@435: duke@435: // A "GenCollectedHeap" is a SharedHeap that uses generational duke@435: // collection. It is represented with a sequence of Generation's. duke@435: class GenCollectedHeap : public SharedHeap { duke@435: friend class GenCollectorPolicy; duke@435: friend class Generation; duke@435: friend class DefNewGeneration; duke@435: friend class TenuredGeneration; duke@435: friend class ConcurrentMarkSweepGeneration; duke@435: friend class CMSCollector; duke@435: friend class GenMarkSweep; duke@435: friend class VM_GenCollectForAllocation; duke@435: friend class VM_GenCollectFull; duke@435: friend class VM_GenCollectFullConcurrent; duke@435: friend class VM_GC_HeapInspection; duke@435: friend class VM_HeapDumper; duke@435: friend class HeapInspection; duke@435: friend class GCCauseSetter; duke@435: friend class VMStructs; duke@435: public: duke@435: enum SomeConstants { duke@435: max_gens = 10 duke@435: }; duke@435: duke@435: friend class VM_PopulateDumpSharedSpace; duke@435: duke@435: protected: duke@435: // Fields: duke@435: static GenCollectedHeap* _gch; duke@435: duke@435: private: duke@435: int _n_gens; duke@435: Generation* _gens[max_gens]; duke@435: GenerationSpec** _gen_specs; duke@435: duke@435: // The generational collector policy. duke@435: GenCollectorPolicy* _gen_policy; duke@435: ysr@2243: // Indicates that the most recent previous incremental collection failed. ysr@2243: // The flag is cleared when an action is taken that might clear the ysr@2243: // condition that caused that incremental collection to fail. ysr@2243: bool _incremental_collection_failed; duke@435: duke@435: // In support of ExplicitGCInvokesConcurrent functionality duke@435: unsigned int _full_collections_completed; duke@435: duke@435: // Data structure for claiming the (potentially) parallel tasks in stefank@6992: // (gen-specific) roots processing. stefank@6992: SubTasksDone* _gen_process_roots_tasks; stefank@6992: SubTasksDone* gen_process_roots_tasks() { return _gen_process_roots_tasks; } duke@435: duke@435: // In block contents verification, the number of header words to skip duke@435: NOT_PRODUCT(static size_t _skip_header_HeapWords;) duke@435: duke@435: protected: duke@435: // Helper functions for allocation duke@435: HeapWord* attempt_allocation(size_t size, duke@435: bool is_tlab, duke@435: bool first_only); duke@435: duke@435: // Helper function for two callbacks below. duke@435: // Considers collection of the first max_level+1 generations. duke@435: void do_collection(bool full, duke@435: bool clear_all_soft_refs, duke@435: size_t size, duke@435: bool is_tlab, duke@435: int max_level); duke@435: duke@435: // Callback from VM_GenCollectForAllocation operation. duke@435: // This function does everything necessary/possible to satisfy an duke@435: // allocation request that failed in the youngest generation that should duke@435: // have handled it (including collection, expansion, etc.) duke@435: HeapWord* satisfy_failed_allocation(size_t size, bool is_tlab); duke@435: duke@435: // Callback from VM_GenCollectFull operation. duke@435: // Perform a full collection of the first max_level+1 generations. coleenp@4037: virtual void do_full_collection(bool clear_all_soft_refs); duke@435: void do_full_collection(bool clear_all_soft_refs, int max_level); duke@435: duke@435: // Does the "cause" of GC indicate that duke@435: // we absolutely __must__ clear soft refs? duke@435: bool must_clear_all_soft_refs(); duke@435: duke@435: public: duke@435: GenCollectedHeap(GenCollectorPolicy *policy); duke@435: duke@435: GCStats* gc_stats(int level) const; duke@435: duke@435: // Returns JNI_OK on success duke@435: virtual jint initialize(); coleenp@4037: char* allocate(size_t alignment, duke@435: size_t* _total_reserved, int* _n_covered_regions, duke@435: ReservedSpace* heap_rs); duke@435: duke@435: // Does operations required after initialization has been done. duke@435: void post_initialize(); duke@435: duke@435: // Initialize ("weak") refs processing support duke@435: virtual void ref_processing_init(); duke@435: duke@435: virtual CollectedHeap::Name kind() const { duke@435: return CollectedHeap::GenCollectedHeap; duke@435: } duke@435: duke@435: // The generational collector policy. duke@435: GenCollectorPolicy* gen_policy() const { return _gen_policy; } coleenp@4037: virtual CollectorPolicy* collector_policy() const { return (CollectorPolicy*) gen_policy(); } duke@435: duke@435: // Adaptive size policy duke@435: virtual AdaptiveSizePolicy* size_policy() { duke@435: return gen_policy()->size_policy(); duke@435: } duke@435: tschatzl@5701: // Return the (conservative) maximum heap alignment tschatzl@5701: static size_t conservative_max_heap_alignment() { tschatzl@5701: return Generation::GenGrain; tschatzl@5701: } tschatzl@5701: duke@435: size_t capacity() const; duke@435: size_t used() const; duke@435: coleenp@4037: // Save the "used_region" for generations level and lower. coleenp@4037: void save_used_regions(int level); duke@435: duke@435: size_t max_capacity() const; duke@435: duke@435: HeapWord* mem_allocate(size_t size, duke@435: bool* gc_overhead_limit_was_exceeded); duke@435: duke@435: // We may support a shared contiguous allocation area, if the youngest duke@435: // generation does. duke@435: bool supports_inline_contig_alloc() const; duke@435: HeapWord** top_addr() const; duke@435: HeapWord** end_addr() const; duke@435: duke@435: // Return an estimate of the maximum allocation that could be performed duke@435: // without triggering any collection activity. In a generational duke@435: // collector, for example, this is probably the largest allocation that duke@435: // could be supported in the youngest generation. It is "unsafe" because duke@435: // no locks are taken; the result should be treated as an approximation, duke@435: // not a guarantee. duke@435: size_t unsafe_max_alloc(); duke@435: duke@435: // Does this heap support heap inspection? (+PrintClassHistogram) duke@435: virtual bool supports_heap_inspection() const { return true; } duke@435: duke@435: // Perform a full collection of the heap; intended for use in implementing duke@435: // "System.gc". This implies as full a collection as the CollectedHeap duke@435: // supports. Caller does not hold the Heap_lock on entry. duke@435: void collect(GCCause::Cause cause); duke@435: duke@435: // The same as above but assume that the caller holds the Heap_lock. duke@435: void collect_locked(GCCause::Cause cause); duke@435: duke@435: // Perform a full collection of the first max_level+1 generations. duke@435: // Mostly used for testing purposes. Caller does not hold the Heap_lock on entry. duke@435: void collect(GCCause::Cause cause, int max_level); duke@435: stefank@3335: // Returns "TRUE" iff "p" points into the committed areas of the heap. duke@435: // The methods is_in(), is_in_closed_subset() and is_in_youngest() may duke@435: // be expensive to compute in general, so, to prevent duke@435: // their inadvertent use in product jvm's, we restrict their use to duke@435: // assertion checking or verification only. duke@435: bool is_in(const void* p) const; duke@435: duke@435: // override duke@435: bool is_in_closed_subset(const void* p) const { duke@435: if (UseConcMarkSweepGC) { duke@435: return is_in_reserved(p); duke@435: } else { duke@435: return is_in(p); duke@435: } duke@435: } duke@435: jmasa@2909: // Returns true if the reference is to an object in the reserved space jmasa@2909: // for the young generation. jmasa@2909: // Assumes the the young gen address range is less than that of the old gen. jmasa@2909: bool is_in_young(oop p); jmasa@2909: jmasa@2909: #ifdef ASSERT jmasa@2909: virtual bool is_in_partial_collection(const void* p); jmasa@2909: #endif jmasa@2909: jmasa@2909: virtual bool is_scavengable(const void* addr) { jmasa@2909: return is_in_young((oop)addr); jmasa@2909: } duke@435: duke@435: // Iteration functions. coleenp@4037: void oop_iterate(ExtendedOopClosure* cl); duke@435: void object_iterate(ObjectClosure* cl); jmasa@952: void safe_object_iterate(ObjectClosure* cl); duke@435: Space* space_containing(const void* addr) const; duke@435: duke@435: // A CollectedHeap is divided into a dense sequence of "blocks"; that is, duke@435: // each address in the (reserved) heap is a member of exactly duke@435: // one block. The defining characteristic of a block is that it is duke@435: // possible to find its size, and thus to progress forward to the next duke@435: // block. (Blocks may be of different sizes.) Thus, blocks may duke@435: // represent Java objects, or they might be free blocks in a duke@435: // free-list-based heap (or subheap), as long as the two kinds are duke@435: // distinguishable and the size of each is determinable. duke@435: duke@435: // Returns the address of the start of the "block" that contains the duke@435: // address "addr". We say "blocks" instead of "object" since some heaps duke@435: // may not pack objects densely; a chunk may either be an object or a duke@435: // non-object. duke@435: virtual HeapWord* block_start(const void* addr) const; duke@435: duke@435: // Requires "addr" to be the start of a chunk, and returns its size. duke@435: // "addr + size" is required to be the start of a new chunk, or the end duke@435: // of the active area of the heap. Assumes (and verifies in non-product duke@435: // builds) that addr is in the allocated part of the heap and is duke@435: // the start of a chunk. duke@435: virtual size_t block_size(const HeapWord* addr) const; duke@435: duke@435: // Requires "addr" to be the start of a block, and returns "TRUE" iff duke@435: // the block is an object. Assumes (and verifies in non-product duke@435: // builds) that addr is in the allocated part of the heap and is duke@435: // the start of a chunk. duke@435: virtual bool block_is_obj(const HeapWord* addr) const; duke@435: duke@435: // Section on TLAB's. duke@435: virtual bool supports_tlab_allocation() const; duke@435: virtual size_t tlab_capacity(Thread* thr) const; brutisso@6376: virtual size_t tlab_used(Thread* thr) const; duke@435: virtual size_t unsafe_max_tlab_alloc(Thread* thr) const; duke@435: virtual HeapWord* allocate_new_tlab(size_t size); duke@435: ysr@777: // Can a compiler initialize a new object without store barriers? ysr@777: // This permission only extends from the creation of a new object ysr@777: // via a TLAB up to the first subsequent safepoint. ysr@777: virtual bool can_elide_tlab_store_barriers() const { ysr@777: return true; ysr@777: } ysr@777: ysr@1601: virtual bool card_mark_must_follow_store() const { ysr@1601: return UseConcMarkSweepGC; ysr@1601: } ysr@1601: ysr@1462: // We don't need barriers for stores to objects in the ysr@1462: // young gen and, a fortiori, for initializing stores to ysr@1462: // objects therein. This applies to {DefNew,ParNew}+{Tenured,CMS} ysr@1462: // only and may need to be re-examined in case other ysr@1462: // kinds of collectors are implemented in the future. ysr@1462: virtual bool can_elide_initializing_store_barrier(oop new_obj) { ysr@1463: // We wanted to assert that:- ysr@1463: // assert(UseParNewGC || UseSerialGC || UseConcMarkSweepGC, ysr@1463: // "Check can_elide_initializing_store_barrier() for this collector"); ysr@1463: // but unfortunately the flag UseSerialGC need not necessarily always ysr@1463: // be set when DefNew+Tenured are being used. jmasa@2909: return is_in_young(new_obj); ysr@1462: } ysr@1462: duke@435: // The "requestor" generation is performing some garbage collection duke@435: // action for which it would be useful to have scratch space. The duke@435: // requestor promises to allocate no more than "max_alloc_words" in any duke@435: // older generation (via promotion say.) Any blocks of space that can duke@435: // be provided are returned as a list of ScratchBlocks, sorted by duke@435: // decreasing size. duke@435: ScratchBlock* gather_scratch(Generation* requestor, size_t max_alloc_words); jmasa@698: // Allow each generation to reset any scratch space that it has jmasa@698: // contributed as it needs. jmasa@698: void release_scratch(); duke@435: duke@435: // Ensure parsability: override duke@435: virtual void ensure_parsability(bool retire_tlabs); duke@435: duke@435: // Time in ms since the longest time a collector ran in duke@435: // in any generation. duke@435: virtual jlong millis_since_last_gc(); duke@435: duke@435: // Total number of full collections completed. duke@435: unsigned int total_full_collections_completed() { duke@435: assert(_full_collections_completed <= _total_full_collections, duke@435: "Can't complete more collections than were started"); duke@435: return _full_collections_completed; duke@435: } duke@435: duke@435: // Update above counter, as appropriate, at the end of a stop-world GC cycle duke@435: unsigned int update_full_collections_completed(); duke@435: // Update above counter, as appropriate, at the end of a concurrent GC cycle duke@435: unsigned int update_full_collections_completed(unsigned int count); duke@435: duke@435: // Update "time of last gc" for all constituent generations duke@435: // to "now". duke@435: void update_time_of_last_gc(jlong now) { duke@435: for (int i = 0; i < _n_gens; i++) { duke@435: _gens[i]->update_time_of_last_gc(now); duke@435: } duke@435: } duke@435: duke@435: // Update the gc statistics for each generation. duke@435: // "level" is the level of the lastest collection duke@435: void update_gc_stats(int current_level, bool full) { duke@435: for (int i = 0; i < _n_gens; i++) { duke@435: _gens[i]->update_gc_stats(current_level, full); duke@435: } duke@435: } duke@435: duke@435: // Override. duke@435: bool no_gc_in_progress() { return !is_gc_active(); } duke@435: duke@435: // Override. duke@435: void prepare_for_verify(); duke@435: duke@435: // Override. brutisso@3711: void verify(bool silent, VerifyOption option); duke@435: duke@435: // Override. tonyp@3269: virtual void print_on(outputStream* st) const; duke@435: virtual void print_gc_threads_on(outputStream* st) const; duke@435: virtual void gc_threads_do(ThreadClosure* tc) const; duke@435: virtual void print_tracing_info() const; stefank@4904: virtual void print_on_error(outputStream* st) const; duke@435: duke@435: // PrintGC, PrintGCDetails support duke@435: void print_heap_change(size_t prev_used) const; duke@435: duke@435: // The functions below are helper functions that a subclass of duke@435: // "CollectedHeap" can use in the implementation of its virtual duke@435: // functions. duke@435: duke@435: class GenClosure : public StackObj { duke@435: public: duke@435: virtual void do_generation(Generation* gen) = 0; duke@435: }; duke@435: coleenp@4037: // Apply "cl.do_generation" to all generations in the heap coleenp@4037: // If "old_to_young" determines the order. duke@435: void generation_iterate(GenClosure* cl, bool old_to_young); duke@435: duke@435: void space_iterate(SpaceClosure* cl); duke@435: coleenp@4037: // Return "true" if all generations have reached the duke@435: // maximal committed limit that they can reach, without a garbage duke@435: // collection. duke@435: virtual bool is_maximal_no_gc() const; duke@435: brutisso@5516: // Return the generation before "gen". duke@435: Generation* prev_gen(Generation* gen) const { duke@435: int l = gen->level(); brutisso@5516: guarantee(l > 0, "Out of bounds"); brutisso@5516: return _gens[l-1]; duke@435: } duke@435: brutisso@5516: // Return the generation after "gen". duke@435: Generation* next_gen(Generation* gen) const { duke@435: int l = gen->level() + 1; brutisso@5516: guarantee(l < _n_gens, "Out of bounds"); brutisso@5516: return _gens[l]; duke@435: } duke@435: duke@435: Generation* get_gen(int i) const { brutisso@5516: guarantee(i >= 0 && i < _n_gens, "Out of bounds"); brutisso@5516: return _gens[i]; duke@435: } duke@435: duke@435: int n_gens() const { duke@435: assert(_n_gens == gen_policy()->number_of_generations(), "Sanity"); duke@435: return _n_gens; duke@435: } duke@435: duke@435: // Convenience function to be used in situations where the heap type can be duke@435: // asserted to be this type. duke@435: static GenCollectedHeap* heap(); duke@435: jmasa@3357: void set_par_threads(uint t); duke@435: duke@435: // Invoke the "do_oop" method of one of the closures "not_older_gens" duke@435: // or "older_gens" on root locations for the generation at duke@435: // "level". (The "older_gens" closure is used for scanning references duke@435: // from older generations; "not_older_gens" is used everywhere else.) duke@435: // If "younger_gens_as_roots" is false, younger generations are duke@435: // not scanned as roots; in this case, the caller must be arranging to duke@435: // scan the younger generations itself. (For example, a generation might duke@435: // explicitly mark reachable objects in younger generations, to avoid coleenp@4037: // excess storage retention.) coleenp@4037: // The "so" argument determines which of the roots duke@435: // the closure is applied to: duke@435: // "SO_None" does none; stefank@6992: private: stefank@6992: void gen_process_roots(int level, stefank@6992: bool younger_gens_as_roots, stefank@6992: bool activate_scope, stefank@6992: SharedHeap::ScanningOption so, stefank@6992: OopsInGenClosure* not_older_gens, stefank@6992: OopsInGenClosure* weak_roots, stefank@6992: OopsInGenClosure* older_gens, stefank@6992: CLDClosure* cld_closure, stefank@6992: CLDClosure* weak_cld_closure, stefank@6992: CodeBlobClosure* code_closure); stefank@6992: stefank@6992: public: stefank@6992: static const bool StrongAndWeakRoots = false; stefank@6992: static const bool StrongRootsOnly = true; stefank@6992: stefank@6992: void gen_process_roots(int level, stefank@6992: bool younger_gens_as_roots, stefank@6992: bool activate_scope, stefank@6992: SharedHeap::ScanningOption so, stefank@6992: bool only_strong_roots, stefank@6992: OopsInGenClosure* not_older_gens, stefank@6992: OopsInGenClosure* older_gens, stefank@6992: CLDClosure* cld_closure); duke@435: stefank@6971: // Apply "root_closure" to all the weak roots of the system. stefank@6971: // These include JNI weak roots, string table, stefank@6971: // and referents of reachable weak refs. stefank@6971: void gen_process_weak_roots(OopClosure* root_closure); duke@435: duke@435: // Set the saved marks of generations, if that makes sense. duke@435: // In particular, if any generation might iterate over the oops duke@435: // in other generations, it should call this method. duke@435: void save_marks(); duke@435: duke@435: // Apply "cur->do_oop" or "older->do_oop" to all the oops in objects duke@435: // allocated since the last call to save_marks in generations at or above coleenp@4037: // "level". The "cur" closure is duke@435: // applied to references in the generation at "level", and the "older" coleenp@4037: // closure to older generations. duke@435: #define GCH_SINCE_SAVE_MARKS_ITERATE_DECL(OopClosureType, nv_suffix) \ duke@435: void oop_since_save_marks_iterate(int level, \ duke@435: OopClosureType* cur, \ duke@435: OopClosureType* older); duke@435: duke@435: ALL_SINCE_SAVE_MARKS_CLOSURES(GCH_SINCE_SAVE_MARKS_ITERATE_DECL) duke@435: duke@435: #undef GCH_SINCE_SAVE_MARKS_ITERATE_DECL duke@435: duke@435: // Returns "true" iff no allocations have occurred in any generation at coleenp@4037: // "level" or above since the last duke@435: // call to "save_marks". duke@435: bool no_allocs_since_save_marks(int level); duke@435: ysr@2243: // Returns true if an incremental collection is likely to fail. ysr@2336: // We optionally consult the young gen, if asked to do so; ysr@2336: // otherwise we base our answer on whether the previous incremental ysr@2336: // collection attempt failed with no corrective action as of yet. ysr@2336: bool incremental_collection_will_fail(bool consult_young) { ysr@2243: // Assumes a 2-generation system; the first disjunct remembers if an ysr@2243: // incremental collection failed, even when we thought (second disjunct) ysr@2243: // that it would not. ysr@2243: assert(heap()->collector_policy()->is_two_generation_policy(), ysr@2243: "the following definition may not be suitable for an n(>2)-generation system"); ysr@2336: return incremental_collection_failed() || ysr@2336: (consult_young && !get_gen(0)->collection_attempt_is_safe()); ysr@2243: } ysr@2243: duke@435: // If a generation bails out of an incremental collection, duke@435: // it sets this flag. ysr@2243: bool incremental_collection_failed() const { ysr@2243: return _incremental_collection_failed; duke@435: } ysr@2243: void set_incremental_collection_failed() { ysr@2243: _incremental_collection_failed = true; duke@435: } ysr@2243: void clear_incremental_collection_failed() { ysr@2243: _incremental_collection_failed = false; duke@435: } duke@435: coleenp@4037: // Promotion of obj into gen failed. Try to promote obj to higher duke@435: // gens in ascending order; return the new location of obj if successful. brutisso@5516: // Otherwise, try expand-and-allocate for obj in both the young and old brutisso@5516: // generation; return the new location of obj if successful. Otherwise, return NULL. brutisso@5516: oop handle_failed_promotion(Generation* old_gen, duke@435: oop obj, coleenp@548: size_t obj_size); duke@435: duke@435: private: duke@435: // Accessor for memory state verification support duke@435: NOT_PRODUCT( duke@435: static size_t skip_header_HeapWords() { return _skip_header_HeapWords; } duke@435: ) duke@435: duke@435: // Override duke@435: void check_for_non_bad_heap_word_value(HeapWord* addr, duke@435: size_t size) PRODUCT_RETURN; duke@435: duke@435: // For use by mark-sweep. As implemented, mark-sweep-compact is global duke@435: // in an essential way: compaction is performed across generations, by duke@435: // iterating over spaces. duke@435: void prepare_for_compaction(); duke@435: duke@435: // Perform a full collection of the first max_level+1 generations. duke@435: // This is the low level interface used by the public versions of duke@435: // collect() and collect_locked(). Caller holds the Heap_lock on entry. duke@435: void collect_locked(GCCause::Cause cause, int max_level); duke@435: duke@435: // Returns success or failure. duke@435: bool create_cms_collector(); duke@435: duke@435: // In support of ExplicitGCInvokesConcurrent functionality duke@435: bool should_do_concurrent_full_gc(GCCause::Cause cause); duke@435: void collect_mostly_concurrent(GCCause::Cause cause); duke@435: jmasa@698: // Save the tops of the spaces in all generations jmasa@698: void record_gen_tops_before_GC() PRODUCT_RETURN; jmasa@698: duke@435: protected: duke@435: virtual void gc_prologue(bool full); duke@435: virtual void gc_epilogue(bool full); duke@435: }; stefank@2314: stefank@2314: #endif // SHARE_VM_MEMORY_GENCOLLECTEDHEAP_HPP